openai.go

  1package provider
  2
  3import (
  4	"context"
  5	"encoding/json"
  6	"errors"
  7	"fmt"
  8	"io"
  9	"time"
 10
 11	"github.com/charmbracelet/crush/internal/config"
 12	"github.com/charmbracelet/crush/internal/fur/provider"
 13	"github.com/charmbracelet/crush/internal/llm/tools"
 14	"github.com/charmbracelet/crush/internal/logging"
 15	"github.com/charmbracelet/crush/internal/message"
 16	"github.com/openai/openai-go"
 17	"github.com/openai/openai-go/option"
 18	"github.com/openai/openai-go/shared"
 19)
 20
 21type openaiClient struct {
 22	providerOptions providerClientOptions
 23	client          openai.Client
 24}
 25
 26type OpenAIClient ProviderClient
 27
 28func newOpenAIClient(opts providerClientOptions) OpenAIClient {
 29	openaiClientOptions := []option.RequestOption{}
 30	if opts.apiKey != "" {
 31		openaiClientOptions = append(openaiClientOptions, option.WithAPIKey(opts.apiKey))
 32	}
 33	if opts.baseURL != "" {
 34		openaiClientOptions = append(openaiClientOptions, option.WithBaseURL(opts.baseURL))
 35	}
 36
 37	if opts.extraHeaders != nil {
 38		for key, value := range opts.extraHeaders {
 39			openaiClientOptions = append(openaiClientOptions, option.WithHeader(key, value))
 40		}
 41	}
 42
 43	client := openai.NewClient(openaiClientOptions...)
 44	return &openaiClient{
 45		providerOptions: opts,
 46		client:          client,
 47	}
 48}
 49
 50func (o *openaiClient) convertMessages(messages []message.Message) (openaiMessages []openai.ChatCompletionMessageParamUnion) {
 51	// Add system message first
 52	openaiMessages = append(openaiMessages, openai.SystemMessage(o.providerOptions.systemMessage))
 53
 54	for _, msg := range messages {
 55		switch msg.Role {
 56		case message.User:
 57			var content []openai.ChatCompletionContentPartUnionParam
 58			textBlock := openai.ChatCompletionContentPartTextParam{Text: msg.Content().String()}
 59			content = append(content, openai.ChatCompletionContentPartUnionParam{OfText: &textBlock})
 60			for _, binaryContent := range msg.BinaryContent() {
 61				imageURL := openai.ChatCompletionContentPartImageImageURLParam{URL: binaryContent.String(provider.InferenceProviderOpenAI)}
 62				imageBlock := openai.ChatCompletionContentPartImageParam{ImageURL: imageURL}
 63
 64				content = append(content, openai.ChatCompletionContentPartUnionParam{OfImageURL: &imageBlock})
 65			}
 66
 67			openaiMessages = append(openaiMessages, openai.UserMessage(content))
 68
 69		case message.Assistant:
 70			assistantMsg := openai.ChatCompletionAssistantMessageParam{
 71				Role: "assistant",
 72			}
 73
 74			if msg.Content().String() != "" {
 75				assistantMsg.Content = openai.ChatCompletionAssistantMessageParamContentUnion{
 76					OfString: openai.String(msg.Content().String()),
 77				}
 78			}
 79
 80			if len(msg.ToolCalls()) > 0 {
 81				assistantMsg.ToolCalls = make([]openai.ChatCompletionMessageToolCallParam, len(msg.ToolCalls()))
 82				for i, call := range msg.ToolCalls() {
 83					assistantMsg.ToolCalls[i] = openai.ChatCompletionMessageToolCallParam{
 84						ID:   call.ID,
 85						Type: "function",
 86						Function: openai.ChatCompletionMessageToolCallFunctionParam{
 87							Name:      call.Name,
 88							Arguments: call.Input,
 89						},
 90					}
 91				}
 92			}
 93
 94			openaiMessages = append(openaiMessages, openai.ChatCompletionMessageParamUnion{
 95				OfAssistant: &assistantMsg,
 96			})
 97
 98		case message.Tool:
 99			for _, result := range msg.ToolResults() {
100				openaiMessages = append(openaiMessages,
101					openai.ToolMessage(result.Content, result.ToolCallID),
102				)
103			}
104		}
105	}
106
107	return
108}
109
110func (o *openaiClient) convertTools(tools []tools.BaseTool) []openai.ChatCompletionToolParam {
111	openaiTools := make([]openai.ChatCompletionToolParam, len(tools))
112
113	for i, tool := range tools {
114		info := tool.Info()
115		openaiTools[i] = openai.ChatCompletionToolParam{
116			Function: openai.FunctionDefinitionParam{
117				Name:        info.Name,
118				Description: openai.String(info.Description),
119				Parameters: openai.FunctionParameters{
120					"type":       "object",
121					"properties": info.Parameters,
122					"required":   info.Required,
123				},
124			},
125		}
126	}
127
128	return openaiTools
129}
130
131func (o *openaiClient) finishReason(reason string) message.FinishReason {
132	switch reason {
133	case "stop":
134		return message.FinishReasonEndTurn
135	case "length":
136		return message.FinishReasonMaxTokens
137	case "tool_calls":
138		return message.FinishReasonToolUse
139	default:
140		return message.FinishReasonUnknown
141	}
142}
143
144func (o *openaiClient) preparedParams(messages []openai.ChatCompletionMessageParamUnion, tools []openai.ChatCompletionToolParam) openai.ChatCompletionNewParams {
145	model := o.providerOptions.model(o.providerOptions.modelType)
146	cfg := config.Get()
147
148	modelConfig := cfg.Models.Large
149	if o.providerOptions.modelType == config.SmallModel {
150		modelConfig = cfg.Models.Small
151	}
152
153	reasoningEffort := model.ReasoningEffort
154	if modelConfig.ReasoningEffort != "" {
155		reasoningEffort = modelConfig.ReasoningEffort
156	}
157
158	params := openai.ChatCompletionNewParams{
159		Model:    openai.ChatModel(model.ID),
160		Messages: messages,
161		Tools:    tools,
162	}
163
164	maxTokens := model.DefaultMaxTokens
165	if modelConfig.MaxTokens > 0 {
166		maxTokens = modelConfig.MaxTokens
167	}
168
169	// Override max tokens if set in provider options
170	if o.providerOptions.maxTokens > 0 {
171		maxTokens = o.providerOptions.maxTokens
172	}
173	if model.CanReason {
174		params.MaxCompletionTokens = openai.Int(maxTokens)
175		switch reasoningEffort {
176		case "low":
177			params.ReasoningEffort = shared.ReasoningEffortLow
178		case "medium":
179			params.ReasoningEffort = shared.ReasoningEffortMedium
180		case "high":
181			params.ReasoningEffort = shared.ReasoningEffortHigh
182		default:
183			params.ReasoningEffort = shared.ReasoningEffortMedium
184		}
185	} else {
186		params.MaxTokens = openai.Int(maxTokens)
187	}
188
189	return params
190}
191
192func (o *openaiClient) send(ctx context.Context, messages []message.Message, tools []tools.BaseTool) (response *ProviderResponse, err error) {
193	params := o.preparedParams(o.convertMessages(messages), o.convertTools(tools))
194	cfg := config.Get()
195	if cfg.Options.Debug {
196		jsonData, _ := json.Marshal(params)
197		logging.Debug("Prepared messages", "messages", string(jsonData))
198	}
199	attempts := 0
200	for {
201		attempts++
202		openaiResponse, err := o.client.Chat.Completions.New(
203			ctx,
204			params,
205		)
206		// If there is an error we are going to see if we can retry the call
207		if err != nil {
208			retry, after, retryErr := o.shouldRetry(attempts, err)
209			if retryErr != nil {
210				return nil, retryErr
211			}
212			if retry {
213				logging.WarnPersist(fmt.Sprintf("Retrying due to rate limit... attempt %d of %d", attempts, maxRetries), logging.PersistTimeArg, time.Millisecond*time.Duration(after+100))
214				select {
215				case <-ctx.Done():
216					return nil, ctx.Err()
217				case <-time.After(time.Duration(after) * time.Millisecond):
218					continue
219				}
220			}
221			return nil, retryErr
222		}
223
224		content := ""
225		if openaiResponse.Choices[0].Message.Content != "" {
226			content = openaiResponse.Choices[0].Message.Content
227		}
228
229		toolCalls := o.toolCalls(*openaiResponse)
230		finishReason := o.finishReason(string(openaiResponse.Choices[0].FinishReason))
231
232		if len(toolCalls) > 0 {
233			finishReason = message.FinishReasonToolUse
234		}
235
236		return &ProviderResponse{
237			Content:      content,
238			ToolCalls:    toolCalls,
239			Usage:        o.usage(*openaiResponse),
240			FinishReason: finishReason,
241		}, nil
242	}
243}
244
245func (o *openaiClient) stream(ctx context.Context, messages []message.Message, tools []tools.BaseTool) <-chan ProviderEvent {
246	params := o.preparedParams(o.convertMessages(messages), o.convertTools(tools))
247	params.StreamOptions = openai.ChatCompletionStreamOptionsParam{
248		IncludeUsage: openai.Bool(true),
249	}
250
251	cfg := config.Get()
252	if cfg.Options.Debug {
253		jsonData, _ := json.Marshal(params)
254		logging.Debug("Prepared messages", "messages", string(jsonData))
255	}
256
257	attempts := 0
258	eventChan := make(chan ProviderEvent)
259
260	go func() {
261		for {
262			attempts++
263			openaiStream := o.client.Chat.Completions.NewStreaming(
264				ctx,
265				params,
266			)
267
268			acc := openai.ChatCompletionAccumulator{}
269			currentContent := ""
270			toolCalls := make([]message.ToolCall, 0)
271
272			for openaiStream.Next() {
273				chunk := openaiStream.Current()
274				acc.AddChunk(chunk)
275
276				for _, choice := range chunk.Choices {
277					if choice.Delta.Content != "" {
278						eventChan <- ProviderEvent{
279							Type:    EventContentDelta,
280							Content: choice.Delta.Content,
281						}
282						currentContent += choice.Delta.Content
283					}
284				}
285			}
286
287			err := openaiStream.Err()
288			if err == nil || errors.Is(err, io.EOF) {
289				// Stream completed successfully
290				finishReason := o.finishReason(string(acc.ChatCompletion.Choices[0].FinishReason))
291				if len(acc.Choices[0].Message.ToolCalls) > 0 {
292					toolCalls = append(toolCalls, o.toolCalls(acc.ChatCompletion)...)
293				}
294				if len(toolCalls) > 0 {
295					finishReason = message.FinishReasonToolUse
296				}
297
298				eventChan <- ProviderEvent{
299					Type: EventComplete,
300					Response: &ProviderResponse{
301						Content:      currentContent,
302						ToolCalls:    toolCalls,
303						Usage:        o.usage(acc.ChatCompletion),
304						FinishReason: finishReason,
305					},
306				}
307				close(eventChan)
308				return
309			}
310
311			// If there is an error we are going to see if we can retry the call
312			retry, after, retryErr := o.shouldRetry(attempts, err)
313			if retryErr != nil {
314				eventChan <- ProviderEvent{Type: EventError, Error: retryErr}
315				close(eventChan)
316				return
317			}
318			if retry {
319				logging.WarnPersist(fmt.Sprintf("Retrying due to rate limit... attempt %d of %d", attempts, maxRetries), logging.PersistTimeArg, time.Millisecond*time.Duration(after+100))
320				select {
321				case <-ctx.Done():
322					// context cancelled
323					if ctx.Err() == nil {
324						eventChan <- ProviderEvent{Type: EventError, Error: ctx.Err()}
325					}
326					close(eventChan)
327					return
328				case <-time.After(time.Duration(after) * time.Millisecond):
329					continue
330				}
331			}
332			eventChan <- ProviderEvent{Type: EventError, Error: retryErr}
333			close(eventChan)
334			return
335		}
336	}()
337
338	return eventChan
339}
340
341func (o *openaiClient) shouldRetry(attempts int, err error) (bool, int64, error) {
342	var apierr *openai.Error
343	if !errors.As(err, &apierr) {
344		return false, 0, err
345	}
346
347	if apierr.StatusCode != 429 && apierr.StatusCode != 500 {
348		return false, 0, err
349	}
350
351	if attempts > maxRetries {
352		return false, 0, fmt.Errorf("maximum retry attempts reached for rate limit: %d retries", maxRetries)
353	}
354
355	retryMs := 0
356	retryAfterValues := apierr.Response.Header.Values("Retry-After")
357
358	backoffMs := 2000 * (1 << (attempts - 1))
359	jitterMs := int(float64(backoffMs) * 0.2)
360	retryMs = backoffMs + jitterMs
361	if len(retryAfterValues) > 0 {
362		if _, err := fmt.Sscanf(retryAfterValues[0], "%d", &retryMs); err == nil {
363			retryMs = retryMs * 1000
364		}
365	}
366	return true, int64(retryMs), nil
367}
368
369func (o *openaiClient) toolCalls(completion openai.ChatCompletion) []message.ToolCall {
370	var toolCalls []message.ToolCall
371
372	if len(completion.Choices) > 0 && len(completion.Choices[0].Message.ToolCalls) > 0 {
373		for _, call := range completion.Choices[0].Message.ToolCalls {
374			toolCall := message.ToolCall{
375				ID:       call.ID,
376				Name:     call.Function.Name,
377				Input:    call.Function.Arguments,
378				Type:     "function",
379				Finished: true,
380			}
381			toolCalls = append(toolCalls, toolCall)
382		}
383	}
384
385	return toolCalls
386}
387
388func (o *openaiClient) usage(completion openai.ChatCompletion) TokenUsage {
389	cachedTokens := completion.Usage.PromptTokensDetails.CachedTokens
390	inputTokens := completion.Usage.PromptTokens - cachedTokens
391
392	return TokenUsage{
393		InputTokens:         inputTokens,
394		OutputTokens:        completion.Usage.CompletionTokens,
395		CacheCreationTokens: 0, // OpenAI doesn't provide this directly
396		CacheReadTokens:     cachedTokens,
397	}
398}
399
400func (a *openaiClient) Model() config.Model {
401	return a.providerOptions.model(a.providerOptions.modelType)
402}