openai.go

  1package provider
  2
  3import (
  4	"context"
  5	"encoding/json"
  6	"errors"
  7	"fmt"
  8	"io"
  9	"log/slog"
 10	"slices"
 11	"strings"
 12	"time"
 13
 14	"github.com/charmbracelet/catwalk/pkg/catwalk"
 15	"github.com/charmbracelet/crush/internal/config"
 16	"github.com/charmbracelet/crush/internal/llm/tools"
 17	"github.com/charmbracelet/crush/internal/log"
 18	"github.com/charmbracelet/crush/internal/message"
 19	"github.com/google/uuid"
 20	"github.com/openai/openai-go"
 21	"github.com/openai/openai-go/option"
 22	"github.com/openai/openai-go/packages/param"
 23	"github.com/openai/openai-go/shared"
 24)
 25
 26type openaiClient struct {
 27	providerOptions providerClientOptions
 28	client          openai.Client
 29}
 30
 31type OpenAIClient ProviderClient
 32
 33func newOpenAIClient(opts providerClientOptions) OpenAIClient {
 34	return &openaiClient{
 35		providerOptions: opts,
 36		client:          createOpenAIClient(opts),
 37	}
 38}
 39
 40func createOpenAIClient(opts providerClientOptions) openai.Client {
 41	openaiClientOptions := []option.RequestOption{}
 42	if opts.apiKey != "" {
 43		openaiClientOptions = append(openaiClientOptions, option.WithAPIKey(opts.apiKey))
 44	}
 45	if opts.baseURL != "" {
 46		resolvedBaseURL, err := config.Get().Resolve(opts.baseURL)
 47		if err == nil {
 48			openaiClientOptions = append(openaiClientOptions, option.WithBaseURL(resolvedBaseURL))
 49		}
 50	}
 51
 52	if config.Get().Options.Debug {
 53		httpClient := log.NewHTTPClient()
 54		openaiClientOptions = append(openaiClientOptions, option.WithHTTPClient(httpClient))
 55	}
 56
 57	for key, value := range opts.extraHeaders {
 58		openaiClientOptions = append(openaiClientOptions, option.WithHeader(key, value))
 59	}
 60
 61	for extraKey, extraValue := range opts.extraBody {
 62		openaiClientOptions = append(openaiClientOptions, option.WithJSONSet(extraKey, extraValue))
 63	}
 64
 65	return openai.NewClient(openaiClientOptions...)
 66}
 67
 68func (o *openaiClient) convertMessages(messages []message.Message) (openaiMessages []openai.ChatCompletionMessageParamUnion) {
 69	isAnthropicModel := o.providerOptions.config.ID == string(catwalk.InferenceProviderOpenRouter) && strings.HasPrefix(o.Model().ID, "anthropic/")
 70	// Add system message first
 71	systemMessage := o.providerOptions.systemMessage
 72	if o.providerOptions.systemPromptPrefix != "" {
 73		systemMessage = o.providerOptions.systemPromptPrefix + "\n" + systemMessage
 74	}
 75
 76	system := openai.SystemMessage(systemMessage)
 77	if isAnthropicModel && !o.providerOptions.disableCache {
 78		systemTextBlock := openai.ChatCompletionContentPartTextParam{Text: systemMessage}
 79		systemTextBlock.SetExtraFields(
 80			map[string]any{
 81				"cache_control": map[string]string{
 82					"type": "ephemeral",
 83				},
 84			},
 85		)
 86		var content []openai.ChatCompletionContentPartTextParam
 87		content = append(content, systemTextBlock)
 88		system = openai.SystemMessage(content)
 89	}
 90	openaiMessages = append(openaiMessages, system)
 91
 92	for i, msg := range messages {
 93		cache := false
 94		if i > len(messages)-3 {
 95			cache = true
 96		}
 97		switch msg.Role {
 98		case message.User:
 99			var content []openai.ChatCompletionContentPartUnionParam
100
101			textBlock := openai.ChatCompletionContentPartTextParam{Text: msg.Content().String()}
102			content = append(content, openai.ChatCompletionContentPartUnionParam{OfText: &textBlock})
103			hasBinaryContent := false
104			for _, binaryContent := range msg.BinaryContent() {
105				hasBinaryContent = true
106				imageURL := openai.ChatCompletionContentPartImageImageURLParam{URL: binaryContent.String(catwalk.InferenceProviderOpenAI)}
107				imageBlock := openai.ChatCompletionContentPartImageParam{ImageURL: imageURL}
108
109				content = append(content, openai.ChatCompletionContentPartUnionParam{OfImageURL: &imageBlock})
110			}
111			if cache && !o.providerOptions.disableCache && isAnthropicModel {
112				textBlock.SetExtraFields(map[string]any{
113					"cache_control": map[string]string{
114						"type": "ephemeral",
115					},
116				})
117			}
118			if hasBinaryContent || (isAnthropicModel && !o.providerOptions.disableCache) {
119				openaiMessages = append(openaiMessages, openai.UserMessage(content))
120			} else {
121				openaiMessages = append(openaiMessages, openai.UserMessage(msg.Content().String()))
122			}
123
124		case message.Assistant:
125			assistantMsg := openai.ChatCompletionAssistantMessageParam{
126				Role: "assistant",
127			}
128
129			hasContent := false
130			if msg.Content().String() != "" {
131				hasContent = true
132				textBlock := openai.ChatCompletionContentPartTextParam{Text: msg.Content().String()}
133				if cache && !o.providerOptions.disableCache && isAnthropicModel {
134					textBlock.SetExtraFields(map[string]any{
135						"cache_control": map[string]string{
136							"type": "ephemeral",
137						},
138					})
139				}
140				assistantMsg.Content = openai.ChatCompletionAssistantMessageParamContentUnion{
141					OfArrayOfContentParts: []openai.ChatCompletionAssistantMessageParamContentArrayOfContentPartUnion{
142						{
143							OfText: &textBlock,
144						},
145					},
146				}
147				if !isAnthropicModel {
148					assistantMsg.Content = openai.ChatCompletionAssistantMessageParamContentUnion{
149						OfString: param.NewOpt(msg.Content().String()),
150					}
151				}
152			}
153
154			if len(msg.ToolCalls()) > 0 {
155				hasContent = true
156				assistantMsg.ToolCalls = make([]openai.ChatCompletionMessageToolCallParam, len(msg.ToolCalls()))
157				for i, call := range msg.ToolCalls() {
158					assistantMsg.ToolCalls[i] = openai.ChatCompletionMessageToolCallParam{
159						ID:   call.ID,
160						Type: "function",
161						Function: openai.ChatCompletionMessageToolCallFunctionParam{
162							Name:      call.Name,
163							Arguments: call.Input,
164						},
165					}
166				}
167			}
168			if !hasContent {
169				slog.Warn("There is a message without content, investigate, this should not happen")
170				continue
171			}
172
173			openaiMessages = append(openaiMessages, openai.ChatCompletionMessageParamUnion{
174				OfAssistant: &assistantMsg,
175			})
176
177		case message.Tool:
178			for _, result := range msg.ToolResults() {
179				openaiMessages = append(openaiMessages,
180					openai.ToolMessage(result.Content, result.ToolCallID),
181				)
182			}
183		}
184	}
185
186	return
187}
188
189func (o *openaiClient) convertTools(tools []tools.BaseTool) []openai.ChatCompletionToolParam {
190	openaiTools := make([]openai.ChatCompletionToolParam, len(tools))
191
192	for i, tool := range tools {
193		info := tool.Info()
194		openaiTools[i] = openai.ChatCompletionToolParam{
195			Function: openai.FunctionDefinitionParam{
196				Name:        info.Name,
197				Description: openai.String(info.Description),
198				Parameters: openai.FunctionParameters{
199					"type":       "object",
200					"properties": info.Parameters,
201					"required":   info.Required,
202				},
203			},
204		}
205	}
206
207	return openaiTools
208}
209
210func (o *openaiClient) finishReason(reason string) message.FinishReason {
211	switch reason {
212	case "stop":
213		return message.FinishReasonEndTurn
214	case "length":
215		return message.FinishReasonMaxTokens
216	case "tool_calls":
217		return message.FinishReasonToolUse
218	default:
219		return message.FinishReasonUnknown
220	}
221}
222
223func (o *openaiClient) preparedParams(messages []openai.ChatCompletionMessageParamUnion, tools []openai.ChatCompletionToolParam) openai.ChatCompletionNewParams {
224	model := o.providerOptions.model(o.providerOptions.modelType)
225	cfg := config.Get()
226
227	modelConfig := cfg.Models[config.SelectedModelTypeLarge]
228	if o.providerOptions.modelType == config.SelectedModelTypeSmall {
229		modelConfig = cfg.Models[config.SelectedModelTypeSmall]
230	}
231
232	reasoningEffort := modelConfig.ReasoningEffort
233
234	params := openai.ChatCompletionNewParams{
235		Model:    openai.ChatModel(model.ID),
236		Messages: messages,
237		Tools:    tools,
238	}
239
240	maxTokens := model.DefaultMaxTokens
241	if modelConfig.MaxTokens > 0 {
242		maxTokens = modelConfig.MaxTokens
243	}
244
245	// Override max tokens if set in provider options
246	if o.providerOptions.maxTokens > 0 {
247		maxTokens = o.providerOptions.maxTokens
248	}
249	if model.CanReason {
250		params.MaxCompletionTokens = openai.Int(maxTokens)
251		switch reasoningEffort {
252		case "low":
253			params.ReasoningEffort = shared.ReasoningEffortLow
254		case "medium":
255			params.ReasoningEffort = shared.ReasoningEffortMedium
256		case "high":
257			params.ReasoningEffort = shared.ReasoningEffortHigh
258		default:
259			params.ReasoningEffort = shared.ReasoningEffort(reasoningEffort)
260		}
261	} else {
262		params.MaxTokens = openai.Int(maxTokens)
263	}
264
265	return params
266}
267
268func (o *openaiClient) send(ctx context.Context, messages []message.Message, tools []tools.BaseTool) (response *ProviderResponse, err error) {
269	params := o.preparedParams(o.convertMessages(messages), o.convertTools(tools))
270	attempts := 0
271	for {
272		attempts++
273		openaiResponse, err := o.client.Chat.Completions.New(
274			ctx,
275			params,
276		)
277		// If there is an error we are going to see if we can retry the call
278		if err != nil {
279			retry, after, retryErr := o.shouldRetry(attempts, err)
280			if retryErr != nil {
281				return nil, retryErr
282			}
283			if retry {
284				slog.Warn("Retrying due to rate limit", "attempt", attempts, "max_retries", maxRetries)
285				select {
286				case <-ctx.Done():
287					return nil, ctx.Err()
288				case <-time.After(time.Duration(after) * time.Millisecond):
289					continue
290				}
291			}
292			return nil, retryErr
293		}
294
295		if len(openaiResponse.Choices) == 0 {
296			return nil, fmt.Errorf("received empty response from OpenAI API - check endpoint configuration")
297		}
298
299		content := ""
300		if openaiResponse.Choices[0].Message.Content != "" {
301			content = openaiResponse.Choices[0].Message.Content
302		}
303
304		toolCalls := o.toolCalls(*openaiResponse)
305		finishReason := o.finishReason(string(openaiResponse.Choices[0].FinishReason))
306
307		if len(toolCalls) > 0 {
308			finishReason = message.FinishReasonToolUse
309		}
310
311		return &ProviderResponse{
312			Content:      content,
313			ToolCalls:    toolCalls,
314			Usage:        o.usage(*openaiResponse),
315			FinishReason: finishReason,
316		}, nil
317	}
318}
319
320func (o *openaiClient) stream(ctx context.Context, messages []message.Message, tools []tools.BaseTool) <-chan ProviderEvent {
321	params := o.preparedParams(o.convertMessages(messages), o.convertTools(tools))
322	params.StreamOptions = openai.ChatCompletionStreamOptionsParam{
323		IncludeUsage: openai.Bool(true),
324	}
325
326	attempts := 0
327	eventChan := make(chan ProviderEvent)
328
329	go func() {
330		for {
331			attempts++
332			// Kujtim: fixes an issue with anthropig models on openrouter
333			if len(params.Tools) == 0 {
334				params.Tools = nil
335			}
336			openaiStream := o.client.Chat.Completions.NewStreaming(
337				ctx,
338				params,
339			)
340
341			acc := openai.ChatCompletionAccumulator{}
342			currentContent := ""
343			toolCalls := make([]message.ToolCall, 0)
344			var msgToolCalls []openai.ChatCompletionMessageToolCall
345			for openaiStream.Next() {
346				chunk := openaiStream.Current()
347				// Kujtim: this is an issue with openrouter qwen, its sending -1 for the tool index
348				if len(chunk.Choices) > 0 && len(chunk.Choices[0].Delta.ToolCalls) > 0 && chunk.Choices[0].Delta.ToolCalls[0].Index == -1 {
349					chunk.Choices[0].Delta.ToolCalls[0].Index = 0
350				}
351				acc.AddChunk(chunk)
352				for i, choice := range chunk.Choices {
353					reasoning, ok := choice.Delta.JSON.ExtraFields["reasoning"]
354					if ok && reasoning.Raw() != "" {
355						reasoningStr := ""
356						json.Unmarshal([]byte(reasoning.Raw()), &reasoningStr)
357						if reasoningStr != "" {
358							eventChan <- ProviderEvent{
359								Type:     EventThinkingDelta,
360								Thinking: reasoningStr,
361							}
362						}
363					}
364					if choice.Delta.Content != "" {
365						eventChan <- ProviderEvent{
366							Type:    EventContentDelta,
367							Content: choice.Delta.Content,
368						}
369						currentContent += choice.Delta.Content
370					} else if len(choice.Delta.ToolCalls) > 0 {
371						toolCall := choice.Delta.ToolCalls[0]
372						newToolCall := false
373						if len(msgToolCalls)-1 >= int(toolCall.Index) { // tool call exists
374							existingToolCall := msgToolCalls[toolCall.Index]
375							if toolCall.ID != "" && toolCall.ID != existingToolCall.ID {
376								found := false
377								// try to find the tool based on the ID
378								for i, tool := range msgToolCalls {
379									if tool.ID == toolCall.ID {
380										msgToolCalls[i].Function.Arguments += toolCall.Function.Arguments
381										found = true
382									}
383								}
384								if !found {
385									newToolCall = true
386								}
387							} else {
388								msgToolCalls[toolCall.Index].Function.Arguments += toolCall.Function.Arguments
389							}
390						} else {
391							newToolCall = true
392						}
393						if newToolCall { // new tool call
394							if toolCall.ID == "" {
395								toolCall.ID = uuid.NewString()
396							}
397							eventChan <- ProviderEvent{
398								Type: EventToolUseStart,
399								ToolCall: &message.ToolCall{
400									ID:       toolCall.ID,
401									Name:     toolCall.Function.Name,
402									Finished: false,
403								},
404							}
405							msgToolCalls = append(msgToolCalls, openai.ChatCompletionMessageToolCall{
406								ID:   toolCall.ID,
407								Type: "function",
408								Function: openai.ChatCompletionMessageToolCallFunction{
409									Name:      toolCall.Function.Name,
410									Arguments: toolCall.Function.Arguments,
411								},
412							})
413						}
414					}
415					acc.Choices[i].Message.ToolCalls = slices.Clone(msgToolCalls)
416				}
417			}
418
419			err := openaiStream.Err()
420			if err == nil || errors.Is(err, io.EOF) {
421				if len(acc.Choices) == 0 {
422					eventChan <- ProviderEvent{
423						Type:  EventError,
424						Error: fmt.Errorf("received empty streaming response from OpenAI API - check endpoint configuration"),
425					}
426					return
427				}
428
429				resultFinishReason := acc.Choices[0].FinishReason
430				if resultFinishReason == "" {
431					// If the finish reason is empty, we assume it was a successful completion
432					// INFO: this is happening for openrouter for some reason
433					resultFinishReason = "stop"
434				}
435				// Stream completed successfully
436				finishReason := o.finishReason(resultFinishReason)
437				if len(acc.Choices[0].Message.ToolCalls) > 0 {
438					toolCalls = append(toolCalls, o.toolCalls(acc.ChatCompletion)...)
439				}
440				if len(toolCalls) > 0 {
441					finishReason = message.FinishReasonToolUse
442				}
443
444				eventChan <- ProviderEvent{
445					Type: EventComplete,
446					Response: &ProviderResponse{
447						Content:      currentContent,
448						ToolCalls:    toolCalls,
449						Usage:        o.usage(acc.ChatCompletion),
450						FinishReason: finishReason,
451					},
452				}
453				close(eventChan)
454				return
455			}
456
457			// If there is an error we are going to see if we can retry the call
458			retry, after, retryErr := o.shouldRetry(attempts, err)
459			if retryErr != nil {
460				eventChan <- ProviderEvent{Type: EventError, Error: retryErr}
461				close(eventChan)
462				return
463			}
464			if retry {
465				slog.Warn("Retrying due to rate limit", "attempt", attempts, "max_retries", maxRetries)
466				select {
467				case <-ctx.Done():
468					// context cancelled
469					if ctx.Err() == nil {
470						eventChan <- ProviderEvent{Type: EventError, Error: ctx.Err()}
471					}
472					close(eventChan)
473					return
474				case <-time.After(time.Duration(after) * time.Millisecond):
475					continue
476				}
477			}
478			eventChan <- ProviderEvent{Type: EventError, Error: retryErr}
479			close(eventChan)
480			return
481		}
482	}()
483
484	return eventChan
485}
486
487func (o *openaiClient) shouldRetry(attempts int, err error) (bool, int64, error) {
488	if attempts > maxRetries {
489		return false, 0, fmt.Errorf("maximum retry attempts reached for rate limit: %d retries", maxRetries)
490	}
491	if errors.Is(err, context.Canceled) || errors.Is(err, context.DeadlineExceeded) {
492		return false, 0, err
493	}
494	var apiErr *openai.Error
495	retryMs := 0
496	retryAfterValues := []string{}
497	if errors.As(err, &apiErr) {
498		// Check for token expiration (401 Unauthorized)
499		if apiErr.StatusCode == 401 {
500			o.providerOptions.apiKey, err = config.Get().Resolve(o.providerOptions.config.APIKey)
501			if err != nil {
502				return false, 0, fmt.Errorf("failed to resolve API key: %w", err)
503			}
504			o.client = createOpenAIClient(o.providerOptions)
505			return true, 0, nil
506		}
507
508		if apiErr.StatusCode != 429 && apiErr.StatusCode != 500 {
509			return false, 0, err
510		}
511
512		retryAfterValues = apiErr.Response.Header.Values("Retry-After")
513	}
514
515	if apiErr != nil {
516		slog.Warn("OpenAI API error", "status_code", apiErr.StatusCode, "message", apiErr.Message, "type", apiErr.Type)
517		if len(retryAfterValues) > 0 {
518			slog.Warn("Retry-After header", "values", retryAfterValues)
519		}
520	} else {
521		slog.Error("OpenAI API error", "error", err.Error(), "attempt", attempts, "max_retries", maxRetries)
522	}
523
524	backoffMs := 2000 * (1 << (attempts - 1))
525	jitterMs := int(float64(backoffMs) * 0.2)
526	retryMs = backoffMs + jitterMs
527	if len(retryAfterValues) > 0 {
528		if _, err := fmt.Sscanf(retryAfterValues[0], "%d", &retryMs); err == nil {
529			retryMs = retryMs * 1000
530		}
531	}
532	return true, int64(retryMs), nil
533}
534
535func (o *openaiClient) toolCalls(completion openai.ChatCompletion) []message.ToolCall {
536	var toolCalls []message.ToolCall
537
538	if len(completion.Choices) > 0 && len(completion.Choices[0].Message.ToolCalls) > 0 {
539		for _, call := range completion.Choices[0].Message.ToolCalls {
540			toolCall := message.ToolCall{
541				ID:       call.ID,
542				Name:     call.Function.Name,
543				Input:    call.Function.Arguments,
544				Type:     "function",
545				Finished: true,
546			}
547			toolCalls = append(toolCalls, toolCall)
548		}
549	}
550
551	return toolCalls
552}
553
554func (o *openaiClient) usage(completion openai.ChatCompletion) TokenUsage {
555	cachedTokens := completion.Usage.PromptTokensDetails.CachedTokens
556	inputTokens := completion.Usage.PromptTokens - cachedTokens
557
558	return TokenUsage{
559		InputTokens:         inputTokens,
560		OutputTokens:        completion.Usage.CompletionTokens,
561		CacheCreationTokens: 0, // OpenAI doesn't provide this directly
562		CacheReadTokens:     cachedTokens,
563	}
564}
565
566func (o *openaiClient) Model() catwalk.Model {
567	return o.providerOptions.model(o.providerOptions.modelType)
568}