terminal.go

  1// Copyright 2011 The Go Authors. All rights reserved.
  2// Use of this source code is governed by a BSD-style
  3// license that can be found in the LICENSE file.
  4
  5package term
  6
  7import (
  8	"bytes"
  9	"io"
 10	"runtime"
 11	"strconv"
 12	"sync"
 13	"unicode/utf8"
 14)
 15
 16// EscapeCodes contains escape sequences that can be written to the terminal in
 17// order to achieve different styles of text.
 18type EscapeCodes struct {
 19	// Foreground colors
 20	Black, Red, Green, Yellow, Blue, Magenta, Cyan, White []byte
 21
 22	// Reset all attributes
 23	Reset []byte
 24}
 25
 26var vt100EscapeCodes = EscapeCodes{
 27	Black:   []byte{keyEscape, '[', '3', '0', 'm'},
 28	Red:     []byte{keyEscape, '[', '3', '1', 'm'},
 29	Green:   []byte{keyEscape, '[', '3', '2', 'm'},
 30	Yellow:  []byte{keyEscape, '[', '3', '3', 'm'},
 31	Blue:    []byte{keyEscape, '[', '3', '4', 'm'},
 32	Magenta: []byte{keyEscape, '[', '3', '5', 'm'},
 33	Cyan:    []byte{keyEscape, '[', '3', '6', 'm'},
 34	White:   []byte{keyEscape, '[', '3', '7', 'm'},
 35
 36	Reset: []byte{keyEscape, '[', '0', 'm'},
 37}
 38
 39// Terminal contains the state for running a VT100 terminal that is capable of
 40// reading lines of input.
 41type Terminal struct {
 42	// AutoCompleteCallback, if non-null, is called for each keypress with
 43	// the full input line and the current position of the cursor (in
 44	// bytes, as an index into |line|). If it returns ok=false, the key
 45	// press is processed normally. Otherwise it returns a replacement line
 46	// and the new cursor position.
 47	//
 48	// This will be disabled during ReadPassword.
 49	AutoCompleteCallback func(line string, pos int, key rune) (newLine string, newPos int, ok bool)
 50
 51	// Escape contains a pointer to the escape codes for this terminal.
 52	// It's always a valid pointer, although the escape codes themselves
 53	// may be empty if the terminal doesn't support them.
 54	Escape *EscapeCodes
 55
 56	// lock protects the terminal and the state in this object from
 57	// concurrent processing of a key press and a Write() call.
 58	lock sync.Mutex
 59
 60	c      io.ReadWriter
 61	prompt []rune
 62
 63	// line is the current line being entered.
 64	line []rune
 65	// pos is the logical position of the cursor in line
 66	pos int
 67	// echo is true if local echo is enabled
 68	echo bool
 69	// pasteActive is true iff there is a bracketed paste operation in
 70	// progress.
 71	pasteActive bool
 72
 73	// cursorX contains the current X value of the cursor where the left
 74	// edge is 0. cursorY contains the row number where the first row of
 75	// the current line is 0.
 76	cursorX, cursorY int
 77	// maxLine is the greatest value of cursorY so far.
 78	maxLine int
 79
 80	termWidth, termHeight int
 81
 82	// outBuf contains the terminal data to be sent.
 83	outBuf []byte
 84	// remainder contains the remainder of any partial key sequences after
 85	// a read. It aliases into inBuf.
 86	remainder []byte
 87	inBuf     [256]byte
 88
 89	// history contains previously entered commands so that they can be
 90	// accessed with the up and down keys.
 91	history stRingBuffer
 92	// historyIndex stores the currently accessed history entry, where zero
 93	// means the immediately previous entry.
 94	historyIndex int
 95	// When navigating up and down the history it's possible to return to
 96	// the incomplete, initial line. That value is stored in
 97	// historyPending.
 98	historyPending string
 99}
100
101// NewTerminal runs a VT100 terminal on the given ReadWriter. If the ReadWriter is
102// a local terminal, that terminal must first have been put into raw mode.
103// prompt is a string that is written at the start of each input line (i.e.
104// "> ").
105func NewTerminal(c io.ReadWriter, prompt string) *Terminal {
106	return &Terminal{
107		Escape:       &vt100EscapeCodes,
108		c:            c,
109		prompt:       []rune(prompt),
110		termWidth:    80,
111		termHeight:   24,
112		echo:         true,
113		historyIndex: -1,
114	}
115}
116
117const (
118	keyCtrlC     = 3
119	keyCtrlD     = 4
120	keyCtrlU     = 21
121	keyEnter     = '\r'
122	keyEscape    = 27
123	keyBackspace = 127
124	keyUnknown   = 0xd800 /* UTF-16 surrogate area */ + iota
125	keyUp
126	keyDown
127	keyLeft
128	keyRight
129	keyAltLeft
130	keyAltRight
131	keyHome
132	keyEnd
133	keyDeleteWord
134	keyDeleteLine
135	keyClearScreen
136	keyPasteStart
137	keyPasteEnd
138)
139
140var (
141	crlf       = []byte{'\r', '\n'}
142	pasteStart = []byte{keyEscape, '[', '2', '0', '0', '~'}
143	pasteEnd   = []byte{keyEscape, '[', '2', '0', '1', '~'}
144)
145
146// bytesToKey tries to parse a key sequence from b. If successful, it returns
147// the key and the remainder of the input. Otherwise it returns utf8.RuneError.
148func bytesToKey(b []byte, pasteActive bool) (rune, []byte) {
149	if len(b) == 0 {
150		return utf8.RuneError, nil
151	}
152
153	if !pasteActive {
154		switch b[0] {
155		case 1: // ^A
156			return keyHome, b[1:]
157		case 2: // ^B
158			return keyLeft, b[1:]
159		case 5: // ^E
160			return keyEnd, b[1:]
161		case 6: // ^F
162			return keyRight, b[1:]
163		case 8: // ^H
164			return keyBackspace, b[1:]
165		case 11: // ^K
166			return keyDeleteLine, b[1:]
167		case 12: // ^L
168			return keyClearScreen, b[1:]
169		case 23: // ^W
170			return keyDeleteWord, b[1:]
171		case 14: // ^N
172			return keyDown, b[1:]
173		case 16: // ^P
174			return keyUp, b[1:]
175		}
176	}
177
178	if b[0] != keyEscape {
179		if !utf8.FullRune(b) {
180			return utf8.RuneError, b
181		}
182		r, l := utf8.DecodeRune(b)
183		return r, b[l:]
184	}
185
186	if !pasteActive && len(b) >= 3 && b[0] == keyEscape && b[1] == '[' {
187		switch b[2] {
188		case 'A':
189			return keyUp, b[3:]
190		case 'B':
191			return keyDown, b[3:]
192		case 'C':
193			return keyRight, b[3:]
194		case 'D':
195			return keyLeft, b[3:]
196		case 'H':
197			return keyHome, b[3:]
198		case 'F':
199			return keyEnd, b[3:]
200		}
201	}
202
203	if !pasteActive && len(b) >= 6 && b[0] == keyEscape && b[1] == '[' && b[2] == '1' && b[3] == ';' && b[4] == '3' {
204		switch b[5] {
205		case 'C':
206			return keyAltRight, b[6:]
207		case 'D':
208			return keyAltLeft, b[6:]
209		}
210	}
211
212	if !pasteActive && len(b) >= 6 && bytes.Equal(b[:6], pasteStart) {
213		return keyPasteStart, b[6:]
214	}
215
216	if pasteActive && len(b) >= 6 && bytes.Equal(b[:6], pasteEnd) {
217		return keyPasteEnd, b[6:]
218	}
219
220	// If we get here then we have a key that we don't recognise, or a
221	// partial sequence. It's not clear how one should find the end of a
222	// sequence without knowing them all, but it seems that [a-zA-Z~] only
223	// appears at the end of a sequence.
224	for i, c := range b[0:] {
225		if c >= 'a' && c <= 'z' || c >= 'A' && c <= 'Z' || c == '~' {
226			return keyUnknown, b[i+1:]
227		}
228	}
229
230	return utf8.RuneError, b
231}
232
233// queue appends data to the end of t.outBuf
234func (t *Terminal) queue(data []rune) {
235	t.outBuf = append(t.outBuf, []byte(string(data))...)
236}
237
238var space = []rune{' '}
239
240func isPrintable(key rune) bool {
241	isInSurrogateArea := key >= 0xd800 && key <= 0xdbff
242	return key >= 32 && !isInSurrogateArea
243}
244
245// moveCursorToPos appends data to t.outBuf which will move the cursor to the
246// given, logical position in the text.
247func (t *Terminal) moveCursorToPos(pos int) {
248	if !t.echo {
249		return
250	}
251
252	x := visualLength(t.prompt) + pos
253	y := x / t.termWidth
254	x = x % t.termWidth
255
256	up := 0
257	if y < t.cursorY {
258		up = t.cursorY - y
259	}
260
261	down := 0
262	if y > t.cursorY {
263		down = y - t.cursorY
264	}
265
266	left := 0
267	if x < t.cursorX {
268		left = t.cursorX - x
269	}
270
271	right := 0
272	if x > t.cursorX {
273		right = x - t.cursorX
274	}
275
276	t.cursorX = x
277	t.cursorY = y
278	t.move(up, down, left, right)
279}
280
281func (t *Terminal) move(up, down, left, right int) {
282	m := []rune{}
283
284	// 1 unit up can be expressed as ^[[A or ^[A
285	// 5 units up can be expressed as ^[[5A
286
287	if up == 1 {
288		m = append(m, keyEscape, '[', 'A')
289	} else if up > 1 {
290		m = append(m, keyEscape, '[')
291		m = append(m, []rune(strconv.Itoa(up))...)
292		m = append(m, 'A')
293	}
294
295	if down == 1 {
296		m = append(m, keyEscape, '[', 'B')
297	} else if down > 1 {
298		m = append(m, keyEscape, '[')
299		m = append(m, []rune(strconv.Itoa(down))...)
300		m = append(m, 'B')
301	}
302
303	if right == 1 {
304		m = append(m, keyEscape, '[', 'C')
305	} else if right > 1 {
306		m = append(m, keyEscape, '[')
307		m = append(m, []rune(strconv.Itoa(right))...)
308		m = append(m, 'C')
309	}
310
311	if left == 1 {
312		m = append(m, keyEscape, '[', 'D')
313	} else if left > 1 {
314		m = append(m, keyEscape, '[')
315		m = append(m, []rune(strconv.Itoa(left))...)
316		m = append(m, 'D')
317	}
318
319	t.queue(m)
320}
321
322func (t *Terminal) clearLineToRight() {
323	op := []rune{keyEscape, '[', 'K'}
324	t.queue(op)
325}
326
327const maxLineLength = 4096
328
329func (t *Terminal) setLine(newLine []rune, newPos int) {
330	if t.echo {
331		t.moveCursorToPos(0)
332		t.writeLine(newLine)
333		for i := len(newLine); i < len(t.line); i++ {
334			t.writeLine(space)
335		}
336		t.moveCursorToPos(newPos)
337	}
338	t.line = newLine
339	t.pos = newPos
340}
341
342func (t *Terminal) advanceCursor(places int) {
343	t.cursorX += places
344	t.cursorY += t.cursorX / t.termWidth
345	if t.cursorY > t.maxLine {
346		t.maxLine = t.cursorY
347	}
348	t.cursorX = t.cursorX % t.termWidth
349
350	if places > 0 && t.cursorX == 0 {
351		// Normally terminals will advance the current position
352		// when writing a character. But that doesn't happen
353		// for the last character in a line. However, when
354		// writing a character (except a new line) that causes
355		// a line wrap, the position will be advanced two
356		// places.
357		//
358		// So, if we are stopping at the end of a line, we
359		// need to write a newline so that our cursor can be
360		// advanced to the next line.
361		t.outBuf = append(t.outBuf, '\r', '\n')
362	}
363}
364
365func (t *Terminal) eraseNPreviousChars(n int) {
366	if n == 0 {
367		return
368	}
369
370	if t.pos < n {
371		n = t.pos
372	}
373	t.pos -= n
374	t.moveCursorToPos(t.pos)
375
376	copy(t.line[t.pos:], t.line[n+t.pos:])
377	t.line = t.line[:len(t.line)-n]
378	if t.echo {
379		t.writeLine(t.line[t.pos:])
380		for i := 0; i < n; i++ {
381			t.queue(space)
382		}
383		t.advanceCursor(n)
384		t.moveCursorToPos(t.pos)
385	}
386}
387
388// countToLeftWord returns then number of characters from the cursor to the
389// start of the previous word.
390func (t *Terminal) countToLeftWord() int {
391	if t.pos == 0 {
392		return 0
393	}
394
395	pos := t.pos - 1
396	for pos > 0 {
397		if t.line[pos] != ' ' {
398			break
399		}
400		pos--
401	}
402	for pos > 0 {
403		if t.line[pos] == ' ' {
404			pos++
405			break
406		}
407		pos--
408	}
409
410	return t.pos - pos
411}
412
413// countToRightWord returns then number of characters from the cursor to the
414// start of the next word.
415func (t *Terminal) countToRightWord() int {
416	pos := t.pos
417	for pos < len(t.line) {
418		if t.line[pos] == ' ' {
419			break
420		}
421		pos++
422	}
423	for pos < len(t.line) {
424		if t.line[pos] != ' ' {
425			break
426		}
427		pos++
428	}
429	return pos - t.pos
430}
431
432// visualLength returns the number of visible glyphs in s.
433func visualLength(runes []rune) int {
434	inEscapeSeq := false
435	length := 0
436
437	for _, r := range runes {
438		switch {
439		case inEscapeSeq:
440			if (r >= 'a' && r <= 'z') || (r >= 'A' && r <= 'Z') {
441				inEscapeSeq = false
442			}
443		case r == '\x1b':
444			inEscapeSeq = true
445		default:
446			length++
447		}
448	}
449
450	return length
451}
452
453// handleKey processes the given key and, optionally, returns a line of text
454// that the user has entered.
455func (t *Terminal) handleKey(key rune) (line string, ok bool) {
456	if t.pasteActive && key != keyEnter {
457		t.addKeyToLine(key)
458		return
459	}
460
461	switch key {
462	case keyBackspace:
463		if t.pos == 0 {
464			return
465		}
466		t.eraseNPreviousChars(1)
467	case keyAltLeft:
468		// move left by a word.
469		t.pos -= t.countToLeftWord()
470		t.moveCursorToPos(t.pos)
471	case keyAltRight:
472		// move right by a word.
473		t.pos += t.countToRightWord()
474		t.moveCursorToPos(t.pos)
475	case keyLeft:
476		if t.pos == 0 {
477			return
478		}
479		t.pos--
480		t.moveCursorToPos(t.pos)
481	case keyRight:
482		if t.pos == len(t.line) {
483			return
484		}
485		t.pos++
486		t.moveCursorToPos(t.pos)
487	case keyHome:
488		if t.pos == 0 {
489			return
490		}
491		t.pos = 0
492		t.moveCursorToPos(t.pos)
493	case keyEnd:
494		if t.pos == len(t.line) {
495			return
496		}
497		t.pos = len(t.line)
498		t.moveCursorToPos(t.pos)
499	case keyUp:
500		entry, ok := t.history.NthPreviousEntry(t.historyIndex + 1)
501		if !ok {
502			return "", false
503		}
504		if t.historyIndex == -1 {
505			t.historyPending = string(t.line)
506		}
507		t.historyIndex++
508		runes := []rune(entry)
509		t.setLine(runes, len(runes))
510	case keyDown:
511		switch t.historyIndex {
512		case -1:
513			return
514		case 0:
515			runes := []rune(t.historyPending)
516			t.setLine(runes, len(runes))
517			t.historyIndex--
518		default:
519			entry, ok := t.history.NthPreviousEntry(t.historyIndex - 1)
520			if ok {
521				t.historyIndex--
522				runes := []rune(entry)
523				t.setLine(runes, len(runes))
524			}
525		}
526	case keyEnter:
527		t.moveCursorToPos(len(t.line))
528		t.queue([]rune("\r\n"))
529		line = string(t.line)
530		ok = true
531		t.line = t.line[:0]
532		t.pos = 0
533		t.cursorX = 0
534		t.cursorY = 0
535		t.maxLine = 0
536	case keyDeleteWord:
537		// Delete zero or more spaces and then one or more characters.
538		t.eraseNPreviousChars(t.countToLeftWord())
539	case keyDeleteLine:
540		// Delete everything from the current cursor position to the
541		// end of line.
542		for i := t.pos; i < len(t.line); i++ {
543			t.queue(space)
544			t.advanceCursor(1)
545		}
546		t.line = t.line[:t.pos]
547		t.moveCursorToPos(t.pos)
548	case keyCtrlD:
549		// Erase the character under the current position.
550		// The EOF case when the line is empty is handled in
551		// readLine().
552		if t.pos < len(t.line) {
553			t.pos++
554			t.eraseNPreviousChars(1)
555		}
556	case keyCtrlU:
557		t.eraseNPreviousChars(t.pos)
558	case keyClearScreen:
559		// Erases the screen and moves the cursor to the home position.
560		t.queue([]rune("\x1b[2J\x1b[H"))
561		t.queue(t.prompt)
562		t.cursorX, t.cursorY = 0, 0
563		t.advanceCursor(visualLength(t.prompt))
564		t.setLine(t.line, t.pos)
565	default:
566		if t.AutoCompleteCallback != nil {
567			prefix := string(t.line[:t.pos])
568			suffix := string(t.line[t.pos:])
569
570			t.lock.Unlock()
571			newLine, newPos, completeOk := t.AutoCompleteCallback(prefix+suffix, len(prefix), key)
572			t.lock.Lock()
573
574			if completeOk {
575				t.setLine([]rune(newLine), utf8.RuneCount([]byte(newLine)[:newPos]))
576				return
577			}
578		}
579		if !isPrintable(key) {
580			return
581		}
582		if len(t.line) == maxLineLength {
583			return
584		}
585		t.addKeyToLine(key)
586	}
587	return
588}
589
590// addKeyToLine inserts the given key at the current position in the current
591// line.
592func (t *Terminal) addKeyToLine(key rune) {
593	if len(t.line) == cap(t.line) {
594		newLine := make([]rune, len(t.line), 2*(1+len(t.line)))
595		copy(newLine, t.line)
596		t.line = newLine
597	}
598	t.line = t.line[:len(t.line)+1]
599	copy(t.line[t.pos+1:], t.line[t.pos:])
600	t.line[t.pos] = key
601	if t.echo {
602		t.writeLine(t.line[t.pos:])
603	}
604	t.pos++
605	t.moveCursorToPos(t.pos)
606}
607
608func (t *Terminal) writeLine(line []rune) {
609	for len(line) != 0 {
610		remainingOnLine := t.termWidth - t.cursorX
611		todo := len(line)
612		if todo > remainingOnLine {
613			todo = remainingOnLine
614		}
615		t.queue(line[:todo])
616		t.advanceCursor(visualLength(line[:todo]))
617		line = line[todo:]
618	}
619}
620
621// writeWithCRLF writes buf to w but replaces all occurrences of \n with \r\n.
622func writeWithCRLF(w io.Writer, buf []byte) (n int, err error) {
623	for len(buf) > 0 {
624		i := bytes.IndexByte(buf, '\n')
625		todo := len(buf)
626		if i >= 0 {
627			todo = i
628		}
629
630		var nn int
631		nn, err = w.Write(buf[:todo])
632		n += nn
633		if err != nil {
634			return n, err
635		}
636		buf = buf[todo:]
637
638		if i >= 0 {
639			if _, err = w.Write(crlf); err != nil {
640				return n, err
641			}
642			n++
643			buf = buf[1:]
644		}
645	}
646
647	return n, nil
648}
649
650func (t *Terminal) Write(buf []byte) (n int, err error) {
651	t.lock.Lock()
652	defer t.lock.Unlock()
653
654	if t.cursorX == 0 && t.cursorY == 0 {
655		// This is the easy case: there's nothing on the screen that we
656		// have to move out of the way.
657		return writeWithCRLF(t.c, buf)
658	}
659
660	// We have a prompt and possibly user input on the screen. We
661	// have to clear it first.
662	t.move(0 /* up */, 0 /* down */, t.cursorX /* left */, 0 /* right */)
663	t.cursorX = 0
664	t.clearLineToRight()
665
666	for t.cursorY > 0 {
667		t.move(1 /* up */, 0, 0, 0)
668		t.cursorY--
669		t.clearLineToRight()
670	}
671
672	if _, err = t.c.Write(t.outBuf); err != nil {
673		return
674	}
675	t.outBuf = t.outBuf[:0]
676
677	if n, err = writeWithCRLF(t.c, buf); err != nil {
678		return
679	}
680
681	t.writeLine(t.prompt)
682	if t.echo {
683		t.writeLine(t.line)
684	}
685
686	t.moveCursorToPos(t.pos)
687
688	if _, err = t.c.Write(t.outBuf); err != nil {
689		return
690	}
691	t.outBuf = t.outBuf[:0]
692	return
693}
694
695// ReadPassword temporarily changes the prompt and reads a password, without
696// echo, from the terminal.
697//
698// The AutoCompleteCallback is disabled during this call.
699func (t *Terminal) ReadPassword(prompt string) (line string, err error) {
700	t.lock.Lock()
701	defer t.lock.Unlock()
702
703	oldPrompt := t.prompt
704	t.prompt = []rune(prompt)
705	t.echo = false
706	oldAutoCompleteCallback := t.AutoCompleteCallback
707	t.AutoCompleteCallback = nil
708	defer func() {
709		t.AutoCompleteCallback = oldAutoCompleteCallback
710	}()
711
712	line, err = t.readLine()
713
714	t.prompt = oldPrompt
715	t.echo = true
716
717	return
718}
719
720// ReadLine returns a line of input from the terminal.
721func (t *Terminal) ReadLine() (line string, err error) {
722	t.lock.Lock()
723	defer t.lock.Unlock()
724
725	return t.readLine()
726}
727
728func (t *Terminal) readLine() (line string, err error) {
729	// t.lock must be held at this point
730
731	if t.cursorX == 0 && t.cursorY == 0 {
732		t.writeLine(t.prompt)
733		t.c.Write(t.outBuf)
734		t.outBuf = t.outBuf[:0]
735	}
736
737	lineIsPasted := t.pasteActive
738
739	for {
740		rest := t.remainder
741		lineOk := false
742		for !lineOk {
743			var key rune
744			key, rest = bytesToKey(rest, t.pasteActive)
745			if key == utf8.RuneError {
746				break
747			}
748			if !t.pasteActive {
749				if key == keyCtrlD {
750					if len(t.line) == 0 {
751						return "", io.EOF
752					}
753				}
754				if key == keyCtrlC {
755					return "", io.EOF
756				}
757				if key == keyPasteStart {
758					t.pasteActive = true
759					if len(t.line) == 0 {
760						lineIsPasted = true
761					}
762					continue
763				}
764			} else if key == keyPasteEnd {
765				t.pasteActive = false
766				continue
767			}
768			if !t.pasteActive {
769				lineIsPasted = false
770			}
771			line, lineOk = t.handleKey(key)
772		}
773		if len(rest) > 0 {
774			n := copy(t.inBuf[:], rest)
775			t.remainder = t.inBuf[:n]
776		} else {
777			t.remainder = nil
778		}
779		t.c.Write(t.outBuf)
780		t.outBuf = t.outBuf[:0]
781		if lineOk {
782			if t.echo {
783				t.historyIndex = -1
784				t.history.Add(line)
785			}
786			if lineIsPasted {
787				err = ErrPasteIndicator
788			}
789			return
790		}
791
792		// t.remainder is a slice at the beginning of t.inBuf
793		// containing a partial key sequence
794		readBuf := t.inBuf[len(t.remainder):]
795		var n int
796
797		t.lock.Unlock()
798		n, err = t.c.Read(readBuf)
799		t.lock.Lock()
800
801		if err != nil {
802			return
803		}
804
805		t.remainder = t.inBuf[:n+len(t.remainder)]
806	}
807}
808
809// SetPrompt sets the prompt to be used when reading subsequent lines.
810func (t *Terminal) SetPrompt(prompt string) {
811	t.lock.Lock()
812	defer t.lock.Unlock()
813
814	t.prompt = []rune(prompt)
815}
816
817func (t *Terminal) clearAndRepaintLinePlusNPrevious(numPrevLines int) {
818	// Move cursor to column zero at the start of the line.
819	t.move(t.cursorY, 0, t.cursorX, 0)
820	t.cursorX, t.cursorY = 0, 0
821	t.clearLineToRight()
822	for t.cursorY < numPrevLines {
823		// Move down a line
824		t.move(0, 1, 0, 0)
825		t.cursorY++
826		t.clearLineToRight()
827	}
828	// Move back to beginning.
829	t.move(t.cursorY, 0, 0, 0)
830	t.cursorX, t.cursorY = 0, 0
831
832	t.queue(t.prompt)
833	t.advanceCursor(visualLength(t.prompt))
834	t.writeLine(t.line)
835	t.moveCursorToPos(t.pos)
836}
837
838func (t *Terminal) SetSize(width, height int) error {
839	t.lock.Lock()
840	defer t.lock.Unlock()
841
842	if width == 0 {
843		width = 1
844	}
845
846	oldWidth := t.termWidth
847	t.termWidth, t.termHeight = width, height
848
849	switch {
850	case width == oldWidth:
851		// If the width didn't change then nothing else needs to be
852		// done.
853		return nil
854	case len(t.line) == 0 && t.cursorX == 0 && t.cursorY == 0:
855		// If there is nothing on current line and no prompt printed,
856		// just do nothing
857		return nil
858	case width < oldWidth:
859		// Some terminals (e.g. xterm) will truncate lines that were
860		// too long when shinking. Others, (e.g. gnome-terminal) will
861		// attempt to wrap them. For the former, repainting t.maxLine
862		// works great, but that behaviour goes badly wrong in the case
863		// of the latter because they have doubled every full line.
864
865		// We assume that we are working on a terminal that wraps lines
866		// and adjust the cursor position based on every previous line
867		// wrapping and turning into two. This causes the prompt on
868		// xterms to move upwards, which isn't great, but it avoids a
869		// huge mess with gnome-terminal.
870		if t.cursorX >= t.termWidth {
871			t.cursorX = t.termWidth - 1
872		}
873		t.cursorY *= 2
874		t.clearAndRepaintLinePlusNPrevious(t.maxLine * 2)
875	case width > oldWidth:
876		// If the terminal expands then our position calculations will
877		// be wrong in the future because we think the cursor is
878		// |t.pos| chars into the string, but there will be a gap at
879		// the end of any wrapped line.
880		//
881		// But the position will actually be correct until we move, so
882		// we can move back to the beginning and repaint everything.
883		t.clearAndRepaintLinePlusNPrevious(t.maxLine)
884	}
885
886	_, err := t.c.Write(t.outBuf)
887	t.outBuf = t.outBuf[:0]
888	return err
889}
890
891type pasteIndicatorError struct{}
892
893func (pasteIndicatorError) Error() string {
894	return "terminal: ErrPasteIndicator not correctly handled"
895}
896
897// ErrPasteIndicator may be returned from ReadLine as the error, in addition
898// to valid line data. It indicates that bracketed paste mode is enabled and
899// that the returned line consists only of pasted data. Programs may wish to
900// interpret pasted data more literally than typed data.
901var ErrPasteIndicator = pasteIndicatorError{}
902
903// SetBracketedPasteMode requests that the terminal bracket paste operations
904// with markers. Not all terminals support this but, if it is supported, then
905// enabling this mode will stop any autocomplete callback from running due to
906// pastes. Additionally, any lines that are completely pasted will be returned
907// from ReadLine with the error set to ErrPasteIndicator.
908func (t *Terminal) SetBracketedPasteMode(on bool) {
909	if on {
910		io.WriteString(t.c, "\x1b[?2004h")
911	} else {
912		io.WriteString(t.c, "\x1b[?2004l")
913	}
914}
915
916// stRingBuffer is a ring buffer of strings.
917type stRingBuffer struct {
918	// entries contains max elements.
919	entries []string
920	max     int
921	// head contains the index of the element most recently added to the ring.
922	head int
923	// size contains the number of elements in the ring.
924	size int
925}
926
927func (s *stRingBuffer) Add(a string) {
928	if s.entries == nil {
929		const defaultNumEntries = 100
930		s.entries = make([]string, defaultNumEntries)
931		s.max = defaultNumEntries
932	}
933
934	s.head = (s.head + 1) % s.max
935	s.entries[s.head] = a
936	if s.size < s.max {
937		s.size++
938	}
939}
940
941// NthPreviousEntry returns the value passed to the nth previous call to Add.
942// If n is zero then the immediately prior value is returned, if one, then the
943// next most recent, and so on. If such an element doesn't exist then ok is
944// false.
945func (s *stRingBuffer) NthPreviousEntry(n int) (value string, ok bool) {
946	if n < 0 || n >= s.size {
947		return "", false
948	}
949	index := s.head - n
950	if index < 0 {
951		index += s.max
952	}
953	return s.entries[index], true
954}
955
956// readPasswordLine reads from reader until it finds \n or io.EOF.
957// The slice returned does not include the \n.
958// readPasswordLine also ignores any \r it finds.
959// Windows uses \r as end of line. So, on Windows, readPasswordLine
960// reads until it finds \r and ignores any \n it finds during processing.
961func readPasswordLine(reader io.Reader) ([]byte, error) {
962	var buf [1]byte
963	var ret []byte
964
965	for {
966		n, err := reader.Read(buf[:])
967		if n > 0 {
968			switch buf[0] {
969			case '\b':
970				if len(ret) > 0 {
971					ret = ret[:len(ret)-1]
972				}
973			case '\n':
974				if runtime.GOOS != "windows" {
975					return ret, nil
976				}
977				// otherwise ignore \n
978			case '\r':
979				if runtime.GOOS == "windows" {
980					return ret, nil
981				}
982				// otherwise ignore \r
983			default:
984				ret = append(ret, buf[0])
985			}
986			continue
987		}
988		if err != nil {
989			if err == io.EOF && len(ret) > 0 {
990				return ret, nil
991			}
992			return ret, err
993		}
994	}
995}