1// Copyright 2018 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// This file provides the generic implementation of Sum and MAC. Other files
6// might provide optimized assembly implementations of some of this code.
7
8package poly1305
9
10import (
11 "encoding/binary"
12 "math/bits"
13)
14
15// Poly1305 [RFC 7539] is a relatively simple algorithm: the authentication tag
16// for a 64 bytes message is approximately
17//
18// s + m[0:16] * r⁴ + m[16:32] * r³ + m[32:48] * r² + m[48:64] * r mod 2¹³⁰ - 5
19//
20// for some secret r and s. It can be computed sequentially like
21//
22// for len(msg) > 0:
23// h += read(msg, 16)
24// h *= r
25// h %= 2¹³⁰ - 5
26// return h + s
27//
28// All the complexity is about doing performant constant-time math on numbers
29// larger than any available numeric type.
30
31func sumGeneric(out *[TagSize]byte, msg []byte, key *[32]byte) {
32 h := newMACGeneric(key)
33 h.Write(msg)
34 h.Sum(out)
35}
36
37func newMACGeneric(key *[32]byte) macGeneric {
38 m := macGeneric{}
39 initialize(key, &m.macState)
40 return m
41}
42
43// macState holds numbers in saturated 64-bit little-endian limbs. That is,
44// the value of [x0, x1, x2] is x[0] + x[1] * 2⁶⁴ + x[2] * 2¹²⁸.
45type macState struct {
46 // h is the main accumulator. It is to be interpreted modulo 2¹³⁰ - 5, but
47 // can grow larger during and after rounds. It must, however, remain below
48 // 2 * (2¹³⁰ - 5).
49 h [3]uint64
50 // r and s are the private key components.
51 r [2]uint64
52 s [2]uint64
53}
54
55type macGeneric struct {
56 macState
57
58 buffer [TagSize]byte
59 offset int
60}
61
62// Write splits the incoming message into TagSize chunks, and passes them to
63// update. It buffers incomplete chunks.
64func (h *macGeneric) Write(p []byte) (int, error) {
65 nn := len(p)
66 if h.offset > 0 {
67 n := copy(h.buffer[h.offset:], p)
68 if h.offset+n < TagSize {
69 h.offset += n
70 return nn, nil
71 }
72 p = p[n:]
73 h.offset = 0
74 updateGeneric(&h.macState, h.buffer[:])
75 }
76 if n := len(p) - (len(p) % TagSize); n > 0 {
77 updateGeneric(&h.macState, p[:n])
78 p = p[n:]
79 }
80 if len(p) > 0 {
81 h.offset += copy(h.buffer[h.offset:], p)
82 }
83 return nn, nil
84}
85
86// Sum flushes the last incomplete chunk from the buffer, if any, and generates
87// the MAC output. It does not modify its state, in order to allow for multiple
88// calls to Sum, even if no Write is allowed after Sum.
89func (h *macGeneric) Sum(out *[TagSize]byte) {
90 state := h.macState
91 if h.offset > 0 {
92 updateGeneric(&state, h.buffer[:h.offset])
93 }
94 finalize(out, &state.h, &state.s)
95}
96
97// [rMask0, rMask1] is the specified Poly1305 clamping mask in little-endian. It
98// clears some bits of the secret coefficient to make it possible to implement
99// multiplication more efficiently.
100const (
101 rMask0 = 0x0FFFFFFC0FFFFFFF
102 rMask1 = 0x0FFFFFFC0FFFFFFC
103)
104
105// initialize loads the 256-bit key into the two 128-bit secret values r and s.
106func initialize(key *[32]byte, m *macState) {
107 m.r[0] = binary.LittleEndian.Uint64(key[0:8]) & rMask0
108 m.r[1] = binary.LittleEndian.Uint64(key[8:16]) & rMask1
109 m.s[0] = binary.LittleEndian.Uint64(key[16:24])
110 m.s[1] = binary.LittleEndian.Uint64(key[24:32])
111}
112
113// uint128 holds a 128-bit number as two 64-bit limbs, for use with the
114// bits.Mul64 and bits.Add64 intrinsics.
115type uint128 struct {
116 lo, hi uint64
117}
118
119func mul64(a, b uint64) uint128 {
120 hi, lo := bits.Mul64(a, b)
121 return uint128{lo, hi}
122}
123
124func add128(a, b uint128) uint128 {
125 lo, c := bits.Add64(a.lo, b.lo, 0)
126 hi, c := bits.Add64(a.hi, b.hi, c)
127 if c != 0 {
128 panic("poly1305: unexpected overflow")
129 }
130 return uint128{lo, hi}
131}
132
133func shiftRightBy2(a uint128) uint128 {
134 a.lo = a.lo>>2 | (a.hi&3)<<62
135 a.hi = a.hi >> 2
136 return a
137}
138
139// updateGeneric absorbs msg into the state.h accumulator. For each chunk m of
140// 128 bits of message, it computes
141//
142// h₊ = (h + m) * r mod 2¹³⁰ - 5
143//
144// If the msg length is not a multiple of TagSize, it assumes the last
145// incomplete chunk is the final one.
146func updateGeneric(state *macState, msg []byte) {
147 h0, h1, h2 := state.h[0], state.h[1], state.h[2]
148 r0, r1 := state.r[0], state.r[1]
149
150 for len(msg) > 0 {
151 var c uint64
152
153 // For the first step, h + m, we use a chain of bits.Add64 intrinsics.
154 // The resulting value of h might exceed 2¹³⁰ - 5, but will be partially
155 // reduced at the end of the multiplication below.
156 //
157 // The spec requires us to set a bit just above the message size, not to
158 // hide leading zeroes. For full chunks, that's 1 << 128, so we can just
159 // add 1 to the most significant (2¹²⁸) limb, h2.
160 if len(msg) >= TagSize {
161 h0, c = bits.Add64(h0, binary.LittleEndian.Uint64(msg[0:8]), 0)
162 h1, c = bits.Add64(h1, binary.LittleEndian.Uint64(msg[8:16]), c)
163 h2 += c + 1
164
165 msg = msg[TagSize:]
166 } else {
167 var buf [TagSize]byte
168 copy(buf[:], msg)
169 buf[len(msg)] = 1
170
171 h0, c = bits.Add64(h0, binary.LittleEndian.Uint64(buf[0:8]), 0)
172 h1, c = bits.Add64(h1, binary.LittleEndian.Uint64(buf[8:16]), c)
173 h2 += c
174
175 msg = nil
176 }
177
178 // Multiplication of big number limbs is similar to elementary school
179 // columnar multiplication. Instead of digits, there are 64-bit limbs.
180 //
181 // We are multiplying a 3 limbs number, h, by a 2 limbs number, r.
182 //
183 // h2 h1 h0 x
184 // r1 r0 =
185 // ----------------
186 // h2r0 h1r0 h0r0 <-- individual 128-bit products
187 // + h2r1 h1r1 h0r1
188 // ------------------------
189 // m3 m2 m1 m0 <-- result in 128-bit overlapping limbs
190 // ------------------------
191 // m3.hi m2.hi m1.hi m0.hi <-- carry propagation
192 // + m3.lo m2.lo m1.lo m0.lo
193 // -------------------------------
194 // t4 t3 t2 t1 t0 <-- final result in 64-bit limbs
195 //
196 // The main difference from pen-and-paper multiplication is that we do
197 // carry propagation in a separate step, as if we wrote two digit sums
198 // at first (the 128-bit limbs), and then carried the tens all at once.
199
200 h0r0 := mul64(h0, r0)
201 h1r0 := mul64(h1, r0)
202 h2r0 := mul64(h2, r0)
203 h0r1 := mul64(h0, r1)
204 h1r1 := mul64(h1, r1)
205 h2r1 := mul64(h2, r1)
206
207 // Since h2 is known to be at most 7 (5 + 1 + 1), and r0 and r1 have their
208 // top 4 bits cleared by rMask{0,1}, we know that their product is not going
209 // to overflow 64 bits, so we can ignore the high part of the products.
210 //
211 // This also means that the product doesn't have a fifth limb (t4).
212 if h2r0.hi != 0 {
213 panic("poly1305: unexpected overflow")
214 }
215 if h2r1.hi != 0 {
216 panic("poly1305: unexpected overflow")
217 }
218
219 m0 := h0r0
220 m1 := add128(h1r0, h0r1) // These two additions don't overflow thanks again
221 m2 := add128(h2r0, h1r1) // to the 4 masked bits at the top of r0 and r1.
222 m3 := h2r1
223
224 t0 := m0.lo
225 t1, c := bits.Add64(m1.lo, m0.hi, 0)
226 t2, c := bits.Add64(m2.lo, m1.hi, c)
227 t3, _ := bits.Add64(m3.lo, m2.hi, c)
228
229 // Now we have the result as 4 64-bit limbs, and we need to reduce it
230 // modulo 2¹³⁰ - 5. The special shape of this Crandall prime lets us do
231 // a cheap partial reduction according to the reduction identity
232 //
233 // c * 2¹³⁰ + n = c * 5 + n mod 2¹³⁰ - 5
234 //
235 // because 2¹³⁰ = 5 mod 2¹³⁰ - 5. Partial reduction since the result is
236 // likely to be larger than 2¹³⁰ - 5, but still small enough to fit the
237 // assumptions we make about h in the rest of the code.
238 //
239 // See also https://speakerdeck.com/gtank/engineering-prime-numbers?slide=23
240
241 // We split the final result at the 2¹³⁰ mark into h and cc, the carry.
242 // Note that the carry bits are effectively shifted left by 2, in other
243 // words, cc = c * 4 for the c in the reduction identity.
244 h0, h1, h2 = t0, t1, t2&maskLow2Bits
245 cc := uint128{t2 & maskNotLow2Bits, t3}
246
247 // To add c * 5 to h, we first add cc = c * 4, and then add (cc >> 2) = c.
248
249 h0, c = bits.Add64(h0, cc.lo, 0)
250 h1, c = bits.Add64(h1, cc.hi, c)
251 h2 += c
252
253 cc = shiftRightBy2(cc)
254
255 h0, c = bits.Add64(h0, cc.lo, 0)
256 h1, c = bits.Add64(h1, cc.hi, c)
257 h2 += c
258
259 // h2 is at most 3 + 1 + 1 = 5, making the whole of h at most
260 //
261 // 5 * 2¹²⁸ + (2¹²⁸ - 1) = 6 * 2¹²⁸ - 1
262 }
263
264 state.h[0], state.h[1], state.h[2] = h0, h1, h2
265}
266
267const (
268 maskLow2Bits uint64 = 0x0000000000000003
269 maskNotLow2Bits uint64 = ^maskLow2Bits
270)
271
272// select64 returns x if v == 1 and y if v == 0, in constant time.
273func select64(v, x, y uint64) uint64 { return ^(v-1)&x | (v-1)&y }
274
275// [p0, p1, p2] is 2¹³⁰ - 5 in little endian order.
276const (
277 p0 = 0xFFFFFFFFFFFFFFFB
278 p1 = 0xFFFFFFFFFFFFFFFF
279 p2 = 0x0000000000000003
280)
281
282// finalize completes the modular reduction of h and computes
283//
284// out = h + s mod 2¹²⁸
285func finalize(out *[TagSize]byte, h *[3]uint64, s *[2]uint64) {
286 h0, h1, h2 := h[0], h[1], h[2]
287
288 // After the partial reduction in updateGeneric, h might be more than
289 // 2¹³⁰ - 5, but will be less than 2 * (2¹³⁰ - 5). To complete the reduction
290 // in constant time, we compute t = h - (2¹³⁰ - 5), and select h as the
291 // result if the subtraction underflows, and t otherwise.
292
293 hMinusP0, b := bits.Sub64(h0, p0, 0)
294 hMinusP1, b := bits.Sub64(h1, p1, b)
295 _, b = bits.Sub64(h2, p2, b)
296
297 // h = h if h < p else h - p
298 h0 = select64(b, h0, hMinusP0)
299 h1 = select64(b, h1, hMinusP1)
300
301 // Finally, we compute the last Poly1305 step
302 //
303 // tag = h + s mod 2¹²⁸
304 //
305 // by just doing a wide addition with the 128 low bits of h and discarding
306 // the overflow.
307 h0, c := bits.Add64(h0, s[0], 0)
308 h1, _ = bits.Add64(h1, s[1], c)
309
310 binary.LittleEndian.PutUint64(out[0:8], h0)
311 binary.LittleEndian.PutUint64(out[8:16], h1)
312}