key_dispatch.rs

  1//! KeyDispatch is where GPUI deals with binding actions to key events.
  2//!
  3//! The key pieces to making a key binding work are to define an action,
  4//! implement a method that takes that action as a type parameter,
  5//! and then to register the action during render on a focused node
  6//! with a keymap context:
  7//!
  8//! ```ignore
  9//! actions!(editor,[Undo, Redo]);
 10//!
 11//! impl Editor {
 12//!   fn undo(&mut self, _: &Undo, _window: &mut Window, _cx: &mut Context<Self>) { ... }
 13//!   fn redo(&mut self, _: &Redo, _window: &mut Window, _cx: &mut Context<Self>) { ... }
 14//! }
 15//!
 16//! impl Render for Editor {
 17//!   fn render(&mut self, window: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
 18//!     div()
 19//!       .track_focus(&self.focus_handle(cx))
 20//!       .key_context("Editor")
 21//!       .on_action(cx.listener(Editor::undo))
 22//!       .on_action(cx.listener(Editor::redo))
 23//!     ...
 24//!    }
 25//! }
 26//!```
 27//!
 28//! The keybindings themselves are managed independently by calling cx.bind_keys().
 29//! (Though mostly when developing Zed itself, you just need to add a new line to
 30//!  assets/keymaps/default-{platform}.json).
 31//!
 32//! ```ignore
 33//! cx.bind_keys([
 34//!   KeyBinding::new("cmd-z", Editor::undo, Some("Editor")),
 35//!   KeyBinding::new("cmd-shift-z", Editor::redo, Some("Editor")),
 36//! ])
 37//! ```
 38//!
 39//! With all of this in place, GPUI will ensure that if you have an Editor that contains
 40//! the focus, hitting cmd-z will Undo.
 41//!
 42//! In real apps, it is a little more complicated than this, because typically you have
 43//! several nested views that each register keyboard handlers. In this case action matching
 44//! bubbles up from the bottom. For example in Zed, the Workspace is the top-level view, which contains Pane's, which contain Editors. If there are conflicting keybindings defined
 45//! then the Editor's bindings take precedence over the Pane's bindings, which take precedence over the Workspace.
 46//!
 47//! In GPUI, keybindings are not limited to just single keystrokes, you can define
 48//! sequences by separating the keys with a space:
 49//!
 50//!  KeyBinding::new("cmd-k left", pane::SplitLeft, Some("Pane"))
 51
 52use crate::{
 53    Action, ActionRegistry, App, DispatchPhase, EntityId, FocusId, KeyBinding, KeyContext, Keymap,
 54    Keystroke, ModifiersChangedEvent, Window,
 55};
 56use collections::FxHashMap;
 57use smallvec::SmallVec;
 58use std::{
 59    any::{Any, TypeId},
 60    cell::RefCell,
 61    mem,
 62    ops::Range,
 63    rc::Rc,
 64};
 65
 66/// ID of a node within `DispatchTree`. Note that these are **not** stable between frames, and so a
 67/// `DispatchNodeId` should only be used with the `DispatchTree` that provided it.
 68#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash)]
 69pub(crate) struct DispatchNodeId(usize);
 70
 71pub(crate) struct DispatchTree {
 72    node_stack: Vec<DispatchNodeId>,
 73    pub(crate) context_stack: Vec<KeyContext>,
 74    view_stack: Vec<EntityId>,
 75    nodes: Vec<DispatchNode>,
 76    focusable_node_ids: FxHashMap<FocusId, DispatchNodeId>,
 77    view_node_ids: FxHashMap<EntityId, DispatchNodeId>,
 78    keymap: Rc<RefCell<Keymap>>,
 79    action_registry: Rc<ActionRegistry>,
 80}
 81
 82#[derive(Default)]
 83pub(crate) struct DispatchNode {
 84    pub key_listeners: Vec<KeyListener>,
 85    pub action_listeners: Vec<DispatchActionListener>,
 86    pub modifiers_changed_listeners: Vec<ModifiersChangedListener>,
 87    pub context: Option<KeyContext>,
 88    pub focus_id: Option<FocusId>,
 89    view_id: Option<EntityId>,
 90    parent: Option<DispatchNodeId>,
 91}
 92
 93pub(crate) struct ReusedSubtree {
 94    old_range: Range<usize>,
 95    new_range: Range<usize>,
 96    contains_focus: bool,
 97}
 98
 99impl ReusedSubtree {
100    pub fn refresh_node_id(&self, node_id: DispatchNodeId) -> DispatchNodeId {
101        debug_assert!(
102            self.old_range.contains(&node_id.0),
103            "node {} was not part of the reused subtree {:?}",
104            node_id.0,
105            self.old_range
106        );
107        DispatchNodeId((node_id.0 - self.old_range.start) + self.new_range.start)
108    }
109
110    pub fn contains_focus(&self) -> bool {
111        self.contains_focus
112    }
113}
114
115#[derive(Default, Debug)]
116pub(crate) struct Replay {
117    pub(crate) keystroke: Keystroke,
118    pub(crate) bindings: SmallVec<[KeyBinding; 1]>,
119}
120
121#[derive(Default, Debug)]
122pub(crate) struct DispatchResult {
123    pub(crate) pending: SmallVec<[Keystroke; 1]>,
124    pub(crate) pending_has_binding: bool,
125    pub(crate) bindings: SmallVec<[KeyBinding; 1]>,
126    pub(crate) to_replay: SmallVec<[Replay; 1]>,
127    pub(crate) context_stack: Vec<KeyContext>,
128}
129
130type KeyListener = Rc<dyn Fn(&dyn Any, DispatchPhase, &mut Window, &mut App)>;
131type ModifiersChangedListener = Rc<dyn Fn(&ModifiersChangedEvent, &mut Window, &mut App)>;
132
133#[derive(Clone)]
134pub(crate) struct DispatchActionListener {
135    pub(crate) action_type: TypeId,
136    pub(crate) listener: Rc<dyn Fn(&dyn Any, DispatchPhase, &mut Window, &mut App)>,
137}
138
139impl DispatchTree {
140    pub fn new(keymap: Rc<RefCell<Keymap>>, action_registry: Rc<ActionRegistry>) -> Self {
141        Self {
142            node_stack: Vec::new(),
143            context_stack: Vec::new(),
144            view_stack: Vec::new(),
145            nodes: Vec::new(),
146            focusable_node_ids: FxHashMap::default(),
147            view_node_ids: FxHashMap::default(),
148            keymap,
149            action_registry,
150        }
151    }
152
153    pub fn clear(&mut self) {
154        self.node_stack.clear();
155        self.context_stack.clear();
156        self.view_stack.clear();
157        self.nodes.clear();
158        self.focusable_node_ids.clear();
159        self.view_node_ids.clear();
160    }
161
162    pub fn len(&self) -> usize {
163        self.nodes.len()
164    }
165
166    pub fn push_node(&mut self) -> DispatchNodeId {
167        let parent = self.node_stack.last().copied();
168        let node_id = DispatchNodeId(self.nodes.len());
169
170        self.nodes.push(DispatchNode {
171            parent,
172            ..Default::default()
173        });
174        self.node_stack.push(node_id);
175        node_id
176    }
177
178    pub fn set_active_node(&mut self, node_id: DispatchNodeId) {
179        let next_node_parent = self.nodes[node_id.0].parent;
180        while self.node_stack.last().copied() != next_node_parent && !self.node_stack.is_empty() {
181            self.pop_node();
182        }
183
184        if self.node_stack.last().copied() == next_node_parent {
185            self.node_stack.push(node_id);
186            let active_node = &self.nodes[node_id.0];
187            if let Some(view_id) = active_node.view_id {
188                self.view_stack.push(view_id)
189            }
190            if let Some(context) = active_node.context.clone() {
191                self.context_stack.push(context);
192            }
193        } else {
194            debug_assert_eq!(self.node_stack.len(), 0);
195
196            let mut current_node_id = Some(node_id);
197            while let Some(node_id) = current_node_id {
198                let node = &self.nodes[node_id.0];
199                if let Some(context) = node.context.clone() {
200                    self.context_stack.push(context);
201                }
202                if node.view_id.is_some() {
203                    self.view_stack.push(node.view_id.unwrap());
204                }
205                self.node_stack.push(node_id);
206                current_node_id = node.parent;
207            }
208
209            self.context_stack.reverse();
210            self.view_stack.reverse();
211            self.node_stack.reverse();
212        }
213    }
214
215    pub fn set_key_context(&mut self, context: KeyContext) {
216        self.active_node().context = Some(context.clone());
217        self.context_stack.push(context);
218    }
219
220    pub fn set_focus_id(&mut self, focus_id: FocusId) {
221        let node_id = *self.node_stack.last().unwrap();
222        self.nodes[node_id.0].focus_id = Some(focus_id);
223        self.focusable_node_ids.insert(focus_id, node_id);
224    }
225
226    pub fn set_view_id(&mut self, view_id: EntityId) {
227        if self.view_stack.last().copied() != Some(view_id) {
228            let node_id = *self.node_stack.last().unwrap();
229            self.nodes[node_id.0].view_id = Some(view_id);
230            self.view_node_ids.insert(view_id, node_id);
231            self.view_stack.push(view_id);
232        }
233    }
234
235    pub fn pop_node(&mut self) {
236        let node = &self.nodes[self.active_node_id().unwrap().0];
237        if node.context.is_some() {
238            self.context_stack.pop();
239        }
240        if node.view_id.is_some() {
241            self.view_stack.pop();
242        }
243        self.node_stack.pop();
244    }
245
246    fn move_node(&mut self, source: &mut DispatchNode) {
247        self.push_node();
248        if let Some(context) = source.context.clone() {
249            self.set_key_context(context);
250        }
251        if let Some(focus_id) = source.focus_id {
252            self.set_focus_id(focus_id);
253        }
254        if let Some(view_id) = source.view_id {
255            self.set_view_id(view_id);
256        }
257
258        let target = self.active_node();
259        target.key_listeners = mem::take(&mut source.key_listeners);
260        target.action_listeners = mem::take(&mut source.action_listeners);
261        target.modifiers_changed_listeners = mem::take(&mut source.modifiers_changed_listeners);
262    }
263
264    pub fn reuse_subtree(
265        &mut self,
266        old_range: Range<usize>,
267        source: &mut Self,
268        focus: Option<FocusId>,
269    ) -> ReusedSubtree {
270        let new_range = self.nodes.len()..self.nodes.len() + old_range.len();
271
272        let mut contains_focus = false;
273        let mut source_stack = vec![];
274        for (source_node_id, source_node) in source
275            .nodes
276            .iter_mut()
277            .enumerate()
278            .skip(old_range.start)
279            .take(old_range.len())
280        {
281            let source_node_id = DispatchNodeId(source_node_id);
282            while let Some(source_ancestor) = source_stack.last() {
283                if source_node.parent == Some(*source_ancestor) {
284                    break;
285                } else {
286                    source_stack.pop();
287                    self.pop_node();
288                }
289            }
290
291            source_stack.push(source_node_id);
292            if source_node.focus_id.is_some() && source_node.focus_id == focus {
293                contains_focus = true;
294            }
295            self.move_node(source_node);
296        }
297
298        while !source_stack.is_empty() {
299            source_stack.pop();
300            self.pop_node();
301        }
302
303        ReusedSubtree {
304            old_range,
305            new_range,
306            contains_focus,
307        }
308    }
309
310    pub fn truncate(&mut self, index: usize) {
311        for node in &self.nodes[index..] {
312            if let Some(focus_id) = node.focus_id {
313                self.focusable_node_ids.remove(&focus_id);
314            }
315
316            if let Some(view_id) = node.view_id {
317                self.view_node_ids.remove(&view_id);
318            }
319        }
320        self.nodes.truncate(index);
321    }
322
323    pub fn on_key_event(&mut self, listener: KeyListener) {
324        self.active_node().key_listeners.push(listener);
325    }
326
327    pub fn on_modifiers_changed(&mut self, listener: ModifiersChangedListener) {
328        self.active_node()
329            .modifiers_changed_listeners
330            .push(listener);
331    }
332
333    pub fn on_action(
334        &mut self,
335        action_type: TypeId,
336        listener: Rc<dyn Fn(&dyn Any, DispatchPhase, &mut Window, &mut App)>,
337    ) {
338        self.active_node()
339            .action_listeners
340            .push(DispatchActionListener {
341                action_type,
342                listener,
343            });
344    }
345
346    pub fn focus_contains(&self, parent: FocusId, child: FocusId) -> bool {
347        if parent == child {
348            return true;
349        }
350
351        if let Some(parent_node_id) = self.focusable_node_ids.get(&parent) {
352            let mut current_node_id = self.focusable_node_ids.get(&child).copied();
353            while let Some(node_id) = current_node_id {
354                if node_id == *parent_node_id {
355                    return true;
356                }
357                current_node_id = self.nodes[node_id.0].parent;
358            }
359        }
360        false
361    }
362
363    pub fn available_actions(&self, target: DispatchNodeId) -> Vec<Box<dyn Action>> {
364        let mut actions = Vec::<Box<dyn Action>>::new();
365        for node_id in self.dispatch_path(target) {
366            let node = &self.nodes[node_id.0];
367            for DispatchActionListener { action_type, .. } in &node.action_listeners {
368                if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id())
369                {
370                    // Intentionally silence these errors without logging.
371                    // If an action cannot be built by default, it's not available.
372                    let action = self.action_registry.build_action_type(action_type).ok();
373                    if let Some(action) = action {
374                        actions.insert(ix, action);
375                    }
376                }
377            }
378        }
379        actions
380    }
381
382    pub fn is_action_available(&self, action: &dyn Action, target: DispatchNodeId) -> bool {
383        for node_id in self.dispatch_path(target) {
384            let node = &self.nodes[node_id.0];
385            if node
386                .action_listeners
387                .iter()
388                .any(|listener| listener.action_type == action.as_any().type_id())
389            {
390                return true;
391            }
392        }
393        false
394    }
395
396    /// Returns key bindings that invoke an action on the currently focused element. Bindings are
397    /// returned in the order they were added. For display, the last binding should take precedence.
398    ///
399    /// Bindings are only included if they are the highest precedence match for their keystrokes, so
400    /// shadowed bindings are not included.
401    pub fn bindings_for_action(
402        &self,
403        action: &dyn Action,
404        context_stack: &[KeyContext],
405    ) -> Vec<KeyBinding> {
406        // Ideally this would return a `DoubleEndedIterator` to avoid `highest_precedence_*`
407        // methods, but this can't be done very cleanly since keymap must be borrowed.
408        let keymap = self.keymap.borrow();
409        keymap
410            .bindings_for_action(action)
411            .filter(|binding| {
412                Self::binding_matches_predicate_and_not_shadowed(&keymap, binding, context_stack)
413            })
414            .cloned()
415            .collect()
416    }
417
418    /// Returns the highest precedence binding for the given action and context stack. This is the
419    /// same as the last result of `bindings_for_action`, but more efficient than getting all bindings.
420    pub fn highest_precedence_binding_for_action(
421        &self,
422        action: &dyn Action,
423        context_stack: &[KeyContext],
424    ) -> Option<KeyBinding> {
425        let keymap = self.keymap.borrow();
426        keymap
427            .bindings_for_action(action)
428            .rev()
429            .find(|binding| {
430                Self::binding_matches_predicate_and_not_shadowed(&keymap, binding, context_stack)
431            })
432            .cloned()
433    }
434
435    fn binding_matches_predicate_and_not_shadowed(
436        keymap: &Keymap,
437        binding: &KeyBinding,
438        context_stack: &[KeyContext],
439    ) -> bool {
440        let (bindings, _) = keymap.bindings_for_input(&binding.keystrokes, context_stack);
441        if let Some(found) = bindings.iter().next() {
442            found.action.partial_eq(binding.action.as_ref())
443        } else {
444            false
445        }
446    }
447
448    fn bindings_for_input(
449        &self,
450        input: &[Keystroke],
451        dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
452    ) -> (SmallVec<[KeyBinding; 1]>, bool, Vec<KeyContext>) {
453        let context_stack: Vec<KeyContext> = dispatch_path
454            .iter()
455            .filter_map(|node_id| self.node(*node_id).context.clone())
456            .collect();
457
458        let (bindings, partial) = self
459            .keymap
460            .borrow()
461            .bindings_for_input(input, &context_stack);
462        (bindings, partial, context_stack)
463    }
464
465    /// dispatch_key processes the keystroke
466    /// input should be set to the value of `pending` from the previous call to dispatch_key.
467    /// This returns three instructions to the input handler:
468    /// - bindings: any bindings to execute before processing this keystroke
469    /// - pending: the new set of pending keystrokes to store
470    /// - to_replay: any keystroke that had been pushed to pending, but are no-longer matched,
471    ///   these should be replayed first.
472    pub fn dispatch_key(
473        &mut self,
474        mut input: SmallVec<[Keystroke; 1]>,
475        keystroke: Keystroke,
476        dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
477    ) -> DispatchResult {
478        input.push(keystroke.clone());
479        let (bindings, pending, context_stack) = self.bindings_for_input(&input, dispatch_path);
480
481        if pending {
482            return DispatchResult {
483                pending: input,
484                pending_has_binding: !bindings.is_empty(),
485                context_stack,
486                ..Default::default()
487            };
488        } else if !bindings.is_empty() {
489            return DispatchResult {
490                bindings,
491                context_stack,
492                ..Default::default()
493            };
494        } else if input.len() == 1 {
495            return DispatchResult {
496                context_stack,
497                ..Default::default()
498            };
499        }
500        input.pop();
501
502        let (suffix, mut to_replay) = self.replay_prefix(input, dispatch_path);
503
504        let mut result = self.dispatch_key(suffix, keystroke, dispatch_path);
505        to_replay.extend(result.to_replay);
506        result.to_replay = to_replay;
507        result
508    }
509
510    /// If the user types a matching prefix of a binding and then waits for a timeout
511    /// flush_dispatch() converts any previously pending input to replay events.
512    pub fn flush_dispatch(
513        &mut self,
514        input: SmallVec<[Keystroke; 1]>,
515        dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
516    ) -> SmallVec<[Replay; 1]> {
517        let (suffix, mut to_replay) = self.replay_prefix(input, dispatch_path);
518
519        if !suffix.is_empty() {
520            to_replay.extend(self.flush_dispatch(suffix, dispatch_path))
521        }
522
523        to_replay
524    }
525
526    /// Converts the longest prefix of input to a replay event and returns the rest.
527    fn replay_prefix(
528        &self,
529        mut input: SmallVec<[Keystroke; 1]>,
530        dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
531    ) -> (SmallVec<[Keystroke; 1]>, SmallVec<[Replay; 1]>) {
532        let mut to_replay: SmallVec<[Replay; 1]> = Default::default();
533        for last in (0..input.len()).rev() {
534            let (bindings, _, _) = self.bindings_for_input(&input[0..=last], dispatch_path);
535            if !bindings.is_empty() {
536                to_replay.push(Replay {
537                    keystroke: input.drain(0..=last).next_back().unwrap(),
538                    bindings,
539                });
540                break;
541            }
542        }
543        if to_replay.is_empty() {
544            to_replay.push(Replay {
545                keystroke: input.remove(0),
546                ..Default::default()
547            });
548        }
549        (input, to_replay)
550    }
551
552    pub fn dispatch_path(&self, target: DispatchNodeId) -> SmallVec<[DispatchNodeId; 32]> {
553        let mut dispatch_path: SmallVec<[DispatchNodeId; 32]> = SmallVec::new();
554        let mut current_node_id = Some(target);
555        while let Some(node_id) = current_node_id {
556            dispatch_path.push(node_id);
557            current_node_id = self.nodes.get(node_id.0).and_then(|node| node.parent);
558        }
559        dispatch_path.reverse(); // Reverse the path so it goes from the root to the focused node.
560        dispatch_path
561    }
562
563    pub fn focus_path(&self, focus_id: FocusId) -> SmallVec<[FocusId; 8]> {
564        let mut focus_path: SmallVec<[FocusId; 8]> = SmallVec::new();
565        let mut current_node_id = self.focusable_node_ids.get(&focus_id).copied();
566        while let Some(node_id) = current_node_id {
567            let node = self.node(node_id);
568            if let Some(focus_id) = node.focus_id {
569                focus_path.push(focus_id);
570            }
571            current_node_id = node.parent;
572        }
573        focus_path.reverse(); // Reverse the path so it goes from the root to the focused node.
574        focus_path
575    }
576
577    pub fn view_path_reversed(&self, view_id: EntityId) -> impl Iterator<Item = EntityId> {
578        let mut current_node_id = self.view_node_ids.get(&view_id).copied();
579
580        std::iter::successors(
581            current_node_id.map(|node_id| self.node(node_id)),
582            |node_id| Some(self.node(node_id.parent?)),
583        )
584        .filter_map(|node| node.view_id)
585    }
586
587    pub fn node(&self, node_id: DispatchNodeId) -> &DispatchNode {
588        &self.nodes[node_id.0]
589    }
590
591    fn active_node(&mut self) -> &mut DispatchNode {
592        let active_node_id = self.active_node_id().unwrap();
593        &mut self.nodes[active_node_id.0]
594    }
595
596    pub fn focusable_node_id(&self, target: FocusId) -> Option<DispatchNodeId> {
597        self.focusable_node_ids.get(&target).copied()
598    }
599
600    pub fn root_node_id(&self) -> DispatchNodeId {
601        debug_assert!(!self.nodes.is_empty());
602        DispatchNodeId(0)
603    }
604
605    pub fn active_node_id(&self) -> Option<DispatchNodeId> {
606        self.node_stack.last().copied()
607    }
608}
609
610#[cfg(test)]
611mod tests {
612    use crate::{
613        self as gpui, DispatchResult, Element, ElementId, GlobalElementId, InspectorElementId,
614        Keystroke, LayoutId, Style,
615    };
616    use core::panic;
617    use smallvec::SmallVec;
618    use std::{cell::RefCell, ops::Range, rc::Rc};
619
620    use crate::{
621        Action, ActionRegistry, App, Bounds, Context, DispatchTree, FocusHandle, InputHandler,
622        IntoElement, KeyBinding, KeyContext, Keymap, Pixels, Point, Render, TestAppContext,
623        UTF16Selection, Window,
624    };
625
626    #[derive(PartialEq, Eq)]
627    struct TestAction;
628
629    impl Action for TestAction {
630        fn name(&self) -> &'static str {
631            "test::TestAction"
632        }
633
634        fn name_for_type() -> &'static str
635        where
636            Self: ::std::marker::Sized,
637        {
638            "test::TestAction"
639        }
640
641        fn partial_eq(&self, action: &dyn Action) -> bool {
642            action.as_any().downcast_ref::<Self>() == Some(self)
643        }
644
645        fn boxed_clone(&self) -> std::boxed::Box<dyn Action> {
646            Box::new(TestAction)
647        }
648
649        fn build(_value: serde_json::Value) -> anyhow::Result<Box<dyn Action>>
650        where
651            Self: Sized,
652        {
653            Ok(Box::new(TestAction))
654        }
655    }
656
657    #[test]
658    fn test_keybinding_for_action_bounds() {
659        let keymap = Keymap::new(vec![KeyBinding::new(
660            "cmd-n",
661            TestAction,
662            Some("ProjectPanel"),
663        )]);
664
665        let mut registry = ActionRegistry::default();
666
667        registry.load_action::<TestAction>();
668
669        let keymap = Rc::new(RefCell::new(keymap));
670
671        let tree = DispatchTree::new(keymap, Rc::new(registry));
672
673        let contexts = vec![
674            KeyContext::parse("Workspace").unwrap(),
675            KeyContext::parse("ProjectPanel").unwrap(),
676        ];
677
678        let keybinding = tree.bindings_for_action(&TestAction, &contexts);
679
680        assert!(keybinding[0].action.partial_eq(&TestAction))
681    }
682
683    #[test]
684    fn test_pending_has_binding_state() {
685        let bindings = vec![
686            KeyBinding::new("ctrl-b h", TestAction, None),
687            KeyBinding::new("space", TestAction, Some("ContextA")),
688            KeyBinding::new("space f g", TestAction, Some("ContextB")),
689        ];
690        let keymap = Rc::new(RefCell::new(Keymap::new(bindings)));
691        let mut registry = ActionRegistry::default();
692        registry.load_action::<TestAction>();
693        let mut tree = DispatchTree::new(keymap, Rc::new(registry));
694
695        type DispatchPath = SmallVec<[super::DispatchNodeId; 32]>;
696        fn dispatch(
697            tree: &mut DispatchTree,
698            pending: SmallVec<[Keystroke; 1]>,
699            key: &str,
700            path: &DispatchPath,
701        ) -> DispatchResult {
702            tree.dispatch_key(pending, Keystroke::parse(key).unwrap(), path)
703        }
704
705        let dispatch_path: DispatchPath = SmallVec::new();
706        let result = dispatch(&mut tree, SmallVec::new(), "ctrl-b", &dispatch_path);
707        assert_eq!(result.pending.len(), 1);
708        assert!(!result.pending_has_binding);
709
710        let result = dispatch(&mut tree, result.pending, "h", &dispatch_path);
711        assert_eq!(result.pending.len(), 0);
712        assert_eq!(result.bindings.len(), 1);
713        assert!(!result.pending_has_binding);
714
715        let node_id = tree.push_node();
716        tree.set_key_context(KeyContext::parse("ContextB").unwrap());
717        tree.pop_node();
718
719        let dispatch_path = tree.dispatch_path(node_id);
720        let result = dispatch(&mut tree, SmallVec::new(), "space", &dispatch_path);
721
722        assert_eq!(result.pending.len(), 1);
723        assert!(!result.pending_has_binding);
724    }
725
726    #[crate::test]
727    fn test_input_handler_pending(cx: &mut TestAppContext) {
728        #[derive(Clone)]
729        struct CustomElement {
730            focus_handle: FocusHandle,
731            text: Rc<RefCell<String>>,
732        }
733        impl CustomElement {
734            fn new(cx: &mut Context<Self>) -> Self {
735                Self {
736                    focus_handle: cx.focus_handle(),
737                    text: Rc::default(),
738                }
739            }
740        }
741        impl Element for CustomElement {
742            type RequestLayoutState = ();
743
744            type PrepaintState = ();
745
746            fn id(&self) -> Option<ElementId> {
747                Some("custom".into())
748            }
749            fn source_location(&self) -> Option<&'static panic::Location<'static>> {
750                None
751            }
752            fn request_layout(
753                &mut self,
754                _: Option<&GlobalElementId>,
755                _: Option<&InspectorElementId>,
756                window: &mut Window,
757                cx: &mut App,
758            ) -> (LayoutId, Self::RequestLayoutState) {
759                (window.request_layout(Style::default(), [], cx), ())
760            }
761            fn prepaint(
762                &mut self,
763                _: Option<&GlobalElementId>,
764                _: Option<&InspectorElementId>,
765                _: Bounds<Pixels>,
766                _: &mut Self::RequestLayoutState,
767                window: &mut Window,
768                cx: &mut App,
769            ) -> Self::PrepaintState {
770                window.set_focus_handle(&self.focus_handle, cx);
771            }
772            fn paint(
773                &mut self,
774                _: Option<&GlobalElementId>,
775                _: Option<&InspectorElementId>,
776                _: Bounds<Pixels>,
777                _: &mut Self::RequestLayoutState,
778                _: &mut Self::PrepaintState,
779                window: &mut Window,
780                cx: &mut App,
781            ) {
782                let mut key_context = KeyContext::default();
783                key_context.add("Terminal");
784                window.set_key_context(key_context);
785                window.handle_input(&self.focus_handle, self.clone(), cx);
786                window.on_action(std::any::TypeId::of::<TestAction>(), |_, _, _, _| {});
787            }
788        }
789        impl IntoElement for CustomElement {
790            type Element = Self;
791
792            fn into_element(self) -> Self::Element {
793                self
794            }
795        }
796
797        impl InputHandler for CustomElement {
798            fn selected_text_range(
799                &mut self,
800                _: bool,
801                _: &mut Window,
802                _: &mut App,
803            ) -> Option<UTF16Selection> {
804                None
805            }
806
807            fn marked_text_range(&mut self, _: &mut Window, _: &mut App) -> Option<Range<usize>> {
808                None
809            }
810
811            fn text_for_range(
812                &mut self,
813                _: Range<usize>,
814                _: &mut Option<Range<usize>>,
815                _: &mut Window,
816                _: &mut App,
817            ) -> Option<String> {
818                None
819            }
820
821            fn replace_text_in_range(
822                &mut self,
823                replacement_range: Option<Range<usize>>,
824                text: &str,
825                _: &mut Window,
826                _: &mut App,
827            ) {
828                if replacement_range.is_some() {
829                    unimplemented!()
830                }
831                self.text.borrow_mut().push_str(text)
832            }
833
834            fn replace_and_mark_text_in_range(
835                &mut self,
836                replacement_range: Option<Range<usize>>,
837                new_text: &str,
838                _: Option<Range<usize>>,
839                _: &mut Window,
840                _: &mut App,
841            ) {
842                if replacement_range.is_some() {
843                    unimplemented!()
844                }
845                self.text.borrow_mut().push_str(new_text)
846            }
847
848            fn unmark_text(&mut self, _: &mut Window, _: &mut App) {}
849
850            fn bounds_for_range(
851                &mut self,
852                _: Range<usize>,
853                _: &mut Window,
854                _: &mut App,
855            ) -> Option<Bounds<Pixels>> {
856                None
857            }
858
859            fn character_index_for_point(
860                &mut self,
861                _: Point<Pixels>,
862                _: &mut Window,
863                _: &mut App,
864            ) -> Option<usize> {
865                None
866            }
867        }
868        impl Render for CustomElement {
869            fn render(&mut self, _: &mut Window, _: &mut Context<Self>) -> impl IntoElement {
870                self.clone()
871            }
872        }
873
874        cx.update(|cx| {
875            cx.bind_keys([KeyBinding::new("ctrl-b", TestAction, Some("Terminal"))]);
876            cx.bind_keys([KeyBinding::new("ctrl-b h", TestAction, Some("Terminal"))]);
877        });
878        let (test, cx) = cx.add_window_view(|_, cx| CustomElement::new(cx));
879        cx.update(|window, cx| {
880            window.focus(&test.read(cx).focus_handle);
881            window.activate_window();
882        });
883        cx.simulate_keystrokes("ctrl-b [");
884        test.update(cx, |test, _| assert_eq!(test.text.borrow().as_str(), "["))
885    }
886}