lib.go

  1// Go support for Protocol Buffers - Google's data interchange format
  2//
  3// Copyright 2010 The Go Authors.  All rights reserved.
  4// https://github.com/golang/protobuf
  5//
  6// Redistribution and use in source and binary forms, with or without
  7// modification, are permitted provided that the following conditions are
  8// met:
  9//
 10//     * Redistributions of source code must retain the above copyright
 11// notice, this list of conditions and the following disclaimer.
 12//     * Redistributions in binary form must reproduce the above
 13// copyright notice, this list of conditions and the following disclaimer
 14// in the documentation and/or other materials provided with the
 15// distribution.
 16//     * Neither the name of Google Inc. nor the names of its
 17// contributors may be used to endorse or promote products derived from
 18// this software without specific prior written permission.
 19//
 20// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 21// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 22// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 23// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 24// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 25// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 26// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 27// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 28// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 29// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 30// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 31
 32/*
 33Package proto converts data structures to and from the wire format of
 34protocol buffers.  It works in concert with the Go source code generated
 35for .proto files by the protocol compiler.
 36
 37A summary of the properties of the protocol buffer interface
 38for a protocol buffer variable v:
 39
 40  - Names are turned from camel_case to CamelCase for export.
 41  - There are no methods on v to set fields; just treat
 42	them as structure fields.
 43  - There are getters that return a field's value if set,
 44	and return the field's default value if unset.
 45	The getters work even if the receiver is a nil message.
 46  - The zero value for a struct is its correct initialization state.
 47	All desired fields must be set before marshaling.
 48  - A Reset() method will restore a protobuf struct to its zero state.
 49  - Non-repeated fields are pointers to the values; nil means unset.
 50	That is, optional or required field int32 f becomes F *int32.
 51  - Repeated fields are slices.
 52  - Helper functions are available to aid the setting of fields.
 53	msg.Foo = proto.String("hello") // set field
 54  - Constants are defined to hold the default values of all fields that
 55	have them.  They have the form Default_StructName_FieldName.
 56	Because the getter methods handle defaulted values,
 57	direct use of these constants should be rare.
 58  - Enums are given type names and maps from names to values.
 59	Enum values are prefixed by the enclosing message's name, or by the
 60	enum's type name if it is a top-level enum. Enum types have a String
 61	method, and a Enum method to assist in message construction.
 62  - Nested messages, groups and enums have type names prefixed with the name of
 63	the surrounding message type.
 64  - Extensions are given descriptor names that start with E_,
 65	followed by an underscore-delimited list of the nested messages
 66	that contain it (if any) followed by the CamelCased name of the
 67	extension field itself.  HasExtension, ClearExtension, GetExtension
 68	and SetExtension are functions for manipulating extensions.
 69  - Oneof field sets are given a single field in their message,
 70	with distinguished wrapper types for each possible field value.
 71  - Marshal and Unmarshal are functions to encode and decode the wire format.
 72
 73When the .proto file specifies `syntax="proto3"`, there are some differences:
 74
 75  - Non-repeated fields of non-message type are values instead of pointers.
 76  - Enum types do not get an Enum method.
 77
 78The simplest way to describe this is to see an example.
 79Given file test.proto, containing
 80
 81	package example;
 82
 83	enum FOO { X = 17; }
 84
 85	message Test {
 86	  required string label = 1;
 87	  optional int32 type = 2 [default=77];
 88	  repeated int64 reps = 3;
 89	  optional group OptionalGroup = 4 {
 90	    required string RequiredField = 5;
 91	  }
 92	  oneof union {
 93	    int32 number = 6;
 94	    string name = 7;
 95	  }
 96	}
 97
 98The resulting file, test.pb.go, is:
 99
100	package example
101
102	import proto "github.com/golang/protobuf/proto"
103	import math "math"
104
105	type FOO int32
106	const (
107		FOO_X FOO = 17
108	)
109	var FOO_name = map[int32]string{
110		17: "X",
111	}
112	var FOO_value = map[string]int32{
113		"X": 17,
114	}
115
116	func (x FOO) Enum() *FOO {
117		p := new(FOO)
118		*p = x
119		return p
120	}
121	func (x FOO) String() string {
122		return proto.EnumName(FOO_name, int32(x))
123	}
124	func (x *FOO) UnmarshalJSON(data []byte) error {
125		value, err := proto.UnmarshalJSONEnum(FOO_value, data)
126		if err != nil {
127			return err
128		}
129		*x = FOO(value)
130		return nil
131	}
132
133	type Test struct {
134		Label         *string             `protobuf:"bytes,1,req,name=label" json:"label,omitempty"`
135		Type          *int32              `protobuf:"varint,2,opt,name=type,def=77" json:"type,omitempty"`
136		Reps          []int64             `protobuf:"varint,3,rep,name=reps" json:"reps,omitempty"`
137		Optionalgroup *Test_OptionalGroup `protobuf:"group,4,opt,name=OptionalGroup" json:"optionalgroup,omitempty"`
138		// Types that are valid to be assigned to Union:
139		//	*Test_Number
140		//	*Test_Name
141		Union            isTest_Union `protobuf_oneof:"union"`
142		XXX_unrecognized []byte       `json:"-"`
143	}
144	func (m *Test) Reset()         { *m = Test{} }
145	func (m *Test) String() string { return proto.CompactTextString(m) }
146	func (*Test) ProtoMessage() {}
147
148	type isTest_Union interface {
149		isTest_Union()
150	}
151
152	type Test_Number struct {
153		Number int32 `protobuf:"varint,6,opt,name=number"`
154	}
155	type Test_Name struct {
156		Name string `protobuf:"bytes,7,opt,name=name"`
157	}
158
159	func (*Test_Number) isTest_Union() {}
160	func (*Test_Name) isTest_Union()   {}
161
162	func (m *Test) GetUnion() isTest_Union {
163		if m != nil {
164			return m.Union
165		}
166		return nil
167	}
168	const Default_Test_Type int32 = 77
169
170	func (m *Test) GetLabel() string {
171		if m != nil && m.Label != nil {
172			return *m.Label
173		}
174		return ""
175	}
176
177	func (m *Test) GetType() int32 {
178		if m != nil && m.Type != nil {
179			return *m.Type
180		}
181		return Default_Test_Type
182	}
183
184	func (m *Test) GetOptionalgroup() *Test_OptionalGroup {
185		if m != nil {
186			return m.Optionalgroup
187		}
188		return nil
189	}
190
191	type Test_OptionalGroup struct {
192		RequiredField *string `protobuf:"bytes,5,req" json:"RequiredField,omitempty"`
193	}
194	func (m *Test_OptionalGroup) Reset()         { *m = Test_OptionalGroup{} }
195	func (m *Test_OptionalGroup) String() string { return proto.CompactTextString(m) }
196
197	func (m *Test_OptionalGroup) GetRequiredField() string {
198		if m != nil && m.RequiredField != nil {
199			return *m.RequiredField
200		}
201		return ""
202	}
203
204	func (m *Test) GetNumber() int32 {
205		if x, ok := m.GetUnion().(*Test_Number); ok {
206			return x.Number
207		}
208		return 0
209	}
210
211	func (m *Test) GetName() string {
212		if x, ok := m.GetUnion().(*Test_Name); ok {
213			return x.Name
214		}
215		return ""
216	}
217
218	func init() {
219		proto.RegisterEnum("example.FOO", FOO_name, FOO_value)
220	}
221
222To create and play with a Test object:
223
224	package main
225
226	import (
227		"log"
228
229		"github.com/golang/protobuf/proto"
230		pb "./example.pb"
231	)
232
233	func main() {
234		test := &pb.Test{
235			Label: proto.String("hello"),
236			Type:  proto.Int32(17),
237			Reps:  []int64{1, 2, 3},
238			Optionalgroup: &pb.Test_OptionalGroup{
239				RequiredField: proto.String("good bye"),
240			},
241			Union: &pb.Test_Name{"fred"},
242		}
243		data, err := proto.Marshal(test)
244		if err != nil {
245			log.Fatal("marshaling error: ", err)
246		}
247		newTest := &pb.Test{}
248		err = proto.Unmarshal(data, newTest)
249		if err != nil {
250			log.Fatal("unmarshaling error: ", err)
251		}
252		// Now test and newTest contain the same data.
253		if test.GetLabel() != newTest.GetLabel() {
254			log.Fatalf("data mismatch %q != %q", test.GetLabel(), newTest.GetLabel())
255		}
256		// Use a type switch to determine which oneof was set.
257		switch u := test.Union.(type) {
258		case *pb.Test_Number: // u.Number contains the number.
259		case *pb.Test_Name: // u.Name contains the string.
260		}
261		// etc.
262	}
263*/
264package proto
265
266import (
267	"encoding/json"
268	"fmt"
269	"log"
270	"reflect"
271	"sort"
272	"strconv"
273	"sync"
274)
275
276// RequiredNotSetError is an error type returned by either Marshal or Unmarshal.
277// Marshal reports this when a required field is not initialized.
278// Unmarshal reports this when a required field is missing from the wire data.
279type RequiredNotSetError struct{ field string }
280
281func (e *RequiredNotSetError) Error() string {
282	if e.field == "" {
283		return fmt.Sprintf("proto: required field not set")
284	}
285	return fmt.Sprintf("proto: required field %q not set", e.field)
286}
287func (e *RequiredNotSetError) RequiredNotSet() bool {
288	return true
289}
290
291type invalidUTF8Error struct{ field string }
292
293func (e *invalidUTF8Error) Error() string {
294	if e.field == "" {
295		return "proto: invalid UTF-8 detected"
296	}
297	return fmt.Sprintf("proto: field %q contains invalid UTF-8", e.field)
298}
299func (e *invalidUTF8Error) InvalidUTF8() bool {
300	return true
301}
302
303// errInvalidUTF8 is a sentinel error to identify fields with invalid UTF-8.
304// This error should not be exposed to the external API as such errors should
305// be recreated with the field information.
306var errInvalidUTF8 = &invalidUTF8Error{}
307
308// isNonFatal reports whether the error is either a RequiredNotSet error
309// or a InvalidUTF8 error.
310func isNonFatal(err error) bool {
311	if re, ok := err.(interface{ RequiredNotSet() bool }); ok && re.RequiredNotSet() {
312		return true
313	}
314	if re, ok := err.(interface{ InvalidUTF8() bool }); ok && re.InvalidUTF8() {
315		return true
316	}
317	return false
318}
319
320type nonFatal struct{ E error }
321
322// Merge merges err into nf and reports whether it was successful.
323// Otherwise it returns false for any fatal non-nil errors.
324func (nf *nonFatal) Merge(err error) (ok bool) {
325	if err == nil {
326		return true // not an error
327	}
328	if !isNonFatal(err) {
329		return false // fatal error
330	}
331	if nf.E == nil {
332		nf.E = err // store first instance of non-fatal error
333	}
334	return true
335}
336
337// Message is implemented by generated protocol buffer messages.
338type Message interface {
339	Reset()
340	String() string
341	ProtoMessage()
342}
343
344// Stats records allocation details about the protocol buffer encoders
345// and decoders.  Useful for tuning the library itself.
346type Stats struct {
347	Emalloc uint64 // mallocs in encode
348	Dmalloc uint64 // mallocs in decode
349	Encode  uint64 // number of encodes
350	Decode  uint64 // number of decodes
351	Chit    uint64 // number of cache hits
352	Cmiss   uint64 // number of cache misses
353	Size    uint64 // number of sizes
354}
355
356// Set to true to enable stats collection.
357const collectStats = false
358
359var stats Stats
360
361// GetStats returns a copy of the global Stats structure.
362func GetStats() Stats { return stats }
363
364// A Buffer is a buffer manager for marshaling and unmarshaling
365// protocol buffers.  It may be reused between invocations to
366// reduce memory usage.  It is not necessary to use a Buffer;
367// the global functions Marshal and Unmarshal create a
368// temporary Buffer and are fine for most applications.
369type Buffer struct {
370	buf   []byte // encode/decode byte stream
371	index int    // read point
372
373	deterministic bool
374}
375
376// NewBuffer allocates a new Buffer and initializes its internal data to
377// the contents of the argument slice.
378func NewBuffer(e []byte) *Buffer {
379	return &Buffer{buf: e}
380}
381
382// Reset resets the Buffer, ready for marshaling a new protocol buffer.
383func (p *Buffer) Reset() {
384	p.buf = p.buf[0:0] // for reading/writing
385	p.index = 0        // for reading
386}
387
388// SetBuf replaces the internal buffer with the slice,
389// ready for unmarshaling the contents of the slice.
390func (p *Buffer) SetBuf(s []byte) {
391	p.buf = s
392	p.index = 0
393}
394
395// Bytes returns the contents of the Buffer.
396func (p *Buffer) Bytes() []byte { return p.buf }
397
398// SetDeterministic sets whether to use deterministic serialization.
399//
400// Deterministic serialization guarantees that for a given binary, equal
401// messages will always be serialized to the same bytes. This implies:
402//
403//   - Repeated serialization of a message will return the same bytes.
404//   - Different processes of the same binary (which may be executing on
405//     different machines) will serialize equal messages to the same bytes.
406//
407// Note that the deterministic serialization is NOT canonical across
408// languages. It is not guaranteed to remain stable over time. It is unstable
409// across different builds with schema changes due to unknown fields.
410// Users who need canonical serialization (e.g., persistent storage in a
411// canonical form, fingerprinting, etc.) should define their own
412// canonicalization specification and implement their own serializer rather
413// than relying on this API.
414//
415// If deterministic serialization is requested, map entries will be sorted
416// by keys in lexographical order. This is an implementation detail and
417// subject to change.
418func (p *Buffer) SetDeterministic(deterministic bool) {
419	p.deterministic = deterministic
420}
421
422/*
423 * Helper routines for simplifying the creation of optional fields of basic type.
424 */
425
426// Bool is a helper routine that allocates a new bool value
427// to store v and returns a pointer to it.
428func Bool(v bool) *bool {
429	return &v
430}
431
432// Int32 is a helper routine that allocates a new int32 value
433// to store v and returns a pointer to it.
434func Int32(v int32) *int32 {
435	return &v
436}
437
438// Int is a helper routine that allocates a new int32 value
439// to store v and returns a pointer to it, but unlike Int32
440// its argument value is an int.
441func Int(v int) *int32 {
442	p := new(int32)
443	*p = int32(v)
444	return p
445}
446
447// Int64 is a helper routine that allocates a new int64 value
448// to store v and returns a pointer to it.
449func Int64(v int64) *int64 {
450	return &v
451}
452
453// Float32 is a helper routine that allocates a new float32 value
454// to store v and returns a pointer to it.
455func Float32(v float32) *float32 {
456	return &v
457}
458
459// Float64 is a helper routine that allocates a new float64 value
460// to store v and returns a pointer to it.
461func Float64(v float64) *float64 {
462	return &v
463}
464
465// Uint32 is a helper routine that allocates a new uint32 value
466// to store v and returns a pointer to it.
467func Uint32(v uint32) *uint32 {
468	return &v
469}
470
471// Uint64 is a helper routine that allocates a new uint64 value
472// to store v and returns a pointer to it.
473func Uint64(v uint64) *uint64 {
474	return &v
475}
476
477// String is a helper routine that allocates a new string value
478// to store v and returns a pointer to it.
479func String(v string) *string {
480	return &v
481}
482
483// EnumName is a helper function to simplify printing protocol buffer enums
484// by name.  Given an enum map and a value, it returns a useful string.
485func EnumName(m map[int32]string, v int32) string {
486	s, ok := m[v]
487	if ok {
488		return s
489	}
490	return strconv.Itoa(int(v))
491}
492
493// UnmarshalJSONEnum is a helper function to simplify recovering enum int values
494// from their JSON-encoded representation. Given a map from the enum's symbolic
495// names to its int values, and a byte buffer containing the JSON-encoded
496// value, it returns an int32 that can be cast to the enum type by the caller.
497//
498// The function can deal with both JSON representations, numeric and symbolic.
499func UnmarshalJSONEnum(m map[string]int32, data []byte, enumName string) (int32, error) {
500	if data[0] == '"' {
501		// New style: enums are strings.
502		var repr string
503		if err := json.Unmarshal(data, &repr); err != nil {
504			return -1, err
505		}
506		val, ok := m[repr]
507		if !ok {
508			return 0, fmt.Errorf("unrecognized enum %s value %q", enumName, repr)
509		}
510		return val, nil
511	}
512	// Old style: enums are ints.
513	var val int32
514	if err := json.Unmarshal(data, &val); err != nil {
515		return 0, fmt.Errorf("cannot unmarshal %#q into enum %s", data, enumName)
516	}
517	return val, nil
518}
519
520// DebugPrint dumps the encoded data in b in a debugging format with a header
521// including the string s. Used in testing but made available for general debugging.
522func (p *Buffer) DebugPrint(s string, b []byte) {
523	var u uint64
524
525	obuf := p.buf
526	index := p.index
527	p.buf = b
528	p.index = 0
529	depth := 0
530
531	fmt.Printf("\n--- %s ---\n", s)
532
533out:
534	for {
535		for i := 0; i < depth; i++ {
536			fmt.Print("  ")
537		}
538
539		index := p.index
540		if index == len(p.buf) {
541			break
542		}
543
544		op, err := p.DecodeVarint()
545		if err != nil {
546			fmt.Printf("%3d: fetching op err %v\n", index, err)
547			break out
548		}
549		tag := op >> 3
550		wire := op & 7
551
552		switch wire {
553		default:
554			fmt.Printf("%3d: t=%3d unknown wire=%d\n",
555				index, tag, wire)
556			break out
557
558		case WireBytes:
559			var r []byte
560
561			r, err = p.DecodeRawBytes(false)
562			if err != nil {
563				break out
564			}
565			fmt.Printf("%3d: t=%3d bytes [%d]", index, tag, len(r))
566			if len(r) <= 6 {
567				for i := 0; i < len(r); i++ {
568					fmt.Printf(" %.2x", r[i])
569				}
570			} else {
571				for i := 0; i < 3; i++ {
572					fmt.Printf(" %.2x", r[i])
573				}
574				fmt.Printf(" ..")
575				for i := len(r) - 3; i < len(r); i++ {
576					fmt.Printf(" %.2x", r[i])
577				}
578			}
579			fmt.Printf("\n")
580
581		case WireFixed32:
582			u, err = p.DecodeFixed32()
583			if err != nil {
584				fmt.Printf("%3d: t=%3d fix32 err %v\n", index, tag, err)
585				break out
586			}
587			fmt.Printf("%3d: t=%3d fix32 %d\n", index, tag, u)
588
589		case WireFixed64:
590			u, err = p.DecodeFixed64()
591			if err != nil {
592				fmt.Printf("%3d: t=%3d fix64 err %v\n", index, tag, err)
593				break out
594			}
595			fmt.Printf("%3d: t=%3d fix64 %d\n", index, tag, u)
596
597		case WireVarint:
598			u, err = p.DecodeVarint()
599			if err != nil {
600				fmt.Printf("%3d: t=%3d varint err %v\n", index, tag, err)
601				break out
602			}
603			fmt.Printf("%3d: t=%3d varint %d\n", index, tag, u)
604
605		case WireStartGroup:
606			fmt.Printf("%3d: t=%3d start\n", index, tag)
607			depth++
608
609		case WireEndGroup:
610			depth--
611			fmt.Printf("%3d: t=%3d end\n", index, tag)
612		}
613	}
614
615	if depth != 0 {
616		fmt.Printf("%3d: start-end not balanced %d\n", p.index, depth)
617	}
618	fmt.Printf("\n")
619
620	p.buf = obuf
621	p.index = index
622}
623
624// SetDefaults sets unset protocol buffer fields to their default values.
625// It only modifies fields that are both unset and have defined defaults.
626// It recursively sets default values in any non-nil sub-messages.
627func SetDefaults(pb Message) {
628	setDefaults(reflect.ValueOf(pb), true, false)
629}
630
631// v is a pointer to a struct.
632func setDefaults(v reflect.Value, recur, zeros bool) {
633	v = v.Elem()
634
635	defaultMu.RLock()
636	dm, ok := defaults[v.Type()]
637	defaultMu.RUnlock()
638	if !ok {
639		dm = buildDefaultMessage(v.Type())
640		defaultMu.Lock()
641		defaults[v.Type()] = dm
642		defaultMu.Unlock()
643	}
644
645	for _, sf := range dm.scalars {
646		f := v.Field(sf.index)
647		if !f.IsNil() {
648			// field already set
649			continue
650		}
651		dv := sf.value
652		if dv == nil && !zeros {
653			// no explicit default, and don't want to set zeros
654			continue
655		}
656		fptr := f.Addr().Interface() // **T
657		// TODO: Consider batching the allocations we do here.
658		switch sf.kind {
659		case reflect.Bool:
660			b := new(bool)
661			if dv != nil {
662				*b = dv.(bool)
663			}
664			*(fptr.(**bool)) = b
665		case reflect.Float32:
666			f := new(float32)
667			if dv != nil {
668				*f = dv.(float32)
669			}
670			*(fptr.(**float32)) = f
671		case reflect.Float64:
672			f := new(float64)
673			if dv != nil {
674				*f = dv.(float64)
675			}
676			*(fptr.(**float64)) = f
677		case reflect.Int32:
678			// might be an enum
679			if ft := f.Type(); ft != int32PtrType {
680				// enum
681				f.Set(reflect.New(ft.Elem()))
682				if dv != nil {
683					f.Elem().SetInt(int64(dv.(int32)))
684				}
685			} else {
686				// int32 field
687				i := new(int32)
688				if dv != nil {
689					*i = dv.(int32)
690				}
691				*(fptr.(**int32)) = i
692			}
693		case reflect.Int64:
694			i := new(int64)
695			if dv != nil {
696				*i = dv.(int64)
697			}
698			*(fptr.(**int64)) = i
699		case reflect.String:
700			s := new(string)
701			if dv != nil {
702				*s = dv.(string)
703			}
704			*(fptr.(**string)) = s
705		case reflect.Uint8:
706			// exceptional case: []byte
707			var b []byte
708			if dv != nil {
709				db := dv.([]byte)
710				b = make([]byte, len(db))
711				copy(b, db)
712			} else {
713				b = []byte{}
714			}
715			*(fptr.(*[]byte)) = b
716		case reflect.Uint32:
717			u := new(uint32)
718			if dv != nil {
719				*u = dv.(uint32)
720			}
721			*(fptr.(**uint32)) = u
722		case reflect.Uint64:
723			u := new(uint64)
724			if dv != nil {
725				*u = dv.(uint64)
726			}
727			*(fptr.(**uint64)) = u
728		default:
729			log.Printf("proto: can't set default for field %v (sf.kind=%v)", f, sf.kind)
730		}
731	}
732
733	for _, ni := range dm.nested {
734		f := v.Field(ni)
735		// f is *T or []*T or map[T]*T
736		switch f.Kind() {
737		case reflect.Ptr:
738			if f.IsNil() {
739				continue
740			}
741			setDefaults(f, recur, zeros)
742
743		case reflect.Slice:
744			for i := 0; i < f.Len(); i++ {
745				e := f.Index(i)
746				if e.IsNil() {
747					continue
748				}
749				setDefaults(e, recur, zeros)
750			}
751
752		case reflect.Map:
753			for _, k := range f.MapKeys() {
754				e := f.MapIndex(k)
755				if e.IsNil() {
756					continue
757				}
758				setDefaults(e, recur, zeros)
759			}
760		}
761	}
762}
763
764var (
765	// defaults maps a protocol buffer struct type to a slice of the fields,
766	// with its scalar fields set to their proto-declared non-zero default values.
767	defaultMu sync.RWMutex
768	defaults  = make(map[reflect.Type]defaultMessage)
769
770	int32PtrType = reflect.TypeOf((*int32)(nil))
771)
772
773// defaultMessage represents information about the default values of a message.
774type defaultMessage struct {
775	scalars []scalarField
776	nested  []int // struct field index of nested messages
777}
778
779type scalarField struct {
780	index int          // struct field index
781	kind  reflect.Kind // element type (the T in *T or []T)
782	value interface{}  // the proto-declared default value, or nil
783}
784
785// t is a struct type.
786func buildDefaultMessage(t reflect.Type) (dm defaultMessage) {
787	sprop := GetProperties(t)
788	for _, prop := range sprop.Prop {
789		fi, ok := sprop.decoderTags.get(prop.Tag)
790		if !ok {
791			// XXX_unrecognized
792			continue
793		}
794		ft := t.Field(fi).Type
795
796		sf, nested, err := fieldDefault(ft, prop)
797		switch {
798		case err != nil:
799			log.Print(err)
800		case nested:
801			dm.nested = append(dm.nested, fi)
802		case sf != nil:
803			sf.index = fi
804			dm.scalars = append(dm.scalars, *sf)
805		}
806	}
807
808	return dm
809}
810
811// fieldDefault returns the scalarField for field type ft.
812// sf will be nil if the field can not have a default.
813// nestedMessage will be true if this is a nested message.
814// Note that sf.index is not set on return.
815func fieldDefault(ft reflect.Type, prop *Properties) (sf *scalarField, nestedMessage bool, err error) {
816	var canHaveDefault bool
817	switch ft.Kind() {
818	case reflect.Ptr:
819		if ft.Elem().Kind() == reflect.Struct {
820			nestedMessage = true
821		} else {
822			canHaveDefault = true // proto2 scalar field
823		}
824
825	case reflect.Slice:
826		switch ft.Elem().Kind() {
827		case reflect.Ptr:
828			nestedMessage = true // repeated message
829		case reflect.Uint8:
830			canHaveDefault = true // bytes field
831		}
832
833	case reflect.Map:
834		if ft.Elem().Kind() == reflect.Ptr {
835			nestedMessage = true // map with message values
836		}
837	}
838
839	if !canHaveDefault {
840		if nestedMessage {
841			return nil, true, nil
842		}
843		return nil, false, nil
844	}
845
846	// We now know that ft is a pointer or slice.
847	sf = &scalarField{kind: ft.Elem().Kind()}
848
849	// scalar fields without defaults
850	if !prop.HasDefault {
851		return sf, false, nil
852	}
853
854	// a scalar field: either *T or []byte
855	switch ft.Elem().Kind() {
856	case reflect.Bool:
857		x, err := strconv.ParseBool(prop.Default)
858		if err != nil {
859			return nil, false, fmt.Errorf("proto: bad default bool %q: %v", prop.Default, err)
860		}
861		sf.value = x
862	case reflect.Float32:
863		x, err := strconv.ParseFloat(prop.Default, 32)
864		if err != nil {
865			return nil, false, fmt.Errorf("proto: bad default float32 %q: %v", prop.Default, err)
866		}
867		sf.value = float32(x)
868	case reflect.Float64:
869		x, err := strconv.ParseFloat(prop.Default, 64)
870		if err != nil {
871			return nil, false, fmt.Errorf("proto: bad default float64 %q: %v", prop.Default, err)
872		}
873		sf.value = x
874	case reflect.Int32:
875		x, err := strconv.ParseInt(prop.Default, 10, 32)
876		if err != nil {
877			return nil, false, fmt.Errorf("proto: bad default int32 %q: %v", prop.Default, err)
878		}
879		sf.value = int32(x)
880	case reflect.Int64:
881		x, err := strconv.ParseInt(prop.Default, 10, 64)
882		if err != nil {
883			return nil, false, fmt.Errorf("proto: bad default int64 %q: %v", prop.Default, err)
884		}
885		sf.value = x
886	case reflect.String:
887		sf.value = prop.Default
888	case reflect.Uint8:
889		// []byte (not *uint8)
890		sf.value = []byte(prop.Default)
891	case reflect.Uint32:
892		x, err := strconv.ParseUint(prop.Default, 10, 32)
893		if err != nil {
894			return nil, false, fmt.Errorf("proto: bad default uint32 %q: %v", prop.Default, err)
895		}
896		sf.value = uint32(x)
897	case reflect.Uint64:
898		x, err := strconv.ParseUint(prop.Default, 10, 64)
899		if err != nil {
900			return nil, false, fmt.Errorf("proto: bad default uint64 %q: %v", prop.Default, err)
901		}
902		sf.value = x
903	default:
904		return nil, false, fmt.Errorf("proto: unhandled def kind %v", ft.Elem().Kind())
905	}
906
907	return sf, false, nil
908}
909
910// mapKeys returns a sort.Interface to be used for sorting the map keys.
911// Map fields may have key types of non-float scalars, strings and enums.
912func mapKeys(vs []reflect.Value) sort.Interface {
913	s := mapKeySorter{vs: vs}
914
915	// Type specialization per https://developers.google.com/protocol-buffers/docs/proto#maps.
916	if len(vs) == 0 {
917		return s
918	}
919	switch vs[0].Kind() {
920	case reflect.Int32, reflect.Int64:
921		s.less = func(a, b reflect.Value) bool { return a.Int() < b.Int() }
922	case reflect.Uint32, reflect.Uint64:
923		s.less = func(a, b reflect.Value) bool { return a.Uint() < b.Uint() }
924	case reflect.Bool:
925		s.less = func(a, b reflect.Value) bool { return !a.Bool() && b.Bool() } // false < true
926	case reflect.String:
927		s.less = func(a, b reflect.Value) bool { return a.String() < b.String() }
928	default:
929		panic(fmt.Sprintf("unsupported map key type: %v", vs[0].Kind()))
930	}
931
932	return s
933}
934
935type mapKeySorter struct {
936	vs   []reflect.Value
937	less func(a, b reflect.Value) bool
938}
939
940func (s mapKeySorter) Len() int      { return len(s.vs) }
941func (s mapKeySorter) Swap(i, j int) { s.vs[i], s.vs[j] = s.vs[j], s.vs[i] }
942func (s mapKeySorter) Less(i, j int) bool {
943	return s.less(s.vs[i], s.vs[j])
944}
945
946// isProto3Zero reports whether v is a zero proto3 value.
947func isProto3Zero(v reflect.Value) bool {
948	switch v.Kind() {
949	case reflect.Bool:
950		return !v.Bool()
951	case reflect.Int32, reflect.Int64:
952		return v.Int() == 0
953	case reflect.Uint32, reflect.Uint64:
954		return v.Uint() == 0
955	case reflect.Float32, reflect.Float64:
956		return v.Float() == 0
957	case reflect.String:
958		return v.String() == ""
959	}
960	return false
961}
962
963// ProtoPackageIsVersion2 is referenced from generated protocol buffer files
964// to assert that that code is compatible with this version of the proto package.
965const ProtoPackageIsVersion2 = true
966
967// ProtoPackageIsVersion1 is referenced from generated protocol buffer files
968// to assert that that code is compatible with this version of the proto package.
969const ProtoPackageIsVersion1 = true
970
971// InternalMessageInfo is a type used internally by generated .pb.go files.
972// This type is not intended to be used by non-generated code.
973// This type is not subject to any compatibility guarantee.
974type InternalMessageInfo struct {
975	marshal   *marshalInfo
976	unmarshal *unmarshalInfo
977	merge     *mergeInfo
978	discard   *discardInfo
979}