lmstudio.rs

  1use anyhow::{Result, anyhow};
  2use collections::HashMap;
  3use futures::Stream;
  4use futures::{FutureExt, StreamExt, future::BoxFuture, stream::BoxStream};
  5use gpui::{AnyView, App, AsyncApp, Context, Subscription, Task};
  6use http_client::HttpClient;
  7use language_model::{
  8    AuthenticateError, LanguageModelCompletionError, LanguageModelCompletionEvent,
  9    LanguageModelToolChoice, LanguageModelToolResultContent, LanguageModelToolUse, MessageContent,
 10    StopReason, WrappedTextContent,
 11};
 12use language_model::{
 13    LanguageModel, LanguageModelId, LanguageModelName, LanguageModelProvider,
 14    LanguageModelProviderId, LanguageModelProviderName, LanguageModelProviderState,
 15    LanguageModelRequest, RateLimiter, Role,
 16};
 17use lmstudio::{
 18    ChatCompletionRequest, ChatMessage, ModelType, ResponseStreamEvent, get_models, preload_model,
 19    stream_chat_completion,
 20};
 21use schemars::JsonSchema;
 22use serde::{Deserialize, Serialize};
 23use settings::{Settings, SettingsStore};
 24use std::pin::Pin;
 25use std::str::FromStr;
 26use std::{collections::BTreeMap, sync::Arc};
 27use ui::{ButtonLike, Indicator, List, prelude::*};
 28use util::ResultExt;
 29
 30use crate::AllLanguageModelSettings;
 31use crate::ui::InstructionListItem;
 32
 33const LMSTUDIO_DOWNLOAD_URL: &str = "https://lmstudio.ai/download";
 34const LMSTUDIO_CATALOG_URL: &str = "https://lmstudio.ai/models";
 35const LMSTUDIO_SITE: &str = "https://lmstudio.ai/";
 36
 37const PROVIDER_ID: &str = "lmstudio";
 38const PROVIDER_NAME: &str = "LM Studio";
 39
 40#[derive(Default, Debug, Clone, PartialEq)]
 41pub struct LmStudioSettings {
 42    pub api_url: String,
 43    pub available_models: Vec<AvailableModel>,
 44}
 45
 46#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
 47pub struct AvailableModel {
 48    pub name: String,
 49    pub display_name: Option<String>,
 50    pub max_tokens: usize,
 51    pub supports_tool_calls: bool,
 52}
 53
 54pub struct LmStudioLanguageModelProvider {
 55    http_client: Arc<dyn HttpClient>,
 56    state: gpui::Entity<State>,
 57}
 58
 59pub struct State {
 60    http_client: Arc<dyn HttpClient>,
 61    available_models: Vec<lmstudio::Model>,
 62    fetch_model_task: Option<Task<Result<()>>>,
 63    _subscription: Subscription,
 64}
 65
 66impl State {
 67    fn is_authenticated(&self) -> bool {
 68        !self.available_models.is_empty()
 69    }
 70
 71    fn fetch_models(&mut self, cx: &mut Context<Self>) -> Task<Result<()>> {
 72        let settings = &AllLanguageModelSettings::get_global(cx).lmstudio;
 73        let http_client = self.http_client.clone();
 74        let api_url = settings.api_url.clone();
 75
 76        // As a proxy for the server being "authenticated", we'll check if its up by fetching the models
 77        cx.spawn(async move |this, cx| {
 78            let models = get_models(http_client.as_ref(), &api_url, None).await?;
 79
 80            let mut models: Vec<lmstudio::Model> = models
 81                .into_iter()
 82                .filter(|model| model.r#type != ModelType::Embeddings)
 83                .map(|model| {
 84                    lmstudio::Model::new(
 85                        &model.id,
 86                        None,
 87                        None,
 88                        model.capabilities.supports_tool_calls(),
 89                    )
 90                })
 91                .collect();
 92
 93            models.sort_by(|a, b| a.name.cmp(&b.name));
 94
 95            this.update(cx, |this, cx| {
 96                this.available_models = models;
 97                cx.notify();
 98            })
 99        })
100    }
101
102    fn restart_fetch_models_task(&mut self, cx: &mut Context<Self>) {
103        let task = self.fetch_models(cx);
104        self.fetch_model_task.replace(task);
105    }
106
107    fn authenticate(&mut self, cx: &mut Context<Self>) -> Task<Result<(), AuthenticateError>> {
108        if self.is_authenticated() {
109            return Task::ready(Ok(()));
110        }
111
112        let fetch_models_task = self.fetch_models(cx);
113        cx.spawn(async move |_this, _cx| Ok(fetch_models_task.await?))
114    }
115}
116
117impl LmStudioLanguageModelProvider {
118    pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut App) -> Self {
119        let this = Self {
120            http_client: http_client.clone(),
121            state: cx.new(|cx| {
122                let subscription = cx.observe_global::<SettingsStore>({
123                    let mut settings = AllLanguageModelSettings::get_global(cx).lmstudio.clone();
124                    move |this: &mut State, cx| {
125                        let new_settings = &AllLanguageModelSettings::get_global(cx).lmstudio;
126                        if &settings != new_settings {
127                            settings = new_settings.clone();
128                            this.restart_fetch_models_task(cx);
129                            cx.notify();
130                        }
131                    }
132                });
133
134                State {
135                    http_client,
136                    available_models: Default::default(),
137                    fetch_model_task: None,
138                    _subscription: subscription,
139                }
140            }),
141        };
142        this.state
143            .update(cx, |state, cx| state.restart_fetch_models_task(cx));
144        this
145    }
146}
147
148impl LanguageModelProviderState for LmStudioLanguageModelProvider {
149    type ObservableEntity = State;
150
151    fn observable_entity(&self) -> Option<gpui::Entity<Self::ObservableEntity>> {
152        Some(self.state.clone())
153    }
154}
155
156impl LanguageModelProvider for LmStudioLanguageModelProvider {
157    fn id(&self) -> LanguageModelProviderId {
158        LanguageModelProviderId(PROVIDER_ID.into())
159    }
160
161    fn name(&self) -> LanguageModelProviderName {
162        LanguageModelProviderName(PROVIDER_NAME.into())
163    }
164
165    fn icon(&self) -> IconName {
166        IconName::AiLmStudio
167    }
168
169    fn default_model(&self, _: &App) -> Option<Arc<dyn LanguageModel>> {
170        // We shouldn't try to select default model, because it might lead to a load call for an unloaded model.
171        // In a constrained environment where user might not have enough resources it'll be a bad UX to select something
172        // to load by default.
173        None
174    }
175
176    fn default_fast_model(&self, _: &App) -> Option<Arc<dyn LanguageModel>> {
177        // See explanation for default_model.
178        None
179    }
180
181    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
182        let mut models: BTreeMap<String, lmstudio::Model> = BTreeMap::default();
183
184        // Add models from the LM Studio API
185        for model in self.state.read(cx).available_models.iter() {
186            models.insert(model.name.clone(), model.clone());
187        }
188
189        // Override with available models from settings
190        for model in AllLanguageModelSettings::get_global(cx)
191            .lmstudio
192            .available_models
193            .iter()
194        {
195            models.insert(
196                model.name.clone(),
197                lmstudio::Model {
198                    name: model.name.clone(),
199                    display_name: model.display_name.clone(),
200                    max_tokens: model.max_tokens,
201                    supports_tool_calls: model.supports_tool_calls,
202                },
203            );
204        }
205
206        models
207            .into_values()
208            .map(|model| {
209                Arc::new(LmStudioLanguageModel {
210                    id: LanguageModelId::from(model.name.clone()),
211                    model: model.clone(),
212                    http_client: self.http_client.clone(),
213                    request_limiter: RateLimiter::new(4),
214                }) as Arc<dyn LanguageModel>
215            })
216            .collect()
217    }
218
219    fn load_model(&self, model: Arc<dyn LanguageModel>, cx: &App) {
220        let settings = &AllLanguageModelSettings::get_global(cx).lmstudio;
221        let http_client = self.http_client.clone();
222        let api_url = settings.api_url.clone();
223        let id = model.id().0.to_string();
224        cx.spawn(async move |_| preload_model(http_client, &api_url, &id).await)
225            .detach_and_log_err(cx);
226    }
227
228    fn is_authenticated(&self, cx: &App) -> bool {
229        self.state.read(cx).is_authenticated()
230    }
231
232    fn authenticate(&self, cx: &mut App) -> Task<Result<(), AuthenticateError>> {
233        self.state.update(cx, |state, cx| state.authenticate(cx))
234    }
235
236    fn configuration_view(&self, _window: &mut Window, cx: &mut App) -> AnyView {
237        let state = self.state.clone();
238        cx.new(|cx| ConfigurationView::new(state, cx)).into()
239    }
240
241    fn reset_credentials(&self, cx: &mut App) -> Task<Result<()>> {
242        self.state.update(cx, |state, cx| state.fetch_models(cx))
243    }
244}
245
246pub struct LmStudioLanguageModel {
247    id: LanguageModelId,
248    model: lmstudio::Model,
249    http_client: Arc<dyn HttpClient>,
250    request_limiter: RateLimiter,
251}
252
253impl LmStudioLanguageModel {
254    fn to_lmstudio_request(&self, request: LanguageModelRequest) -> ChatCompletionRequest {
255        let mut messages = Vec::new();
256
257        for message in request.messages {
258            for content in message.content {
259                match content {
260                    MessageContent::Text(text) | MessageContent::Thinking { text, .. } => messages
261                        .push(match message.role {
262                            Role::User => ChatMessage::User { content: text },
263                            Role::Assistant => ChatMessage::Assistant {
264                                content: Some(text),
265                                tool_calls: Vec::new(),
266                            },
267                            Role::System => ChatMessage::System { content: text },
268                        }),
269                    MessageContent::RedactedThinking(_) => {}
270                    MessageContent::Image(_) => {}
271                    MessageContent::ToolUse(tool_use) => {
272                        let tool_call = lmstudio::ToolCall {
273                            id: tool_use.id.to_string(),
274                            content: lmstudio::ToolCallContent::Function {
275                                function: lmstudio::FunctionContent {
276                                    name: tool_use.name.to_string(),
277                                    arguments: serde_json::to_string(&tool_use.input)
278                                        .unwrap_or_default(),
279                                },
280                            },
281                        };
282
283                        if let Some(lmstudio::ChatMessage::Assistant { tool_calls, .. }) =
284                            messages.last_mut()
285                        {
286                            tool_calls.push(tool_call);
287                        } else {
288                            messages.push(lmstudio::ChatMessage::Assistant {
289                                content: None,
290                                tool_calls: vec![tool_call],
291                            });
292                        }
293                    }
294                    MessageContent::ToolResult(tool_result) => {
295                        match &tool_result.content {
296                            LanguageModelToolResultContent::Text(text)
297                            | LanguageModelToolResultContent::WrappedText(WrappedTextContent {
298                                text,
299                                ..
300                            }) => {
301                                messages.push(lmstudio::ChatMessage::Tool {
302                                    content: text.to_string(),
303                                    tool_call_id: tool_result.tool_use_id.to_string(),
304                                });
305                            }
306                            LanguageModelToolResultContent::Image(_) => {
307                                // no support for images for now
308                            }
309                        };
310                    }
311                }
312            }
313        }
314
315        ChatCompletionRequest {
316            model: self.model.name.clone(),
317            messages,
318            stream: true,
319            max_tokens: Some(-1),
320            stop: Some(request.stop),
321            // In LM Studio you can configure specific settings you'd like to use for your model.
322            // For example Qwen3 is recommended to be used with 0.7 temperature.
323            // It would be a bad UX to silently override these settings from Zed, so we pass no temperature as a default.
324            temperature: request.temperature.or(None),
325            tools: request
326                .tools
327                .into_iter()
328                .map(|tool| lmstudio::ToolDefinition::Function {
329                    function: lmstudio::FunctionDefinition {
330                        name: tool.name,
331                        description: Some(tool.description),
332                        parameters: Some(tool.input_schema),
333                    },
334                })
335                .collect(),
336            tool_choice: request.tool_choice.map(|choice| match choice {
337                LanguageModelToolChoice::Auto => lmstudio::ToolChoice::Auto,
338                LanguageModelToolChoice::Any => lmstudio::ToolChoice::Required,
339                LanguageModelToolChoice::None => lmstudio::ToolChoice::None,
340            }),
341        }
342    }
343
344    fn stream_completion(
345        &self,
346        request: ChatCompletionRequest,
347        cx: &AsyncApp,
348    ) -> BoxFuture<'static, Result<futures::stream::BoxStream<'static, Result<ResponseStreamEvent>>>>
349    {
350        let http_client = self.http_client.clone();
351        let Ok(api_url) = cx.update(|cx| {
352            let settings = &AllLanguageModelSettings::get_global(cx).lmstudio;
353            settings.api_url.clone()
354        }) else {
355            return futures::future::ready(Err(anyhow!("App state dropped"))).boxed();
356        };
357
358        let future = self.request_limiter.stream(async move {
359            let request = stream_chat_completion(http_client.as_ref(), &api_url, request);
360            let response = request.await?;
361            Ok(response)
362        });
363
364        async move { Ok(future.await?.boxed()) }.boxed()
365    }
366}
367
368impl LanguageModel for LmStudioLanguageModel {
369    fn id(&self) -> LanguageModelId {
370        self.id.clone()
371    }
372
373    fn name(&self) -> LanguageModelName {
374        LanguageModelName::from(self.model.display_name().to_string())
375    }
376
377    fn provider_id(&self) -> LanguageModelProviderId {
378        LanguageModelProviderId(PROVIDER_ID.into())
379    }
380
381    fn provider_name(&self) -> LanguageModelProviderName {
382        LanguageModelProviderName(PROVIDER_NAME.into())
383    }
384
385    fn supports_tools(&self) -> bool {
386        self.model.supports_tool_calls()
387    }
388
389    fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
390        self.supports_tools()
391            && match choice {
392                LanguageModelToolChoice::Auto => true,
393                LanguageModelToolChoice::Any => true,
394                LanguageModelToolChoice::None => true,
395            }
396    }
397
398    fn supports_images(&self) -> bool {
399        false
400    }
401
402    fn telemetry_id(&self) -> String {
403        format!("lmstudio/{}", self.model.id())
404    }
405
406    fn max_token_count(&self) -> usize {
407        self.model.max_token_count()
408    }
409
410    fn count_tokens(
411        &self,
412        request: LanguageModelRequest,
413        _cx: &App,
414    ) -> BoxFuture<'static, Result<usize>> {
415        // Endpoint for this is coming soon. In the meantime, hacky estimation
416        let token_count = request
417            .messages
418            .iter()
419            .map(|msg| msg.string_contents().split_whitespace().count())
420            .sum::<usize>();
421
422        let estimated_tokens = (token_count as f64 * 0.75) as usize;
423        async move { Ok(estimated_tokens) }.boxed()
424    }
425
426    fn stream_completion(
427        &self,
428        request: LanguageModelRequest,
429        cx: &AsyncApp,
430    ) -> BoxFuture<
431        'static,
432        Result<
433            BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>,
434        >,
435    > {
436        let request = self.to_lmstudio_request(request);
437        let completions = self.stream_completion(request, cx);
438        async move {
439            let mapper = LmStudioEventMapper::new();
440            Ok(mapper.map_stream(completions.await?).boxed())
441        }
442        .boxed()
443    }
444}
445
446struct LmStudioEventMapper {
447    tool_calls_by_index: HashMap<usize, RawToolCall>,
448}
449
450impl LmStudioEventMapper {
451    fn new() -> Self {
452        Self {
453            tool_calls_by_index: HashMap::default(),
454        }
455    }
456
457    pub fn map_stream(
458        mut self,
459        events: Pin<Box<dyn Send + Stream<Item = Result<ResponseStreamEvent>>>>,
460    ) -> impl Stream<Item = Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
461    {
462        events.flat_map(move |event| {
463            futures::stream::iter(match event {
464                Ok(event) => self.map_event(event),
465                Err(error) => vec![Err(LanguageModelCompletionError::Other(anyhow!(error)))],
466            })
467        })
468    }
469
470    pub fn map_event(
471        &mut self,
472        event: ResponseStreamEvent,
473    ) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
474        let Some(choice) = event.choices.into_iter().next() else {
475            return vec![Err(LanguageModelCompletionError::Other(anyhow!(
476                "Response contained no choices"
477            )))];
478        };
479
480        let mut events = Vec::new();
481        if let Some(content) = choice.delta.content {
482            events.push(Ok(LanguageModelCompletionEvent::Text(content)));
483        }
484
485        if let Some(tool_calls) = choice.delta.tool_calls {
486            for tool_call in tool_calls {
487                let entry = self.tool_calls_by_index.entry(tool_call.index).or_default();
488
489                if let Some(tool_id) = tool_call.id {
490                    entry.id = tool_id;
491                }
492
493                if let Some(function) = tool_call.function {
494                    if let Some(name) = function.name {
495                        // At the time of writing this code LM Studio (0.3.15) is incompatible with the OpenAI API:
496                        // 1. It sends function name in the first chunk
497                        // 2. It sends empty string in the function name field in all subsequent chunks for arguments
498                        // According to https://platform.openai.com/docs/guides/function-calling?api-mode=responses#streaming
499                        // function name field should be sent only inside the first chunk.
500                        if !name.is_empty() {
501                            entry.name = name;
502                        }
503                    }
504
505                    if let Some(arguments) = function.arguments {
506                        entry.arguments.push_str(&arguments);
507                    }
508                }
509            }
510        }
511
512        match choice.finish_reason.as_deref() {
513            Some("stop") => {
514                events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::EndTurn)));
515            }
516            Some("tool_calls") => {
517                events.extend(self.tool_calls_by_index.drain().map(|(_, tool_call)| {
518                    match serde_json::Value::from_str(&tool_call.arguments) {
519                        Ok(input) => Ok(LanguageModelCompletionEvent::ToolUse(
520                            LanguageModelToolUse {
521                                id: tool_call.id.into(),
522                                name: tool_call.name.into(),
523                                is_input_complete: true,
524                                input,
525                                raw_input: tool_call.arguments,
526                            },
527                        )),
528                        Err(error) => Err(LanguageModelCompletionError::BadInputJson {
529                            id: tool_call.id.into(),
530                            tool_name: tool_call.name.into(),
531                            raw_input: tool_call.arguments.into(),
532                            json_parse_error: error.to_string(),
533                        }),
534                    }
535                }));
536
537                events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::ToolUse)));
538            }
539            Some(stop_reason) => {
540                log::error!("Unexpected OpenAI stop_reason: {stop_reason:?}",);
541                events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::EndTurn)));
542            }
543            None => {}
544        }
545
546        events
547    }
548}
549
550#[derive(Default)]
551struct RawToolCall {
552    id: String,
553    name: String,
554    arguments: String,
555}
556
557struct ConfigurationView {
558    state: gpui::Entity<State>,
559    loading_models_task: Option<Task<()>>,
560}
561
562impl ConfigurationView {
563    pub fn new(state: gpui::Entity<State>, cx: &mut Context<Self>) -> Self {
564        let loading_models_task = Some(cx.spawn({
565            let state = state.clone();
566            async move |this, cx| {
567                if let Some(task) = state
568                    .update(cx, |state, cx| state.authenticate(cx))
569                    .log_err()
570                {
571                    task.await.log_err();
572                }
573                this.update(cx, |this, cx| {
574                    this.loading_models_task = None;
575                    cx.notify();
576                })
577                .log_err();
578            }
579        }));
580
581        Self {
582            state,
583            loading_models_task,
584        }
585    }
586
587    fn retry_connection(&self, cx: &mut App) {
588        self.state
589            .update(cx, |state, cx| state.fetch_models(cx))
590            .detach_and_log_err(cx);
591    }
592}
593
594impl Render for ConfigurationView {
595    fn render(&mut self, _window: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
596        let is_authenticated = self.state.read(cx).is_authenticated();
597
598        let lmstudio_intro = "Run local LLMs like Llama, Phi, and Qwen.";
599
600        if self.loading_models_task.is_some() {
601            div().child(Label::new("Loading models...")).into_any()
602        } else {
603            v_flex()
604                .gap_2()
605                .child(
606                    v_flex().gap_1().child(Label::new(lmstudio_intro)).child(
607                        List::new()
608                            .child(InstructionListItem::text_only(
609                                "LM Studio needs to be running with at least one model downloaded.",
610                            ))
611                            .child(InstructionListItem::text_only(
612                                "To get your first model, try running `lms get qwen2.5-coder-7b`",
613                            )),
614                    ),
615                )
616                .child(
617                    h_flex()
618                        .w_full()
619                        .justify_between()
620                        .gap_2()
621                        .child(
622                            h_flex()
623                                .w_full()
624                                .gap_2()
625                                .map(|this| {
626                                    if is_authenticated {
627                                        this.child(
628                                            Button::new("lmstudio-site", "LM Studio")
629                                                .style(ButtonStyle::Subtle)
630                                                .icon(IconName::ArrowUpRight)
631                                                .icon_size(IconSize::XSmall)
632                                                .icon_color(Color::Muted)
633                                                .on_click(move |_, _window, cx| {
634                                                    cx.open_url(LMSTUDIO_SITE)
635                                                })
636                                                .into_any_element(),
637                                        )
638                                    } else {
639                                        this.child(
640                                            Button::new(
641                                                "download_lmstudio_button",
642                                                "Download LM Studio",
643                                            )
644                                            .style(ButtonStyle::Subtle)
645                                            .icon(IconName::ArrowUpRight)
646                                            .icon_size(IconSize::XSmall)
647                                            .icon_color(Color::Muted)
648                                            .on_click(move |_, _window, cx| {
649                                                cx.open_url(LMSTUDIO_DOWNLOAD_URL)
650                                            })
651                                            .into_any_element(),
652                                        )
653                                    }
654                                })
655                                .child(
656                                    Button::new("view-models", "Model Catalog")
657                                        .style(ButtonStyle::Subtle)
658                                        .icon(IconName::ArrowUpRight)
659                                        .icon_size(IconSize::XSmall)
660                                        .icon_color(Color::Muted)
661                                        .on_click(move |_, _window, cx| {
662                                            cx.open_url(LMSTUDIO_CATALOG_URL)
663                                        }),
664                                ),
665                        )
666                        .map(|this| {
667                            if is_authenticated {
668                                this.child(
669                                    ButtonLike::new("connected")
670                                        .disabled(true)
671                                        .cursor_style(gpui::CursorStyle::Arrow)
672                                        .child(
673                                            h_flex()
674                                                .gap_2()
675                                                .child(Indicator::dot().color(Color::Success))
676                                                .child(Label::new("Connected"))
677                                                .into_any_element(),
678                                        ),
679                                )
680                            } else {
681                                this.child(
682                                    Button::new("retry_lmstudio_models", "Connect")
683                                        .icon_position(IconPosition::Start)
684                                        .icon_size(IconSize::XSmall)
685                                        .icon(IconName::Play)
686                                        .on_click(cx.listener(move |this, _, _window, cx| {
687                                            this.retry_connection(cx)
688                                        })),
689                                )
690                            }
691                        }),
692                )
693                .into_any()
694        }
695    }
696}