embedding.go

  1// File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
  2
  3package openai
  4
  5import (
  6	"context"
  7	"net/http"
  8
  9	"github.com/openai/openai-go/internal/apijson"
 10	"github.com/openai/openai-go/internal/requestconfig"
 11	"github.com/openai/openai-go/option"
 12	"github.com/openai/openai-go/packages/param"
 13	"github.com/openai/openai-go/packages/respjson"
 14	"github.com/openai/openai-go/shared/constant"
 15)
 16
 17// EmbeddingService contains methods and other services that help with interacting
 18// with the openai API.
 19//
 20// Note, unlike clients, this service does not read variables from the environment
 21// automatically. You should not instantiate this service directly, and instead use
 22// the [NewEmbeddingService] method instead.
 23type EmbeddingService struct {
 24	Options []option.RequestOption
 25}
 26
 27// NewEmbeddingService generates a new service that applies the given options to
 28// each request. These options are applied after the parent client's options (if
 29// there is one), and before any request-specific options.
 30func NewEmbeddingService(opts ...option.RequestOption) (r EmbeddingService) {
 31	r = EmbeddingService{}
 32	r.Options = opts
 33	return
 34}
 35
 36// Creates an embedding vector representing the input text.
 37func (r *EmbeddingService) New(ctx context.Context, body EmbeddingNewParams, opts ...option.RequestOption) (res *CreateEmbeddingResponse, err error) {
 38	opts = append(r.Options[:], opts...)
 39	path := "embeddings"
 40	err = requestconfig.ExecuteNewRequest(ctx, http.MethodPost, path, body, &res, opts...)
 41	return
 42}
 43
 44type CreateEmbeddingResponse struct {
 45	// The list of embeddings generated by the model.
 46	Data []Embedding `json:"data,required"`
 47	// The name of the model used to generate the embedding.
 48	Model string `json:"model,required"`
 49	// The object type, which is always "list".
 50	Object constant.List `json:"object,required"`
 51	// The usage information for the request.
 52	Usage CreateEmbeddingResponseUsage `json:"usage,required"`
 53	// JSON contains metadata for fields, check presence with [respjson.Field.Valid].
 54	JSON struct {
 55		Data        respjson.Field
 56		Model       respjson.Field
 57		Object      respjson.Field
 58		Usage       respjson.Field
 59		ExtraFields map[string]respjson.Field
 60		raw         string
 61	} `json:"-"`
 62}
 63
 64// Returns the unmodified JSON received from the API
 65func (r CreateEmbeddingResponse) RawJSON() string { return r.JSON.raw }
 66func (r *CreateEmbeddingResponse) UnmarshalJSON(data []byte) error {
 67	return apijson.UnmarshalRoot(data, r)
 68}
 69
 70// The usage information for the request.
 71type CreateEmbeddingResponseUsage struct {
 72	// The number of tokens used by the prompt.
 73	PromptTokens int64 `json:"prompt_tokens,required"`
 74	// The total number of tokens used by the request.
 75	TotalTokens int64 `json:"total_tokens,required"`
 76	// JSON contains metadata for fields, check presence with [respjson.Field.Valid].
 77	JSON struct {
 78		PromptTokens respjson.Field
 79		TotalTokens  respjson.Field
 80		ExtraFields  map[string]respjson.Field
 81		raw          string
 82	} `json:"-"`
 83}
 84
 85// Returns the unmodified JSON received from the API
 86func (r CreateEmbeddingResponseUsage) RawJSON() string { return r.JSON.raw }
 87func (r *CreateEmbeddingResponseUsage) UnmarshalJSON(data []byte) error {
 88	return apijson.UnmarshalRoot(data, r)
 89}
 90
 91// Represents an embedding vector returned by embedding endpoint.
 92type Embedding struct {
 93	// The embedding vector, which is a list of floats. The length of vector depends on
 94	// the model as listed in the
 95	// [embedding guide](https://platform.openai.com/docs/guides/embeddings).
 96	Embedding []float64 `json:"embedding,required"`
 97	// The index of the embedding in the list of embeddings.
 98	Index int64 `json:"index,required"`
 99	// The object type, which is always "embedding".
100	Object constant.Embedding `json:"object,required"`
101	// JSON contains metadata for fields, check presence with [respjson.Field.Valid].
102	JSON struct {
103		Embedding   respjson.Field
104		Index       respjson.Field
105		Object      respjson.Field
106		ExtraFields map[string]respjson.Field
107		raw         string
108	} `json:"-"`
109}
110
111// Returns the unmodified JSON received from the API
112func (r Embedding) RawJSON() string { return r.JSON.raw }
113func (r *Embedding) UnmarshalJSON(data []byte) error {
114	return apijson.UnmarshalRoot(data, r)
115}
116
117type EmbeddingModel = string
118
119const (
120	EmbeddingModelTextEmbeddingAda002 EmbeddingModel = "text-embedding-ada-002"
121	EmbeddingModelTextEmbedding3Small EmbeddingModel = "text-embedding-3-small"
122	EmbeddingModelTextEmbedding3Large EmbeddingModel = "text-embedding-3-large"
123)
124
125type EmbeddingNewParams struct {
126	// Input text to embed, encoded as a string or array of tokens. To embed multiple
127	// inputs in a single request, pass an array of strings or array of token arrays.
128	// The input must not exceed the max input tokens for the model (8192 tokens for
129	// all embedding models), cannot be an empty string, and any array must be 2048
130	// dimensions or less.
131	// [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken)
132	// for counting tokens. In addition to the per-input token limit, all embedding
133	// models enforce a maximum of 300,000 tokens summed across all inputs in a single
134	// request.
135	Input EmbeddingNewParamsInputUnion `json:"input,omitzero,required"`
136	// ID of the model to use. You can use the
137	// [List models](https://platform.openai.com/docs/api-reference/models/list) API to
138	// see all of your available models, or see our
139	// [Model overview](https://platform.openai.com/docs/models) for descriptions of
140	// them.
141	Model EmbeddingModel `json:"model,omitzero,required"`
142	// The number of dimensions the resulting output embeddings should have. Only
143	// supported in `text-embedding-3` and later models.
144	Dimensions param.Opt[int64] `json:"dimensions,omitzero"`
145	// A unique identifier representing your end-user, which can help OpenAI to monitor
146	// and detect abuse.
147	// [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids).
148	User param.Opt[string] `json:"user,omitzero"`
149	// The format to return the embeddings in. Can be either `float` or
150	// [`base64`](https://pypi.org/project/pybase64/).
151	//
152	// Any of "float", "base64".
153	EncodingFormat EmbeddingNewParamsEncodingFormat `json:"encoding_format,omitzero"`
154	paramObj
155}
156
157func (r EmbeddingNewParams) MarshalJSON() (data []byte, err error) {
158	type shadow EmbeddingNewParams
159	return param.MarshalObject(r, (*shadow)(&r))
160}
161func (r *EmbeddingNewParams) UnmarshalJSON(data []byte) error {
162	return apijson.UnmarshalRoot(data, r)
163}
164
165// Only one field can be non-zero.
166//
167// Use [param.IsOmitted] to confirm if a field is set.
168type EmbeddingNewParamsInputUnion struct {
169	OfString             param.Opt[string] `json:",omitzero,inline"`
170	OfArrayOfStrings     []string          `json:",omitzero,inline"`
171	OfArrayOfTokens      []int64           `json:",omitzero,inline"`
172	OfArrayOfTokenArrays [][]int64         `json:",omitzero,inline"`
173	paramUnion
174}
175
176func (u EmbeddingNewParamsInputUnion) MarshalJSON() ([]byte, error) {
177	return param.MarshalUnion(u, u.OfString, u.OfArrayOfStrings, u.OfArrayOfTokens, u.OfArrayOfTokenArrays)
178}
179func (u *EmbeddingNewParamsInputUnion) UnmarshalJSON(data []byte) error {
180	return apijson.UnmarshalRoot(data, u)
181}
182
183func (u *EmbeddingNewParamsInputUnion) asAny() any {
184	if !param.IsOmitted(u.OfString) {
185		return &u.OfString.Value
186	} else if !param.IsOmitted(u.OfArrayOfStrings) {
187		return &u.OfArrayOfStrings
188	} else if !param.IsOmitted(u.OfArrayOfTokens) {
189		return &u.OfArrayOfTokens
190	} else if !param.IsOmitted(u.OfArrayOfTokenArrays) {
191		return &u.OfArrayOfTokenArrays
192	}
193	return nil
194}
195
196// The format to return the embeddings in. Can be either `float` or
197// [`base64`](https://pypi.org/project/pybase64/).
198type EmbeddingNewParamsEncodingFormat string
199
200const (
201	EmbeddingNewParamsEncodingFormatFloat  EmbeddingNewParamsEncodingFormat = "float"
202	EmbeddingNewParamsEncodingFormatBase64 EmbeddingNewParamsEncodingFormat = "base64"
203)