raster_fixed.go

  1// Copyright 2016 The Go Authors. All rights reserved.
  2// Use of this source code is governed by a BSD-style
  3// license that can be found in the LICENSE file.
  4
  5package vector
  6
  7// This file contains a fixed point math implementation of the vector
  8// graphics rasterizer.
  9
 10const (
 11	// ϕ is the number of binary digits after the fixed point.
 12	//
 13	// For example, if ϕ == 10 (and int1ϕ is based on the int32 type) then we
 14	// are using 22.10 fixed point math.
 15	//
 16	// When changing this number, also change the assembly code (search for ϕ
 17	// in the .s files).
 18	ϕ = 9
 19
 20	fxOne          int1ϕ = 1 << ϕ
 21	fxOneAndAHalf  int1ϕ = 1<<ϕ + 1<<(ϕ-1)
 22	fxOneMinusIota int1ϕ = 1<<ϕ - 1 // Used for rounding up.
 23)
 24
 25// int1ϕ is a signed fixed-point number with 1*ϕ binary digits after the fixed
 26// point.
 27type int1ϕ int32
 28
 29// int2ϕ is a signed fixed-point number with 2*ϕ binary digits after the fixed
 30// point.
 31//
 32// The Rasterizer's bufU32 field, nominally of type []uint32 (since that slice
 33// is also used by other code), can be thought of as a []int2ϕ during the
 34// fixedLineTo method. Lines of code that are actually like:
 35//
 36//	buf[i] += uint32(etc) // buf has type []uint32.
 37//
 38// can be thought of as
 39//
 40//	buf[i] += int2ϕ(etc)  // buf has type []int2ϕ.
 41type int2ϕ int32
 42
 43func fixedMax(x, y int1ϕ) int1ϕ {
 44	if x > y {
 45		return x
 46	}
 47	return y
 48}
 49
 50func fixedMin(x, y int1ϕ) int1ϕ {
 51	if x < y {
 52		return x
 53	}
 54	return y
 55}
 56
 57func fixedFloor(x int1ϕ) int32 { return int32(x >> ϕ) }
 58func fixedCeil(x int1ϕ) int32  { return int32((x + fxOneMinusIota) >> ϕ) }
 59
 60func (z *Rasterizer) fixedLineTo(bx, by float32) {
 61	ax, ay := z.penX, z.penY
 62	z.penX, z.penY = bx, by
 63	dir := int1ϕ(1)
 64	if ay > by {
 65		dir, ax, ay, bx, by = -1, bx, by, ax, ay
 66	}
 67	// Horizontal line segments yield no change in coverage. Almost horizontal
 68	// segments would yield some change, in ideal math, but the computation
 69	// further below, involving 1 / (by - ay), is unstable in fixed point math,
 70	// so we treat the segment as if it was perfectly horizontal.
 71	if by-ay <= 0.000001 {
 72		return
 73	}
 74	dxdy := (bx - ax) / (by - ay)
 75
 76	ayϕ := int1ϕ(ay * float32(fxOne))
 77	byϕ := int1ϕ(by * float32(fxOne))
 78
 79	x := int1ϕ(ax * float32(fxOne))
 80	y := fixedFloor(ayϕ)
 81	yMax := fixedCeil(byϕ)
 82	if yMax > int32(z.size.Y) {
 83		yMax = int32(z.size.Y)
 84	}
 85	width := int32(z.size.X)
 86
 87	for ; y < yMax; y++ {
 88		dy := fixedMin(int1ϕ(y+1)<<ϕ, byϕ) - fixedMax(int1ϕ(y)<<ϕ, ayϕ)
 89		xNext := x + int1ϕ(float32(dy)*dxdy)
 90		if y < 0 {
 91			x = xNext
 92			continue
 93		}
 94		buf := z.bufU32[y*width:]
 95		d := dy * dir // d ranges up to ±1<<(1*ϕ).
 96		x0, x1 := x, xNext
 97		if x > xNext {
 98			x0, x1 = x1, x0
 99		}
100		x0i := fixedFloor(x0)
101		x0Floor := int1ϕ(x0i) << ϕ
102		x1i := fixedCeil(x1)
103		x1Ceil := int1ϕ(x1i) << ϕ
104
105		if x1i <= x0i+1 {
106			xmf := (x+xNext)>>1 - x0Floor
107			if i := clamp(x0i+0, width); i < uint(len(buf)) {
108				buf[i] += uint32(d * (fxOne - xmf))
109			}
110			if i := clamp(x0i+1, width); i < uint(len(buf)) {
111				buf[i] += uint32(d * xmf)
112			}
113		} else {
114			oneOverS := x1 - x0
115			twoOverS := 2 * oneOverS
116			x0f := x0 - x0Floor
117			oneMinusX0f := fxOne - x0f
118			oneMinusX0fSquared := oneMinusX0f * oneMinusX0f
119			x1f := x1 - x1Ceil + fxOne
120			x1fSquared := x1f * x1f
121
122			// These next two variables are unused, as rounding errors are
123			// minimized when we delay the division by oneOverS for as long as
124			// possible. These lines of code (and the "In ideal math" comments
125			// below) are commented out instead of deleted in order to aid the
126			// comparison with the floating point version of the rasterizer.
127			//
128			// a0 := ((oneMinusX0f * oneMinusX0f) >> 1) / oneOverS
129			// am := ((x1f * x1f) >> 1) / oneOverS
130
131			if i := clamp(x0i, width); i < uint(len(buf)) {
132				// In ideal math: buf[i] += uint32(d * a0)
133				D := oneMinusX0fSquared // D ranges up to ±1<<(2*ϕ).
134				D *= d                  // D ranges up to ±1<<(3*ϕ).
135				D /= twoOverS
136				buf[i] += uint32(D)
137			}
138
139			if x1i == x0i+2 {
140				if i := clamp(x0i+1, width); i < uint(len(buf)) {
141					// In ideal math: buf[i] += uint32(d * (fxOne - a0 - am))
142					//
143					// (x1i == x0i+2) and (twoOverS == 2 * (x1 - x0)) implies
144					// that twoOverS ranges up to +1<<(1*ϕ+2).
145					D := twoOverS<<ϕ - oneMinusX0fSquared - x1fSquared // D ranges up to ±1<<(2*ϕ+2).
146					D *= d                                             // D ranges up to ±1<<(3*ϕ+2).
147					D /= twoOverS
148					buf[i] += uint32(D)
149				}
150			} else {
151				// This is commented out for the same reason as a0 and am.
152				//
153				// a1 := ((fxOneAndAHalf - x0f) << ϕ) / oneOverS
154
155				if i := clamp(x0i+1, width); i < uint(len(buf)) {
156					// In ideal math:
157					//	buf[i] += uint32(d * (a1 - a0))
158					// or equivalently (but better in non-ideal, integer math,
159					// with respect to rounding errors),
160					//	buf[i] += uint32(A * d / twoOverS)
161					// where
162					//	A = (a1 - a0) * twoOverS
163					//	  = a1*twoOverS - a0*twoOverS
164					// Noting that twoOverS/oneOverS equals 2, substituting for
165					// a0 and then a1, given above, yields:
166					//	A = a1*twoOverS - oneMinusX0fSquared
167					//	  = (fxOneAndAHalf-x0f)<<(ϕ+1) - oneMinusX0fSquared
168					//	  = fxOneAndAHalf<<(ϕ+1) - x0f<<(ϕ+1) - oneMinusX0fSquared
169					//
170					// This is a positive number minus two non-negative
171					// numbers. For an upper bound on A, the positive number is
172					//	P = fxOneAndAHalf<<(ϕ+1)
173					//	  < (2*fxOne)<<(ϕ+1)
174					//	  = fxOne<<(ϕ+2)
175					//	  = 1<<(2*ϕ+2)
176					//
177					// For a lower bound on A, the two non-negative numbers are
178					//	N = x0f<<(ϕ+1) + oneMinusX0fSquared
179					//	  ≤ x0f<<(ϕ+1) + fxOne*fxOne
180					//	  = x0f<<(ϕ+1) + 1<<(2*ϕ)
181					//	  < x0f<<(ϕ+1) + 1<<(2*ϕ+1)
182					//	  ≤ fxOne<<(ϕ+1) + 1<<(2*ϕ+1)
183					//	  = 1<<(2*ϕ+1) + 1<<(2*ϕ+1)
184					//	  = 1<<(2*ϕ+2)
185					//
186					// Thus, A ranges up to ±1<<(2*ϕ+2). It is possible to
187					// derive a tighter bound, but this bound is sufficient to
188					// reason about overflow.
189					D := (fxOneAndAHalf-x0f)<<(ϕ+1) - oneMinusX0fSquared // D ranges up to ±1<<(2*ϕ+2).
190					D *= d                                               // D ranges up to ±1<<(3*ϕ+2).
191					D /= twoOverS
192					buf[i] += uint32(D)
193				}
194				dTimesS := uint32((d << (2 * ϕ)) / oneOverS)
195				for xi := x0i + 2; xi < x1i-1; xi++ {
196					if i := clamp(xi, width); i < uint(len(buf)) {
197						buf[i] += dTimesS
198					}
199				}
200
201				// This is commented out for the same reason as a0 and am.
202				//
203				// a2 := a1 + (int1ϕ(x1i-x0i-3)<<(2*ϕ))/oneOverS
204
205				if i := clamp(x1i-1, width); i < uint(len(buf)) {
206					// In ideal math:
207					//	buf[i] += uint32(d * (fxOne - a2 - am))
208					// or equivalently (but better in non-ideal, integer math,
209					// with respect to rounding errors),
210					//	buf[i] += uint32(A * d / twoOverS)
211					// where
212					//	A = (fxOne - a2 - am) * twoOverS
213					//	  = twoOverS<<ϕ - a2*twoOverS - am*twoOverS
214					// Noting that twoOverS/oneOverS equals 2, substituting for
215					// am and then a2, given above, yields:
216					//	A = twoOverS<<ϕ - a2*twoOverS - x1f*x1f
217					//	  = twoOverS<<ϕ - a1*twoOverS - (int1ϕ(x1i-x0i-3)<<(2*ϕ))*2 - x1f*x1f
218					//	  = twoOverS<<ϕ - a1*twoOverS - int1ϕ(x1i-x0i-3)<<(2*ϕ+1) - x1f*x1f
219					// Substituting for a1, given above, yields:
220					//	A = twoOverS<<ϕ - ((fxOneAndAHalf-x0f)<<ϕ)*2 - int1ϕ(x1i-x0i-3)<<(2*ϕ+1) - x1f*x1f
221					//	  = twoOverS<<ϕ - (fxOneAndAHalf-x0f)<<(ϕ+1) - int1ϕ(x1i-x0i-3)<<(2*ϕ+1) - x1f*x1f
222					//	  = B<<ϕ - x1f*x1f
223					// where
224					//	B = twoOverS - (fxOneAndAHalf-x0f)<<1 - int1ϕ(x1i-x0i-3)<<(ϕ+1)
225					//	  = (x1-x0)<<1 - (fxOneAndAHalf-x0f)<<1 - int1ϕ(x1i-x0i-3)<<(ϕ+1)
226					//
227					// Re-arranging the defintions given above:
228					//	x0Floor := int1ϕ(x0i) << ϕ
229					//	x0f := x0 - x0Floor
230					//	x1Ceil := int1ϕ(x1i) << ϕ
231					//	x1f := x1 - x1Ceil + fxOne
232					// combined with fxOne = 1<<ϕ yields:
233					//	x0 = x0f + int1ϕ(x0i)<<ϕ
234					//	x1 = x1f + int1ϕ(x1i-1)<<ϕ
235					// so that expanding (x1-x0) yields:
236					//	B = (x1f-x0f + int1ϕ(x1i-x0i-1)<<ϕ)<<1 - (fxOneAndAHalf-x0f)<<1 - int1ϕ(x1i-x0i-3)<<(ϕ+1)
237					//	  = (x1f-x0f)<<1 + int1ϕ(x1i-x0i-1)<<(ϕ+1) - (fxOneAndAHalf-x0f)<<1 - int1ϕ(x1i-x0i-3)<<(ϕ+1)
238					// A large part of the second and fourth terms cancel:
239					//	B = (x1f-x0f)<<1 - (fxOneAndAHalf-x0f)<<1 - int1ϕ(-2)<<(ϕ+1)
240					//	  = (x1f-x0f)<<1 - (fxOneAndAHalf-x0f)<<1 + 1<<(ϕ+2)
241					//	  = (x1f - fxOneAndAHalf)<<1 + 1<<(ϕ+2)
242					// The first term, (x1f - fxOneAndAHalf)<<1, is a negative
243					// number, bounded below by -fxOneAndAHalf<<1, which is
244					// greater than -fxOne<<2, or -1<<(ϕ+2). Thus, B ranges up
245					// to ±1<<(ϕ+2). One final simplification:
246					//	B = x1f<<1 + (1<<(ϕ+2) - fxOneAndAHalf<<1)
247					const C = 1<<(ϕ+2) - fxOneAndAHalf<<1
248					D := x1f<<1 + C // D ranges up to ±1<<(1*ϕ+2).
249					D <<= ϕ         // D ranges up to ±1<<(2*ϕ+2).
250					D -= x1fSquared // D ranges up to ±1<<(2*ϕ+3).
251					D *= d          // D ranges up to ±1<<(3*ϕ+3).
252					D /= twoOverS
253					buf[i] += uint32(D)
254				}
255			}
256
257			if i := clamp(x1i, width); i < uint(len(buf)) {
258				// In ideal math: buf[i] += uint32(d * am)
259				D := x1fSquared // D ranges up to ±1<<(2*ϕ).
260				D *= d          // D ranges up to ±1<<(3*ϕ).
261				D /= twoOverS
262				buf[i] += uint32(D)
263			}
264		}
265
266		x = xNext
267	}
268}
269
270func fixedAccumulateOpOver(dst []uint8, src []uint32) {
271	// Sanity check that len(dst) >= len(src).
272	if len(dst) < len(src) {
273		return
274	}
275
276	acc := int2ϕ(0)
277	for i, v := range src {
278		acc += int2ϕ(v)
279		a := acc
280		if a < 0 {
281			a = -a
282		}
283		a >>= 2*ϕ - 16
284		if a > 0xffff {
285			a = 0xffff
286		}
287		// This algorithm comes from the standard library's image/draw package.
288		dstA := uint32(dst[i]) * 0x101
289		maskA := uint32(a)
290		outA := dstA*(0xffff-maskA)/0xffff + maskA
291		dst[i] = uint8(outA >> 8)
292	}
293}
294
295func fixedAccumulateOpSrc(dst []uint8, src []uint32) {
296	// Sanity check that len(dst) >= len(src).
297	if len(dst) < len(src) {
298		return
299	}
300
301	acc := int2ϕ(0)
302	for i, v := range src {
303		acc += int2ϕ(v)
304		a := acc
305		if a < 0 {
306			a = -a
307		}
308		a >>= 2*ϕ - 8
309		if a > 0xff {
310			a = 0xff
311		}
312		dst[i] = uint8(a)
313	}
314}
315
316func fixedAccumulateMask(buf []uint32) {
317	acc := int2ϕ(0)
318	for i, v := range buf {
319		acc += int2ϕ(v)
320		a := acc
321		if a < 0 {
322			a = -a
323		}
324		a >>= 2*ϕ - 16
325		if a > 0xffff {
326			a = 0xffff
327		}
328		buf[i] = uint32(a)
329	}
330}