llama.go

  1package provider
  2
  3import (
  4	"context"
  5	"encoding/json"
  6	"errors"
  7	"fmt"
  8	"io"
  9	"time"
 10
 11	"github.com/charmbracelet/crush/internal/config"
 12	"github.com/charmbracelet/crush/internal/fur/provider"
 13	"github.com/charmbracelet/crush/internal/llm/tools"
 14	"github.com/charmbracelet/crush/internal/logging"
 15	"github.com/charmbracelet/crush/internal/message"
 16	"github.com/openai/openai-go"
 17	"github.com/openai/openai-go/option"
 18	"github.com/openai/openai-go/shared"
 19)
 20
 21type LlamaClient ProviderClient
 22
 23func newLlamaClient(opts providerClientOptions) LlamaClient {
 24	return &llamaClient{
 25		providerOptions: opts,
 26		client:          createLlamaClient(opts),
 27	}
 28}
 29
 30type llamaClient struct {
 31	providerOptions providerClientOptions
 32	client          openai.Client
 33}
 34
 35func createLlamaClient(opts providerClientOptions) openai.Client {
 36	openaiClientOptions := []option.RequestOption{}
 37	if opts.apiKey != "" {
 38		openaiClientOptions = append(openaiClientOptions, option.WithAPIKey(opts.apiKey))
 39	}
 40
 41	baseURL := "https://api.llama.com/compat/v1/"
 42	if opts.baseURL != "" {
 43		baseURL = opts.baseURL
 44	}
 45	openaiClientOptions = append(openaiClientOptions, option.WithBaseURL(baseURL))
 46
 47	if opts.extraHeaders != nil {
 48		for key, value := range opts.extraHeaders {
 49			openaiClientOptions = append(openaiClientOptions, option.WithHeader(key, value))
 50		}
 51	}
 52	return openai.NewClient(openaiClientOptions...)
 53}
 54
 55func (l *llamaClient) send(ctx context.Context, messages []message.Message, tools []tools.BaseTool) (*ProviderResponse, error) {
 56	openaiMessages := l.convertMessages(messages)
 57	openaiTools := l.convertTools(tools)
 58	params := l.preparedParams(openaiMessages, openaiTools)
 59	cfg := config.Get()
 60	if cfg.Options.Debug {
 61		jsonData, _ := json.Marshal(params)
 62		logging.Debug("Prepared messages", "messages", string(jsonData))
 63	}
 64	attempts := 0
 65	for {
 66		attempts++
 67		openaiResponse, err := l.client.Chat.Completions.New(ctx, params)
 68		// If there is an error we are going to see if we can retry the call
 69		if err != nil {
 70			retry, after, retryErr := l.shouldRetry(attempts, err)
 71			if retryErr != nil {
 72				return nil, retryErr
 73			}
 74			if retry {
 75				logging.WarnPersist(fmt.Sprintf("Retrying due to rate limit... attempt %d of %d", attempts, maxRetries), logging.PersistTimeArg, time.Millisecond*time.Duration(after+100))
 76				select {
 77				case <-ctx.Done():
 78					return nil, ctx.Err()
 79				case <-time.After(time.Duration(after) * time.Millisecond):
 80					continue
 81				}
 82			}
 83			return nil, retryErr
 84		}
 85
 86		content := ""
 87		if openaiResponse.Choices[0].Message.Content != "" {
 88			content = openaiResponse.Choices[0].Message.Content
 89		}
 90		toolCalls := l.toolCalls(*openaiResponse)
 91		finishReason := l.finishReason(string(openaiResponse.Choices[0].FinishReason))
 92		if len(toolCalls) > 0 {
 93			finishReason = message.FinishReasonToolUse
 94		}
 95		return &ProviderResponse{
 96			Content:      content,
 97			ToolCalls:    toolCalls,
 98			Usage:        l.usage(*openaiResponse),
 99			FinishReason: finishReason,
100		}, nil
101	}
102}
103
104func (l *llamaClient) stream(ctx context.Context, messages []message.Message, tools []tools.BaseTool) <-chan ProviderEvent {
105	openaiMessages := l.convertMessages(messages)
106	openaiTools := l.convertTools(tools)
107	params := l.preparedParams(openaiMessages, openaiTools)
108	params.StreamOptions = openai.ChatCompletionStreamOptionsParam{
109		IncludeUsage: openai.Bool(true),
110	}
111	cfg := config.Get()
112	if cfg.Options.Debug {
113		jsonData, _ := json.Marshal(params)
114		logging.Debug("Prepared messages", "messages", string(jsonData))
115	}
116	eventChan := make(chan ProviderEvent)
117	go func() {
118		attempts := 0
119		for {
120			attempts++
121			openaiStream := l.client.Chat.Completions.NewStreaming(ctx, params)
122
123			acc := openai.ChatCompletionAccumulator{}
124			currentContent := ""
125			toolCalls := make([]message.ToolCall, 0)
126
127			for openaiStream.Next() {
128				chunk := openaiStream.Current()
129				acc.AddChunk(chunk)
130				for _, choice := range chunk.Choices {
131					if choice.Delta.Content != "" {
132						eventChan <- ProviderEvent{
133							Type:    EventContentDelta,
134							Content: choice.Delta.Content,
135						}
136						currentContent += choice.Delta.Content
137					}
138				}
139			}
140
141			err := openaiStream.Err()
142			if err == nil || errors.Is(err, io.EOF) {
143				if cfg.Options.Debug {
144					jsonData, _ := json.Marshal(acc.ChatCompletion)
145					logging.Debug("Response", "messages", string(jsonData))
146				}
147				resultFinishReason := acc.ChatCompletion.Choices[0].FinishReason
148				if resultFinishReason == "" {
149					// If the finish reason is empty, we assume it was a successful completion
150					resultFinishReason = "stop"
151				}
152				// Stream completed successfully
153				finishReason := l.finishReason(resultFinishReason)
154				if len(acc.Choices[0].Message.ToolCalls) > 0 {
155					toolCalls = append(toolCalls, l.toolCalls(acc.ChatCompletion)...)
156				}
157				if len(toolCalls) > 0 {
158					finishReason = message.FinishReasonToolUse
159				}
160
161				eventChan <- ProviderEvent{
162					Type: EventComplete,
163					Response: &ProviderResponse{
164						Content:      currentContent,
165						ToolCalls:    toolCalls,
166						Usage:        l.usage(acc.ChatCompletion),
167						FinishReason: finishReason,
168					},
169				}
170				close(eventChan)
171				return
172			}
173
174			// If there is an error we are going to see if we can retry the call
175			retry, after, retryErr := l.shouldRetry(attempts, err)
176			if retryErr != nil {
177				eventChan <- ProviderEvent{Type: EventError, Error: retryErr}
178				close(eventChan)
179				return
180			}
181			if retry {
182				logging.WarnPersist(fmt.Sprintf("Retrying due to rate limit... attempt %d of %d", attempts, maxRetries), logging.PersistTimeArg, time.Millisecond*time.Duration(after+100))
183				select {
184				case <-ctx.Done():
185					// context cancelled
186					if ctx.Err() != nil {
187						eventChan <- ProviderEvent{Type: EventError, Error: ctx.Err()}
188					}
189					close(eventChan)
190					return
191				case <-time.After(time.Duration(after) * time.Millisecond):
192					continue
193				}
194			}
195			eventChan <- ProviderEvent{Type: EventError, Error: retryErr}
196			close(eventChan)
197			return
198		}
199	}()
200	return eventChan
201}
202
203func (l *llamaClient) shouldRetry(attempts int, err error) (bool, int64, error) {
204	var apiErr *openai.Error
205	if !errors.As(err, &apiErr) {
206		return false, 0, err
207	}
208
209	if attempts > maxRetries {
210		return false, 0, fmt.Errorf("maximum retry attempts reached for rate limit: %d retries", maxRetries)
211	}
212
213	// Check for token expiration (401 Unauthorized)
214	if apiErr.StatusCode == 401 {
215		var err error
216		l.providerOptions.apiKey, err = config.ResolveAPIKey(l.providerOptions.config.APIKey)
217		if err != nil {
218			return false, 0, fmt.Errorf("failed to resolve API key: %w", err)
219		}
220		l.client = createLlamaClient(l.providerOptions)
221		return true, 0, nil
222	}
223
224	if apiErr.StatusCode != 429 && apiErr.StatusCode != 500 {
225		return false, 0, err
226	}
227
228	retryMs := 0
229	retryAfterValues := apiErr.Response.Header.Values("Retry-After")
230
231	backoffMs := 2000 * (1 << (attempts - 1))
232	jitterMs := int(float64(backoffMs) * 0.2)
233	retryMs = backoffMs + jitterMs
234	if len(retryAfterValues) > 0 {
235		if _, err := fmt.Sscanf(retryAfterValues[0], "%d", &retryMs); err == nil {
236			retryMs = retryMs * 1000
237		}
238	}
239	return true, int64(retryMs), nil
240}
241
242func (l *llamaClient) convertMessages(messages []message.Message) (openaiMessages []openai.ChatCompletionMessageParamUnion) {
243	// Add system message first
244	openaiMessages = append(openaiMessages, openai.SystemMessage(l.providerOptions.systemMessage))
245	for _, msg := range messages {
246		switch msg.Role {
247		case message.User:
248			var content []openai.ChatCompletionContentPartUnionParam
249			textBlock := openai.ChatCompletionContentPartTextParam{Text: msg.Content().String()}
250			content = append(content, openai.ChatCompletionContentPartUnionParam{OfText: &textBlock})
251			for _, binaryContent := range msg.BinaryContent() {
252				imageURL := openai.ChatCompletionContentPartImageImageURLParam{URL: binaryContent.String(provider.InferenceProviderLlama)}
253				imageBlock := openai.ChatCompletionContentPartImageParam{ImageURL: imageURL}
254				content = append(content, openai.ChatCompletionContentPartUnionParam{OfImageURL: &imageBlock})
255			}
256			openaiMessages = append(openaiMessages, openai.UserMessage(content))
257		case message.Assistant:
258			assistantMsg := openai.ChatCompletionAssistantMessageParam{
259				Role: "assistant",
260			}
261			if msg.Content().String() != "" {
262				assistantMsg.Content = openai.ChatCompletionAssistantMessageParamContentUnion{
263					OfString: openai.String(msg.Content().String()),
264				}
265			}
266			if len(msg.ToolCalls()) > 0 {
267				assistantMsg.ToolCalls = make([]openai.ChatCompletionMessageToolCallParam, len(msg.ToolCalls()))
268				for i, call := range msg.ToolCalls() {
269					assistantMsg.ToolCalls[i] = openai.ChatCompletionMessageToolCallParam{
270						ID:   call.ID,
271						Type: "function",
272						Function: openai.ChatCompletionMessageToolCallFunctionParam{
273							Name:      call.Name,
274							Arguments: call.Input,
275						},
276					}
277				}
278			}
279			openaiMessages = append(openaiMessages, openai.ChatCompletionMessageParamUnion{OfAssistant: &assistantMsg})
280		case message.Tool:
281			for _, result := range msg.ToolResults() {
282				openaiMessages = append(openaiMessages, openai.ToolMessage(result.Content, result.ToolCallID))
283			}
284		}
285	}
286	return
287}
288
289func (l *llamaClient) convertTools(tools []tools.BaseTool) []openai.ChatCompletionToolParam {
290	openaiTools := make([]openai.ChatCompletionToolParam, len(tools))
291	for i, tool := range tools {
292		info := tool.Info()
293		openaiTools[i] = openai.ChatCompletionToolParam{
294			Function: openai.FunctionDefinitionParam{
295				Name:        info.Name,
296				Description: openai.String(info.Description),
297				Parameters: openai.FunctionParameters{
298					"type":       "object",
299					"properties": info.Parameters,
300					"required":   info.Required,
301				},
302			},
303		}
304	}
305	return openaiTools
306}
307
308func (l *llamaClient) preparedParams(messages []openai.ChatCompletionMessageParamUnion, tools []openai.ChatCompletionToolParam) openai.ChatCompletionNewParams {
309	model := l.providerOptions.model(l.providerOptions.modelType)
310	cfg := config.Get()
311	modelConfig := cfg.Models.Large
312	if l.providerOptions.modelType == config.SmallModel {
313		modelConfig = cfg.Models.Small
314	}
315	reasoningEffort := model.ReasoningEffort
316	if modelConfig.ReasoningEffort != "" {
317		reasoningEffort = modelConfig.ReasoningEffort
318	}
319	params := openai.ChatCompletionNewParams{
320		Model:    openai.ChatModel(model.ID),
321		Messages: messages,
322		Tools:    tools,
323	}
324	maxTokens := model.DefaultMaxTokens
325	if modelConfig.MaxTokens > 0 {
326		maxTokens = modelConfig.MaxTokens
327	}
328	if l.providerOptions.maxTokens > 0 {
329		maxTokens = l.providerOptions.maxTokens
330	}
331	if model.CanReason {
332		params.MaxCompletionTokens = openai.Int(maxTokens)
333		switch reasoningEffort {
334		case "low":
335			params.ReasoningEffort = shared.ReasoningEffortLow
336		case "medium":
337			params.ReasoningEffort = shared.ReasoningEffortMedium
338		case "high":
339			params.ReasoningEffort = shared.ReasoningEffortHigh
340		default:
341			params.ReasoningEffort = shared.ReasoningEffort(reasoningEffort)
342		}
343	} else {
344		params.MaxTokens = openai.Int(maxTokens)
345	}
346	return params
347}
348
349func (l *llamaClient) toolCalls(completion openai.ChatCompletion) []message.ToolCall {
350	var toolCalls []message.ToolCall
351	if len(completion.Choices) > 0 && len(completion.Choices[0].Message.ToolCalls) > 0 {
352		for _, call := range completion.Choices[0].Message.ToolCalls {
353			toolCall := message.ToolCall{
354				ID:       call.ID,
355				Name:     call.Function.Name,
356				Input:    call.Function.Arguments,
357				Type:     "function",
358				Finished: true,
359			}
360			toolCalls = append(toolCalls, toolCall)
361		}
362	}
363	return toolCalls
364}
365
366func (l *llamaClient) finishReason(reason string) message.FinishReason {
367	switch reason {
368	case "stop":
369		return message.FinishReasonEndTurn
370	case "length":
371		return message.FinishReasonMaxTokens
372	case "tool_calls":
373		return message.FinishReasonToolUse
374	default:
375		return message.FinishReasonUnknown
376	}
377}
378
379func (l *llamaClient) usage(completion openai.ChatCompletion) TokenUsage {
380	cachedTokens := completion.Usage.PromptTokensDetails.CachedTokens
381	inputTokens := completion.Usage.PromptTokens - cachedTokens
382	return TokenUsage{
383		InputTokens:         inputTokens,
384		OutputTokens:        completion.Usage.CompletionTokens,
385		CacheCreationTokens: 0, // OpenAI doesn't provide this directly
386		CacheReadTokens:     cachedTokens,
387	}
388}
389
390func (l *llamaClient) Model() config.Model {
391	return l.providerOptions.model(l.providerOptions.modelType)
392}