rc2.go

  1// Copyright 2015 The Go Authors. All rights reserved.
  2// Use of this source code is governed by a BSD-style
  3// license that can be found in the LICENSE file.
  4
  5// Package rc2 implements the RC2 cipher
  6/*
  7https://www.ietf.org/rfc/rfc2268.txt
  8http://people.csail.mit.edu/rivest/pubs/KRRR98.pdf
  9
 10This code is licensed under the MIT license.
 11*/
 12package rc2
 13
 14import (
 15	"crypto/cipher"
 16	"encoding/binary"
 17	"math/bits"
 18)
 19
 20// The rc2 block size in bytes
 21const BlockSize = 8
 22
 23type rc2Cipher struct {
 24	k [64]uint16
 25}
 26
 27// New returns a new rc2 cipher with the given key and effective key length t1
 28func New(key []byte, t1 int) (cipher.Block, error) {
 29	// TODO(dgryski): error checking for key length
 30	return &rc2Cipher{
 31		k: expandKey(key, t1),
 32	}, nil
 33}
 34
 35func (*rc2Cipher) BlockSize() int { return BlockSize }
 36
 37var piTable = [256]byte{
 38	0xd9, 0x78, 0xf9, 0xc4, 0x19, 0xdd, 0xb5, 0xed, 0x28, 0xe9, 0xfd, 0x79, 0x4a, 0xa0, 0xd8, 0x9d,
 39	0xc6, 0x7e, 0x37, 0x83, 0x2b, 0x76, 0x53, 0x8e, 0x62, 0x4c, 0x64, 0x88, 0x44, 0x8b, 0xfb, 0xa2,
 40	0x17, 0x9a, 0x59, 0xf5, 0x87, 0xb3, 0x4f, 0x13, 0x61, 0x45, 0x6d, 0x8d, 0x09, 0x81, 0x7d, 0x32,
 41	0xbd, 0x8f, 0x40, 0xeb, 0x86, 0xb7, 0x7b, 0x0b, 0xf0, 0x95, 0x21, 0x22, 0x5c, 0x6b, 0x4e, 0x82,
 42	0x54, 0xd6, 0x65, 0x93, 0xce, 0x60, 0xb2, 0x1c, 0x73, 0x56, 0xc0, 0x14, 0xa7, 0x8c, 0xf1, 0xdc,
 43	0x12, 0x75, 0xca, 0x1f, 0x3b, 0xbe, 0xe4, 0xd1, 0x42, 0x3d, 0xd4, 0x30, 0xa3, 0x3c, 0xb6, 0x26,
 44	0x6f, 0xbf, 0x0e, 0xda, 0x46, 0x69, 0x07, 0x57, 0x27, 0xf2, 0x1d, 0x9b, 0xbc, 0x94, 0x43, 0x03,
 45	0xf8, 0x11, 0xc7, 0xf6, 0x90, 0xef, 0x3e, 0xe7, 0x06, 0xc3, 0xd5, 0x2f, 0xc8, 0x66, 0x1e, 0xd7,
 46	0x08, 0xe8, 0xea, 0xde, 0x80, 0x52, 0xee, 0xf7, 0x84, 0xaa, 0x72, 0xac, 0x35, 0x4d, 0x6a, 0x2a,
 47	0x96, 0x1a, 0xd2, 0x71, 0x5a, 0x15, 0x49, 0x74, 0x4b, 0x9f, 0xd0, 0x5e, 0x04, 0x18, 0xa4, 0xec,
 48	0xc2, 0xe0, 0x41, 0x6e, 0x0f, 0x51, 0xcb, 0xcc, 0x24, 0x91, 0xaf, 0x50, 0xa1, 0xf4, 0x70, 0x39,
 49	0x99, 0x7c, 0x3a, 0x85, 0x23, 0xb8, 0xb4, 0x7a, 0xfc, 0x02, 0x36, 0x5b, 0x25, 0x55, 0x97, 0x31,
 50	0x2d, 0x5d, 0xfa, 0x98, 0xe3, 0x8a, 0x92, 0xae, 0x05, 0xdf, 0x29, 0x10, 0x67, 0x6c, 0xba, 0xc9,
 51	0xd3, 0x00, 0xe6, 0xcf, 0xe1, 0x9e, 0xa8, 0x2c, 0x63, 0x16, 0x01, 0x3f, 0x58, 0xe2, 0x89, 0xa9,
 52	0x0d, 0x38, 0x34, 0x1b, 0xab, 0x33, 0xff, 0xb0, 0xbb, 0x48, 0x0c, 0x5f, 0xb9, 0xb1, 0xcd, 0x2e,
 53	0xc5, 0xf3, 0xdb, 0x47, 0xe5, 0xa5, 0x9c, 0x77, 0x0a, 0xa6, 0x20, 0x68, 0xfe, 0x7f, 0xc1, 0xad,
 54}
 55
 56func expandKey(key []byte, t1 int) [64]uint16 {
 57
 58	l := make([]byte, 128)
 59	copy(l, key)
 60
 61	var t = len(key)
 62	var t8 = (t1 + 7) / 8
 63	var tm = byte(255 % uint(1<<(8+uint(t1)-8*uint(t8))))
 64
 65	for i := len(key); i < 128; i++ {
 66		l[i] = piTable[l[i-1]+l[uint8(i-t)]]
 67	}
 68
 69	l[128-t8] = piTable[l[128-t8]&tm]
 70
 71	for i := 127 - t8; i >= 0; i-- {
 72		l[i] = piTable[l[i+1]^l[i+t8]]
 73	}
 74
 75	var k [64]uint16
 76
 77	for i := range k {
 78		k[i] = uint16(l[2*i]) + uint16(l[2*i+1])*256
 79	}
 80
 81	return k
 82}
 83
 84func (c *rc2Cipher) Encrypt(dst, src []byte) {
 85
 86	r0 := binary.LittleEndian.Uint16(src[0:])
 87	r1 := binary.LittleEndian.Uint16(src[2:])
 88	r2 := binary.LittleEndian.Uint16(src[4:])
 89	r3 := binary.LittleEndian.Uint16(src[6:])
 90
 91	var j int
 92
 93	for j <= 16 {
 94		// mix r0
 95		r0 = r0 + c.k[j] + (r3 & r2) + ((^r3) & r1)
 96		r0 = bits.RotateLeft16(r0, 1)
 97		j++
 98
 99		// mix r1
100		r1 = r1 + c.k[j] + (r0 & r3) + ((^r0) & r2)
101		r1 = bits.RotateLeft16(r1, 2)
102		j++
103
104		// mix r2
105		r2 = r2 + c.k[j] + (r1 & r0) + ((^r1) & r3)
106		r2 = bits.RotateLeft16(r2, 3)
107		j++
108
109		// mix r3
110		r3 = r3 + c.k[j] + (r2 & r1) + ((^r2) & r0)
111		r3 = bits.RotateLeft16(r3, 5)
112		j++
113
114	}
115
116	r0 = r0 + c.k[r3&63]
117	r1 = r1 + c.k[r0&63]
118	r2 = r2 + c.k[r1&63]
119	r3 = r3 + c.k[r2&63]
120
121	for j <= 40 {
122		// mix r0
123		r0 = r0 + c.k[j] + (r3 & r2) + ((^r3) & r1)
124		r0 = bits.RotateLeft16(r0, 1)
125		j++
126
127		// mix r1
128		r1 = r1 + c.k[j] + (r0 & r3) + ((^r0) & r2)
129		r1 = bits.RotateLeft16(r1, 2)
130		j++
131
132		// mix r2
133		r2 = r2 + c.k[j] + (r1 & r0) + ((^r1) & r3)
134		r2 = bits.RotateLeft16(r2, 3)
135		j++
136
137		// mix r3
138		r3 = r3 + c.k[j] + (r2 & r1) + ((^r2) & r0)
139		r3 = bits.RotateLeft16(r3, 5)
140		j++
141
142	}
143
144	r0 = r0 + c.k[r3&63]
145	r1 = r1 + c.k[r0&63]
146	r2 = r2 + c.k[r1&63]
147	r3 = r3 + c.k[r2&63]
148
149	for j <= 60 {
150		// mix r0
151		r0 = r0 + c.k[j] + (r3 & r2) + ((^r3) & r1)
152		r0 = bits.RotateLeft16(r0, 1)
153		j++
154
155		// mix r1
156		r1 = r1 + c.k[j] + (r0 & r3) + ((^r0) & r2)
157		r1 = bits.RotateLeft16(r1, 2)
158		j++
159
160		// mix r2
161		r2 = r2 + c.k[j] + (r1 & r0) + ((^r1) & r3)
162		r2 = bits.RotateLeft16(r2, 3)
163		j++
164
165		// mix r3
166		r3 = r3 + c.k[j] + (r2 & r1) + ((^r2) & r0)
167		r3 = bits.RotateLeft16(r3, 5)
168		j++
169	}
170
171	binary.LittleEndian.PutUint16(dst[0:], r0)
172	binary.LittleEndian.PutUint16(dst[2:], r1)
173	binary.LittleEndian.PutUint16(dst[4:], r2)
174	binary.LittleEndian.PutUint16(dst[6:], r3)
175}
176
177func (c *rc2Cipher) Decrypt(dst, src []byte) {
178
179	r0 := binary.LittleEndian.Uint16(src[0:])
180	r1 := binary.LittleEndian.Uint16(src[2:])
181	r2 := binary.LittleEndian.Uint16(src[4:])
182	r3 := binary.LittleEndian.Uint16(src[6:])
183
184	j := 63
185
186	for j >= 44 {
187		// unmix r3
188		r3 = bits.RotateLeft16(r3, 16-5)
189		r3 = r3 - c.k[j] - (r2 & r1) - ((^r2) & r0)
190		j--
191
192		// unmix r2
193		r2 = bits.RotateLeft16(r2, 16-3)
194		r2 = r2 - c.k[j] - (r1 & r0) - ((^r1) & r3)
195		j--
196
197		// unmix r1
198		r1 = bits.RotateLeft16(r1, 16-2)
199		r1 = r1 - c.k[j] - (r0 & r3) - ((^r0) & r2)
200		j--
201
202		// unmix r0
203		r0 = bits.RotateLeft16(r0, 16-1)
204		r0 = r0 - c.k[j] - (r3 & r2) - ((^r3) & r1)
205		j--
206	}
207
208	r3 = r3 - c.k[r2&63]
209	r2 = r2 - c.k[r1&63]
210	r1 = r1 - c.k[r0&63]
211	r0 = r0 - c.k[r3&63]
212
213	for j >= 20 {
214		// unmix r3
215		r3 = bits.RotateLeft16(r3, 16-5)
216		r3 = r3 - c.k[j] - (r2 & r1) - ((^r2) & r0)
217		j--
218
219		// unmix r2
220		r2 = bits.RotateLeft16(r2, 16-3)
221		r2 = r2 - c.k[j] - (r1 & r0) - ((^r1) & r3)
222		j--
223
224		// unmix r1
225		r1 = bits.RotateLeft16(r1, 16-2)
226		r1 = r1 - c.k[j] - (r0 & r3) - ((^r0) & r2)
227		j--
228
229		// unmix r0
230		r0 = bits.RotateLeft16(r0, 16-1)
231		r0 = r0 - c.k[j] - (r3 & r2) - ((^r3) & r1)
232		j--
233
234	}
235
236	r3 = r3 - c.k[r2&63]
237	r2 = r2 - c.k[r1&63]
238	r1 = r1 - c.k[r0&63]
239	r0 = r0 - c.k[r3&63]
240
241	for j >= 0 {
242		// unmix r3
243		r3 = bits.RotateLeft16(r3, 16-5)
244		r3 = r3 - c.k[j] - (r2 & r1) - ((^r2) & r0)
245		j--
246
247		// unmix r2
248		r2 = bits.RotateLeft16(r2, 16-3)
249		r2 = r2 - c.k[j] - (r1 & r0) - ((^r1) & r3)
250		j--
251
252		// unmix r1
253		r1 = bits.RotateLeft16(r1, 16-2)
254		r1 = r1 - c.k[j] - (r0 & r3) - ((^r0) & r2)
255		j--
256
257		// unmix r0
258		r0 = bits.RotateLeft16(r0, 16-1)
259		r0 = r0 - c.k[j] - (r3 & r2) - ((^r3) & r1)
260		j--
261
262	}
263
264	binary.LittleEndian.PutUint16(dst[0:], r0)
265	binary.LittleEndian.PutUint16(dst[2:], r1)
266	binary.LittleEndian.PutUint16(dst[4:], r2)
267	binary.LittleEndian.PutUint16(dst[6:], r3)
268}