openai.go

  1package provider
  2
  3import (
  4	"context"
  5	"encoding/json"
  6	"errors"
  7	"fmt"
  8	"io"
  9	"log/slog"
 10	"strings"
 11	"time"
 12
 13	"github.com/charmbracelet/catwalk/pkg/catwalk"
 14	"github.com/charmbracelet/crush/internal/config"
 15	"github.com/charmbracelet/crush/internal/llm/tools"
 16	"github.com/charmbracelet/crush/internal/log"
 17	"github.com/charmbracelet/crush/internal/message"
 18	"github.com/google/uuid"
 19	"github.com/openai/openai-go"
 20	"github.com/openai/openai-go/option"
 21	"github.com/openai/openai-go/packages/param"
 22	"github.com/openai/openai-go/shared"
 23)
 24
 25type openaiClient struct {
 26	providerOptions providerClientOptions
 27	client          openai.Client
 28}
 29
 30type OpenAIClient ProviderClient
 31
 32func newOpenAIClient(opts providerClientOptions) OpenAIClient {
 33	return &openaiClient{
 34		providerOptions: opts,
 35		client:          createOpenAIClient(opts),
 36	}
 37}
 38
 39func createOpenAIClient(opts providerClientOptions) openai.Client {
 40	openaiClientOptions := []option.RequestOption{}
 41	if opts.apiKey != "" {
 42		openaiClientOptions = append(openaiClientOptions, option.WithAPIKey(opts.apiKey))
 43	}
 44	if opts.baseURL != "" {
 45		resolvedBaseURL, err := config.Get().Resolve(opts.baseURL)
 46		if err == nil && resolvedBaseURL != "" {
 47			openaiClientOptions = append(openaiClientOptions, option.WithBaseURL(resolvedBaseURL))
 48		}
 49	}
 50
 51	if config.Get().Options.Debug {
 52		httpClient := log.NewHTTPClient()
 53		openaiClientOptions = append(openaiClientOptions, option.WithHTTPClient(httpClient))
 54	}
 55
 56	for key, value := range opts.extraHeaders {
 57		openaiClientOptions = append(openaiClientOptions, option.WithHeader(key, value))
 58	}
 59
 60	for extraKey, extraValue := range opts.extraBody {
 61		openaiClientOptions = append(openaiClientOptions, option.WithJSONSet(extraKey, extraValue))
 62	}
 63
 64	return openai.NewClient(openaiClientOptions...)
 65}
 66
 67func (o *openaiClient) convertMessages(messages []message.Message) (openaiMessages []openai.ChatCompletionMessageParamUnion) {
 68	isAnthropicModel := o.providerOptions.config.ID == string(catwalk.InferenceProviderOpenRouter) && strings.HasPrefix(o.Model().ID, "anthropic/")
 69	// Add system message first
 70	systemMessage := o.providerOptions.systemMessage
 71	if o.providerOptions.systemPromptPrefix != "" {
 72		systemMessage = o.providerOptions.systemPromptPrefix + "\n" + systemMessage
 73	}
 74
 75	system := openai.SystemMessage(systemMessage)
 76	if isAnthropicModel && !o.providerOptions.disableCache {
 77		systemTextBlock := openai.ChatCompletionContentPartTextParam{Text: systemMessage}
 78		systemTextBlock.SetExtraFields(
 79			map[string]any{
 80				"cache_control": map[string]string{
 81					"type": "ephemeral",
 82				},
 83			},
 84		)
 85		var content []openai.ChatCompletionContentPartTextParam
 86		content = append(content, systemTextBlock)
 87		system = openai.SystemMessage(content)
 88	}
 89	openaiMessages = append(openaiMessages, system)
 90
 91	for i, msg := range messages {
 92		cache := false
 93		if i > len(messages)-3 {
 94			cache = true
 95		}
 96		switch msg.Role {
 97		case message.User:
 98			var content []openai.ChatCompletionContentPartUnionParam
 99
100			textBlock := openai.ChatCompletionContentPartTextParam{Text: msg.Content().String()}
101			content = append(content, openai.ChatCompletionContentPartUnionParam{OfText: &textBlock})
102			hasBinaryContent := false
103			for _, binaryContent := range msg.BinaryContent() {
104				hasBinaryContent = true
105				imageURL := openai.ChatCompletionContentPartImageImageURLParam{URL: binaryContent.String(catwalk.InferenceProviderOpenAI)}
106				imageBlock := openai.ChatCompletionContentPartImageParam{ImageURL: imageURL}
107
108				content = append(content, openai.ChatCompletionContentPartUnionParam{OfImageURL: &imageBlock})
109			}
110			if cache && !o.providerOptions.disableCache && isAnthropicModel {
111				textBlock.SetExtraFields(map[string]any{
112					"cache_control": map[string]string{
113						"type": "ephemeral",
114					},
115				})
116			}
117			if hasBinaryContent || (isAnthropicModel && !o.providerOptions.disableCache) {
118				openaiMessages = append(openaiMessages, openai.UserMessage(content))
119			} else {
120				openaiMessages = append(openaiMessages, openai.UserMessage(msg.Content().String()))
121			}
122
123		case message.Assistant:
124			assistantMsg := openai.ChatCompletionAssistantMessageParam{
125				Role: "assistant",
126			}
127
128			hasContent := false
129			if msg.Content().String() != "" {
130				hasContent = true
131				textBlock := openai.ChatCompletionContentPartTextParam{Text: msg.Content().String()}
132				if cache && !o.providerOptions.disableCache && isAnthropicModel {
133					textBlock.SetExtraFields(map[string]any{
134						"cache_control": map[string]string{
135							"type": "ephemeral",
136						},
137					})
138				}
139				assistantMsg.Content = openai.ChatCompletionAssistantMessageParamContentUnion{
140					OfArrayOfContentParts: []openai.ChatCompletionAssistantMessageParamContentArrayOfContentPartUnion{
141						{
142							OfText: &textBlock,
143						},
144					},
145				}
146				if !isAnthropicModel {
147					assistantMsg.Content = openai.ChatCompletionAssistantMessageParamContentUnion{
148						OfString: param.NewOpt(msg.Content().String()),
149					}
150				}
151			}
152
153			if len(msg.ToolCalls()) > 0 {
154				hasContent = true
155				assistantMsg.ToolCalls = make([]openai.ChatCompletionMessageToolCallParam, len(msg.ToolCalls()))
156				for i, call := range msg.ToolCalls() {
157					assistantMsg.ToolCalls[i] = openai.ChatCompletionMessageToolCallParam{
158						ID:   call.ID,
159						Type: "function",
160						Function: openai.ChatCompletionMessageToolCallFunctionParam{
161							Name:      call.Name,
162							Arguments: call.Input,
163						},
164					}
165				}
166			}
167			if !hasContent {
168				continue
169			}
170
171			openaiMessages = append(openaiMessages, openai.ChatCompletionMessageParamUnion{
172				OfAssistant: &assistantMsg,
173			})
174
175		case message.Tool:
176			for _, result := range msg.ToolResults() {
177				openaiMessages = append(openaiMessages,
178					openai.ToolMessage(result.Content, result.ToolCallID),
179				)
180			}
181		}
182	}
183
184	return
185}
186
187func (o *openaiClient) convertTools(tools []tools.BaseTool) []openai.ChatCompletionToolParam {
188	openaiTools := make([]openai.ChatCompletionToolParam, len(tools))
189
190	for i, tool := range tools {
191		info := tool.Info()
192		openaiTools[i] = openai.ChatCompletionToolParam{
193			Function: openai.FunctionDefinitionParam{
194				Name:        info.Name,
195				Description: openai.String(info.Description),
196				Parameters: openai.FunctionParameters{
197					"type":       "object",
198					"properties": info.Parameters,
199					"required":   info.Required,
200				},
201			},
202		}
203	}
204
205	return openaiTools
206}
207
208func (o *openaiClient) finishReason(reason string) message.FinishReason {
209	switch reason {
210	case "stop":
211		return message.FinishReasonEndTurn
212	case "length":
213		return message.FinishReasonMaxTokens
214	case "tool_calls":
215		return message.FinishReasonToolUse
216	default:
217		return message.FinishReasonUnknown
218	}
219}
220
221func (o *openaiClient) preparedParams(messages []openai.ChatCompletionMessageParamUnion, tools []openai.ChatCompletionToolParam) openai.ChatCompletionNewParams {
222	model := o.providerOptions.model(o.providerOptions.modelType)
223	cfg := config.Get()
224
225	modelConfig := cfg.Models[config.SelectedModelTypeLarge]
226	if o.providerOptions.modelType == config.SelectedModelTypeSmall {
227		modelConfig = cfg.Models[config.SelectedModelTypeSmall]
228	}
229
230	reasoningEffort := modelConfig.ReasoningEffort
231
232	params := openai.ChatCompletionNewParams{
233		Model:    openai.ChatModel(model.ID),
234		Messages: messages,
235		Tools:    tools,
236	}
237
238	maxTokens := model.DefaultMaxTokens
239	if modelConfig.MaxTokens > 0 {
240		maxTokens = modelConfig.MaxTokens
241	}
242
243	// Override max tokens if set in provider options
244	if o.providerOptions.maxTokens > 0 {
245		maxTokens = o.providerOptions.maxTokens
246	}
247	if model.CanReason {
248		params.MaxCompletionTokens = openai.Int(maxTokens)
249		switch reasoningEffort {
250		case "low":
251			params.ReasoningEffort = shared.ReasoningEffortLow
252		case "medium":
253			params.ReasoningEffort = shared.ReasoningEffortMedium
254		case "high":
255			params.ReasoningEffort = shared.ReasoningEffortHigh
256		case "minimal":
257			params.ReasoningEffort = shared.ReasoningEffort("minimal")
258		default:
259			params.ReasoningEffort = shared.ReasoningEffort(reasoningEffort)
260		}
261	} else {
262		params.MaxTokens = openai.Int(maxTokens)
263	}
264
265	return params
266}
267
268func (o *openaiClient) send(ctx context.Context, messages []message.Message, tools []tools.BaseTool) (response *ProviderResponse, err error) {
269	params := o.preparedParams(o.convertMessages(messages), o.convertTools(tools))
270	attempts := 0
271	for {
272		attempts++
273		openaiResponse, err := o.client.Chat.Completions.New(
274			ctx,
275			params,
276		)
277		// If there is an error we are going to see if we can retry the call
278		if err != nil {
279			retry, after, retryErr := o.shouldRetry(attempts, err)
280			if retryErr != nil {
281				return nil, retryErr
282			}
283			if retry {
284				slog.Warn("Retrying due to rate limit", "attempt", attempts, "max_retries", maxRetries, "error", err)
285				select {
286				case <-ctx.Done():
287					return nil, ctx.Err()
288				case <-time.After(time.Duration(after) * time.Millisecond):
289					continue
290				}
291			}
292			return nil, retryErr
293		}
294
295		if len(openaiResponse.Choices) == 0 {
296			return nil, fmt.Errorf("received empty response from OpenAI API - check endpoint configuration")
297		}
298
299		content := ""
300		if openaiResponse.Choices[0].Message.Content != "" {
301			content = openaiResponse.Choices[0].Message.Content
302		}
303
304		toolCalls := o.toolCalls(*openaiResponse)
305		finishReason := o.finishReason(string(openaiResponse.Choices[0].FinishReason))
306
307		if len(toolCalls) > 0 {
308			finishReason = message.FinishReasonToolUse
309		}
310
311		return &ProviderResponse{
312			Content:      content,
313			ToolCalls:    toolCalls,
314			Usage:        o.usage(*openaiResponse),
315			FinishReason: finishReason,
316		}, nil
317	}
318}
319
320func (o *openaiClient) stream(ctx context.Context, messages []message.Message, tools []tools.BaseTool) <-chan ProviderEvent {
321	params := o.preparedParams(o.convertMessages(messages), o.convertTools(tools))
322	params.StreamOptions = openai.ChatCompletionStreamOptionsParam{
323		IncludeUsage: openai.Bool(true),
324	}
325
326	attempts := 0
327	eventChan := make(chan ProviderEvent)
328
329	go func() {
330		for {
331			attempts++
332			// Kujtim: fixes an issue with anthropig models on openrouter
333			if len(params.Tools) == 0 {
334				params.Tools = nil
335			}
336			openaiStream := o.client.Chat.Completions.NewStreaming(
337				ctx,
338				params,
339			)
340
341			acc := openai.ChatCompletionAccumulator{}
342			currentContent := ""
343			toolCalls := make([]message.ToolCall, 0)
344			msgToolCalls := make(map[int64]openai.ChatCompletionMessageToolCall)
345			for openaiStream.Next() {
346				chunk := openaiStream.Current()
347				// Kujtim: this is an issue with openrouter qwen, its sending -1 for the tool index
348				if len(chunk.Choices) != 0 && len(chunk.Choices[0].Delta.ToolCalls) > 0 && chunk.Choices[0].Delta.ToolCalls[0].Index == -1 {
349					chunk.Choices[0].Delta.ToolCalls[0].Index = 0
350				}
351				acc.AddChunk(chunk)
352				for _, choice := range chunk.Choices {
353					reasoning, ok := choice.Delta.JSON.ExtraFields["reasoning"]
354					if ok && reasoning.Raw() != "" {
355						reasoningStr := ""
356						json.Unmarshal([]byte(reasoning.Raw()), &reasoningStr)
357						if reasoningStr != "" {
358							eventChan <- ProviderEvent{
359								Type:     EventThinkingDelta,
360								Thinking: reasoningStr,
361							}
362						}
363					}
364					if choice.Delta.Content != "" {
365						eventChan <- ProviderEvent{
366							Type:    EventContentDelta,
367							Content: choice.Delta.Content,
368						}
369						currentContent += choice.Delta.Content
370					} else if len(choice.Delta.ToolCalls) > 0 {
371						toolCall := choice.Delta.ToolCalls[0]
372						newToolCall := false
373						if existingToolCall, ok := msgToolCalls[toolCall.Index]; ok { // tool call exists
374							if toolCall.ID != "" && toolCall.ID != existingToolCall.ID {
375								found := false
376								// try to find the tool based on the ID
377								for _, tool := range msgToolCalls {
378									if tool.ID == toolCall.ID {
379										existingToolCall.Function.Arguments += toolCall.Function.Arguments
380										msgToolCalls[toolCall.Index] = existingToolCall
381										found = true
382									}
383								}
384								if !found {
385									newToolCall = true
386								}
387							} else {
388								existingToolCall.Function.Arguments += toolCall.Function.Arguments
389								msgToolCalls[toolCall.Index] = existingToolCall
390							}
391						} else {
392							newToolCall = true
393						}
394						if newToolCall { // new tool call
395							if toolCall.ID == "" {
396								toolCall.ID = uuid.NewString()
397							}
398							eventChan <- ProviderEvent{
399								Type: EventToolUseStart,
400								ToolCall: &message.ToolCall{
401									ID:       toolCall.ID,
402									Name:     toolCall.Function.Name,
403									Finished: false,
404								},
405							}
406							msgToolCalls[toolCall.Index] = openai.ChatCompletionMessageToolCall{
407								ID:   toolCall.ID,
408								Type: "function",
409								Function: openai.ChatCompletionMessageToolCallFunction{
410									Name:      toolCall.Function.Name,
411									Arguments: toolCall.Function.Arguments,
412								},
413							}
414						}
415					}
416				}
417			}
418
419			err := openaiStream.Err()
420			if err == nil || errors.Is(err, io.EOF) {
421				if len(acc.Choices) == 0 {
422					eventChan <- ProviderEvent{
423						Type:  EventError,
424						Error: fmt.Errorf("received empty streaming response from OpenAI API - check endpoint configuration"),
425					}
426					return
427				}
428
429				resultFinishReason := acc.Choices[0].FinishReason
430				if resultFinishReason == "" {
431					// If the finish reason is empty, we assume it was a successful completion
432					// INFO: this is happening for openrouter for some reason
433					resultFinishReason = "stop"
434				}
435				// Stream completed successfully
436				finishReason := o.finishReason(resultFinishReason)
437				if len(acc.Choices[0].Message.ToolCalls) > 0 {
438					toolCalls = append(toolCalls, o.toolCalls(acc.ChatCompletion)...)
439				}
440				if len(toolCalls) > 0 {
441					finishReason = message.FinishReasonToolUse
442				}
443
444				eventChan <- ProviderEvent{
445					Type: EventComplete,
446					Response: &ProviderResponse{
447						Content:      currentContent,
448						ToolCalls:    toolCalls,
449						Usage:        o.usage(acc.ChatCompletion),
450						FinishReason: finishReason,
451					},
452				}
453				close(eventChan)
454				return
455			}
456
457			// If there is an error we are going to see if we can retry the call
458			retry, after, retryErr := o.shouldRetry(attempts, err)
459			if retryErr != nil {
460				eventChan <- ProviderEvent{Type: EventError, Error: retryErr}
461				close(eventChan)
462				return
463			}
464			if retry {
465				slog.Warn("Retrying due to rate limit", "attempt", attempts, "max_retries", maxRetries, "error", err)
466				select {
467				case <-ctx.Done():
468					// context cancelled
469					if ctx.Err() == nil {
470						eventChan <- ProviderEvent{Type: EventError, Error: ctx.Err()}
471					}
472					close(eventChan)
473					return
474				case <-time.After(time.Duration(after) * time.Millisecond):
475					continue
476				}
477			}
478			eventChan <- ProviderEvent{Type: EventError, Error: retryErr}
479			close(eventChan)
480			return
481		}
482	}()
483
484	return eventChan
485}
486
487func (o *openaiClient) shouldRetry(attempts int, err error) (bool, int64, error) {
488	if attempts > maxRetries {
489		return false, 0, fmt.Errorf("maximum retry attempts reached for rate limit: %d retries", maxRetries)
490	}
491	if errors.Is(err, context.Canceled) || errors.Is(err, context.DeadlineExceeded) {
492		return false, 0, err
493	}
494	var apiErr *openai.Error
495	retryMs := 0
496	retryAfterValues := []string{}
497	if errors.As(err, &apiErr) {
498		// Check for token expiration (401 Unauthorized)
499		if apiErr.StatusCode == 401 {
500			o.providerOptions.apiKey, err = config.Get().Resolve(o.providerOptions.config.APIKey)
501			if err != nil {
502				return false, 0, fmt.Errorf("failed to resolve API key: %w", err)
503			}
504			o.client = createOpenAIClient(o.providerOptions)
505			return true, 0, nil
506		}
507
508		if apiErr.StatusCode != 429 && apiErr.StatusCode != 500 {
509			return false, 0, err
510		}
511
512		retryAfterValues = apiErr.Response.Header.Values("Retry-After")
513	}
514
515	if apiErr != nil {
516		slog.Warn("OpenAI API error", "status_code", apiErr.StatusCode, "message", apiErr.Message, "type", apiErr.Type)
517		if len(retryAfterValues) > 0 {
518			slog.Warn("Retry-After header", "values", retryAfterValues)
519		}
520	} else {
521		slog.Error("OpenAI API error", "error", err.Error(), "attempt", attempts, "max_retries", maxRetries)
522	}
523
524	backoffMs := 2000 * (1 << (attempts - 1))
525	jitterMs := int(float64(backoffMs) * 0.2)
526	retryMs = backoffMs + jitterMs
527	if len(retryAfterValues) > 0 {
528		if _, err := fmt.Sscanf(retryAfterValues[0], "%d", &retryMs); err == nil {
529			retryMs = retryMs * 1000
530		}
531	}
532	return true, int64(retryMs), nil
533}
534
535func (o *openaiClient) toolCalls(completion openai.ChatCompletion) []message.ToolCall {
536	var toolCalls []message.ToolCall
537
538	if len(completion.Choices) > 0 && len(completion.Choices[0].Message.ToolCalls) > 0 {
539		for _, call := range completion.Choices[0].Message.ToolCalls {
540			// accumulator for some reason does this.
541			if call.Function.Name == "" {
542				continue
543			}
544			toolCall := message.ToolCall{
545				ID:       call.ID,
546				Name:     call.Function.Name,
547				Input:    call.Function.Arguments,
548				Type:     "function",
549				Finished: true,
550			}
551			toolCalls = append(toolCalls, toolCall)
552		}
553	}
554
555	return toolCalls
556}
557
558func (o *openaiClient) usage(completion openai.ChatCompletion) TokenUsage {
559	cachedTokens := completion.Usage.PromptTokensDetails.CachedTokens
560	inputTokens := completion.Usage.PromptTokens - cachedTokens
561
562	return TokenUsage{
563		InputTokens:         inputTokens,
564		OutputTokens:        completion.Usage.CompletionTokens,
565		CacheCreationTokens: 0, // OpenAI doesn't provide this directly
566		CacheReadTokens:     cachedTokens,
567	}
568}
569
570func (o *openaiClient) Model() catwalk.Model {
571	return o.providerOptions.model(o.providerOptions.modelType)
572}