openai.go

  1package provider
  2
  3import (
  4	"context"
  5	"encoding/json"
  6	"errors"
  7	"fmt"
  8	"io"
  9	"log/slog"
 10	"net/http"
 11	"strings"
 12	"time"
 13
 14	"github.com/charmbracelet/catwalk/pkg/catwalk"
 15	"github.com/charmbracelet/crush/internal/config"
 16	"github.com/charmbracelet/crush/internal/llm/tools"
 17	"github.com/charmbracelet/crush/internal/log"
 18	"github.com/charmbracelet/crush/internal/message"
 19	"github.com/google/uuid"
 20	"github.com/openai/openai-go"
 21	"github.com/openai/openai-go/option"
 22	"github.com/openai/openai-go/packages/param"
 23	"github.com/openai/openai-go/shared"
 24)
 25
 26type openaiClient struct {
 27	providerOptions providerClientOptions
 28	client          openai.Client
 29}
 30
 31type OpenAIClient ProviderClient
 32
 33func newOpenAIClient(opts providerClientOptions) OpenAIClient {
 34	return &openaiClient{
 35		providerOptions: opts,
 36		client:          createOpenAIClient(opts),
 37	}
 38}
 39
 40func createOpenAIClient(opts providerClientOptions) openai.Client {
 41	openaiClientOptions := []option.RequestOption{}
 42	if opts.apiKey != "" {
 43		openaiClientOptions = append(openaiClientOptions, option.WithAPIKey(opts.apiKey))
 44	}
 45	if opts.baseURL != "" {
 46		resolvedBaseURL, err := opts.resolver.ResolveValue(opts.baseURL)
 47		if err == nil && resolvedBaseURL != "" {
 48			openaiClientOptions = append(openaiClientOptions, option.WithBaseURL(resolvedBaseURL))
 49		}
 50	}
 51
 52	if opts.cfg.Options.Debug {
 53		httpClient := log.NewHTTPClient()
 54		openaiClientOptions = append(openaiClientOptions, option.WithHTTPClient(httpClient))
 55	}
 56
 57	for key, value := range opts.extraHeaders {
 58		openaiClientOptions = append(openaiClientOptions, option.WithHeader(key, value))
 59	}
 60
 61	for extraKey, extraValue := range opts.extraBody {
 62		openaiClientOptions = append(openaiClientOptions, option.WithJSONSet(extraKey, extraValue))
 63	}
 64
 65	return openai.NewClient(openaiClientOptions...)
 66}
 67
 68func (o *openaiClient) convertMessages(messages []message.Message) (openaiMessages []openai.ChatCompletionMessageParamUnion) {
 69	isAnthropicModel := o.providerOptions.config.ID == string(catwalk.InferenceProviderOpenRouter) && strings.HasPrefix(o.Model().ID, "anthropic/")
 70	// Add system message first
 71	systemMessage := o.providerOptions.systemMessage
 72	if o.providerOptions.systemPromptPrefix != "" {
 73		systemMessage = o.providerOptions.systemPromptPrefix + "\n" + systemMessage
 74	}
 75
 76	system := openai.SystemMessage(systemMessage)
 77	if isAnthropicModel && !o.providerOptions.disableCache {
 78		systemTextBlock := openai.ChatCompletionContentPartTextParam{Text: systemMessage}
 79		systemTextBlock.SetExtraFields(
 80			map[string]any{
 81				"cache_control": map[string]string{
 82					"type": "ephemeral",
 83				},
 84			},
 85		)
 86		var content []openai.ChatCompletionContentPartTextParam
 87		content = append(content, systemTextBlock)
 88		system = openai.SystemMessage(content)
 89	}
 90	openaiMessages = append(openaiMessages, system)
 91
 92	for i, msg := range messages {
 93		cache := false
 94		if i > len(messages)-3 {
 95			cache = true
 96		}
 97		switch msg.Role {
 98		case message.User:
 99			var content []openai.ChatCompletionContentPartUnionParam
100
101			textBlock := openai.ChatCompletionContentPartTextParam{Text: msg.Content().String()}
102			content = append(content, openai.ChatCompletionContentPartUnionParam{OfText: &textBlock})
103			hasBinaryContent := false
104			for _, binaryContent := range msg.BinaryContent() {
105				hasBinaryContent = true
106				imageURL := openai.ChatCompletionContentPartImageImageURLParam{URL: binaryContent.String(catwalk.InferenceProviderOpenAI)}
107				imageBlock := openai.ChatCompletionContentPartImageParam{ImageURL: imageURL}
108
109				content = append(content, openai.ChatCompletionContentPartUnionParam{OfImageURL: &imageBlock})
110			}
111			if cache && !o.providerOptions.disableCache && isAnthropicModel {
112				textBlock.SetExtraFields(map[string]any{
113					"cache_control": map[string]string{
114						"type": "ephemeral",
115					},
116				})
117			}
118			if hasBinaryContent || (isAnthropicModel && !o.providerOptions.disableCache) {
119				openaiMessages = append(openaiMessages, openai.UserMessage(content))
120			} else {
121				openaiMessages = append(openaiMessages, openai.UserMessage(msg.Content().String()))
122			}
123
124		case message.Assistant:
125			assistantMsg := openai.ChatCompletionAssistantMessageParam{
126				Role: "assistant",
127			}
128
129			// Only include finished tool calls; interrupted tool calls must not be resent.
130			if len(msg.ToolCalls()) > 0 {
131				finished := make([]message.ToolCall, 0, len(msg.ToolCalls()))
132				for _, call := range msg.ToolCalls() {
133					if call.Finished {
134						finished = append(finished, call)
135					}
136				}
137				if len(finished) > 0 {
138					assistantMsg.ToolCalls = make([]openai.ChatCompletionMessageToolCallParam, len(finished))
139					for i, call := range finished {
140						assistantMsg.ToolCalls[i] = openai.ChatCompletionMessageToolCallParam{
141							ID:   call.ID,
142							Type: "function",
143							Function: openai.ChatCompletionMessageToolCallFunctionParam{
144								Name:      call.Name,
145								Arguments: call.Input,
146							},
147						}
148					}
149				}
150			}
151			if msg.Content().String() != "" {
152				assistantMsg.Content = openai.ChatCompletionAssistantMessageParamContentUnion{
153					OfString: param.NewOpt(msg.Content().Text),
154				}
155			}
156
157			if cache && !o.providerOptions.disableCache && isAnthropicModel {
158				assistantMsg.SetExtraFields(map[string]any{
159					"cache_control": map[string]string{
160						"type": "ephemeral",
161					},
162				})
163			}
164			// Skip empty assistant messages (no content and no finished tool calls)
165			if msg.Content().String() == "" && len(assistantMsg.ToolCalls) == 0 {
166				continue
167			}
168
169			openaiMessages = append(openaiMessages, openai.ChatCompletionMessageParamUnion{
170				OfAssistant: &assistantMsg,
171			})
172
173		case message.Tool:
174			for _, result := range msg.ToolResults() {
175				openaiMessages = append(openaiMessages,
176					openai.ToolMessage(result.Content, result.ToolCallID),
177				)
178			}
179		}
180	}
181
182	return openaiMessages
183}
184
185func (o *openaiClient) convertTools(tools []tools.BaseTool) []openai.ChatCompletionToolParam {
186	openaiTools := make([]openai.ChatCompletionToolParam, len(tools))
187
188	for i, tool := range tools {
189		info := tool.Info()
190		openaiTools[i] = openai.ChatCompletionToolParam{
191			Function: openai.FunctionDefinitionParam{
192				Name:        info.Name,
193				Description: openai.String(info.Description),
194				Parameters: openai.FunctionParameters{
195					"type":       "object",
196					"properties": info.Parameters,
197					"required":   info.Required,
198				},
199			},
200		}
201	}
202
203	return openaiTools
204}
205
206func (o *openaiClient) finishReason(reason string) message.FinishReason {
207	switch reason {
208	case "stop":
209		return message.FinishReasonEndTurn
210	case "length":
211		return message.FinishReasonMaxTokens
212	case "tool_calls":
213		return message.FinishReasonToolUse
214	default:
215		return message.FinishReasonUnknown
216	}
217}
218
219func (o *openaiClient) preparedParams(messages []openai.ChatCompletionMessageParamUnion, tools []openai.ChatCompletionToolParam) openai.ChatCompletionNewParams {
220	model := o.providerOptions.model(o.providerOptions.modelType)
221	cfg := o.providerOptions.cfg
222
223	modelConfig := cfg.Models[config.SelectedModelTypeLarge]
224	if o.providerOptions.modelType == config.SelectedModelTypeSmall {
225		modelConfig = cfg.Models[config.SelectedModelTypeSmall]
226	}
227
228	reasoningEffort := modelConfig.ReasoningEffort
229
230	params := openai.ChatCompletionNewParams{
231		Model:    openai.ChatModel(model.ID),
232		Messages: messages,
233		Tools:    tools,
234	}
235
236	maxTokens := model.DefaultMaxTokens
237	if modelConfig.MaxTokens > 0 {
238		maxTokens = modelConfig.MaxTokens
239	}
240
241	// Override max tokens if set in provider options
242	if o.providerOptions.maxTokens > 0 {
243		maxTokens = o.providerOptions.maxTokens
244	}
245	if model.CanReason {
246		params.MaxCompletionTokens = openai.Int(maxTokens)
247		switch reasoningEffort {
248		case "low":
249			params.ReasoningEffort = shared.ReasoningEffortLow
250		case "medium":
251			params.ReasoningEffort = shared.ReasoningEffortMedium
252		case "high":
253			params.ReasoningEffort = shared.ReasoningEffortHigh
254		case "minimal":
255			params.ReasoningEffort = shared.ReasoningEffort("minimal")
256		default:
257			params.ReasoningEffort = shared.ReasoningEffort(reasoningEffort)
258		}
259	} else {
260		params.MaxTokens = openai.Int(maxTokens)
261	}
262
263	return params
264}
265
266func (o *openaiClient) send(ctx context.Context, messages []message.Message, tools []tools.BaseTool) (response *ProviderResponse, err error) {
267	params := o.preparedParams(o.convertMessages(messages), o.convertTools(tools))
268	attempts := 0
269	for {
270		attempts++
271		openaiResponse, err := o.client.Chat.Completions.New(
272			ctx,
273			params,
274		)
275		// If there is an error we are going to see if we can retry the call
276		if err != nil {
277			retry, after, retryErr := o.shouldRetry(attempts, err)
278			if retryErr != nil {
279				return nil, retryErr
280			}
281			if retry {
282				slog.Warn("Retrying due to rate limit", "attempt", attempts, "max_retries", maxRetries, "error", err)
283				select {
284				case <-ctx.Done():
285					return nil, ctx.Err()
286				case <-time.After(time.Duration(after) * time.Millisecond):
287					continue
288				}
289			}
290			return nil, retryErr
291		}
292
293		if len(openaiResponse.Choices) == 0 {
294			return nil, fmt.Errorf("received empty response from OpenAI API - check endpoint configuration")
295		}
296
297		content := ""
298		if openaiResponse.Choices[0].Message.Content != "" {
299			content = openaiResponse.Choices[0].Message.Content
300		}
301
302		toolCalls := o.toolCalls(*openaiResponse)
303		finishReason := o.finishReason(string(openaiResponse.Choices[0].FinishReason))
304
305		if len(toolCalls) > 0 {
306			finishReason = message.FinishReasonToolUse
307		}
308
309		return &ProviderResponse{
310			Content:      content,
311			ToolCalls:    toolCalls,
312			Usage:        o.usage(*openaiResponse),
313			FinishReason: finishReason,
314		}, nil
315	}
316}
317
318func (o *openaiClient) stream(ctx context.Context, messages []message.Message, tools []tools.BaseTool) <-chan ProviderEvent {
319	params := o.preparedParams(o.convertMessages(messages), o.convertTools(tools))
320	params.StreamOptions = openai.ChatCompletionStreamOptionsParam{
321		IncludeUsage: openai.Bool(true),
322	}
323
324	attempts := 0
325	eventChan := make(chan ProviderEvent)
326
327	go func() {
328		for {
329			attempts++
330			// Kujtim: fixes an issue with anthropig models on openrouter
331			if len(params.Tools) == 0 {
332				params.Tools = nil
333			}
334			openaiStream := o.client.Chat.Completions.NewStreaming(
335				ctx,
336				params,
337			)
338
339			acc := openai.ChatCompletionAccumulator{}
340			currentContent := ""
341			toolCalls := make([]message.ToolCall, 0)
342			msgToolCalls := make(map[int64]openai.ChatCompletionMessageToolCall)
343			toolMap := make(map[string]openai.ChatCompletionMessageToolCall)
344			toolCallIDMap := make(map[string]string)
345			for openaiStream.Next() {
346				chunk := openaiStream.Current()
347				// Kujtim: this is an issue with openrouter qwen, its sending -1 for the tool index
348				if len(chunk.Choices) != 0 && len(chunk.Choices[0].Delta.ToolCalls) > 0 && chunk.Choices[0].Delta.ToolCalls[0].Index == -1 {
349					chunk.Choices[0].Delta.ToolCalls[0].Index = 0
350				}
351				acc.AddChunk(chunk)
352				for i, choice := range chunk.Choices {
353					reasoning, ok := choice.Delta.JSON.ExtraFields["reasoning"]
354					if ok && reasoning.Raw() != "" {
355						reasoningStr := ""
356						json.Unmarshal([]byte(reasoning.Raw()), &reasoningStr)
357						if reasoningStr != "" {
358							eventChan <- ProviderEvent{
359								Type:     EventThinkingDelta,
360								Thinking: reasoningStr,
361							}
362						}
363					}
364					if choice.Delta.Content != "" {
365						eventChan <- ProviderEvent{
366							Type:    EventContentDelta,
367							Content: choice.Delta.Content,
368						}
369						currentContent += choice.Delta.Content
370					} else if len(choice.Delta.ToolCalls) > 0 {
371						toolCall := choice.Delta.ToolCalls[0]
372						if strings.HasPrefix(toolCall.ID, "functions.") {
373							exID, ok := toolCallIDMap[toolCall.ID]
374							if !ok {
375								newID := uuid.NewString()
376								toolCallIDMap[toolCall.ID] = newID
377								toolCall.ID = newID
378							} else {
379								toolCall.ID = exID
380							}
381						}
382						newToolCall := false
383						if existingToolCall, ok := msgToolCalls[toolCall.Index]; ok { // tool call exists
384							if toolCall.ID != "" && toolCall.ID != existingToolCall.ID {
385								found := false
386								// try to find the tool based on the ID
387								for _, tool := range msgToolCalls {
388									if tool.ID == toolCall.ID {
389										existingToolCall.Function.Arguments += toolCall.Function.Arguments
390										msgToolCalls[toolCall.Index] = existingToolCall
391										toolMap[existingToolCall.ID] = existingToolCall
392										found = true
393									}
394								}
395								if !found {
396									newToolCall = true
397								}
398							} else {
399								existingToolCall.Function.Arguments += toolCall.Function.Arguments
400								msgToolCalls[toolCall.Index] = existingToolCall
401								toolMap[existingToolCall.ID] = existingToolCall
402							}
403						} else {
404							newToolCall = true
405						}
406						if newToolCall { // new tool call
407							if toolCall.ID == "" {
408								toolCall.ID = uuid.NewString()
409							}
410							eventChan <- ProviderEvent{
411								Type: EventToolUseStart,
412								ToolCall: &message.ToolCall{
413									ID:       toolCall.ID,
414									Name:     toolCall.Function.Name,
415									Finished: false,
416								},
417							}
418							msgToolCalls[toolCall.Index] = openai.ChatCompletionMessageToolCall{
419								ID:   toolCall.ID,
420								Type: "function",
421								Function: openai.ChatCompletionMessageToolCallFunction{
422									Name:      toolCall.Function.Name,
423									Arguments: toolCall.Function.Arguments,
424								},
425							}
426							toolMap[toolCall.ID] = msgToolCalls[toolCall.Index]
427						}
428						toolCalls := []openai.ChatCompletionMessageToolCall{}
429						for _, tc := range toolMap {
430							toolCalls = append(toolCalls, tc)
431						}
432						acc.Choices[i].Message.ToolCalls = toolCalls
433					}
434				}
435			}
436
437			err := openaiStream.Err()
438			if err == nil || errors.Is(err, io.EOF) {
439				if len(acc.Choices) == 0 {
440					eventChan <- ProviderEvent{
441						Type:  EventError,
442						Error: fmt.Errorf("received empty streaming response from OpenAI API - check endpoint configuration"),
443					}
444					return
445				}
446
447				resultFinishReason := acc.Choices[0].FinishReason
448				if resultFinishReason == "" {
449					// If the finish reason is empty, we assume it was a successful completion
450					// INFO: this is happening for openrouter for some reason
451					resultFinishReason = "stop"
452				}
453				// Stream completed successfully
454				finishReason := o.finishReason(resultFinishReason)
455				if len(acc.Choices[0].Message.ToolCalls) > 0 {
456					toolCalls = append(toolCalls, o.toolCalls(acc.ChatCompletion)...)
457				}
458				if len(toolCalls) > 0 {
459					finishReason = message.FinishReasonToolUse
460				}
461
462				eventChan <- ProviderEvent{
463					Type: EventComplete,
464					Response: &ProviderResponse{
465						Content:      currentContent,
466						ToolCalls:    toolCalls,
467						Usage:        o.usage(acc.ChatCompletion),
468						FinishReason: finishReason,
469					},
470				}
471				close(eventChan)
472				return
473			}
474
475			// If there is an error we are going to see if we can retry the call
476			retry, after, retryErr := o.shouldRetry(attempts, err)
477			if retryErr != nil {
478				eventChan <- ProviderEvent{Type: EventError, Error: retryErr}
479				close(eventChan)
480				return
481			}
482			if retry {
483				slog.Warn("Retrying due to rate limit", "attempt", attempts, "max_retries", maxRetries, "error", err)
484				select {
485				case <-ctx.Done():
486					// context cancelled
487					if ctx.Err() != nil {
488						eventChan <- ProviderEvent{Type: EventError, Error: ctx.Err()}
489					}
490					close(eventChan)
491					return
492				case <-time.After(time.Duration(after) * time.Millisecond):
493					continue
494				}
495			}
496			eventChan <- ProviderEvent{Type: EventError, Error: retryErr}
497			close(eventChan)
498			return
499		}
500	}()
501
502	return eventChan
503}
504
505func (o *openaiClient) shouldRetry(attempts int, err error) (bool, int64, error) {
506	if attempts > maxRetries {
507		return false, 0, fmt.Errorf("maximum retry attempts reached for rate limit: %d retries", maxRetries)
508	}
509	if errors.Is(err, context.Canceled) || errors.Is(err, context.DeadlineExceeded) {
510		return false, 0, err
511	}
512	var apiErr *openai.Error
513	retryMs := 0
514	retryAfterValues := []string{}
515	if errors.As(err, &apiErr) {
516		// Check for token expiration (401 Unauthorized)
517		if apiErr.StatusCode == http.StatusUnauthorized {
518			prev := o.providerOptions.apiKey
519			// in case the key comes from a script, we try to re-evaluate it.
520			o.providerOptions.apiKey, err = o.providerOptions.resolver.ResolveValue(o.providerOptions.config.APIKey)
521			if err != nil {
522				return false, 0, fmt.Errorf("failed to resolve API key: %w", err)
523			}
524			// if it didn't change, do not retry.
525			if prev == o.providerOptions.apiKey {
526				return false, 0, err
527			}
528			o.client = createOpenAIClient(o.providerOptions)
529			return true, 0, nil
530		}
531
532		if apiErr.StatusCode != http.StatusTooManyRequests && apiErr.StatusCode != http.StatusInternalServerError {
533			return false, 0, err
534		}
535
536		retryAfterValues = apiErr.Response.Header.Values("Retry-After")
537	}
538
539	if apiErr != nil {
540		slog.Warn("OpenAI API error", "status_code", apiErr.StatusCode, "message", apiErr.Message, "type", apiErr.Type)
541		if len(retryAfterValues) > 0 {
542			slog.Warn("Retry-After header", "values", retryAfterValues)
543		}
544	} else {
545		slog.Error("OpenAI API error", "error", err.Error(), "attempt", attempts, "max_retries", maxRetries)
546	}
547
548	backoffMs := 2000 * (1 << (attempts - 1))
549	jitterMs := int(float64(backoffMs) * 0.2)
550	retryMs = backoffMs + jitterMs
551	if len(retryAfterValues) > 0 {
552		if _, err := fmt.Sscanf(retryAfterValues[0], "%d", &retryMs); err == nil {
553			retryMs = retryMs * 1000
554		}
555	}
556	return true, int64(retryMs), nil
557}
558
559func (o *openaiClient) toolCalls(completion openai.ChatCompletion) []message.ToolCall {
560	var toolCalls []message.ToolCall
561
562	if len(completion.Choices) > 0 && len(completion.Choices[0].Message.ToolCalls) > 0 {
563		for _, call := range completion.Choices[0].Message.ToolCalls {
564			// accumulator for some reason does this.
565			if call.Function.Name == "" {
566				continue
567			}
568			toolCall := message.ToolCall{
569				ID:       call.ID,
570				Name:     call.Function.Name,
571				Input:    call.Function.Arguments,
572				Type:     "function",
573				Finished: true,
574			}
575			toolCalls = append(toolCalls, toolCall)
576		}
577	}
578
579	return toolCalls
580}
581
582func (o *openaiClient) usage(completion openai.ChatCompletion) TokenUsage {
583	cachedTokens := completion.Usage.PromptTokensDetails.CachedTokens
584	inputTokens := completion.Usage.PromptTokens - cachedTokens
585
586	return TokenUsage{
587		InputTokens:         inputTokens,
588		OutputTokens:        completion.Usage.CompletionTokens,
589		CacheCreationTokens: 0, // OpenAI doesn't provide this directly
590		CacheReadTokens:     cachedTokens,
591	}
592}
593
594func (o *openaiClient) Model() catwalk.Model {
595	return o.providerOptions.model(o.providerOptions.modelType)
596}