syscall_linux.go

   1// Copyright 2009 The Go Authors. All rights reserved.
   2// Use of this source code is governed by a BSD-style
   3// license that can be found in the LICENSE file.
   4
   5// Linux system calls.
   6// This file is compiled as ordinary Go code,
   7// but it is also input to mksyscall,
   8// which parses the //sys lines and generates system call stubs.
   9// Note that sometimes we use a lowercase //sys name and
  10// wrap it in our own nicer implementation.
  11
  12package unix
  13
  14import (
  15	"syscall"
  16	"unsafe"
  17)
  18
  19/*
  20 * Wrapped
  21 */
  22
  23func Access(path string, mode uint32) (err error) {
  24	return Faccessat(AT_FDCWD, path, mode, 0)
  25}
  26
  27func Chmod(path string, mode uint32) (err error) {
  28	return Fchmodat(AT_FDCWD, path, mode, 0)
  29}
  30
  31func Chown(path string, uid int, gid int) (err error) {
  32	return Fchownat(AT_FDCWD, path, uid, gid, 0)
  33}
  34
  35func Creat(path string, mode uint32) (fd int, err error) {
  36	return Open(path, O_CREAT|O_WRONLY|O_TRUNC, mode)
  37}
  38
  39//sys	fchmodat(dirfd int, path string, mode uint32) (err error)
  40
  41func Fchmodat(dirfd int, path string, mode uint32, flags int) (err error) {
  42	// Linux fchmodat doesn't support the flags parameter. Mimick glibc's behavior
  43	// and check the flags. Otherwise the mode would be applied to the symlink
  44	// destination which is not what the user expects.
  45	if flags&^AT_SYMLINK_NOFOLLOW != 0 {
  46		return EINVAL
  47	} else if flags&AT_SYMLINK_NOFOLLOW != 0 {
  48		return EOPNOTSUPP
  49	}
  50	return fchmodat(dirfd, path, mode)
  51}
  52
  53//sys	ioctl(fd int, req uint, arg uintptr) (err error)
  54
  55// ioctl itself should not be exposed directly, but additional get/set
  56// functions for specific types are permissible.
  57
  58// IoctlSetInt performs an ioctl operation which sets an integer value
  59// on fd, using the specified request number.
  60func IoctlSetInt(fd int, req uint, value int) error {
  61	return ioctl(fd, req, uintptr(value))
  62}
  63
  64func IoctlSetWinsize(fd int, req uint, value *Winsize) error {
  65	return ioctl(fd, req, uintptr(unsafe.Pointer(value)))
  66}
  67
  68func IoctlSetTermios(fd int, req uint, value *Termios) error {
  69	return ioctl(fd, req, uintptr(unsafe.Pointer(value)))
  70}
  71
  72// IoctlGetInt performs an ioctl operation which gets an integer value
  73// from fd, using the specified request number.
  74func IoctlGetInt(fd int, req uint) (int, error) {
  75	var value int
  76	err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
  77	return value, err
  78}
  79
  80func IoctlGetWinsize(fd int, req uint) (*Winsize, error) {
  81	var value Winsize
  82	err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
  83	return &value, err
  84}
  85
  86func IoctlGetTermios(fd int, req uint) (*Termios, error) {
  87	var value Termios
  88	err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
  89	return &value, err
  90}
  91
  92//sys	Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error)
  93
  94func Link(oldpath string, newpath string) (err error) {
  95	return Linkat(AT_FDCWD, oldpath, AT_FDCWD, newpath, 0)
  96}
  97
  98func Mkdir(path string, mode uint32) (err error) {
  99	return Mkdirat(AT_FDCWD, path, mode)
 100}
 101
 102func Mknod(path string, mode uint32, dev int) (err error) {
 103	return Mknodat(AT_FDCWD, path, mode, dev)
 104}
 105
 106func Open(path string, mode int, perm uint32) (fd int, err error) {
 107	return openat(AT_FDCWD, path, mode|O_LARGEFILE, perm)
 108}
 109
 110//sys	openat(dirfd int, path string, flags int, mode uint32) (fd int, err error)
 111
 112func Openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) {
 113	return openat(dirfd, path, flags|O_LARGEFILE, mode)
 114}
 115
 116//sys	ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error)
 117
 118func Ppoll(fds []PollFd, timeout *Timespec, sigmask *Sigset_t) (n int, err error) {
 119	if len(fds) == 0 {
 120		return ppoll(nil, 0, timeout, sigmask)
 121	}
 122	return ppoll(&fds[0], len(fds), timeout, sigmask)
 123}
 124
 125//sys	Readlinkat(dirfd int, path string, buf []byte) (n int, err error)
 126
 127func Readlink(path string, buf []byte) (n int, err error) {
 128	return Readlinkat(AT_FDCWD, path, buf)
 129}
 130
 131func Rename(oldpath string, newpath string) (err error) {
 132	return Renameat(AT_FDCWD, oldpath, AT_FDCWD, newpath)
 133}
 134
 135func Rmdir(path string) error {
 136	return Unlinkat(AT_FDCWD, path, AT_REMOVEDIR)
 137}
 138
 139//sys	Symlinkat(oldpath string, newdirfd int, newpath string) (err error)
 140
 141func Symlink(oldpath string, newpath string) (err error) {
 142	return Symlinkat(oldpath, AT_FDCWD, newpath)
 143}
 144
 145func Unlink(path string) error {
 146	return Unlinkat(AT_FDCWD, path, 0)
 147}
 148
 149//sys	Unlinkat(dirfd int, path string, flags int) (err error)
 150
 151func Utimes(path string, tv []Timeval) error {
 152	if tv == nil {
 153		err := utimensat(AT_FDCWD, path, nil, 0)
 154		if err != ENOSYS {
 155			return err
 156		}
 157		return utimes(path, nil)
 158	}
 159	if len(tv) != 2 {
 160		return EINVAL
 161	}
 162	var ts [2]Timespec
 163	ts[0] = NsecToTimespec(TimevalToNsec(tv[0]))
 164	ts[1] = NsecToTimespec(TimevalToNsec(tv[1]))
 165	err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
 166	if err != ENOSYS {
 167		return err
 168	}
 169	return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
 170}
 171
 172//sys	utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error)
 173
 174func UtimesNano(path string, ts []Timespec) error {
 175	if ts == nil {
 176		err := utimensat(AT_FDCWD, path, nil, 0)
 177		if err != ENOSYS {
 178			return err
 179		}
 180		return utimes(path, nil)
 181	}
 182	if len(ts) != 2 {
 183		return EINVAL
 184	}
 185	err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
 186	if err != ENOSYS {
 187		return err
 188	}
 189	// If the utimensat syscall isn't available (utimensat was added to Linux
 190	// in 2.6.22, Released, 8 July 2007) then fall back to utimes
 191	var tv [2]Timeval
 192	for i := 0; i < 2; i++ {
 193		tv[i] = NsecToTimeval(TimespecToNsec(ts[i]))
 194	}
 195	return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
 196}
 197
 198func UtimesNanoAt(dirfd int, path string, ts []Timespec, flags int) error {
 199	if ts == nil {
 200		return utimensat(dirfd, path, nil, flags)
 201	}
 202	if len(ts) != 2 {
 203		return EINVAL
 204	}
 205	return utimensat(dirfd, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), flags)
 206}
 207
 208func Futimesat(dirfd int, path string, tv []Timeval) error {
 209	if tv == nil {
 210		return futimesat(dirfd, path, nil)
 211	}
 212	if len(tv) != 2 {
 213		return EINVAL
 214	}
 215	return futimesat(dirfd, path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
 216}
 217
 218func Futimes(fd int, tv []Timeval) (err error) {
 219	// Believe it or not, this is the best we can do on Linux
 220	// (and is what glibc does).
 221	return Utimes("/proc/self/fd/"+itoa(fd), tv)
 222}
 223
 224const ImplementsGetwd = true
 225
 226//sys	Getcwd(buf []byte) (n int, err error)
 227
 228func Getwd() (wd string, err error) {
 229	var buf [PathMax]byte
 230	n, err := Getcwd(buf[0:])
 231	if err != nil {
 232		return "", err
 233	}
 234	// Getcwd returns the number of bytes written to buf, including the NUL.
 235	if n < 1 || n > len(buf) || buf[n-1] != 0 {
 236		return "", EINVAL
 237	}
 238	return string(buf[0 : n-1]), nil
 239}
 240
 241func Getgroups() (gids []int, err error) {
 242	n, err := getgroups(0, nil)
 243	if err != nil {
 244		return nil, err
 245	}
 246	if n == 0 {
 247		return nil, nil
 248	}
 249
 250	// Sanity check group count. Max is 1<<16 on Linux.
 251	if n < 0 || n > 1<<20 {
 252		return nil, EINVAL
 253	}
 254
 255	a := make([]_Gid_t, n)
 256	n, err = getgroups(n, &a[0])
 257	if err != nil {
 258		return nil, err
 259	}
 260	gids = make([]int, n)
 261	for i, v := range a[0:n] {
 262		gids[i] = int(v)
 263	}
 264	return
 265}
 266
 267func Setgroups(gids []int) (err error) {
 268	if len(gids) == 0 {
 269		return setgroups(0, nil)
 270	}
 271
 272	a := make([]_Gid_t, len(gids))
 273	for i, v := range gids {
 274		a[i] = _Gid_t(v)
 275	}
 276	return setgroups(len(a), &a[0])
 277}
 278
 279type WaitStatus uint32
 280
 281// Wait status is 7 bits at bottom, either 0 (exited),
 282// 0x7F (stopped), or a signal number that caused an exit.
 283// The 0x80 bit is whether there was a core dump.
 284// An extra number (exit code, signal causing a stop)
 285// is in the high bits. At least that's the idea.
 286// There are various irregularities. For example, the
 287// "continued" status is 0xFFFF, distinguishing itself
 288// from stopped via the core dump bit.
 289
 290const (
 291	mask    = 0x7F
 292	core    = 0x80
 293	exited  = 0x00
 294	stopped = 0x7F
 295	shift   = 8
 296)
 297
 298func (w WaitStatus) Exited() bool { return w&mask == exited }
 299
 300func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited }
 301
 302func (w WaitStatus) Stopped() bool { return w&0xFF == stopped }
 303
 304func (w WaitStatus) Continued() bool { return w == 0xFFFF }
 305
 306func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0 }
 307
 308func (w WaitStatus) ExitStatus() int {
 309	if !w.Exited() {
 310		return -1
 311	}
 312	return int(w>>shift) & 0xFF
 313}
 314
 315func (w WaitStatus) Signal() syscall.Signal {
 316	if !w.Signaled() {
 317		return -1
 318	}
 319	return syscall.Signal(w & mask)
 320}
 321
 322func (w WaitStatus) StopSignal() syscall.Signal {
 323	if !w.Stopped() {
 324		return -1
 325	}
 326	return syscall.Signal(w>>shift) & 0xFF
 327}
 328
 329func (w WaitStatus) TrapCause() int {
 330	if w.StopSignal() != SIGTRAP {
 331		return -1
 332	}
 333	return int(w>>shift) >> 8
 334}
 335
 336//sys	wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error)
 337
 338func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, err error) {
 339	var status _C_int
 340	wpid, err = wait4(pid, &status, options, rusage)
 341	if wstatus != nil {
 342		*wstatus = WaitStatus(status)
 343	}
 344	return
 345}
 346
 347func Mkfifo(path string, mode uint32) error {
 348	return Mknod(path, mode|S_IFIFO, 0)
 349}
 350
 351func Mkfifoat(dirfd int, path string, mode uint32) error {
 352	return Mknodat(dirfd, path, mode|S_IFIFO, 0)
 353}
 354
 355func (sa *SockaddrInet4) sockaddr() (unsafe.Pointer, _Socklen, error) {
 356	if sa.Port < 0 || sa.Port > 0xFFFF {
 357		return nil, 0, EINVAL
 358	}
 359	sa.raw.Family = AF_INET
 360	p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
 361	p[0] = byte(sa.Port >> 8)
 362	p[1] = byte(sa.Port)
 363	for i := 0; i < len(sa.Addr); i++ {
 364		sa.raw.Addr[i] = sa.Addr[i]
 365	}
 366	return unsafe.Pointer(&sa.raw), SizeofSockaddrInet4, nil
 367}
 368
 369func (sa *SockaddrInet6) sockaddr() (unsafe.Pointer, _Socklen, error) {
 370	if sa.Port < 0 || sa.Port > 0xFFFF {
 371		return nil, 0, EINVAL
 372	}
 373	sa.raw.Family = AF_INET6
 374	p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
 375	p[0] = byte(sa.Port >> 8)
 376	p[1] = byte(sa.Port)
 377	sa.raw.Scope_id = sa.ZoneId
 378	for i := 0; i < len(sa.Addr); i++ {
 379		sa.raw.Addr[i] = sa.Addr[i]
 380	}
 381	return unsafe.Pointer(&sa.raw), SizeofSockaddrInet6, nil
 382}
 383
 384func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) {
 385	name := sa.Name
 386	n := len(name)
 387	if n >= len(sa.raw.Path) {
 388		return nil, 0, EINVAL
 389	}
 390	sa.raw.Family = AF_UNIX
 391	for i := 0; i < n; i++ {
 392		sa.raw.Path[i] = int8(name[i])
 393	}
 394	// length is family (uint16), name, NUL.
 395	sl := _Socklen(2)
 396	if n > 0 {
 397		sl += _Socklen(n) + 1
 398	}
 399	if sa.raw.Path[0] == '@' {
 400		sa.raw.Path[0] = 0
 401		// Don't count trailing NUL for abstract address.
 402		sl--
 403	}
 404
 405	return unsafe.Pointer(&sa.raw), sl, nil
 406}
 407
 408// SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets.
 409type SockaddrLinklayer struct {
 410	Protocol uint16
 411	Ifindex  int
 412	Hatype   uint16
 413	Pkttype  uint8
 414	Halen    uint8
 415	Addr     [8]byte
 416	raw      RawSockaddrLinklayer
 417}
 418
 419func (sa *SockaddrLinklayer) sockaddr() (unsafe.Pointer, _Socklen, error) {
 420	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
 421		return nil, 0, EINVAL
 422	}
 423	sa.raw.Family = AF_PACKET
 424	sa.raw.Protocol = sa.Protocol
 425	sa.raw.Ifindex = int32(sa.Ifindex)
 426	sa.raw.Hatype = sa.Hatype
 427	sa.raw.Pkttype = sa.Pkttype
 428	sa.raw.Halen = sa.Halen
 429	for i := 0; i < len(sa.Addr); i++ {
 430		sa.raw.Addr[i] = sa.Addr[i]
 431	}
 432	return unsafe.Pointer(&sa.raw), SizeofSockaddrLinklayer, nil
 433}
 434
 435// SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets.
 436type SockaddrNetlink struct {
 437	Family uint16
 438	Pad    uint16
 439	Pid    uint32
 440	Groups uint32
 441	raw    RawSockaddrNetlink
 442}
 443
 444func (sa *SockaddrNetlink) sockaddr() (unsafe.Pointer, _Socklen, error) {
 445	sa.raw.Family = AF_NETLINK
 446	sa.raw.Pad = sa.Pad
 447	sa.raw.Pid = sa.Pid
 448	sa.raw.Groups = sa.Groups
 449	return unsafe.Pointer(&sa.raw), SizeofSockaddrNetlink, nil
 450}
 451
 452// SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets
 453// using the HCI protocol.
 454type SockaddrHCI struct {
 455	Dev     uint16
 456	Channel uint16
 457	raw     RawSockaddrHCI
 458}
 459
 460func (sa *SockaddrHCI) sockaddr() (unsafe.Pointer, _Socklen, error) {
 461	sa.raw.Family = AF_BLUETOOTH
 462	sa.raw.Dev = sa.Dev
 463	sa.raw.Channel = sa.Channel
 464	return unsafe.Pointer(&sa.raw), SizeofSockaddrHCI, nil
 465}
 466
 467// SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets
 468// using the L2CAP protocol.
 469type SockaddrL2 struct {
 470	PSM      uint16
 471	CID      uint16
 472	Addr     [6]uint8
 473	AddrType uint8
 474	raw      RawSockaddrL2
 475}
 476
 477func (sa *SockaddrL2) sockaddr() (unsafe.Pointer, _Socklen, error) {
 478	sa.raw.Family = AF_BLUETOOTH
 479	psm := (*[2]byte)(unsafe.Pointer(&sa.raw.Psm))
 480	psm[0] = byte(sa.PSM)
 481	psm[1] = byte(sa.PSM >> 8)
 482	for i := 0; i < len(sa.Addr); i++ {
 483		sa.raw.Bdaddr[i] = sa.Addr[len(sa.Addr)-1-i]
 484	}
 485	cid := (*[2]byte)(unsafe.Pointer(&sa.raw.Cid))
 486	cid[0] = byte(sa.CID)
 487	cid[1] = byte(sa.CID >> 8)
 488	sa.raw.Bdaddr_type = sa.AddrType
 489	return unsafe.Pointer(&sa.raw), SizeofSockaddrL2, nil
 490}
 491
 492// SockaddrRFCOMM implements the Sockaddr interface for AF_BLUETOOTH type sockets
 493// using the RFCOMM protocol.
 494//
 495// Server example:
 496//
 497//      fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
 498//      _ = unix.Bind(fd, &unix.SockaddrRFCOMM{
 499//      	Channel: 1,
 500//      	Addr:    [6]uint8{0, 0, 0, 0, 0, 0}, // BDADDR_ANY or 00:00:00:00:00:00
 501//      })
 502//      _ = Listen(fd, 1)
 503//      nfd, sa, _ := Accept(fd)
 504//      fmt.Printf("conn addr=%v fd=%d", sa.(*unix.SockaddrRFCOMM).Addr, nfd)
 505//      Read(nfd, buf)
 506//
 507// Client example:
 508//
 509//      fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
 510//      _ = Connect(fd, &SockaddrRFCOMM{
 511//      	Channel: 1,
 512//      	Addr:    [6]byte{0x11, 0x22, 0x33, 0xaa, 0xbb, 0xcc}, // CC:BB:AA:33:22:11
 513//      })
 514//      Write(fd, []byte(`hello`))
 515type SockaddrRFCOMM struct {
 516	// Addr represents a bluetooth address, byte ordering is little-endian.
 517	Addr [6]uint8
 518
 519	// Channel is a designated bluetooth channel, only 1-30 are available for use.
 520	// Since Linux 2.6.7 and further zero value is the first available channel.
 521	Channel uint8
 522
 523	raw RawSockaddrRFCOMM
 524}
 525
 526func (sa *SockaddrRFCOMM) sockaddr() (unsafe.Pointer, _Socklen, error) {
 527	sa.raw.Family = AF_BLUETOOTH
 528	sa.raw.Channel = sa.Channel
 529	sa.raw.Bdaddr = sa.Addr
 530	return unsafe.Pointer(&sa.raw), SizeofSockaddrRFCOMM, nil
 531}
 532
 533// SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets.
 534// The RxID and TxID fields are used for transport protocol addressing in
 535// (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with
 536// zero values for CAN_RAW and CAN_BCM sockets as they have no meaning.
 537//
 538// The SockaddrCAN struct must be bound to the socket file descriptor
 539// using Bind before the CAN socket can be used.
 540//
 541//      // Read one raw CAN frame
 542//      fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW)
 543//      addr := &SockaddrCAN{Ifindex: index}
 544//      Bind(fd, addr)
 545//      frame := make([]byte, 16)
 546//      Read(fd, frame)
 547//
 548// The full SocketCAN documentation can be found in the linux kernel
 549// archives at: https://www.kernel.org/doc/Documentation/networking/can.txt
 550type SockaddrCAN struct {
 551	Ifindex int
 552	RxID    uint32
 553	TxID    uint32
 554	raw     RawSockaddrCAN
 555}
 556
 557func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) {
 558	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
 559		return nil, 0, EINVAL
 560	}
 561	sa.raw.Family = AF_CAN
 562	sa.raw.Ifindex = int32(sa.Ifindex)
 563	rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
 564	for i := 0; i < 4; i++ {
 565		sa.raw.Addr[i] = rx[i]
 566	}
 567	tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
 568	for i := 0; i < 4; i++ {
 569		sa.raw.Addr[i+4] = tx[i]
 570	}
 571	return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
 572}
 573
 574// SockaddrALG implements the Sockaddr interface for AF_ALG type sockets.
 575// SockaddrALG enables userspace access to the Linux kernel's cryptography
 576// subsystem. The Type and Name fields specify which type of hash or cipher
 577// should be used with a given socket.
 578//
 579// To create a file descriptor that provides access to a hash or cipher, both
 580// Bind and Accept must be used. Once the setup process is complete, input
 581// data can be written to the socket, processed by the kernel, and then read
 582// back as hash output or ciphertext.
 583//
 584// Here is an example of using an AF_ALG socket with SHA1 hashing.
 585// The initial socket setup process is as follows:
 586//
 587//      // Open a socket to perform SHA1 hashing.
 588//      fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0)
 589//      addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"}
 590//      unix.Bind(fd, addr)
 591//      // Note: unix.Accept does not work at this time; must invoke accept()
 592//      // manually using unix.Syscall.
 593//      hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0)
 594//
 595// Once a file descriptor has been returned from Accept, it may be used to
 596// perform SHA1 hashing. The descriptor is not safe for concurrent use, but
 597// may be re-used repeatedly with subsequent Write and Read operations.
 598//
 599// When hashing a small byte slice or string, a single Write and Read may
 600// be used:
 601//
 602//      // Assume hashfd is already configured using the setup process.
 603//      hash := os.NewFile(hashfd, "sha1")
 604//      // Hash an input string and read the results. Each Write discards
 605//      // previous hash state. Read always reads the current state.
 606//      b := make([]byte, 20)
 607//      for i := 0; i < 2; i++ {
 608//          io.WriteString(hash, "Hello, world.")
 609//          hash.Read(b)
 610//          fmt.Println(hex.EncodeToString(b))
 611//      }
 612//      // Output:
 613//      // 2ae01472317d1935a84797ec1983ae243fc6aa28
 614//      // 2ae01472317d1935a84797ec1983ae243fc6aa28
 615//
 616// For hashing larger byte slices, or byte streams such as those read from
 617// a file or socket, use Sendto with MSG_MORE to instruct the kernel to update
 618// the hash digest instead of creating a new one for a given chunk and finalizing it.
 619//
 620//      // Assume hashfd and addr are already configured using the setup process.
 621//      hash := os.NewFile(hashfd, "sha1")
 622//      // Hash the contents of a file.
 623//      f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz")
 624//      b := make([]byte, 4096)
 625//      for {
 626//          n, err := f.Read(b)
 627//          if err == io.EOF {
 628//              break
 629//          }
 630//          unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr)
 631//      }
 632//      hash.Read(b)
 633//      fmt.Println(hex.EncodeToString(b))
 634//      // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5
 635//
 636// For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html.
 637type SockaddrALG struct {
 638	Type    string
 639	Name    string
 640	Feature uint32
 641	Mask    uint32
 642	raw     RawSockaddrALG
 643}
 644
 645func (sa *SockaddrALG) sockaddr() (unsafe.Pointer, _Socklen, error) {
 646	// Leave room for NUL byte terminator.
 647	if len(sa.Type) > 13 {
 648		return nil, 0, EINVAL
 649	}
 650	if len(sa.Name) > 63 {
 651		return nil, 0, EINVAL
 652	}
 653
 654	sa.raw.Family = AF_ALG
 655	sa.raw.Feat = sa.Feature
 656	sa.raw.Mask = sa.Mask
 657
 658	typ, err := ByteSliceFromString(sa.Type)
 659	if err != nil {
 660		return nil, 0, err
 661	}
 662	name, err := ByteSliceFromString(sa.Name)
 663	if err != nil {
 664		return nil, 0, err
 665	}
 666
 667	copy(sa.raw.Type[:], typ)
 668	copy(sa.raw.Name[:], name)
 669
 670	return unsafe.Pointer(&sa.raw), SizeofSockaddrALG, nil
 671}
 672
 673// SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets.
 674// SockaddrVM provides access to Linux VM sockets: a mechanism that enables
 675// bidirectional communication between a hypervisor and its guest virtual
 676// machines.
 677type SockaddrVM struct {
 678	// CID and Port specify a context ID and port address for a VM socket.
 679	// Guests have a unique CID, and hosts may have a well-known CID of:
 680	//  - VMADDR_CID_HYPERVISOR: refers to the hypervisor process.
 681	//  - VMADDR_CID_HOST: refers to other processes on the host.
 682	CID  uint32
 683	Port uint32
 684	raw  RawSockaddrVM
 685}
 686
 687func (sa *SockaddrVM) sockaddr() (unsafe.Pointer, _Socklen, error) {
 688	sa.raw.Family = AF_VSOCK
 689	sa.raw.Port = sa.Port
 690	sa.raw.Cid = sa.CID
 691
 692	return unsafe.Pointer(&sa.raw), SizeofSockaddrVM, nil
 693}
 694
 695func anyToSockaddr(fd int, rsa *RawSockaddrAny) (Sockaddr, error) {
 696	switch rsa.Addr.Family {
 697	case AF_NETLINK:
 698		pp := (*RawSockaddrNetlink)(unsafe.Pointer(rsa))
 699		sa := new(SockaddrNetlink)
 700		sa.Family = pp.Family
 701		sa.Pad = pp.Pad
 702		sa.Pid = pp.Pid
 703		sa.Groups = pp.Groups
 704		return sa, nil
 705
 706	case AF_PACKET:
 707		pp := (*RawSockaddrLinklayer)(unsafe.Pointer(rsa))
 708		sa := new(SockaddrLinklayer)
 709		sa.Protocol = pp.Protocol
 710		sa.Ifindex = int(pp.Ifindex)
 711		sa.Hatype = pp.Hatype
 712		sa.Pkttype = pp.Pkttype
 713		sa.Halen = pp.Halen
 714		for i := 0; i < len(sa.Addr); i++ {
 715			sa.Addr[i] = pp.Addr[i]
 716		}
 717		return sa, nil
 718
 719	case AF_UNIX:
 720		pp := (*RawSockaddrUnix)(unsafe.Pointer(rsa))
 721		sa := new(SockaddrUnix)
 722		if pp.Path[0] == 0 {
 723			// "Abstract" Unix domain socket.
 724			// Rewrite leading NUL as @ for textual display.
 725			// (This is the standard convention.)
 726			// Not friendly to overwrite in place,
 727			// but the callers below don't care.
 728			pp.Path[0] = '@'
 729		}
 730
 731		// Assume path ends at NUL.
 732		// This is not technically the Linux semantics for
 733		// abstract Unix domain sockets--they are supposed
 734		// to be uninterpreted fixed-size binary blobs--but
 735		// everyone uses this convention.
 736		n := 0
 737		for n < len(pp.Path) && pp.Path[n] != 0 {
 738			n++
 739		}
 740		bytes := (*[10000]byte)(unsafe.Pointer(&pp.Path[0]))[0:n]
 741		sa.Name = string(bytes)
 742		return sa, nil
 743
 744	case AF_INET:
 745		pp := (*RawSockaddrInet4)(unsafe.Pointer(rsa))
 746		sa := new(SockaddrInet4)
 747		p := (*[2]byte)(unsafe.Pointer(&pp.Port))
 748		sa.Port = int(p[0])<<8 + int(p[1])
 749		for i := 0; i < len(sa.Addr); i++ {
 750			sa.Addr[i] = pp.Addr[i]
 751		}
 752		return sa, nil
 753
 754	case AF_INET6:
 755		pp := (*RawSockaddrInet6)(unsafe.Pointer(rsa))
 756		sa := new(SockaddrInet6)
 757		p := (*[2]byte)(unsafe.Pointer(&pp.Port))
 758		sa.Port = int(p[0])<<8 + int(p[1])
 759		sa.ZoneId = pp.Scope_id
 760		for i := 0; i < len(sa.Addr); i++ {
 761			sa.Addr[i] = pp.Addr[i]
 762		}
 763		return sa, nil
 764
 765	case AF_VSOCK:
 766		pp := (*RawSockaddrVM)(unsafe.Pointer(rsa))
 767		sa := &SockaddrVM{
 768			CID:  pp.Cid,
 769			Port: pp.Port,
 770		}
 771		return sa, nil
 772	case AF_BLUETOOTH:
 773		proto, err := GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL)
 774		if err != nil {
 775			return nil, err
 776		}
 777		// only BTPROTO_L2CAP and BTPROTO_RFCOMM can accept connections
 778		switch proto {
 779		case BTPROTO_L2CAP:
 780			pp := (*RawSockaddrL2)(unsafe.Pointer(rsa))
 781			sa := &SockaddrL2{
 782				PSM:      pp.Psm,
 783				CID:      pp.Cid,
 784				Addr:     pp.Bdaddr,
 785				AddrType: pp.Bdaddr_type,
 786			}
 787			return sa, nil
 788		case BTPROTO_RFCOMM:
 789			pp := (*RawSockaddrRFCOMM)(unsafe.Pointer(rsa))
 790			sa := &SockaddrRFCOMM{
 791				Channel: pp.Channel,
 792				Addr:    pp.Bdaddr,
 793			}
 794			return sa, nil
 795		}
 796	}
 797	return nil, EAFNOSUPPORT
 798}
 799
 800func Accept(fd int) (nfd int, sa Sockaddr, err error) {
 801	var rsa RawSockaddrAny
 802	var len _Socklen = SizeofSockaddrAny
 803	nfd, err = accept(fd, &rsa, &len)
 804	if err != nil {
 805		return
 806	}
 807	sa, err = anyToSockaddr(fd, &rsa)
 808	if err != nil {
 809		Close(nfd)
 810		nfd = 0
 811	}
 812	return
 813}
 814
 815func Accept4(fd int, flags int) (nfd int, sa Sockaddr, err error) {
 816	var rsa RawSockaddrAny
 817	var len _Socklen = SizeofSockaddrAny
 818	nfd, err = accept4(fd, &rsa, &len, flags)
 819	if err != nil {
 820		return
 821	}
 822	if len > SizeofSockaddrAny {
 823		panic("RawSockaddrAny too small")
 824	}
 825	sa, err = anyToSockaddr(fd, &rsa)
 826	if err != nil {
 827		Close(nfd)
 828		nfd = 0
 829	}
 830	return
 831}
 832
 833func Getsockname(fd int) (sa Sockaddr, err error) {
 834	var rsa RawSockaddrAny
 835	var len _Socklen = SizeofSockaddrAny
 836	if err = getsockname(fd, &rsa, &len); err != nil {
 837		return
 838	}
 839	return anyToSockaddr(fd, &rsa)
 840}
 841
 842func GetsockoptIPMreqn(fd, level, opt int) (*IPMreqn, error) {
 843	var value IPMreqn
 844	vallen := _Socklen(SizeofIPMreqn)
 845	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
 846	return &value, err
 847}
 848
 849func GetsockoptUcred(fd, level, opt int) (*Ucred, error) {
 850	var value Ucred
 851	vallen := _Socklen(SizeofUcred)
 852	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
 853	return &value, err
 854}
 855
 856func GetsockoptTCPInfo(fd, level, opt int) (*TCPInfo, error) {
 857	var value TCPInfo
 858	vallen := _Socklen(SizeofTCPInfo)
 859	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
 860	return &value, err
 861}
 862
 863// GetsockoptString returns the string value of the socket option opt for the
 864// socket associated with fd at the given socket level.
 865func GetsockoptString(fd, level, opt int) (string, error) {
 866	buf := make([]byte, 256)
 867	vallen := _Socklen(len(buf))
 868	err := getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
 869	if err != nil {
 870		if err == ERANGE {
 871			buf = make([]byte, vallen)
 872			err = getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
 873		}
 874		if err != nil {
 875			return "", err
 876		}
 877	}
 878	return string(buf[:vallen-1]), nil
 879}
 880
 881func SetsockoptIPMreqn(fd, level, opt int, mreq *IPMreqn) (err error) {
 882	return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
 883}
 884
 885// Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html)
 886
 887// KeyctlInt calls keyctl commands in which each argument is an int.
 888// These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK,
 889// KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT,
 890// KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT,
 891// KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT.
 892//sys	KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL
 893
 894// KeyctlBuffer calls keyctl commands in which the third and fourth
 895// arguments are a buffer and its length, respectively.
 896// These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE.
 897//sys	KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL
 898
 899// KeyctlString calls keyctl commands which return a string.
 900// These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY.
 901func KeyctlString(cmd int, id int) (string, error) {
 902	// We must loop as the string data may change in between the syscalls.
 903	// We could allocate a large buffer here to reduce the chance that the
 904	// syscall needs to be called twice; however, this is unnecessary as
 905	// the performance loss is negligible.
 906	var buffer []byte
 907	for {
 908		// Try to fill the buffer with data
 909		length, err := KeyctlBuffer(cmd, id, buffer, 0)
 910		if err != nil {
 911			return "", err
 912		}
 913
 914		// Check if the data was written
 915		if length <= len(buffer) {
 916			// Exclude the null terminator
 917			return string(buffer[:length-1]), nil
 918		}
 919
 920		// Make a bigger buffer if needed
 921		buffer = make([]byte, length)
 922	}
 923}
 924
 925// Keyctl commands with special signatures.
 926
 927// KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command.
 928// See the full documentation at:
 929// http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html
 930func KeyctlGetKeyringID(id int, create bool) (ringid int, err error) {
 931	createInt := 0
 932	if create {
 933		createInt = 1
 934	}
 935	return KeyctlInt(KEYCTL_GET_KEYRING_ID, id, createInt, 0, 0)
 936}
 937
 938// KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the
 939// key handle permission mask as described in the "keyctl setperm" section of
 940// http://man7.org/linux/man-pages/man1/keyctl.1.html.
 941// See the full documentation at:
 942// http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html
 943func KeyctlSetperm(id int, perm uint32) error {
 944	_, err := KeyctlInt(KEYCTL_SETPERM, id, int(perm), 0, 0)
 945	return err
 946}
 947
 948//sys	keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL
 949
 950// KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command.
 951// See the full documentation at:
 952// http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html
 953func KeyctlJoinSessionKeyring(name string) (ringid int, err error) {
 954	return keyctlJoin(KEYCTL_JOIN_SESSION_KEYRING, name)
 955}
 956
 957//sys	keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL
 958
 959// KeyctlSearch implements the KEYCTL_SEARCH command.
 960// See the full documentation at:
 961// http://man7.org/linux/man-pages/man3/keyctl_search.3.html
 962func KeyctlSearch(ringid int, keyType, description string, destRingid int) (id int, err error) {
 963	return keyctlSearch(KEYCTL_SEARCH, ringid, keyType, description, destRingid)
 964}
 965
 966//sys	keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL
 967
 968// KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This
 969// command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice
 970// of Iovec (each of which represents a buffer) instead of a single buffer.
 971// See the full documentation at:
 972// http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html
 973func KeyctlInstantiateIOV(id int, payload []Iovec, ringid int) error {
 974	return keyctlIOV(KEYCTL_INSTANTIATE_IOV, id, payload, ringid)
 975}
 976
 977//sys	keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL
 978
 979// KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command
 980// computes a Diffie-Hellman shared secret based on the provide params. The
 981// secret is written to the provided buffer and the returned size is the number
 982// of bytes written (returning an error if there is insufficient space in the
 983// buffer). If a nil buffer is passed in, this function returns the minimum
 984// buffer length needed to store the appropriate data. Note that this differs
 985// from KEYCTL_READ's behavior which always returns the requested payload size.
 986// See the full documentation at:
 987// http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html
 988func KeyctlDHCompute(params *KeyctlDHParams, buffer []byte) (size int, err error) {
 989	return keyctlDH(KEYCTL_DH_COMPUTE, params, buffer)
 990}
 991
 992func Recvmsg(fd int, p, oob []byte, flags int) (n, oobn int, recvflags int, from Sockaddr, err error) {
 993	var msg Msghdr
 994	var rsa RawSockaddrAny
 995	msg.Name = (*byte)(unsafe.Pointer(&rsa))
 996	msg.Namelen = uint32(SizeofSockaddrAny)
 997	var iov Iovec
 998	if len(p) > 0 {
 999		iov.Base = &p[0]
1000		iov.SetLen(len(p))
1001	}
1002	var dummy byte
1003	if len(oob) > 0 {
1004		if len(p) == 0 {
1005			var sockType int
1006			sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
1007			if err != nil {
1008				return
1009			}
1010			// receive at least one normal byte
1011			if sockType != SOCK_DGRAM {
1012				iov.Base = &dummy
1013				iov.SetLen(1)
1014			}
1015		}
1016		msg.Control = &oob[0]
1017		msg.SetControllen(len(oob))
1018	}
1019	msg.Iov = &iov
1020	msg.Iovlen = 1
1021	if n, err = recvmsg(fd, &msg, flags); err != nil {
1022		return
1023	}
1024	oobn = int(msg.Controllen)
1025	recvflags = int(msg.Flags)
1026	// source address is only specified if the socket is unconnected
1027	if rsa.Addr.Family != AF_UNSPEC {
1028		from, err = anyToSockaddr(fd, &rsa)
1029	}
1030	return
1031}
1032
1033func Sendmsg(fd int, p, oob []byte, to Sockaddr, flags int) (err error) {
1034	_, err = SendmsgN(fd, p, oob, to, flags)
1035	return
1036}
1037
1038func SendmsgN(fd int, p, oob []byte, to Sockaddr, flags int) (n int, err error) {
1039	var ptr unsafe.Pointer
1040	var salen _Socklen
1041	if to != nil {
1042		var err error
1043		ptr, salen, err = to.sockaddr()
1044		if err != nil {
1045			return 0, err
1046		}
1047	}
1048	var msg Msghdr
1049	msg.Name = (*byte)(ptr)
1050	msg.Namelen = uint32(salen)
1051	var iov Iovec
1052	if len(p) > 0 {
1053		iov.Base = &p[0]
1054		iov.SetLen(len(p))
1055	}
1056	var dummy byte
1057	if len(oob) > 0 {
1058		if len(p) == 0 {
1059			var sockType int
1060			sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
1061			if err != nil {
1062				return 0, err
1063			}
1064			// send at least one normal byte
1065			if sockType != SOCK_DGRAM {
1066				iov.Base = &dummy
1067				iov.SetLen(1)
1068			}
1069		}
1070		msg.Control = &oob[0]
1071		msg.SetControllen(len(oob))
1072	}
1073	msg.Iov = &iov
1074	msg.Iovlen = 1
1075	if n, err = sendmsg(fd, &msg, flags); err != nil {
1076		return 0, err
1077	}
1078	if len(oob) > 0 && len(p) == 0 {
1079		n = 0
1080	}
1081	return n, nil
1082}
1083
1084// BindToDevice binds the socket associated with fd to device.
1085func BindToDevice(fd int, device string) (err error) {
1086	return SetsockoptString(fd, SOL_SOCKET, SO_BINDTODEVICE, device)
1087}
1088
1089//sys	ptrace(request int, pid int, addr uintptr, data uintptr) (err error)
1090
1091func ptracePeek(req int, pid int, addr uintptr, out []byte) (count int, err error) {
1092	// The peek requests are machine-size oriented, so we wrap it
1093	// to retrieve arbitrary-length data.
1094
1095	// The ptrace syscall differs from glibc's ptrace.
1096	// Peeks returns the word in *data, not as the return value.
1097
1098	var buf [sizeofPtr]byte
1099
1100	// Leading edge. PEEKTEXT/PEEKDATA don't require aligned
1101	// access (PEEKUSER warns that it might), but if we don't
1102	// align our reads, we might straddle an unmapped page
1103	// boundary and not get the bytes leading up to the page
1104	// boundary.
1105	n := 0
1106	if addr%sizeofPtr != 0 {
1107		err = ptrace(req, pid, addr-addr%sizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1108		if err != nil {
1109			return 0, err
1110		}
1111		n += copy(out, buf[addr%sizeofPtr:])
1112		out = out[n:]
1113	}
1114
1115	// Remainder.
1116	for len(out) > 0 {
1117		// We use an internal buffer to guarantee alignment.
1118		// It's not documented if this is necessary, but we're paranoid.
1119		err = ptrace(req, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1120		if err != nil {
1121			return n, err
1122		}
1123		copied := copy(out, buf[0:])
1124		n += copied
1125		out = out[copied:]
1126	}
1127
1128	return n, nil
1129}
1130
1131func PtracePeekText(pid int, addr uintptr, out []byte) (count int, err error) {
1132	return ptracePeek(PTRACE_PEEKTEXT, pid, addr, out)
1133}
1134
1135func PtracePeekData(pid int, addr uintptr, out []byte) (count int, err error) {
1136	return ptracePeek(PTRACE_PEEKDATA, pid, addr, out)
1137}
1138
1139func PtracePeekUser(pid int, addr uintptr, out []byte) (count int, err error) {
1140	return ptracePeek(PTRACE_PEEKUSR, pid, addr, out)
1141}
1142
1143func ptracePoke(pokeReq int, peekReq int, pid int, addr uintptr, data []byte) (count int, err error) {
1144	// As for ptracePeek, we need to align our accesses to deal
1145	// with the possibility of straddling an invalid page.
1146
1147	// Leading edge.
1148	n := 0
1149	if addr%sizeofPtr != 0 {
1150		var buf [sizeofPtr]byte
1151		err = ptrace(peekReq, pid, addr-addr%sizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1152		if err != nil {
1153			return 0, err
1154		}
1155		n += copy(buf[addr%sizeofPtr:], data)
1156		word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1157		err = ptrace(pokeReq, pid, addr-addr%sizeofPtr, word)
1158		if err != nil {
1159			return 0, err
1160		}
1161		data = data[n:]
1162	}
1163
1164	// Interior.
1165	for len(data) > sizeofPtr {
1166		word := *((*uintptr)(unsafe.Pointer(&data[0])))
1167		err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1168		if err != nil {
1169			return n, err
1170		}
1171		n += sizeofPtr
1172		data = data[sizeofPtr:]
1173	}
1174
1175	// Trailing edge.
1176	if len(data) > 0 {
1177		var buf [sizeofPtr]byte
1178		err = ptrace(peekReq, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1179		if err != nil {
1180			return n, err
1181		}
1182		copy(buf[0:], data)
1183		word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1184		err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1185		if err != nil {
1186			return n, err
1187		}
1188		n += len(data)
1189	}
1190
1191	return n, nil
1192}
1193
1194func PtracePokeText(pid int, addr uintptr, data []byte) (count int, err error) {
1195	return ptracePoke(PTRACE_POKETEXT, PTRACE_PEEKTEXT, pid, addr, data)
1196}
1197
1198func PtracePokeData(pid int, addr uintptr, data []byte) (count int, err error) {
1199	return ptracePoke(PTRACE_POKEDATA, PTRACE_PEEKDATA, pid, addr, data)
1200}
1201
1202func PtracePokeUser(pid int, addr uintptr, data []byte) (count int, err error) {
1203	return ptracePoke(PTRACE_POKEUSR, PTRACE_PEEKUSR, pid, addr, data)
1204}
1205
1206func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) {
1207	return ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout)))
1208}
1209
1210func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) {
1211	return ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs)))
1212}
1213
1214func PtraceSetOptions(pid int, options int) (err error) {
1215	return ptrace(PTRACE_SETOPTIONS, pid, 0, uintptr(options))
1216}
1217
1218func PtraceGetEventMsg(pid int) (msg uint, err error) {
1219	var data _C_long
1220	err = ptrace(PTRACE_GETEVENTMSG, pid, 0, uintptr(unsafe.Pointer(&data)))
1221	msg = uint(data)
1222	return
1223}
1224
1225func PtraceCont(pid int, signal int) (err error) {
1226	return ptrace(PTRACE_CONT, pid, 0, uintptr(signal))
1227}
1228
1229func PtraceSyscall(pid int, signal int) (err error) {
1230	return ptrace(PTRACE_SYSCALL, pid, 0, uintptr(signal))
1231}
1232
1233func PtraceSingleStep(pid int) (err error) { return ptrace(PTRACE_SINGLESTEP, pid, 0, 0) }
1234
1235func PtraceAttach(pid int) (err error) { return ptrace(PTRACE_ATTACH, pid, 0, 0) }
1236
1237func PtraceDetach(pid int) (err error) { return ptrace(PTRACE_DETACH, pid, 0, 0) }
1238
1239//sys	reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error)
1240
1241func Reboot(cmd int) (err error) {
1242	return reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, "")
1243}
1244
1245func ReadDirent(fd int, buf []byte) (n int, err error) {
1246	return Getdents(fd, buf)
1247}
1248
1249//sys	mount(source string, target string, fstype string, flags uintptr, data *byte) (err error)
1250
1251func Mount(source string, target string, fstype string, flags uintptr, data string) (err error) {
1252	// Certain file systems get rather angry and EINVAL if you give
1253	// them an empty string of data, rather than NULL.
1254	if data == "" {
1255		return mount(source, target, fstype, flags, nil)
1256	}
1257	datap, err := BytePtrFromString(data)
1258	if err != nil {
1259		return err
1260	}
1261	return mount(source, target, fstype, flags, datap)
1262}
1263
1264// Sendto
1265// Recvfrom
1266// Socketpair
1267
1268/*
1269 * Direct access
1270 */
1271//sys	Acct(path string) (err error)
1272//sys	AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error)
1273//sys	Adjtimex(buf *Timex) (state int, err error)
1274//sys	Chdir(path string) (err error)
1275//sys	Chroot(path string) (err error)
1276//sys	ClockGettime(clockid int32, time *Timespec) (err error)
1277//sys	Close(fd int) (err error)
1278//sys	CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error)
1279//sys	Dup(oldfd int) (fd int, err error)
1280//sys	Dup3(oldfd int, newfd int, flags int) (err error)
1281//sysnb	EpollCreate1(flag int) (fd int, err error)
1282//sysnb	EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error)
1283//sys	Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2
1284//sys	Exit(code int) = SYS_EXIT_GROUP
1285//sys	Fallocate(fd int, mode uint32, off int64, len int64) (err error)
1286//sys	Fchdir(fd int) (err error)
1287//sys	Fchmod(fd int, mode uint32) (err error)
1288//sys	Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error)
1289//sys	fcntl(fd int, cmd int, arg int) (val int, err error)
1290//sys	Fdatasync(fd int) (err error)
1291//sys	Flock(fd int, how int) (err error)
1292//sys	Fsync(fd int) (err error)
1293//sys	Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64
1294//sysnb	Getpgid(pid int) (pgid int, err error)
1295
1296func Getpgrp() (pid int) {
1297	pid, _ = Getpgid(0)
1298	return
1299}
1300
1301//sysnb	Getpid() (pid int)
1302//sysnb	Getppid() (ppid int)
1303//sys	Getpriority(which int, who int) (prio int, err error)
1304//sys	Getrandom(buf []byte, flags int) (n int, err error)
1305//sysnb	Getrusage(who int, rusage *Rusage) (err error)
1306//sysnb	Getsid(pid int) (sid int, err error)
1307//sysnb	Gettid() (tid int)
1308//sys	Getxattr(path string, attr string, dest []byte) (sz int, err error)
1309//sys	InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error)
1310//sysnb	InotifyInit1(flags int) (fd int, err error)
1311//sysnb	InotifyRmWatch(fd int, watchdesc uint32) (success int, err error)
1312//sysnb	Kill(pid int, sig syscall.Signal) (err error)
1313//sys	Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG
1314//sys	Lgetxattr(path string, attr string, dest []byte) (sz int, err error)
1315//sys	Listxattr(path string, dest []byte) (sz int, err error)
1316//sys	Llistxattr(path string, dest []byte) (sz int, err error)
1317//sys	Lremovexattr(path string, attr string) (err error)
1318//sys	Lsetxattr(path string, attr string, data []byte, flags int) (err error)
1319//sys	Mkdirat(dirfd int, path string, mode uint32) (err error)
1320//sys	Mknodat(dirfd int, path string, mode uint32, dev int) (err error)
1321//sys	Nanosleep(time *Timespec, leftover *Timespec) (err error)
1322//sys	PerfEventOpen(attr *PerfEventAttr, pid int, cpu int, groupFd int, flags int) (fd int, err error)
1323//sys	PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT
1324//sysnb prlimit(pid int, resource int, newlimit *Rlimit, old *Rlimit) (err error) = SYS_PRLIMIT64
1325//sys   Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error)
1326//sys	Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) = SYS_PSELECT6
1327//sys	read(fd int, p []byte) (n int, err error)
1328//sys	Removexattr(path string, attr string) (err error)
1329//sys	Renameat(olddirfd int, oldpath string, newdirfd int, newpath string) (err error)
1330//sys	RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error)
1331//sys	Setdomainname(p []byte) (err error)
1332//sys	Sethostname(p []byte) (err error)
1333//sysnb	Setpgid(pid int, pgid int) (err error)
1334//sysnb	Setsid() (pid int, err error)
1335//sysnb	Settimeofday(tv *Timeval) (err error)
1336//sys	Setns(fd int, nstype int) (err error)
1337
1338// issue 1435.
1339// On linux Setuid and Setgid only affects the current thread, not the process.
1340// This does not match what most callers expect so we must return an error
1341// here rather than letting the caller think that the call succeeded.
1342
1343func Setuid(uid int) (err error) {
1344	return EOPNOTSUPP
1345}
1346
1347func Setgid(uid int) (err error) {
1348	return EOPNOTSUPP
1349}
1350
1351//sys	Setpriority(which int, who int, prio int) (err error)
1352//sys	Setxattr(path string, attr string, data []byte, flags int) (err error)
1353//sys	Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error)
1354//sys	Sync()
1355//sys	Syncfs(fd int) (err error)
1356//sysnb	Sysinfo(info *Sysinfo_t) (err error)
1357//sys	Tee(rfd int, wfd int, len int, flags int) (n int64, err error)
1358//sysnb	Tgkill(tgid int, tid int, sig syscall.Signal) (err error)
1359//sysnb	Times(tms *Tms) (ticks uintptr, err error)
1360//sysnb	Umask(mask int) (oldmask int)
1361//sysnb	Uname(buf *Utsname) (err error)
1362//sys	Unmount(target string, flags int) (err error) = SYS_UMOUNT2
1363//sys	Unshare(flags int) (err error)
1364//sys	write(fd int, p []byte) (n int, err error)
1365//sys	exitThread(code int) (err error) = SYS_EXIT
1366//sys	readlen(fd int, p *byte, np int) (n int, err error) = SYS_READ
1367//sys	writelen(fd int, p *byte, np int) (n int, err error) = SYS_WRITE
1368
1369// mmap varies by architecture; see syscall_linux_*.go.
1370//sys	munmap(addr uintptr, length uintptr) (err error)
1371
1372var mapper = &mmapper{
1373	active: make(map[*byte][]byte),
1374	mmap:   mmap,
1375	munmap: munmap,
1376}
1377
1378func Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) {
1379	return mapper.Mmap(fd, offset, length, prot, flags)
1380}
1381
1382func Munmap(b []byte) (err error) {
1383	return mapper.Munmap(b)
1384}
1385
1386//sys	Madvise(b []byte, advice int) (err error)
1387//sys	Mprotect(b []byte, prot int) (err error)
1388//sys	Mlock(b []byte) (err error)
1389//sys	Mlockall(flags int) (err error)
1390//sys	Msync(b []byte, flags int) (err error)
1391//sys	Munlock(b []byte) (err error)
1392//sys	Munlockall() (err error)
1393
1394// Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd,
1395// using the specified flags.
1396func Vmsplice(fd int, iovs []Iovec, flags int) (int, error) {
1397	n, _, errno := Syscall6(
1398		SYS_VMSPLICE,
1399		uintptr(fd),
1400		uintptr(unsafe.Pointer(&iovs[0])),
1401		uintptr(len(iovs)),
1402		uintptr(flags),
1403		0,
1404		0,
1405	)
1406	if errno != 0 {
1407		return 0, syscall.Errno(errno)
1408	}
1409
1410	return int(n), nil
1411}
1412
1413//sys	faccessat(dirfd int, path string, mode uint32) (err error)
1414
1415func Faccessat(dirfd int, path string, mode uint32, flags int) (err error) {
1416	if flags & ^(AT_SYMLINK_NOFOLLOW|AT_EACCESS) != 0 {
1417		return EINVAL
1418	} else if flags&(AT_SYMLINK_NOFOLLOW|AT_EACCESS) != 0 {
1419		return EOPNOTSUPP
1420	}
1421	return faccessat(dirfd, path, mode)
1422}
1423
1424/*
1425 * Unimplemented
1426 */
1427// AfsSyscall
1428// Alarm
1429// ArchPrctl
1430// Brk
1431// Capget
1432// Capset
1433// ClockGetres
1434// ClockNanosleep
1435// ClockSettime
1436// Clone
1437// CreateModule
1438// DeleteModule
1439// EpollCtlOld
1440// EpollPwait
1441// EpollWaitOld
1442// Execve
1443// Fgetxattr
1444// Flistxattr
1445// Fork
1446// Fremovexattr
1447// Fsetxattr
1448// Futex
1449// GetKernelSyms
1450// GetMempolicy
1451// GetRobustList
1452// GetThreadArea
1453// Getitimer
1454// Getpmsg
1455// IoCancel
1456// IoDestroy
1457// IoGetevents
1458// IoSetup
1459// IoSubmit
1460// IoprioGet
1461// IoprioSet
1462// KexecLoad
1463// LookupDcookie
1464// Mbind
1465// MigratePages
1466// Mincore
1467// ModifyLdt
1468// Mount
1469// MovePages
1470// MqGetsetattr
1471// MqNotify
1472// MqOpen
1473// MqTimedreceive
1474// MqTimedsend
1475// MqUnlink
1476// Mremap
1477// Msgctl
1478// Msgget
1479// Msgrcv
1480// Msgsnd
1481// Nfsservctl
1482// Personality
1483// Pselect6
1484// Ptrace
1485// Putpmsg
1486// QueryModule
1487// Quotactl
1488// Readahead
1489// Readv
1490// RemapFilePages
1491// RestartSyscall
1492// RtSigaction
1493// RtSigpending
1494// RtSigprocmask
1495// RtSigqueueinfo
1496// RtSigreturn
1497// RtSigsuspend
1498// RtSigtimedwait
1499// SchedGetPriorityMax
1500// SchedGetPriorityMin
1501// SchedGetparam
1502// SchedGetscheduler
1503// SchedRrGetInterval
1504// SchedSetparam
1505// SchedYield
1506// Security
1507// Semctl
1508// Semget
1509// Semop
1510// Semtimedop
1511// SetMempolicy
1512// SetRobustList
1513// SetThreadArea
1514// SetTidAddress
1515// Shmat
1516// Shmctl
1517// Shmdt
1518// Shmget
1519// Sigaltstack
1520// Signalfd
1521// Swapoff
1522// Swapon
1523// Sysfs
1524// TimerCreate
1525// TimerDelete
1526// TimerGetoverrun
1527// TimerGettime
1528// TimerSettime
1529// Timerfd
1530// Tkill (obsolete)
1531// Tuxcall
1532// Umount2
1533// Uselib
1534// Utimensat
1535// Vfork
1536// Vhangup
1537// Vserver
1538// Waitid
1539// _Sysctl