entity.go

  1// Package dag contains the base common code to define an entity stored
  2// in a chain of git objects, supporting actions like Push, Pull and Merge.
  3package dag
  4
  5import (
  6	"encoding/json"
  7	"fmt"
  8	"sort"
  9
 10	"github.com/pkg/errors"
 11
 12	"github.com/MichaelMure/git-bug/entity"
 13	"github.com/MichaelMure/git-bug/identity"
 14	"github.com/MichaelMure/git-bug/repository"
 15	"github.com/MichaelMure/git-bug/util/lamport"
 16)
 17
 18const refsPattern = "refs/%s/%s"
 19const creationClockPattern = "%s-create"
 20const editClockPattern = "%s-edit"
 21
 22// Definition hold the details defining one specialization of an Entity.
 23type Definition struct {
 24	// the name of the entity (bug, pull-request, ...)
 25	typename string
 26	// the namespace in git (bugs, prs, ...)
 27	namespace string
 28	// a function decoding a JSON message into an Operation
 29	operationUnmarshaler func(author identity.Interface, raw json.RawMessage) (Operation, error)
 30	// a function loading an identity.Identity from its Id
 31	identityResolver identity.Resolver
 32	// the expected format version number, that can be used for data migration/upgrade
 33	formatVersion uint
 34}
 35
 36// Entity is a data structure stored in a chain of git objects, supporting actions like Push, Pull and Merge.
 37type Entity struct {
 38	// A Lamport clock is a logical clock that allow to order event
 39	// inside a distributed system.
 40	// It must be the first field in this struct due to https://github.com/golang/go/issues/36606
 41	createTime lamport.Time
 42	editTime   lamport.Time
 43
 44	Definition
 45
 46	// operations that are already stored in the repository
 47	ops []Operation
 48	// operations not yet stored in the repository
 49	staging []Operation
 50
 51	lastCommit repository.Hash
 52}
 53
 54// New create an empty Entity
 55func New(definition Definition) *Entity {
 56	return &Entity{
 57		Definition: definition,
 58	}
 59}
 60
 61// Read will read and decode a stored local Entity from a repository
 62func Read(def Definition, repo repository.ClockedRepo, id entity.Id) (*Entity, error) {
 63	if err := id.Validate(); err != nil {
 64		return nil, errors.Wrap(err, "invalid id")
 65	}
 66
 67	ref := fmt.Sprintf("refs/%s/%s", def.namespace, id.String())
 68
 69	return read(def, repo, ref)
 70}
 71
 72// readRemote will read and decode a stored remote Entity from a repository
 73func readRemote(def Definition, repo repository.ClockedRepo, remote string, id entity.Id) (*Entity, error) {
 74	if err := id.Validate(); err != nil {
 75		return nil, errors.Wrap(err, "invalid id")
 76	}
 77
 78	ref := fmt.Sprintf("refs/remotes/%s/%s/%s", def.namespace, remote, id.String())
 79
 80	return read(def, repo, ref)
 81}
 82
 83// read fetch from git and decode an Entity at an arbitrary git reference.
 84func read(def Definition, repo repository.ClockedRepo, ref string) (*Entity, error) {
 85	rootHash, err := repo.ResolveRef(ref)
 86	if err != nil {
 87		return nil, err
 88	}
 89
 90	// Perform a breadth-first search to get a topological order of the DAG where we discover the
 91	// parents commit and go back in time up to the chronological root
 92
 93	queue := make([]repository.Hash, 0, 32)
 94	visited := make(map[repository.Hash]struct{})
 95	BFSOrder := make([]repository.Commit, 0, 32)
 96
 97	queue = append(queue, rootHash)
 98	visited[rootHash] = struct{}{}
 99
100	for len(queue) > 0 {
101		// pop
102		hash := queue[0]
103		queue = queue[1:]
104
105		commit, err := repo.ReadCommit(hash)
106		if err != nil {
107			return nil, err
108		}
109
110		BFSOrder = append(BFSOrder, commit)
111
112		for _, parent := range commit.Parents {
113			if _, ok := visited[parent]; !ok {
114				queue = append(queue, parent)
115				// mark as visited
116				visited[parent] = struct{}{}
117			}
118		}
119	}
120
121	// Now, we can reverse this topological order and read the commits in an order where
122	// we are sure to have read all the chronological ancestors when we read a commit.
123
124	// Next step is to:
125	// 1) read the operationPacks
126	// 2) make sure that the clocks causality respect the DAG topology.
127
128	oppMap := make(map[repository.Hash]*operationPack)
129	var opsCount int
130
131	for i := len(BFSOrder) - 1; i >= 0; i-- {
132		commit := BFSOrder[i]
133		isFirstCommit := i == len(BFSOrder)-1
134		isMerge := len(commit.Parents) > 1
135
136		// Verify DAG structure: single chronological root, so only the root
137		// can have no parents. Said otherwise, the DAG need to have exactly
138		// one leaf.
139		if !isFirstCommit && len(commit.Parents) == 0 {
140			return nil, fmt.Errorf("multiple leafs in the entity DAG")
141		}
142
143		opp, err := readOperationPack(def, repo, commit)
144		if err != nil {
145			return nil, err
146		}
147
148		err = opp.Validate()
149		if err != nil {
150			return nil, err
151		}
152
153		// Check that the create lamport clock is set (not checked in Validate() as it's optional)
154		if isFirstCommit && opp.CreateTime <= 0 {
155			return nil, fmt.Errorf("creation lamport time not set")
156		}
157
158		// make sure that the lamport clocks causality match the DAG topology
159		for _, parentHash := range commit.Parents {
160			parentPack, ok := oppMap[parentHash]
161			if !ok {
162				panic("DFS failed")
163			}
164
165			if parentPack.EditTime >= opp.EditTime {
166				return nil, fmt.Errorf("lamport clock ordering doesn't match the DAG")
167			}
168
169			// to avoid an attack where clocks are pushed toward the uint64 rollover, make sure
170			// that the clocks don't jump too far in the future
171			// we ignore merge commits here to allow merging after a loooong time without breaking anything,
172			// as long as there is one valid chain of small hops, it's fine.
173			if !isMerge && opp.EditTime-parentPack.EditTime > 1_000_000 {
174				return nil, fmt.Errorf("lamport clock jumping too far in the future, likely an attack")
175			}
176		}
177
178		oppMap[commit.Hash] = opp
179		opsCount += len(opp.Operations)
180	}
181
182	// The clocks are fine, we witness them
183	for _, opp := range oppMap {
184		err = repo.Witness(fmt.Sprintf(creationClockPattern, def.namespace), opp.CreateTime)
185		if err != nil {
186			return nil, err
187		}
188		err = repo.Witness(fmt.Sprintf(editClockPattern, def.namespace), opp.EditTime)
189		if err != nil {
190			return nil, err
191		}
192	}
193
194	// Now that we know that the topological order and clocks are fine, we order the operationPacks
195	// based on the logical clocks, entirely ignoring the DAG topology
196
197	oppSlice := make([]*operationPack, 0, len(oppMap))
198	for _, pack := range oppMap {
199		oppSlice = append(oppSlice, pack)
200	}
201	sort.Slice(oppSlice, func(i, j int) bool {
202		// Primary ordering with the EditTime.
203		if oppSlice[i].EditTime != oppSlice[j].EditTime {
204			return oppSlice[i].EditTime < oppSlice[j].EditTime
205		}
206		// We have equal EditTime, which means we have concurrent edition over different machines and we
207		// can't tell which one came first. So, what now? We still need a total ordering and the most stable possible.
208		// As a secondary ordering, we can order based on a hash of the serialized Operations in the
209		// operationPack. It doesn't carry much meaning but it's unbiased and hard to abuse.
210		// This is a lexicographic ordering on the stringified ID.
211		return oppSlice[i].Id() < oppSlice[j].Id()
212	})
213
214	// Now that we ordered the operationPacks, we have the order of the Operations
215
216	ops := make([]Operation, 0, opsCount)
217	var createTime lamport.Time
218	var editTime lamport.Time
219	for _, pack := range oppSlice {
220		for _, operation := range pack.Operations {
221			ops = append(ops, operation)
222		}
223		if pack.CreateTime > createTime {
224			createTime = pack.CreateTime
225		}
226		if pack.EditTime > editTime {
227			editTime = pack.EditTime
228		}
229	}
230
231	return &Entity{
232		Definition: def,
233		ops:        ops,
234		lastCommit: rootHash,
235		createTime: createTime,
236		editTime:   editTime,
237	}, nil
238}
239
240type StreamedEntity struct {
241	Entity *Entity
242	Err    error
243}
244
245// ReadAll read and parse all local Entity
246func ReadAll(def Definition, repo repository.ClockedRepo) <-chan StreamedEntity {
247	out := make(chan StreamedEntity)
248
249	go func() {
250		defer close(out)
251
252		refPrefix := fmt.Sprintf("refs/%s/", def.namespace)
253
254		refs, err := repo.ListRefs(refPrefix)
255		if err != nil {
256			out <- StreamedEntity{Err: err}
257			return
258		}
259
260		for _, ref := range refs {
261			e, err := read(def, repo, ref)
262
263			if err != nil {
264				out <- StreamedEntity{Err: err}
265				return
266			}
267
268			out <- StreamedEntity{Entity: e}
269		}
270	}()
271
272	return out
273}
274
275// Id return the Entity identifier
276func (e *Entity) Id() entity.Id {
277	// id is the id of the first operation
278	return e.FirstOp().Id()
279}
280
281// Validate check if the Entity data is valid
282func (e *Entity) Validate() error {
283	// non-empty
284	if len(e.ops) == 0 && len(e.staging) == 0 {
285		return fmt.Errorf("entity has no operations")
286	}
287
288	// check if each operations are valid
289	for _, op := range e.ops {
290		if err := op.Validate(); err != nil {
291			return err
292		}
293	}
294
295	// check if staging is valid if needed
296	for _, op := range e.staging {
297		if err := op.Validate(); err != nil {
298			return err
299		}
300	}
301
302	// Check that there is no colliding operation's ID
303	ids := make(map[entity.Id]struct{})
304	for _, op := range e.Operations() {
305		if _, ok := ids[op.Id()]; ok {
306			return fmt.Errorf("id collision: %s", op.Id())
307		}
308		ids[op.Id()] = struct{}{}
309	}
310
311	return nil
312}
313
314// Operations return the ordered operations
315func (e *Entity) Operations() []Operation {
316	return append(e.ops, e.staging...)
317}
318
319// FirstOp lookup for the very first operation of the Entity
320func (e *Entity) FirstOp() Operation {
321	for _, op := range e.ops {
322		return op
323	}
324	for _, op := range e.staging {
325		return op
326	}
327	return nil
328}
329
330// LastOp lookup for the very last operation of the Entity
331func (e *Entity) LastOp() Operation {
332	if len(e.staging) > 0 {
333		return e.staging[len(e.staging)-1]
334	}
335	if len(e.ops) > 0 {
336		return e.ops[len(e.ops)-1]
337	}
338	return nil
339}
340
341// Append add a new Operation to the Entity
342func (e *Entity) Append(op Operation) {
343	e.staging = append(e.staging, op)
344}
345
346// NeedCommit indicate if the in-memory state changed and need to be commit in the repository
347func (e *Entity) NeedCommit() bool {
348	return len(e.staging) > 0
349}
350
351// CommitAdNeeded execute a Commit only if necessary. This function is useful to avoid getting an error if the Entity
352// is already in sync with the repository.
353func (e *Entity) CommitAdNeeded(repo repository.ClockedRepo) error {
354	if e.NeedCommit() {
355		return e.Commit(repo)
356	}
357	return nil
358}
359
360// Commit write the appended operations in the repository
361func (e *Entity) Commit(repo repository.ClockedRepo) error {
362	if !e.NeedCommit() {
363		return fmt.Errorf("can't commit an entity with no pending operation")
364	}
365
366	err := e.Validate()
367	if err != nil {
368		return errors.Wrapf(err, "can't commit a %s with invalid data", e.Definition.typename)
369	}
370
371	var author identity.Interface
372	for _, op := range e.staging {
373		if author != nil && op.Author() != author {
374			return fmt.Errorf("operations with different author")
375		}
376		author = op.Author()
377	}
378
379	e.editTime, err = repo.Increment(fmt.Sprintf(editClockPattern, e.namespace))
380	if err != nil {
381		return err
382	}
383
384	opp := &operationPack{
385		Author:     author,
386		Operations: e.staging,
387		EditTime:   e.editTime,
388	}
389
390	if e.lastCommit == "" {
391		e.createTime, err = repo.Increment(fmt.Sprintf(creationClockPattern, e.namespace))
392		if err != nil {
393			return err
394		}
395		opp.CreateTime = e.createTime
396	}
397
398	var commitHash repository.Hash
399	if e.lastCommit == "" {
400		commitHash, err = opp.Write(e.Definition, repo)
401	} else {
402		commitHash, err = opp.Write(e.Definition, repo, e.lastCommit)
403	}
404
405	if err != nil {
406		return err
407	}
408
409	e.lastCommit = commitHash
410	e.ops = append(e.ops, e.staging...)
411	e.staging = nil
412
413	// Create or update the Git reference for this entity
414	// When pushing later, the remote will ensure that this ref update
415	// is fast-forward, that is no data has been overwritten.
416	ref := fmt.Sprintf(refsPattern, e.namespace, e.Id().String())
417	return repo.UpdateRef(ref, commitHash)
418}
419
420// CreateLamportTime return the Lamport time of creation
421func (e *Entity) CreateLamportTime() lamport.Time {
422	return e.createTime
423}
424
425// EditLamportTime return the Lamport time of the last edition
426func (e *Entity) EditLamportTime() lamport.Time {
427	return e.editTime
428}