sum_generic.go

  1// Copyright 2018 The Go Authors. All rights reserved.
  2// Use of this source code is governed by a BSD-style
  3// license that can be found in the LICENSE file.
  4
  5// This file provides the generic implementation of Sum and MAC. Other files
  6// might provide optimized assembly implementations of some of this code.
  7
  8package poly1305
  9
 10import (
 11	"encoding/binary"
 12	"math/bits"
 13)
 14
 15// Poly1305 [RFC 7539] is a relatively simple algorithm: the authentication tag
 16// for a 64 bytes message is approximately
 17//
 18//     s + m[0:16] * r⁴ + m[16:32] * r³ + m[32:48] * r² + m[48:64] * r  mod  2¹³⁰ - 5
 19//
 20// for some secret r and s. It can be computed sequentially like
 21//
 22//     for len(msg) > 0:
 23//         h += read(msg, 16)
 24//         h *= r
 25//         h %= 2¹³⁰ - 5
 26//     return h + s
 27//
 28// All the complexity is about doing performant constant-time math on numbers
 29// larger than any available numeric type.
 30
 31func sumGeneric(out *[TagSize]byte, msg []byte, key *[32]byte) {
 32	h := newMACGeneric(key)
 33	h.Write(msg)
 34	h.Sum(out)
 35}
 36
 37func newMACGeneric(key *[32]byte) macGeneric {
 38	m := macGeneric{}
 39	initialize(key, &m.macState)
 40	return m
 41}
 42
 43// macState holds numbers in saturated 64-bit little-endian limbs. That is,
 44// the value of [x0, x1, x2] is x[0] + x[1] * 2⁶⁴ + x[2] * 2¹²⁸.
 45type macState struct {
 46	// h is the main accumulator. It is to be interpreted modulo 2¹³⁰ - 5, but
 47	// can grow larger during and after rounds. It must, however, remain below
 48	// 2 * (2¹³⁰ - 5).
 49	h [3]uint64
 50	// r and s are the private key components.
 51	r [2]uint64
 52	s [2]uint64
 53}
 54
 55type macGeneric struct {
 56	macState
 57
 58	buffer [TagSize]byte
 59	offset int
 60}
 61
 62// Write splits the incoming message into TagSize chunks, and passes them to
 63// update. It buffers incomplete chunks.
 64func (h *macGeneric) Write(p []byte) (int, error) {
 65	nn := len(p)
 66	if h.offset > 0 {
 67		n := copy(h.buffer[h.offset:], p)
 68		if h.offset+n < TagSize {
 69			h.offset += n
 70			return nn, nil
 71		}
 72		p = p[n:]
 73		h.offset = 0
 74		updateGeneric(&h.macState, h.buffer[:])
 75	}
 76	if n := len(p) - (len(p) % TagSize); n > 0 {
 77		updateGeneric(&h.macState, p[:n])
 78		p = p[n:]
 79	}
 80	if len(p) > 0 {
 81		h.offset += copy(h.buffer[h.offset:], p)
 82	}
 83	return nn, nil
 84}
 85
 86// Sum flushes the last incomplete chunk from the buffer, if any, and generates
 87// the MAC output. It does not modify its state, in order to allow for multiple
 88// calls to Sum, even if no Write is allowed after Sum.
 89func (h *macGeneric) Sum(out *[TagSize]byte) {
 90	state := h.macState
 91	if h.offset > 0 {
 92		updateGeneric(&state, h.buffer[:h.offset])
 93	}
 94	finalize(out, &state.h, &state.s)
 95}
 96
 97// [rMask0, rMask1] is the specified Poly1305 clamping mask in little-endian. It
 98// clears some bits of the secret coefficient to make it possible to implement
 99// multiplication more efficiently.
100const (
101	rMask0 = 0x0FFFFFFC0FFFFFFF
102	rMask1 = 0x0FFFFFFC0FFFFFFC
103)
104
105// initialize loads the 256-bit key into the two 128-bit secret values r and s.
106func initialize(key *[32]byte, m *macState) {
107	m.r[0] = binary.LittleEndian.Uint64(key[0:8]) & rMask0
108	m.r[1] = binary.LittleEndian.Uint64(key[8:16]) & rMask1
109	m.s[0] = binary.LittleEndian.Uint64(key[16:24])
110	m.s[1] = binary.LittleEndian.Uint64(key[24:32])
111}
112
113// uint128 holds a 128-bit number as two 64-bit limbs, for use with the
114// bits.Mul64 and bits.Add64 intrinsics.
115type uint128 struct {
116	lo, hi uint64
117}
118
119func mul64(a, b uint64) uint128 {
120	hi, lo := bits.Mul64(a, b)
121	return uint128{lo, hi}
122}
123
124func add128(a, b uint128) uint128 {
125	lo, c := bits.Add64(a.lo, b.lo, 0)
126	hi, c := bits.Add64(a.hi, b.hi, c)
127	if c != 0 {
128		panic("poly1305: unexpected overflow")
129	}
130	return uint128{lo, hi}
131}
132
133func shiftRightBy2(a uint128) uint128 {
134	a.lo = a.lo>>2 | (a.hi&3)<<62
135	a.hi = a.hi >> 2
136	return a
137}
138
139// updateGeneric absorbs msg into the state.h accumulator. For each chunk m of
140// 128 bits of message, it computes
141//
142//	h₊ = (h + m) * r  mod  2¹³⁰ - 5
143//
144// If the msg length is not a multiple of TagSize, it assumes the last
145// incomplete chunk is the final one.
146func updateGeneric(state *macState, msg []byte) {
147	h0, h1, h2 := state.h[0], state.h[1], state.h[2]
148	r0, r1 := state.r[0], state.r[1]
149
150	for len(msg) > 0 {
151		var c uint64
152
153		// For the first step, h + m, we use a chain of bits.Add64 intrinsics.
154		// The resulting value of h might exceed 2¹³⁰ - 5, but will be partially
155		// reduced at the end of the multiplication below.
156		//
157		// The spec requires us to set a bit just above the message size, not to
158		// hide leading zeroes. For full chunks, that's 1 << 128, so we can just
159		// add 1 to the most significant (2¹²⁸) limb, h2.
160		if len(msg) >= TagSize {
161			h0, c = bits.Add64(h0, binary.LittleEndian.Uint64(msg[0:8]), 0)
162			h1, c = bits.Add64(h1, binary.LittleEndian.Uint64(msg[8:16]), c)
163			h2 += c + 1
164
165			msg = msg[TagSize:]
166		} else {
167			var buf [TagSize]byte
168			copy(buf[:], msg)
169			buf[len(msg)] = 1
170
171			h0, c = bits.Add64(h0, binary.LittleEndian.Uint64(buf[0:8]), 0)
172			h1, c = bits.Add64(h1, binary.LittleEndian.Uint64(buf[8:16]), c)
173			h2 += c
174
175			msg = nil
176		}
177
178		// Multiplication of big number limbs is similar to elementary school
179		// columnar multiplication. Instead of digits, there are 64-bit limbs.
180		//
181		// We are multiplying a 3 limbs number, h, by a 2 limbs number, r.
182		//
183		//                        h2    h1    h0  x
184		//                              r1    r0  =
185		//                       ----------------
186		//                      h2r0  h1r0  h0r0     <-- individual 128-bit products
187		//            +   h2r1  h1r1  h0r1
188		//               ------------------------
189		//                 m3    m2    m1    m0      <-- result in 128-bit overlapping limbs
190		//               ------------------------
191		//         m3.hi m2.hi m1.hi m0.hi           <-- carry propagation
192		//     +         m3.lo m2.lo m1.lo m0.lo
193		//        -------------------------------
194		//           t4    t3    t2    t1    t0      <-- final result in 64-bit limbs
195		//
196		// The main difference from pen-and-paper multiplication is that we do
197		// carry propagation in a separate step, as if we wrote two digit sums
198		// at first (the 128-bit limbs), and then carried the tens all at once.
199
200		h0r0 := mul64(h0, r0)
201		h1r0 := mul64(h1, r0)
202		h2r0 := mul64(h2, r0)
203		h0r1 := mul64(h0, r1)
204		h1r1 := mul64(h1, r1)
205		h2r1 := mul64(h2, r1)
206
207		// Since h2 is known to be at most 7 (5 + 1 + 1), and r0 and r1 have their
208		// top 4 bits cleared by rMask{0,1}, we know that their product is not going
209		// to overflow 64 bits, so we can ignore the high part of the products.
210		//
211		// This also means that the product doesn't have a fifth limb (t4).
212		if h2r0.hi != 0 {
213			panic("poly1305: unexpected overflow")
214		}
215		if h2r1.hi != 0 {
216			panic("poly1305: unexpected overflow")
217		}
218
219		m0 := h0r0
220		m1 := add128(h1r0, h0r1) // These two additions don't overflow thanks again
221		m2 := add128(h2r0, h1r1) // to the 4 masked bits at the top of r0 and r1.
222		m3 := h2r1
223
224		t0 := m0.lo
225		t1, c := bits.Add64(m1.lo, m0.hi, 0)
226		t2, c := bits.Add64(m2.lo, m1.hi, c)
227		t3, _ := bits.Add64(m3.lo, m2.hi, c)
228
229		// Now we have the result as 4 64-bit limbs, and we need to reduce it
230		// modulo 2¹³⁰ - 5. The special shape of this Crandall prime lets us do
231		// a cheap partial reduction according to the reduction identity
232		//
233		//     c * 2¹³⁰ + n  =  c * 5 + n  mod  2¹³⁰ - 5
234		//
235		// because 2¹³⁰ = 5 mod 2¹³⁰ - 5. Partial reduction since the result is
236		// likely to be larger than 2¹³⁰ - 5, but still small enough to fit the
237		// assumptions we make about h in the rest of the code.
238		//
239		// See also https://speakerdeck.com/gtank/engineering-prime-numbers?slide=23
240
241		// We split the final result at the 2¹³⁰ mark into h and cc, the carry.
242		// Note that the carry bits are effectively shifted left by 2, in other
243		// words, cc = c * 4 for the c in the reduction identity.
244		h0, h1, h2 = t0, t1, t2&maskLow2Bits
245		cc := uint128{t2 & maskNotLow2Bits, t3}
246
247		// To add c * 5 to h, we first add cc = c * 4, and then add (cc >> 2) = c.
248
249		h0, c = bits.Add64(h0, cc.lo, 0)
250		h1, c = bits.Add64(h1, cc.hi, c)
251		h2 += c
252
253		cc = shiftRightBy2(cc)
254
255		h0, c = bits.Add64(h0, cc.lo, 0)
256		h1, c = bits.Add64(h1, cc.hi, c)
257		h2 += c
258
259		// h2 is at most 3 + 1 + 1 = 5, making the whole of h at most
260		//
261		//     5 * 2¹²⁸ + (2¹²⁸ - 1) = 6 * 2¹²⁸ - 1
262	}
263
264	state.h[0], state.h[1], state.h[2] = h0, h1, h2
265}
266
267const (
268	maskLow2Bits    uint64 = 0x0000000000000003
269	maskNotLow2Bits uint64 = ^maskLow2Bits
270)
271
272// select64 returns x if v == 1 and y if v == 0, in constant time.
273func select64(v, x, y uint64) uint64 { return ^(v-1)&x | (v-1)&y }
274
275// [p0, p1, p2] is 2¹³⁰ - 5 in little endian order.
276const (
277	p0 = 0xFFFFFFFFFFFFFFFB
278	p1 = 0xFFFFFFFFFFFFFFFF
279	p2 = 0x0000000000000003
280)
281
282// finalize completes the modular reduction of h and computes
283//
284//	out = h + s  mod  2¹²⁸
285func finalize(out *[TagSize]byte, h *[3]uint64, s *[2]uint64) {
286	h0, h1, h2 := h[0], h[1], h[2]
287
288	// After the partial reduction in updateGeneric, h might be more than
289	// 2¹³⁰ - 5, but will be less than 2 * (2¹³⁰ - 5). To complete the reduction
290	// in constant time, we compute t = h - (2¹³⁰ - 5), and select h as the
291	// result if the subtraction underflows, and t otherwise.
292
293	hMinusP0, b := bits.Sub64(h0, p0, 0)
294	hMinusP1, b := bits.Sub64(h1, p1, b)
295	_, b = bits.Sub64(h2, p2, b)
296
297	// h = h if h < p else h - p
298	h0 = select64(b, h0, hMinusP0)
299	h1 = select64(b, h1, hMinusP1)
300
301	// Finally, we compute the last Poly1305 step
302	//
303	//     tag = h + s  mod  2¹²⁸
304	//
305	// by just doing a wide addition with the 128 low bits of h and discarding
306	// the overflow.
307	h0, c := bits.Add64(h0, s[0], 0)
308	h1, _ = bits.Add64(h1, s[1], c)
309
310	binary.LittleEndian.PutUint64(out[0:8], h0)
311	binary.LittleEndian.PutUint64(out[8:16], h1)
312}