1#[cfg(any(feature = "inspector", debug_assertions))]
2use crate::Inspector;
3use crate::{
4 Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
5 AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Capslock,
6 Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
7 DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
8 FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
9 KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
10 LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
11 MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
12 PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptButton, PromptLevel, Quad,
13 Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge,
14 SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS_X, SUBPIXEL_VARIANTS_Y, ScaledPixels, Scene, Shadow,
15 SharedString, Size, StrikethroughStyle, Style, SubscriberSet, Subscription, SystemWindowTab,
16 SystemWindowTabController, TabStopMap, TaffyLayoutEngine, Task, TextStyle, TextStyleRefinement,
17 TransformationMatrix, Underline, UnderlineStyle, WindowAppearance, WindowBackgroundAppearance,
18 WindowBounds, WindowControls, WindowDecorations, WindowOptions, WindowParams, WindowTextSystem,
19 point, prelude::*, px, rems, size, transparent_black,
20};
21use anyhow::{Context as _, Result, anyhow};
22use collections::{FxHashMap, FxHashSet};
23#[cfg(target_os = "macos")]
24use core_video::pixel_buffer::CVPixelBuffer;
25use derive_more::{Deref, DerefMut};
26use futures::FutureExt;
27use futures::channel::oneshot;
28use itertools::FoldWhile::{Continue, Done};
29use itertools::Itertools;
30use parking_lot::RwLock;
31use raw_window_handle::{HandleError, HasDisplayHandle, HasWindowHandle};
32use refineable::Refineable;
33use slotmap::SlotMap;
34use smallvec::SmallVec;
35use std::{
36 any::{Any, TypeId},
37 borrow::Cow,
38 cell::{Cell, RefCell},
39 cmp,
40 fmt::{Debug, Display},
41 hash::{Hash, Hasher},
42 marker::PhantomData,
43 mem,
44 ops::{DerefMut, Range},
45 rc::Rc,
46 sync::{
47 Arc, Weak,
48 atomic::{AtomicUsize, Ordering::SeqCst},
49 },
50 time::{Duration, Instant},
51};
52use util::post_inc;
53use util::{ResultExt, measure};
54use uuid::Uuid;
55
56mod prompts;
57
58use crate::util::atomic_incr_if_not_zero;
59pub use prompts::*;
60
61pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1536.), px(864.));
62
63/// A 6:5 aspect ratio minimum window size to be used for functional,
64/// additional-to-main-Zed windows, like the settings and rules library windows.
65pub const DEFAULT_ADDITIONAL_WINDOW_SIZE: Size<Pixels> = Size {
66 width: Pixels(900.),
67 height: Pixels(750.),
68};
69
70/// Represents the two different phases when dispatching events.
71#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
72pub enum DispatchPhase {
73 /// After the capture phase comes the bubble phase, in which mouse event listeners are
74 /// invoked front to back and keyboard event listeners are invoked from the focused element
75 /// to the root of the element tree. This is the phase you'll most commonly want to use when
76 /// registering event listeners.
77 #[default]
78 Bubble,
79 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
80 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
81 /// is used for special purposes such as clearing the "pressed" state for click events. If
82 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
83 /// outside of the immediate region may rely on detecting non-local events during this phase.
84 Capture,
85}
86
87impl DispatchPhase {
88 /// Returns true if this represents the "bubble" phase.
89 #[inline]
90 pub fn bubble(self) -> bool {
91 self == DispatchPhase::Bubble
92 }
93
94 /// Returns true if this represents the "capture" phase.
95 #[inline]
96 pub fn capture(self) -> bool {
97 self == DispatchPhase::Capture
98 }
99}
100
101struct WindowInvalidatorInner {
102 pub dirty: bool,
103 pub draw_phase: DrawPhase,
104 pub dirty_views: FxHashSet<EntityId>,
105}
106
107#[derive(Clone)]
108pub(crate) struct WindowInvalidator {
109 inner: Rc<RefCell<WindowInvalidatorInner>>,
110}
111
112impl WindowInvalidator {
113 pub fn new() -> Self {
114 WindowInvalidator {
115 inner: Rc::new(RefCell::new(WindowInvalidatorInner {
116 dirty: true,
117 draw_phase: DrawPhase::None,
118 dirty_views: FxHashSet::default(),
119 })),
120 }
121 }
122
123 pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
124 let mut inner = self.inner.borrow_mut();
125 inner.dirty_views.insert(entity);
126 if inner.draw_phase == DrawPhase::None {
127 inner.dirty = true;
128 cx.push_effect(Effect::Notify { emitter: entity });
129 true
130 } else {
131 false
132 }
133 }
134
135 pub fn is_dirty(&self) -> bool {
136 self.inner.borrow().dirty
137 }
138
139 pub fn set_dirty(&self, dirty: bool) {
140 self.inner.borrow_mut().dirty = dirty
141 }
142
143 pub fn set_phase(&self, phase: DrawPhase) {
144 self.inner.borrow_mut().draw_phase = phase
145 }
146
147 pub fn take_views(&self) -> FxHashSet<EntityId> {
148 mem::take(&mut self.inner.borrow_mut().dirty_views)
149 }
150
151 pub fn replace_views(&self, views: FxHashSet<EntityId>) {
152 self.inner.borrow_mut().dirty_views = views;
153 }
154
155 pub fn not_drawing(&self) -> bool {
156 self.inner.borrow().draw_phase == DrawPhase::None
157 }
158
159 #[track_caller]
160 pub fn debug_assert_paint(&self) {
161 debug_assert!(
162 matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
163 "this method can only be called during paint"
164 );
165 }
166
167 #[track_caller]
168 pub fn debug_assert_prepaint(&self) {
169 debug_assert!(
170 matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
171 "this method can only be called during request_layout, or prepaint"
172 );
173 }
174
175 #[track_caller]
176 pub fn debug_assert_paint_or_prepaint(&self) {
177 debug_assert!(
178 matches!(
179 self.inner.borrow().draw_phase,
180 DrawPhase::Paint | DrawPhase::Prepaint
181 ),
182 "this method can only be called during request_layout, prepaint, or paint"
183 );
184 }
185}
186
187type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
188
189pub(crate) type AnyWindowFocusListener =
190 Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
191
192pub(crate) struct WindowFocusEvent {
193 pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
194 pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
195}
196
197impl WindowFocusEvent {
198 pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
199 !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
200 }
201
202 pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
203 self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
204 }
205}
206
207/// This is provided when subscribing for `Context::on_focus_out` events.
208pub struct FocusOutEvent {
209 /// A weak focus handle representing what was blurred.
210 pub blurred: WeakFocusHandle,
211}
212
213slotmap::new_key_type! {
214 /// A globally unique identifier for a focusable element.
215 pub struct FocusId;
216}
217
218thread_local! {
219 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(1024 * 1024));
220}
221
222/// Returned when the element arena has been used and so must be cleared before the next draw.
223#[must_use]
224pub struct ArenaClearNeeded;
225
226impl ArenaClearNeeded {
227 /// Clear the element arena.
228 pub fn clear(self) {
229 ELEMENT_ARENA.with_borrow_mut(|element_arena| {
230 element_arena.clear();
231 });
232 }
233}
234
235pub(crate) type FocusMap = RwLock<SlotMap<FocusId, FocusRef>>;
236pub(crate) struct FocusRef {
237 pub(crate) ref_count: AtomicUsize,
238 pub(crate) tab_index: isize,
239 pub(crate) tab_stop: bool,
240}
241
242impl FocusId {
243 /// Obtains whether the element associated with this handle is currently focused.
244 pub fn is_focused(&self, window: &Window) -> bool {
245 window.focus == Some(*self)
246 }
247
248 /// Obtains whether the element associated with this handle contains the focused
249 /// element or is itself focused.
250 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
251 window
252 .focused(cx)
253 .is_some_and(|focused| self.contains(focused.id, window))
254 }
255
256 /// Obtains whether the element associated with this handle is contained within the
257 /// focused element or is itself focused.
258 pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
259 let focused = window.focused(cx);
260 focused.is_some_and(|focused| focused.id.contains(*self, window))
261 }
262
263 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
264 pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
265 window
266 .rendered_frame
267 .dispatch_tree
268 .focus_contains(*self, other)
269 }
270}
271
272/// A handle which can be used to track and manipulate the focused element in a window.
273pub struct FocusHandle {
274 pub(crate) id: FocusId,
275 handles: Arc<FocusMap>,
276 /// The index of this element in the tab order.
277 pub tab_index: isize,
278 /// Whether this element can be focused by tab navigation.
279 pub tab_stop: bool,
280}
281
282impl std::fmt::Debug for FocusHandle {
283 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
284 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
285 }
286}
287
288impl FocusHandle {
289 pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
290 let id = handles.write().insert(FocusRef {
291 ref_count: AtomicUsize::new(1),
292 tab_index: 0,
293 tab_stop: false,
294 });
295
296 Self {
297 id,
298 tab_index: 0,
299 tab_stop: false,
300 handles: handles.clone(),
301 }
302 }
303
304 pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
305 let lock = handles.read();
306 let focus = lock.get(id)?;
307 if atomic_incr_if_not_zero(&focus.ref_count) == 0 {
308 return None;
309 }
310 Some(Self {
311 id,
312 tab_index: focus.tab_index,
313 tab_stop: focus.tab_stop,
314 handles: handles.clone(),
315 })
316 }
317
318 /// Sets the tab index of the element associated with this handle.
319 pub fn tab_index(mut self, index: isize) -> Self {
320 self.tab_index = index;
321 if let Some(focus) = self.handles.write().get_mut(self.id) {
322 focus.tab_index = index;
323 }
324 self
325 }
326
327 /// Sets whether the element associated with this handle is a tab stop.
328 ///
329 /// When `false`, the element will not be included in the tab order.
330 pub fn tab_stop(mut self, tab_stop: bool) -> Self {
331 self.tab_stop = tab_stop;
332 if let Some(focus) = self.handles.write().get_mut(self.id) {
333 focus.tab_stop = tab_stop;
334 }
335 self
336 }
337
338 /// Converts this focus handle into a weak variant, which does not prevent it from being released.
339 pub fn downgrade(&self) -> WeakFocusHandle {
340 WeakFocusHandle {
341 id: self.id,
342 handles: Arc::downgrade(&self.handles),
343 }
344 }
345
346 /// Moves the focus to the element associated with this handle.
347 pub fn focus(&self, window: &mut Window) {
348 window.focus(self)
349 }
350
351 /// Obtains whether the element associated with this handle is currently focused.
352 pub fn is_focused(&self, window: &Window) -> bool {
353 self.id.is_focused(window)
354 }
355
356 /// Obtains whether the element associated with this handle contains the focused
357 /// element or is itself focused.
358 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
359 self.id.contains_focused(window, cx)
360 }
361
362 /// Obtains whether the element associated with this handle is contained within the
363 /// focused element or is itself focused.
364 pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
365 self.id.within_focused(window, cx)
366 }
367
368 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
369 pub fn contains(&self, other: &Self, window: &Window) -> bool {
370 self.id.contains(other.id, window)
371 }
372
373 /// Dispatch an action on the element that rendered this focus handle
374 pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
375 if let Some(node_id) = window
376 .rendered_frame
377 .dispatch_tree
378 .focusable_node_id(self.id)
379 {
380 window.dispatch_action_on_node(node_id, action, cx)
381 }
382 }
383}
384
385impl Clone for FocusHandle {
386 fn clone(&self) -> Self {
387 Self::for_id(self.id, &self.handles).unwrap()
388 }
389}
390
391impl PartialEq for FocusHandle {
392 fn eq(&self, other: &Self) -> bool {
393 self.id == other.id
394 }
395}
396
397impl Eq for FocusHandle {}
398
399impl Drop for FocusHandle {
400 fn drop(&mut self) {
401 self.handles
402 .read()
403 .get(self.id)
404 .unwrap()
405 .ref_count
406 .fetch_sub(1, SeqCst);
407 }
408}
409
410/// A weak reference to a focus handle.
411#[derive(Clone, Debug)]
412pub struct WeakFocusHandle {
413 pub(crate) id: FocusId,
414 pub(crate) handles: Weak<FocusMap>,
415}
416
417impl WeakFocusHandle {
418 /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
419 pub fn upgrade(&self) -> Option<FocusHandle> {
420 let handles = self.handles.upgrade()?;
421 FocusHandle::for_id(self.id, &handles)
422 }
423}
424
425impl PartialEq for WeakFocusHandle {
426 fn eq(&self, other: &WeakFocusHandle) -> bool {
427 self.id == other.id
428 }
429}
430
431impl Eq for WeakFocusHandle {}
432
433impl PartialEq<FocusHandle> for WeakFocusHandle {
434 fn eq(&self, other: &FocusHandle) -> bool {
435 self.id == other.id
436 }
437}
438
439impl PartialEq<WeakFocusHandle> for FocusHandle {
440 fn eq(&self, other: &WeakFocusHandle) -> bool {
441 self.id == other.id
442 }
443}
444
445/// Focusable allows users of your view to easily
446/// focus it (using window.focus_view(cx, view))
447pub trait Focusable: 'static {
448 /// Returns the focus handle associated with this view.
449 fn focus_handle(&self, cx: &App) -> FocusHandle;
450}
451
452impl<V: Focusable> Focusable for Entity<V> {
453 fn focus_handle(&self, cx: &App) -> FocusHandle {
454 self.read(cx).focus_handle(cx)
455 }
456}
457
458/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
459/// where the lifecycle of the view is handled by another view.
460pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
461
462impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
463
464/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
465pub struct DismissEvent;
466
467type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
468
469pub(crate) type AnyMouseListener =
470 Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
471
472#[derive(Clone)]
473pub(crate) struct CursorStyleRequest {
474 pub(crate) hitbox_id: Option<HitboxId>,
475 pub(crate) style: CursorStyle,
476}
477
478#[derive(Default, Eq, PartialEq)]
479pub(crate) struct HitTest {
480 pub(crate) ids: SmallVec<[HitboxId; 8]>,
481 pub(crate) hover_hitbox_count: usize,
482}
483
484/// A type of window control area that corresponds to the platform window.
485#[derive(Clone, Copy, Debug, Eq, PartialEq)]
486pub enum WindowControlArea {
487 /// An area that allows dragging of the platform window.
488 Drag,
489 /// An area that allows closing of the platform window.
490 Close,
491 /// An area that allows maximizing of the platform window.
492 Max,
493 /// An area that allows minimizing of the platform window.
494 Min,
495}
496
497/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
498#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
499pub struct HitboxId(u64);
500
501impl HitboxId {
502 /// Checks if the hitbox with this ID is currently hovered. Except when handling
503 /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
504 /// events or paint hover styles.
505 ///
506 /// See [`Hitbox::is_hovered`] for details.
507 pub fn is_hovered(self, window: &Window) -> bool {
508 let hit_test = &window.mouse_hit_test;
509 for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
510 if self == *id {
511 return true;
512 }
513 }
514 false
515 }
516
517 /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
518 /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
519 /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
520 /// this distinction.
521 pub fn should_handle_scroll(self, window: &Window) -> bool {
522 window.mouse_hit_test.ids.contains(&self)
523 }
524
525 fn next(mut self) -> HitboxId {
526 HitboxId(self.0.wrapping_add(1))
527 }
528}
529
530/// A rectangular region that potentially blocks hitboxes inserted prior.
531/// See [Window::insert_hitbox] for more details.
532#[derive(Clone, Debug, Deref)]
533pub struct Hitbox {
534 /// A unique identifier for the hitbox.
535 pub id: HitboxId,
536 /// The bounds of the hitbox.
537 #[deref]
538 pub bounds: Bounds<Pixels>,
539 /// The content mask when the hitbox was inserted.
540 pub content_mask: ContentMask<Pixels>,
541 /// Flags that specify hitbox behavior.
542 pub behavior: HitboxBehavior,
543}
544
545impl Hitbox {
546 /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
547 /// typically what you want when determining whether to handle mouse events or paint hover
548 /// styles.
549 ///
550 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
551 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
552 /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
553 ///
554 /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
555 /// Concretely, this is due to use-cases like overlays that cause the elements under to be
556 /// non-interactive while still allowing scrolling. More abstractly, this is because
557 /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
558 /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
559 /// container.
560 pub fn is_hovered(&self, window: &Window) -> bool {
561 self.id.is_hovered(window)
562 }
563
564 /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
565 /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
566 /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
567 ///
568 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
569 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
570 pub fn should_handle_scroll(&self, window: &Window) -> bool {
571 self.id.should_handle_scroll(window)
572 }
573}
574
575/// How the hitbox affects mouse behavior.
576#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
577pub enum HitboxBehavior {
578 /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
579 #[default]
580 Normal,
581
582 /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
583 /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
584 /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
585 /// [`InteractiveElement::occlude`].
586 ///
587 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
588 /// bubble-phase handler for every mouse event type:
589 ///
590 /// ```ignore
591 /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
592 /// if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
593 /// cx.stop_propagation();
594 /// }
595 /// })
596 /// ```
597 ///
598 /// This has effects beyond event handling - any use of hitbox checking, such as hover
599 /// styles and tooltops. These other behaviors are the main point of this mechanism. An
600 /// alternative might be to not affect mouse event handling - but this would allow
601 /// inconsistent UI where clicks and moves interact with elements that are not considered to
602 /// be hovered.
603 BlockMouse,
604
605 /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
606 /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
607 /// interaction except scroll events to be ignored - see the documentation of
608 /// [`Hitbox::is_hovered`] for details. This flag is set by
609 /// [`InteractiveElement::block_mouse_except_scroll`].
610 ///
611 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
612 /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
613 ///
614 /// ```ignore
615 /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, cx| {
616 /// if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
617 /// cx.stop_propagation();
618 /// }
619 /// })
620 /// ```
621 ///
622 /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
623 /// handled differently than other mouse events. If also blocking these scroll events is
624 /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
625 ///
626 /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
627 /// hover styles and tooltops. These other behaviors are the main point of this mechanism.
628 /// An alternative might be to not affect mouse event handling - but this would allow
629 /// inconsistent UI where clicks and moves interact with elements that are not considered to
630 /// be hovered.
631 BlockMouseExceptScroll,
632}
633
634/// An identifier for a tooltip.
635#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
636pub struct TooltipId(usize);
637
638impl TooltipId {
639 /// Checks if the tooltip is currently hovered.
640 pub fn is_hovered(&self, window: &Window) -> bool {
641 window
642 .tooltip_bounds
643 .as_ref()
644 .is_some_and(|tooltip_bounds| {
645 tooltip_bounds.id == *self
646 && tooltip_bounds.bounds.contains(&window.mouse_position())
647 })
648 }
649}
650
651pub(crate) struct TooltipBounds {
652 id: TooltipId,
653 bounds: Bounds<Pixels>,
654}
655
656#[derive(Clone)]
657pub(crate) struct TooltipRequest {
658 id: TooltipId,
659 tooltip: AnyTooltip,
660}
661
662pub(crate) struct DeferredDraw {
663 current_view: EntityId,
664 priority: usize,
665 parent_node: DispatchNodeId,
666 element_id_stack: SmallVec<[ElementId; 32]>,
667 text_style_stack: Vec<TextStyleRefinement>,
668 element: Option<AnyElement>,
669 absolute_offset: Point<Pixels>,
670 prepaint_range: Range<PrepaintStateIndex>,
671 paint_range: Range<PaintIndex>,
672}
673
674pub(crate) struct Frame {
675 pub(crate) focus: Option<FocusId>,
676 pub(crate) window_active: bool,
677 pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
678 accessed_element_states: Vec<(GlobalElementId, TypeId)>,
679 pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
680 pub(crate) dispatch_tree: DispatchTree,
681 pub(crate) scene: Scene,
682 pub(crate) hitboxes: Vec<Hitbox>,
683 pub(crate) window_control_hitboxes: Vec<(WindowControlArea, Hitbox)>,
684 pub(crate) deferred_draws: Vec<DeferredDraw>,
685 pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
686 pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
687 pub(crate) cursor_styles: Vec<CursorStyleRequest>,
688 #[cfg(any(test, feature = "test-support"))]
689 pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
690 #[cfg(any(feature = "inspector", debug_assertions))]
691 pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
692 #[cfg(any(feature = "inspector", debug_assertions))]
693 pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
694 pub(crate) tab_stops: TabStopMap,
695}
696
697#[derive(Clone, Default)]
698pub(crate) struct PrepaintStateIndex {
699 hitboxes_index: usize,
700 tooltips_index: usize,
701 deferred_draws_index: usize,
702 dispatch_tree_index: usize,
703 accessed_element_states_index: usize,
704 line_layout_index: LineLayoutIndex,
705}
706
707#[derive(Clone, Default)]
708pub(crate) struct PaintIndex {
709 scene_index: usize,
710 mouse_listeners_index: usize,
711 input_handlers_index: usize,
712 cursor_styles_index: usize,
713 accessed_element_states_index: usize,
714 tab_handle_index: usize,
715 line_layout_index: LineLayoutIndex,
716}
717
718impl Frame {
719 pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
720 Frame {
721 focus: None,
722 window_active: false,
723 element_states: FxHashMap::default(),
724 accessed_element_states: Vec::new(),
725 mouse_listeners: Vec::new(),
726 dispatch_tree,
727 scene: Scene::default(),
728 hitboxes: Vec::new(),
729 window_control_hitboxes: Vec::new(),
730 deferred_draws: Vec::new(),
731 input_handlers: Vec::new(),
732 tooltip_requests: Vec::new(),
733 cursor_styles: Vec::new(),
734
735 #[cfg(any(test, feature = "test-support"))]
736 debug_bounds: FxHashMap::default(),
737
738 #[cfg(any(feature = "inspector", debug_assertions))]
739 next_inspector_instance_ids: FxHashMap::default(),
740
741 #[cfg(any(feature = "inspector", debug_assertions))]
742 inspector_hitboxes: FxHashMap::default(),
743 tab_stops: TabStopMap::default(),
744 }
745 }
746
747 pub(crate) fn clear(&mut self) {
748 self.element_states.clear();
749 self.accessed_element_states.clear();
750 self.mouse_listeners.clear();
751 self.dispatch_tree.clear();
752 self.scene.clear();
753 self.input_handlers.clear();
754 self.tooltip_requests.clear();
755 self.cursor_styles.clear();
756 self.hitboxes.clear();
757 self.window_control_hitboxes.clear();
758 self.deferred_draws.clear();
759 self.tab_stops.clear();
760 self.focus = None;
761
762 #[cfg(any(feature = "inspector", debug_assertions))]
763 {
764 self.next_inspector_instance_ids.clear();
765 self.inspector_hitboxes.clear();
766 }
767 }
768
769 pub(crate) fn cursor_style(&self, window: &Window) -> Option<CursorStyle> {
770 self.cursor_styles
771 .iter()
772 .rev()
773 .fold_while(None, |style, request| match request.hitbox_id {
774 None => Done(Some(request.style)),
775 Some(hitbox_id) => Continue(
776 style.or_else(|| hitbox_id.is_hovered(window).then_some(request.style)),
777 ),
778 })
779 .into_inner()
780 }
781
782 pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
783 let mut set_hover_hitbox_count = false;
784 let mut hit_test = HitTest::default();
785 for hitbox in self.hitboxes.iter().rev() {
786 let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
787 if bounds.contains(&position) {
788 hit_test.ids.push(hitbox.id);
789 if !set_hover_hitbox_count
790 && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
791 {
792 hit_test.hover_hitbox_count = hit_test.ids.len();
793 set_hover_hitbox_count = true;
794 }
795 if hitbox.behavior == HitboxBehavior::BlockMouse {
796 break;
797 }
798 }
799 }
800 if !set_hover_hitbox_count {
801 hit_test.hover_hitbox_count = hit_test.ids.len();
802 }
803 hit_test
804 }
805
806 pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
807 self.focus
808 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
809 .unwrap_or_default()
810 }
811
812 pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
813 for element_state_key in &self.accessed_element_states {
814 if let Some((element_state_key, element_state)) =
815 prev_frame.element_states.remove_entry(element_state_key)
816 {
817 self.element_states.insert(element_state_key, element_state);
818 }
819 }
820
821 self.scene.finish();
822 }
823}
824
825#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Ord, PartialOrd)]
826enum InputModality {
827 Mouse,
828 Keyboard,
829}
830
831/// Holds the state for a specific window.
832pub struct Window {
833 pub(crate) handle: AnyWindowHandle,
834 pub(crate) invalidator: WindowInvalidator,
835 pub(crate) removed: bool,
836 pub(crate) platform_window: Box<dyn PlatformWindow>,
837 display_id: Option<DisplayId>,
838 sprite_atlas: Arc<dyn PlatformAtlas>,
839 text_system: Arc<WindowTextSystem>,
840 rem_size: Pixels,
841 /// The stack of override values for the window's rem size.
842 ///
843 /// This is used by `with_rem_size` to allow rendering an element tree with
844 /// a given rem size.
845 rem_size_override_stack: SmallVec<[Pixels; 8]>,
846 pub(crate) viewport_size: Size<Pixels>,
847 layout_engine: Option<TaffyLayoutEngine>,
848 pub(crate) root: Option<AnyView>,
849 pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
850 pub(crate) text_style_stack: Vec<TextStyleRefinement>,
851 pub(crate) rendered_entity_stack: Vec<EntityId>,
852 pub(crate) element_offset_stack: Vec<Point<Pixels>>,
853 pub(crate) element_opacity: f32,
854 pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
855 pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
856 pub(crate) image_cache_stack: Vec<AnyImageCache>,
857 pub(crate) rendered_frame: Frame,
858 pub(crate) next_frame: Frame,
859 next_hitbox_id: HitboxId,
860 pub(crate) next_tooltip_id: TooltipId,
861 pub(crate) tooltip_bounds: Option<TooltipBounds>,
862 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
863 pub(crate) dirty_views: FxHashSet<EntityId>,
864 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
865 pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
866 default_prevented: bool,
867 mouse_position: Point<Pixels>,
868 mouse_hit_test: HitTest,
869 modifiers: Modifiers,
870 capslock: Capslock,
871 scale_factor: f32,
872 pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
873 appearance: WindowAppearance,
874 pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
875 active: Rc<Cell<bool>>,
876 hovered: Rc<Cell<bool>>,
877 pub(crate) needs_present: Rc<Cell<bool>>,
878 pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
879 last_input_modality: InputModality,
880 pub(crate) refreshing: bool,
881 pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
882 pub(crate) focus: Option<FocusId>,
883 focus_enabled: bool,
884 pending_input: Option<PendingInput>,
885 pending_modifier: ModifierState,
886 pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
887 prompt: Option<RenderablePromptHandle>,
888 pub(crate) client_inset: Option<Pixels>,
889 #[cfg(any(feature = "inspector", debug_assertions))]
890 inspector: Option<Entity<Inspector>>,
891}
892
893#[derive(Clone, Debug, Default)]
894struct ModifierState {
895 modifiers: Modifiers,
896 saw_keystroke: bool,
897}
898
899#[derive(Clone, Copy, Debug, Eq, PartialEq)]
900pub(crate) enum DrawPhase {
901 None,
902 Prepaint,
903 Paint,
904 Focus,
905}
906
907#[derive(Default, Debug)]
908struct PendingInput {
909 keystrokes: SmallVec<[Keystroke; 1]>,
910 focus: Option<FocusId>,
911 timer: Option<Task<()>>,
912 needs_timeout: bool,
913}
914
915pub(crate) struct ElementStateBox {
916 pub(crate) inner: Box<dyn Any>,
917 #[cfg(debug_assertions)]
918 pub(crate) type_name: &'static str,
919}
920
921fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> Bounds<Pixels> {
922 #[cfg(target_os = "macos")]
923 {
924 const CASCADE_OFFSET: f32 = 25.0;
925
926 let display = display_id
927 .map(|id| cx.find_display(id))
928 .unwrap_or_else(|| cx.primary_display());
929
930 let display_bounds = display
931 .as_ref()
932 .map(|d| d.bounds())
933 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE));
934
935 // TODO, BUG: if you open a window with the currently active window
936 // on the stack, this will erroneously select the 'unwrap_or_else'
937 // code path
938 let (base_origin, base_size) = cx
939 .active_window()
940 .and_then(|w| {
941 w.update(cx, |_, window, _| {
942 let bounds = window.bounds();
943 (bounds.origin, bounds.size)
944 })
945 .ok()
946 })
947 .unwrap_or_else(|| {
948 let default_bounds = display
949 .as_ref()
950 .map(|d| d.default_bounds())
951 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE));
952 (default_bounds.origin, default_bounds.size)
953 });
954
955 let cascade_offset = point(px(CASCADE_OFFSET), px(CASCADE_OFFSET));
956 let proposed_origin = base_origin + cascade_offset;
957 let proposed_bounds = Bounds::new(proposed_origin, base_size);
958
959 let display_right = display_bounds.origin.x + display_bounds.size.width;
960 let display_bottom = display_bounds.origin.y + display_bounds.size.height;
961 let window_right = proposed_bounds.origin.x + proposed_bounds.size.width;
962 let window_bottom = proposed_bounds.origin.y + proposed_bounds.size.height;
963
964 let fits_horizontally = window_right <= display_right;
965 let fits_vertically = window_bottom <= display_bottom;
966
967 let final_origin = match (fits_horizontally, fits_vertically) {
968 (true, true) => proposed_origin,
969 (false, true) => point(display_bounds.origin.x, base_origin.y),
970 (true, false) => point(base_origin.x, display_bounds.origin.y),
971 (false, false) => display_bounds.origin,
972 };
973
974 Bounds::new(final_origin, base_size)
975 }
976
977 #[cfg(not(target_os = "macos"))]
978 {
979 const DEFAULT_WINDOW_OFFSET: Point<Pixels> = point(px(0.), px(35.));
980
981 // TODO, BUG: if you open a window with the currently active window
982 // on the stack, this will erroneously select the 'unwrap_or_else'
983 // code path
984 cx.active_window()
985 .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok())
986 .map(|mut bounds| {
987 bounds.origin += DEFAULT_WINDOW_OFFSET;
988 bounds
989 })
990 .unwrap_or_else(|| {
991 let display = display_id
992 .map(|id| cx.find_display(id))
993 .unwrap_or_else(|| cx.primary_display());
994
995 display
996 .as_ref()
997 .map(|display| display.default_bounds())
998 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE))
999 })
1000 }
1001}
1002
1003impl Window {
1004 pub(crate) fn new(
1005 handle: AnyWindowHandle,
1006 options: WindowOptions,
1007 cx: &mut App,
1008 ) -> Result<Self> {
1009 let WindowOptions {
1010 window_bounds,
1011 titlebar,
1012 focus,
1013 show,
1014 kind,
1015 is_movable,
1016 is_resizable,
1017 is_minimizable,
1018 display_id,
1019 window_background,
1020 app_id,
1021 window_min_size,
1022 window_decorations,
1023 #[cfg_attr(not(target_os = "macos"), allow(unused_variables))]
1024 tabbing_identifier,
1025 } = options;
1026
1027 let bounds = window_bounds
1028 .map(|bounds| bounds.get_bounds())
1029 .unwrap_or_else(|| default_bounds(display_id, cx));
1030 let mut platform_window = cx.platform.open_window(
1031 handle,
1032 WindowParams {
1033 bounds,
1034 titlebar,
1035 kind,
1036 is_movable,
1037 is_resizable,
1038 is_minimizable,
1039 focus,
1040 show,
1041 display_id,
1042 window_min_size,
1043 #[cfg(target_os = "macos")]
1044 tabbing_identifier,
1045 },
1046 )?;
1047
1048 let tab_bar_visible = platform_window.tab_bar_visible();
1049 SystemWindowTabController::init_visible(cx, tab_bar_visible);
1050 if let Some(tabs) = platform_window.tabbed_windows() {
1051 SystemWindowTabController::add_tab(cx, handle.window_id(), tabs);
1052 }
1053
1054 let display_id = platform_window.display().map(|display| display.id());
1055 let sprite_atlas = platform_window.sprite_atlas();
1056 let mouse_position = platform_window.mouse_position();
1057 let modifiers = platform_window.modifiers();
1058 let capslock = platform_window.capslock();
1059 let content_size = platform_window.content_size();
1060 let scale_factor = platform_window.scale_factor();
1061 let appearance = platform_window.appearance();
1062 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
1063 let invalidator = WindowInvalidator::new();
1064 let active = Rc::new(Cell::new(platform_window.is_active()));
1065 let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
1066 let needs_present = Rc::new(Cell::new(false));
1067 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
1068 let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
1069
1070 platform_window
1071 .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
1072 platform_window.set_background_appearance(window_background);
1073
1074 if let Some(ref window_open_state) = window_bounds {
1075 match window_open_state {
1076 WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
1077 WindowBounds::Maximized(_) => platform_window.zoom(),
1078 WindowBounds::Windowed(_) => {}
1079 }
1080 }
1081
1082 platform_window.on_close(Box::new({
1083 let window_id = handle.window_id();
1084 let mut cx = cx.to_async();
1085 move || {
1086 let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
1087 let _ = cx.update(|cx| {
1088 SystemWindowTabController::remove_tab(cx, window_id);
1089 });
1090 }
1091 }));
1092 platform_window.on_request_frame(Box::new({
1093 let mut cx = cx.to_async();
1094 let invalidator = invalidator.clone();
1095 let active = active.clone();
1096 let needs_present = needs_present.clone();
1097 let next_frame_callbacks = next_frame_callbacks.clone();
1098 let last_input_timestamp = last_input_timestamp.clone();
1099 move |request_frame_options| {
1100 let next_frame_callbacks = next_frame_callbacks.take();
1101 if !next_frame_callbacks.is_empty() {
1102 handle
1103 .update(&mut cx, |_, window, cx| {
1104 for callback in next_frame_callbacks {
1105 callback(window, cx);
1106 }
1107 })
1108 .log_err();
1109 }
1110
1111 // Keep presenting the current scene for 1 extra second since the
1112 // last input to prevent the display from underclocking the refresh rate.
1113 let needs_present = request_frame_options.require_presentation
1114 || needs_present.get()
1115 || (active.get()
1116 && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
1117
1118 if invalidator.is_dirty() || request_frame_options.force_render {
1119 measure("frame duration", || {
1120 handle
1121 .update(&mut cx, |_, window, cx| {
1122 let arena_clear_needed = window.draw(cx);
1123 window.present();
1124 // drop the arena elements after present to reduce latency
1125 arena_clear_needed.clear();
1126 })
1127 .log_err();
1128 })
1129 } else if needs_present {
1130 handle
1131 .update(&mut cx, |_, window, _| window.present())
1132 .log_err();
1133 }
1134
1135 handle
1136 .update(&mut cx, |_, window, _| {
1137 window.complete_frame();
1138 })
1139 .log_err();
1140 }
1141 }));
1142 platform_window.on_resize(Box::new({
1143 let mut cx = cx.to_async();
1144 move |_, _| {
1145 handle
1146 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1147 .log_err();
1148 }
1149 }));
1150 platform_window.on_moved(Box::new({
1151 let mut cx = cx.to_async();
1152 move || {
1153 handle
1154 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1155 .log_err();
1156 }
1157 }));
1158 platform_window.on_appearance_changed(Box::new({
1159 let mut cx = cx.to_async();
1160 move || {
1161 handle
1162 .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
1163 .log_err();
1164 }
1165 }));
1166 platform_window.on_active_status_change(Box::new({
1167 let mut cx = cx.to_async();
1168 move |active| {
1169 handle
1170 .update(&mut cx, |_, window, cx| {
1171 window.active.set(active);
1172 window.modifiers = window.platform_window.modifiers();
1173 window.capslock = window.platform_window.capslock();
1174 window
1175 .activation_observers
1176 .clone()
1177 .retain(&(), |callback| callback(window, cx));
1178
1179 window.bounds_changed(cx);
1180 window.refresh();
1181
1182 SystemWindowTabController::update_last_active(cx, window.handle.id);
1183 })
1184 .log_err();
1185 }
1186 }));
1187 platform_window.on_hover_status_change(Box::new({
1188 let mut cx = cx.to_async();
1189 move |active| {
1190 handle
1191 .update(&mut cx, |_, window, _| {
1192 window.hovered.set(active);
1193 window.refresh();
1194 })
1195 .log_err();
1196 }
1197 }));
1198 platform_window.on_input({
1199 let mut cx = cx.to_async();
1200 Box::new(move |event| {
1201 handle
1202 .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1203 .log_err()
1204 .unwrap_or(DispatchEventResult::default())
1205 })
1206 });
1207 platform_window.on_hit_test_window_control({
1208 let mut cx = cx.to_async();
1209 Box::new(move || {
1210 handle
1211 .update(&mut cx, |_, window, _cx| {
1212 for (area, hitbox) in &window.rendered_frame.window_control_hitboxes {
1213 if window.mouse_hit_test.ids.contains(&hitbox.id) {
1214 return Some(*area);
1215 }
1216 }
1217 None
1218 })
1219 .log_err()
1220 .unwrap_or(None)
1221 })
1222 });
1223 platform_window.on_move_tab_to_new_window({
1224 let mut cx = cx.to_async();
1225 Box::new(move || {
1226 handle
1227 .update(&mut cx, |_, _window, cx| {
1228 SystemWindowTabController::move_tab_to_new_window(cx, handle.window_id());
1229 })
1230 .log_err();
1231 })
1232 });
1233 platform_window.on_merge_all_windows({
1234 let mut cx = cx.to_async();
1235 Box::new(move || {
1236 handle
1237 .update(&mut cx, |_, _window, cx| {
1238 SystemWindowTabController::merge_all_windows(cx, handle.window_id());
1239 })
1240 .log_err();
1241 })
1242 });
1243 platform_window.on_select_next_tab({
1244 let mut cx = cx.to_async();
1245 Box::new(move || {
1246 handle
1247 .update(&mut cx, |_, _window, cx| {
1248 SystemWindowTabController::select_next_tab(cx, handle.window_id());
1249 })
1250 .log_err();
1251 })
1252 });
1253 platform_window.on_select_previous_tab({
1254 let mut cx = cx.to_async();
1255 Box::new(move || {
1256 handle
1257 .update(&mut cx, |_, _window, cx| {
1258 SystemWindowTabController::select_previous_tab(cx, handle.window_id())
1259 })
1260 .log_err();
1261 })
1262 });
1263 platform_window.on_toggle_tab_bar({
1264 let mut cx = cx.to_async();
1265 Box::new(move || {
1266 handle
1267 .update(&mut cx, |_, window, cx| {
1268 let tab_bar_visible = window.platform_window.tab_bar_visible();
1269 SystemWindowTabController::set_visible(cx, tab_bar_visible);
1270 })
1271 .log_err();
1272 })
1273 });
1274
1275 if let Some(app_id) = app_id {
1276 platform_window.set_app_id(&app_id);
1277 }
1278
1279 platform_window.map_window().unwrap();
1280
1281 Ok(Window {
1282 handle,
1283 invalidator,
1284 removed: false,
1285 platform_window,
1286 display_id,
1287 sprite_atlas,
1288 text_system,
1289 rem_size: px(16.),
1290 rem_size_override_stack: SmallVec::new(),
1291 viewport_size: content_size,
1292 layout_engine: Some(TaffyLayoutEngine::new()),
1293 root: None,
1294 element_id_stack: SmallVec::default(),
1295 text_style_stack: Vec::new(),
1296 rendered_entity_stack: Vec::new(),
1297 element_offset_stack: Vec::new(),
1298 content_mask_stack: Vec::new(),
1299 element_opacity: 1.0,
1300 requested_autoscroll: None,
1301 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1302 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1303 next_frame_callbacks,
1304 next_hitbox_id: HitboxId(0),
1305 next_tooltip_id: TooltipId::default(),
1306 tooltip_bounds: None,
1307 dirty_views: FxHashSet::default(),
1308 focus_listeners: SubscriberSet::new(),
1309 focus_lost_listeners: SubscriberSet::new(),
1310 default_prevented: true,
1311 mouse_position,
1312 mouse_hit_test: HitTest::default(),
1313 modifiers,
1314 capslock,
1315 scale_factor,
1316 bounds_observers: SubscriberSet::new(),
1317 appearance,
1318 appearance_observers: SubscriberSet::new(),
1319 active,
1320 hovered,
1321 needs_present,
1322 last_input_timestamp,
1323 last_input_modality: InputModality::Mouse,
1324 refreshing: false,
1325 activation_observers: SubscriberSet::new(),
1326 focus: None,
1327 focus_enabled: true,
1328 pending_input: None,
1329 pending_modifier: ModifierState::default(),
1330 pending_input_observers: SubscriberSet::new(),
1331 prompt: None,
1332 client_inset: None,
1333 image_cache_stack: Vec::new(),
1334 #[cfg(any(feature = "inspector", debug_assertions))]
1335 inspector: None,
1336 })
1337 }
1338
1339 pub(crate) fn new_focus_listener(
1340 &self,
1341 value: AnyWindowFocusListener,
1342 ) -> (Subscription, impl FnOnce() + use<>) {
1343 self.focus_listeners.insert((), value)
1344 }
1345}
1346
1347#[derive(Clone, Debug, Default, PartialEq, Eq)]
1348pub(crate) struct DispatchEventResult {
1349 pub propagate: bool,
1350 pub default_prevented: bool,
1351}
1352
1353/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1354/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1355/// to leave room to support more complex shapes in the future.
1356#[derive(Clone, Debug, Default, PartialEq, Eq)]
1357#[repr(C)]
1358pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1359 /// The bounds
1360 pub bounds: Bounds<P>,
1361}
1362
1363impl ContentMask<Pixels> {
1364 /// Scale the content mask's pixel units by the given scaling factor.
1365 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1366 ContentMask {
1367 bounds: self.bounds.scale(factor),
1368 }
1369 }
1370
1371 /// Intersect the content mask with the given content mask.
1372 pub fn intersect(&self, other: &Self) -> Self {
1373 let bounds = self.bounds.intersect(&other.bounds);
1374 ContentMask { bounds }
1375 }
1376}
1377
1378impl Window {
1379 fn mark_view_dirty(&mut self, view_id: EntityId) {
1380 // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1381 // should already be dirty.
1382 for view_id in self
1383 .rendered_frame
1384 .dispatch_tree
1385 .view_path_reversed(view_id)
1386 {
1387 if !self.dirty_views.insert(view_id) {
1388 break;
1389 }
1390 }
1391 }
1392
1393 /// Registers a callback to be invoked when the window appearance changes.
1394 pub fn observe_window_appearance(
1395 &self,
1396 mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1397 ) -> Subscription {
1398 let (subscription, activate) = self.appearance_observers.insert(
1399 (),
1400 Box::new(move |window, cx| {
1401 callback(window, cx);
1402 true
1403 }),
1404 );
1405 activate();
1406 subscription
1407 }
1408
1409 /// Replaces the root entity of the window with a new one.
1410 pub fn replace_root<E>(
1411 &mut self,
1412 cx: &mut App,
1413 build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1414 ) -> Entity<E>
1415 where
1416 E: 'static + Render,
1417 {
1418 let view = cx.new(|cx| build_view(self, cx));
1419 self.root = Some(view.clone().into());
1420 self.refresh();
1421 view
1422 }
1423
1424 /// Returns the root entity of the window, if it has one.
1425 pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1426 where
1427 E: 'static + Render,
1428 {
1429 self.root
1430 .as_ref()
1431 .map(|view| view.clone().downcast::<E>().ok())
1432 }
1433
1434 /// Obtain a handle to the window that belongs to this context.
1435 pub fn window_handle(&self) -> AnyWindowHandle {
1436 self.handle
1437 }
1438
1439 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1440 pub fn refresh(&mut self) {
1441 if self.invalidator.not_drawing() {
1442 self.refreshing = true;
1443 self.invalidator.set_dirty(true);
1444 }
1445 }
1446
1447 /// Close this window.
1448 pub fn remove_window(&mut self) {
1449 self.removed = true;
1450 }
1451
1452 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1453 pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1454 self.focus
1455 .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1456 }
1457
1458 /// Move focus to the element associated with the given [`FocusHandle`].
1459 pub fn focus(&mut self, handle: &FocusHandle) {
1460 if !self.focus_enabled || self.focus == Some(handle.id) {
1461 return;
1462 }
1463
1464 self.focus = Some(handle.id);
1465 self.clear_pending_keystrokes();
1466 self.refresh();
1467 }
1468
1469 /// Remove focus from all elements within this context's window.
1470 pub fn blur(&mut self) {
1471 if !self.focus_enabled {
1472 return;
1473 }
1474
1475 self.focus = None;
1476 self.refresh();
1477 }
1478
1479 /// Blur the window and don't allow anything in it to be focused again.
1480 pub fn disable_focus(&mut self) {
1481 self.blur();
1482 self.focus_enabled = false;
1483 }
1484
1485 /// Move focus to next tab stop.
1486 pub fn focus_next(&mut self) {
1487 if !self.focus_enabled {
1488 return;
1489 }
1490
1491 if let Some(handle) = self.rendered_frame.tab_stops.next(self.focus.as_ref()) {
1492 self.focus(&handle)
1493 }
1494 }
1495
1496 /// Move focus to previous tab stop.
1497 pub fn focus_prev(&mut self) {
1498 if !self.focus_enabled {
1499 return;
1500 }
1501
1502 if let Some(handle) = self.rendered_frame.tab_stops.prev(self.focus.as_ref()) {
1503 self.focus(&handle)
1504 }
1505 }
1506
1507 /// Accessor for the text system.
1508 pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1509 &self.text_system
1510 }
1511
1512 /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1513 pub fn text_style(&self) -> TextStyle {
1514 let mut style = TextStyle::default();
1515 for refinement in &self.text_style_stack {
1516 style.refine(refinement);
1517 }
1518 style
1519 }
1520
1521 /// Check if the platform window is maximized
1522 /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1523 pub fn is_maximized(&self) -> bool {
1524 self.platform_window.is_maximized()
1525 }
1526
1527 /// request a certain window decoration (Wayland)
1528 pub fn request_decorations(&self, decorations: WindowDecorations) {
1529 self.platform_window.request_decorations(decorations);
1530 }
1531
1532 /// Start a window resize operation (Wayland)
1533 pub fn start_window_resize(&self, edge: ResizeEdge) {
1534 self.platform_window.start_window_resize(edge);
1535 }
1536
1537 /// Return the `WindowBounds` to indicate that how a window should be opened
1538 /// after it has been closed
1539 pub fn window_bounds(&self) -> WindowBounds {
1540 self.platform_window.window_bounds()
1541 }
1542
1543 /// Return the `WindowBounds` excluding insets (Wayland and X11)
1544 pub fn inner_window_bounds(&self) -> WindowBounds {
1545 self.platform_window.inner_window_bounds()
1546 }
1547
1548 /// Dispatch the given action on the currently focused element.
1549 pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1550 let focus_id = self.focused(cx).map(|handle| handle.id);
1551
1552 let window = self.handle;
1553 cx.defer(move |cx| {
1554 window
1555 .update(cx, |_, window, cx| {
1556 let node_id = window.focus_node_id_in_rendered_frame(focus_id);
1557 window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1558 })
1559 .log_err();
1560 })
1561 }
1562
1563 pub(crate) fn dispatch_keystroke_observers(
1564 &mut self,
1565 event: &dyn Any,
1566 action: Option<Box<dyn Action>>,
1567 context_stack: Vec<KeyContext>,
1568 cx: &mut App,
1569 ) {
1570 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1571 return;
1572 };
1573
1574 cx.keystroke_observers.clone().retain(&(), move |callback| {
1575 (callback)(
1576 &KeystrokeEvent {
1577 keystroke: key_down_event.keystroke.clone(),
1578 action: action.as_ref().map(|action| action.boxed_clone()),
1579 context_stack: context_stack.clone(),
1580 },
1581 self,
1582 cx,
1583 )
1584 });
1585 }
1586
1587 pub(crate) fn dispatch_keystroke_interceptors(
1588 &mut self,
1589 event: &dyn Any,
1590 context_stack: Vec<KeyContext>,
1591 cx: &mut App,
1592 ) {
1593 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1594 return;
1595 };
1596
1597 cx.keystroke_interceptors
1598 .clone()
1599 .retain(&(), move |callback| {
1600 (callback)(
1601 &KeystrokeEvent {
1602 keystroke: key_down_event.keystroke.clone(),
1603 action: None,
1604 context_stack: context_stack.clone(),
1605 },
1606 self,
1607 cx,
1608 )
1609 });
1610 }
1611
1612 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1613 /// that are currently on the stack to be returned to the app.
1614 pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1615 let handle = self.handle;
1616 cx.defer(move |cx| {
1617 handle.update(cx, |_, window, cx| f(window, cx)).ok();
1618 });
1619 }
1620
1621 /// Subscribe to events emitted by a entity.
1622 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1623 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1624 pub fn observe<T: 'static>(
1625 &mut self,
1626 observed: &Entity<T>,
1627 cx: &mut App,
1628 mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1629 ) -> Subscription {
1630 let entity_id = observed.entity_id();
1631 let observed = observed.downgrade();
1632 let window_handle = self.handle;
1633 cx.new_observer(
1634 entity_id,
1635 Box::new(move |cx| {
1636 window_handle
1637 .update(cx, |_, window, cx| {
1638 if let Some(handle) = observed.upgrade() {
1639 on_notify(handle, window, cx);
1640 true
1641 } else {
1642 false
1643 }
1644 })
1645 .unwrap_or(false)
1646 }),
1647 )
1648 }
1649
1650 /// Subscribe to events emitted by a entity.
1651 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1652 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1653 pub fn subscribe<Emitter, Evt>(
1654 &mut self,
1655 entity: &Entity<Emitter>,
1656 cx: &mut App,
1657 mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1658 ) -> Subscription
1659 where
1660 Emitter: EventEmitter<Evt>,
1661 Evt: 'static,
1662 {
1663 let entity_id = entity.entity_id();
1664 let handle = entity.downgrade();
1665 let window_handle = self.handle;
1666 cx.new_subscription(
1667 entity_id,
1668 (
1669 TypeId::of::<Evt>(),
1670 Box::new(move |event, cx| {
1671 window_handle
1672 .update(cx, |_, window, cx| {
1673 if let Some(entity) = handle.upgrade() {
1674 let event = event.downcast_ref().expect("invalid event type");
1675 on_event(entity, event, window, cx);
1676 true
1677 } else {
1678 false
1679 }
1680 })
1681 .unwrap_or(false)
1682 }),
1683 ),
1684 )
1685 }
1686
1687 /// Register a callback to be invoked when the given `Entity` is released.
1688 pub fn observe_release<T>(
1689 &self,
1690 entity: &Entity<T>,
1691 cx: &mut App,
1692 mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1693 ) -> Subscription
1694 where
1695 T: 'static,
1696 {
1697 let entity_id = entity.entity_id();
1698 let window_handle = self.handle;
1699 let (subscription, activate) = cx.release_listeners.insert(
1700 entity_id,
1701 Box::new(move |entity, cx| {
1702 let entity = entity.downcast_mut().expect("invalid entity type");
1703 let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1704 }),
1705 );
1706 activate();
1707 subscription
1708 }
1709
1710 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1711 /// await points in async code.
1712 pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1713 AsyncWindowContext::new_context(cx.to_async(), self.handle)
1714 }
1715
1716 /// Schedule the given closure to be run directly after the current frame is rendered.
1717 pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1718 RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1719 }
1720
1721 /// Schedule a frame to be drawn on the next animation frame.
1722 ///
1723 /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1724 /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1725 ///
1726 /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1727 pub fn request_animation_frame(&self) {
1728 let entity = self.current_view();
1729 self.on_next_frame(move |_, cx| cx.notify(entity));
1730 }
1731
1732 /// Spawn the future returned by the given closure on the application thread pool.
1733 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1734 /// use within your future.
1735 #[track_caller]
1736 pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1737 where
1738 R: 'static,
1739 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1740 {
1741 let handle = self.handle;
1742 cx.spawn(async move |app| {
1743 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1744 f(&mut async_window_cx).await
1745 })
1746 }
1747
1748 fn bounds_changed(&mut self, cx: &mut App) {
1749 self.scale_factor = self.platform_window.scale_factor();
1750 self.viewport_size = self.platform_window.content_size();
1751 self.display_id = self.platform_window.display().map(|display| display.id());
1752
1753 self.refresh();
1754
1755 self.bounds_observers
1756 .clone()
1757 .retain(&(), |callback| callback(self, cx));
1758 }
1759
1760 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1761 pub fn bounds(&self) -> Bounds<Pixels> {
1762 self.platform_window.bounds()
1763 }
1764
1765 /// Set the content size of the window.
1766 pub fn resize(&mut self, size: Size<Pixels>) {
1767 self.platform_window.resize(size);
1768 }
1769
1770 /// Returns whether or not the window is currently fullscreen
1771 pub fn is_fullscreen(&self) -> bool {
1772 self.platform_window.is_fullscreen()
1773 }
1774
1775 pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1776 self.appearance = self.platform_window.appearance();
1777
1778 self.appearance_observers
1779 .clone()
1780 .retain(&(), |callback| callback(self, cx));
1781 }
1782
1783 /// Returns the appearance of the current window.
1784 pub fn appearance(&self) -> WindowAppearance {
1785 self.appearance
1786 }
1787
1788 /// Returns the size of the drawable area within the window.
1789 pub fn viewport_size(&self) -> Size<Pixels> {
1790 self.viewport_size
1791 }
1792
1793 /// Returns whether this window is focused by the operating system (receiving key events).
1794 pub fn is_window_active(&self) -> bool {
1795 self.active.get()
1796 }
1797
1798 /// Returns whether this window is considered to be the window
1799 /// that currently owns the mouse cursor.
1800 /// On mac, this is equivalent to `is_window_active`.
1801 pub fn is_window_hovered(&self) -> bool {
1802 if cfg!(any(
1803 target_os = "windows",
1804 target_os = "linux",
1805 target_os = "freebsd"
1806 )) {
1807 self.hovered.get()
1808 } else {
1809 self.is_window_active()
1810 }
1811 }
1812
1813 /// Toggle zoom on the window.
1814 pub fn zoom_window(&self) {
1815 self.platform_window.zoom();
1816 }
1817
1818 /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1819 pub fn show_window_menu(&self, position: Point<Pixels>) {
1820 self.platform_window.show_window_menu(position)
1821 }
1822
1823 /// Handle window movement for Linux and macOS.
1824 /// Tells the compositor to take control of window movement (Wayland and X11)
1825 ///
1826 /// Events may not be received during a move operation.
1827 pub fn start_window_move(&self) {
1828 self.platform_window.start_window_move()
1829 }
1830
1831 /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1832 pub fn set_client_inset(&mut self, inset: Pixels) {
1833 self.client_inset = Some(inset);
1834 self.platform_window.set_client_inset(inset);
1835 }
1836
1837 /// Returns the client_inset value by [`Self::set_client_inset`].
1838 pub fn client_inset(&self) -> Option<Pixels> {
1839 self.client_inset
1840 }
1841
1842 /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1843 pub fn window_decorations(&self) -> Decorations {
1844 self.platform_window.window_decorations()
1845 }
1846
1847 /// Returns which window controls are currently visible (Wayland)
1848 pub fn window_controls(&self) -> WindowControls {
1849 self.platform_window.window_controls()
1850 }
1851
1852 /// Updates the window's title at the platform level.
1853 pub fn set_window_title(&mut self, title: &str) {
1854 self.platform_window.set_title(title);
1855 }
1856
1857 /// Sets the application identifier.
1858 pub fn set_app_id(&mut self, app_id: &str) {
1859 self.platform_window.set_app_id(app_id);
1860 }
1861
1862 /// Sets the window background appearance.
1863 pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1864 self.platform_window
1865 .set_background_appearance(background_appearance);
1866 }
1867
1868 /// Mark the window as dirty at the platform level.
1869 pub fn set_window_edited(&mut self, edited: bool) {
1870 self.platform_window.set_edited(edited);
1871 }
1872
1873 /// Determine the display on which the window is visible.
1874 pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1875 cx.platform
1876 .displays()
1877 .into_iter()
1878 .find(|display| Some(display.id()) == self.display_id)
1879 }
1880
1881 /// Show the platform character palette.
1882 pub fn show_character_palette(&self) {
1883 self.platform_window.show_character_palette();
1884 }
1885
1886 /// The scale factor of the display associated with the window. For example, it could
1887 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1888 /// be rendered as two pixels on screen.
1889 pub fn scale_factor(&self) -> f32 {
1890 self.scale_factor
1891 }
1892
1893 /// The size of an em for the base font of the application. Adjusting this value allows the
1894 /// UI to scale, just like zooming a web page.
1895 pub fn rem_size(&self) -> Pixels {
1896 self.rem_size_override_stack
1897 .last()
1898 .copied()
1899 .unwrap_or(self.rem_size)
1900 }
1901
1902 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1903 /// UI to scale, just like zooming a web page.
1904 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1905 self.rem_size = rem_size.into();
1906 }
1907
1908 /// Acquire a globally unique identifier for the given ElementId.
1909 /// Only valid for the duration of the provided closure.
1910 pub fn with_global_id<R>(
1911 &mut self,
1912 element_id: ElementId,
1913 f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1914 ) -> R {
1915 self.element_id_stack.push(element_id);
1916 let global_id = GlobalElementId(Arc::from(&*self.element_id_stack));
1917
1918 let result = f(&global_id, self);
1919 self.element_id_stack.pop();
1920 result
1921 }
1922
1923 /// Executes the provided function with the specified rem size.
1924 ///
1925 /// This method must only be called as part of element drawing.
1926 // This function is called in a highly recursive manner in editor
1927 // prepainting, make sure its inlined to reduce the stack burden
1928 #[inline]
1929 pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1930 where
1931 F: FnOnce(&mut Self) -> R,
1932 {
1933 self.invalidator.debug_assert_paint_or_prepaint();
1934
1935 if let Some(rem_size) = rem_size {
1936 self.rem_size_override_stack.push(rem_size.into());
1937 let result = f(self);
1938 self.rem_size_override_stack.pop();
1939 result
1940 } else {
1941 f(self)
1942 }
1943 }
1944
1945 /// The line height associated with the current text style.
1946 pub fn line_height(&self) -> Pixels {
1947 self.text_style().line_height_in_pixels(self.rem_size())
1948 }
1949
1950 /// Call to prevent the default action of an event. Currently only used to prevent
1951 /// parent elements from becoming focused on mouse down.
1952 pub fn prevent_default(&mut self) {
1953 self.default_prevented = true;
1954 }
1955
1956 /// Obtain whether default has been prevented for the event currently being dispatched.
1957 pub fn default_prevented(&self) -> bool {
1958 self.default_prevented
1959 }
1960
1961 /// Determine whether the given action is available along the dispatch path to the currently focused element.
1962 pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1963 let node_id =
1964 self.focus_node_id_in_rendered_frame(self.focused(cx).map(|handle| handle.id));
1965 self.rendered_frame
1966 .dispatch_tree
1967 .is_action_available(action, node_id)
1968 }
1969
1970 /// The position of the mouse relative to the window.
1971 pub fn mouse_position(&self) -> Point<Pixels> {
1972 self.mouse_position
1973 }
1974
1975 /// The current state of the keyboard's modifiers
1976 pub fn modifiers(&self) -> Modifiers {
1977 self.modifiers
1978 }
1979
1980 /// Returns true if the last input event was keyboard-based (key press, tab navigation, etc.)
1981 /// This is used for focus-visible styling to show focus indicators only for keyboard navigation.
1982 pub fn last_input_was_keyboard(&self) -> bool {
1983 self.last_input_modality == InputModality::Keyboard
1984 }
1985
1986 /// The current state of the keyboard's capslock
1987 pub fn capslock(&self) -> Capslock {
1988 self.capslock
1989 }
1990
1991 fn complete_frame(&self) {
1992 self.platform_window.completed_frame();
1993 }
1994
1995 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1996 /// the contents of the new [`Scene`], use [`Self::present`].
1997 #[profiling::function]
1998 pub fn draw(&mut self, cx: &mut App) -> ArenaClearNeeded {
1999 self.invalidate_entities();
2000 cx.entities.clear_accessed();
2001 debug_assert!(self.rendered_entity_stack.is_empty());
2002 self.invalidator.set_dirty(false);
2003 self.requested_autoscroll = None;
2004
2005 // Restore the previously-used input handler.
2006 if let Some(input_handler) = self.platform_window.take_input_handler() {
2007 self.rendered_frame.input_handlers.push(Some(input_handler));
2008 }
2009 self.draw_roots(cx);
2010 self.dirty_views.clear();
2011 self.next_frame.window_active = self.active.get();
2012
2013 // Register requested input handler with the platform window.
2014 if let Some(input_handler) = self.next_frame.input_handlers.pop() {
2015 self.platform_window
2016 .set_input_handler(input_handler.unwrap());
2017 }
2018
2019 self.layout_engine.as_mut().unwrap().clear();
2020 self.text_system().finish_frame();
2021 self.next_frame.finish(&mut self.rendered_frame);
2022
2023 self.invalidator.set_phase(DrawPhase::Focus);
2024 let previous_focus_path = self.rendered_frame.focus_path();
2025 let previous_window_active = self.rendered_frame.window_active;
2026 mem::swap(&mut self.rendered_frame, &mut self.next_frame);
2027 self.next_frame.clear();
2028 let current_focus_path = self.rendered_frame.focus_path();
2029 let current_window_active = self.rendered_frame.window_active;
2030
2031 if previous_focus_path != current_focus_path
2032 || previous_window_active != current_window_active
2033 {
2034 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
2035 self.focus_lost_listeners
2036 .clone()
2037 .retain(&(), |listener| listener(self, cx));
2038 }
2039
2040 let event = WindowFocusEvent {
2041 previous_focus_path: if previous_window_active {
2042 previous_focus_path
2043 } else {
2044 Default::default()
2045 },
2046 current_focus_path: if current_window_active {
2047 current_focus_path
2048 } else {
2049 Default::default()
2050 },
2051 };
2052 self.focus_listeners
2053 .clone()
2054 .retain(&(), |listener| listener(&event, self, cx));
2055 }
2056
2057 debug_assert!(self.rendered_entity_stack.is_empty());
2058 self.record_entities_accessed(cx);
2059 self.reset_cursor_style(cx);
2060 self.refreshing = false;
2061 self.invalidator.set_phase(DrawPhase::None);
2062 self.needs_present.set(true);
2063
2064 ArenaClearNeeded
2065 }
2066
2067 fn record_entities_accessed(&mut self, cx: &mut App) {
2068 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2069 let mut entities = mem::take(entities_ref.deref_mut());
2070 drop(entities_ref);
2071 let handle = self.handle;
2072 cx.record_entities_accessed(
2073 handle,
2074 // Try moving window invalidator into the Window
2075 self.invalidator.clone(),
2076 &entities,
2077 );
2078 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2079 mem::swap(&mut entities, entities_ref.deref_mut());
2080 }
2081
2082 fn invalidate_entities(&mut self) {
2083 let mut views = self.invalidator.take_views();
2084 for entity in views.drain() {
2085 self.mark_view_dirty(entity);
2086 }
2087 self.invalidator.replace_views(views);
2088 }
2089
2090 #[profiling::function]
2091 fn present(&self) {
2092 self.platform_window.draw(&self.rendered_frame.scene);
2093 self.needs_present.set(false);
2094 profiling::finish_frame!();
2095 }
2096
2097 fn draw_roots(&mut self, cx: &mut App) {
2098 self.invalidator.set_phase(DrawPhase::Prepaint);
2099 self.tooltip_bounds.take();
2100
2101 let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
2102 let root_size = {
2103 #[cfg(any(feature = "inspector", debug_assertions))]
2104 {
2105 if self.inspector.is_some() {
2106 let mut size = self.viewport_size;
2107 size.width = (size.width - _inspector_width).max(px(0.0));
2108 size
2109 } else {
2110 self.viewport_size
2111 }
2112 }
2113 #[cfg(not(any(feature = "inspector", debug_assertions)))]
2114 {
2115 self.viewport_size
2116 }
2117 };
2118
2119 // Layout all root elements.
2120 let mut root_element = self.root.as_ref().unwrap().clone().into_any();
2121 root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2122
2123 #[cfg(any(feature = "inspector", debug_assertions))]
2124 let inspector_element = self.prepaint_inspector(_inspector_width, cx);
2125
2126 let mut sorted_deferred_draws =
2127 (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
2128 sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
2129 self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
2130
2131 let mut prompt_element = None;
2132 let mut active_drag_element = None;
2133 let mut tooltip_element = None;
2134 if let Some(prompt) = self.prompt.take() {
2135 let mut element = prompt.view.any_view().into_any();
2136 element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2137 prompt_element = Some(element);
2138 self.prompt = Some(prompt);
2139 } else if let Some(active_drag) = cx.active_drag.take() {
2140 let mut element = active_drag.view.clone().into_any();
2141 let offset = self.mouse_position() - active_drag.cursor_offset;
2142 element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
2143 active_drag_element = Some(element);
2144 cx.active_drag = Some(active_drag);
2145 } else {
2146 tooltip_element = self.prepaint_tooltip(cx);
2147 }
2148
2149 self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
2150
2151 // Now actually paint the elements.
2152 self.invalidator.set_phase(DrawPhase::Paint);
2153 root_element.paint(self, cx);
2154
2155 #[cfg(any(feature = "inspector", debug_assertions))]
2156 self.paint_inspector(inspector_element, cx);
2157
2158 self.paint_deferred_draws(&sorted_deferred_draws, cx);
2159
2160 if let Some(mut prompt_element) = prompt_element {
2161 prompt_element.paint(self, cx);
2162 } else if let Some(mut drag_element) = active_drag_element {
2163 drag_element.paint(self, cx);
2164 } else if let Some(mut tooltip_element) = tooltip_element {
2165 tooltip_element.paint(self, cx);
2166 }
2167
2168 #[cfg(any(feature = "inspector", debug_assertions))]
2169 self.paint_inspector_hitbox(cx);
2170 }
2171
2172 fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
2173 // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
2174 for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
2175 let Some(Some(tooltip_request)) = self
2176 .next_frame
2177 .tooltip_requests
2178 .get(tooltip_request_index)
2179 .cloned()
2180 else {
2181 log::error!("Unexpectedly absent TooltipRequest");
2182 continue;
2183 };
2184 let mut element = tooltip_request.tooltip.view.clone().into_any();
2185 let mouse_position = tooltip_request.tooltip.mouse_position;
2186 let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
2187
2188 let mut tooltip_bounds =
2189 Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
2190 let window_bounds = Bounds {
2191 origin: Point::default(),
2192 size: self.viewport_size(),
2193 };
2194
2195 if tooltip_bounds.right() > window_bounds.right() {
2196 let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
2197 if new_x >= Pixels::ZERO {
2198 tooltip_bounds.origin.x = new_x;
2199 } else {
2200 tooltip_bounds.origin.x = cmp::max(
2201 Pixels::ZERO,
2202 tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
2203 );
2204 }
2205 }
2206
2207 if tooltip_bounds.bottom() > window_bounds.bottom() {
2208 let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
2209 if new_y >= Pixels::ZERO {
2210 tooltip_bounds.origin.y = new_y;
2211 } else {
2212 tooltip_bounds.origin.y = cmp::max(
2213 Pixels::ZERO,
2214 tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
2215 );
2216 }
2217 }
2218
2219 // It's possible for an element to have an active tooltip while not being painted (e.g.
2220 // via the `visible_on_hover` method). Since mouse listeners are not active in this
2221 // case, instead update the tooltip's visibility here.
2222 let is_visible =
2223 (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
2224 if !is_visible {
2225 continue;
2226 }
2227
2228 self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
2229 element.prepaint(window, cx)
2230 });
2231
2232 self.tooltip_bounds = Some(TooltipBounds {
2233 id: tooltip_request.id,
2234 bounds: tooltip_bounds,
2235 });
2236 return Some(element);
2237 }
2238 None
2239 }
2240
2241 fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2242 assert_eq!(self.element_id_stack.len(), 0);
2243
2244 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2245 for deferred_draw_ix in deferred_draw_indices {
2246 let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2247 self.element_id_stack
2248 .clone_from(&deferred_draw.element_id_stack);
2249 self.text_style_stack
2250 .clone_from(&deferred_draw.text_style_stack);
2251 self.next_frame
2252 .dispatch_tree
2253 .set_active_node(deferred_draw.parent_node);
2254
2255 let prepaint_start = self.prepaint_index();
2256 if let Some(element) = deferred_draw.element.as_mut() {
2257 self.with_rendered_view(deferred_draw.current_view, |window| {
2258 window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
2259 element.prepaint(window, cx)
2260 });
2261 })
2262 } else {
2263 self.reuse_prepaint(deferred_draw.prepaint_range.clone());
2264 }
2265 let prepaint_end = self.prepaint_index();
2266 deferred_draw.prepaint_range = prepaint_start..prepaint_end;
2267 }
2268 assert_eq!(
2269 self.next_frame.deferred_draws.len(),
2270 0,
2271 "cannot call defer_draw during deferred drawing"
2272 );
2273 self.next_frame.deferred_draws = deferred_draws;
2274 self.element_id_stack.clear();
2275 self.text_style_stack.clear();
2276 }
2277
2278 fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2279 assert_eq!(self.element_id_stack.len(), 0);
2280
2281 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2282 for deferred_draw_ix in deferred_draw_indices {
2283 let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2284 self.element_id_stack
2285 .clone_from(&deferred_draw.element_id_stack);
2286 self.next_frame
2287 .dispatch_tree
2288 .set_active_node(deferred_draw.parent_node);
2289
2290 let paint_start = self.paint_index();
2291 if let Some(element) = deferred_draw.element.as_mut() {
2292 self.with_rendered_view(deferred_draw.current_view, |window| {
2293 element.paint(window, cx);
2294 })
2295 } else {
2296 self.reuse_paint(deferred_draw.paint_range.clone());
2297 }
2298 let paint_end = self.paint_index();
2299 deferred_draw.paint_range = paint_start..paint_end;
2300 }
2301 self.next_frame.deferred_draws = deferred_draws;
2302 self.element_id_stack.clear();
2303 }
2304
2305 pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2306 PrepaintStateIndex {
2307 hitboxes_index: self.next_frame.hitboxes.len(),
2308 tooltips_index: self.next_frame.tooltip_requests.len(),
2309 deferred_draws_index: self.next_frame.deferred_draws.len(),
2310 dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2311 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2312 line_layout_index: self.text_system.layout_index(),
2313 }
2314 }
2315
2316 pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2317 self.next_frame.hitboxes.extend(
2318 self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2319 .iter()
2320 .cloned(),
2321 );
2322 self.next_frame.tooltip_requests.extend(
2323 self.rendered_frame.tooltip_requests
2324 [range.start.tooltips_index..range.end.tooltips_index]
2325 .iter_mut()
2326 .map(|request| request.take()),
2327 );
2328 self.next_frame.accessed_element_states.extend(
2329 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2330 ..range.end.accessed_element_states_index]
2331 .iter()
2332 .map(|(id, type_id)| (id.clone(), *type_id)),
2333 );
2334 self.text_system
2335 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2336
2337 let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2338 range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2339 &mut self.rendered_frame.dispatch_tree,
2340 self.focus,
2341 );
2342
2343 if reused_subtree.contains_focus() {
2344 self.next_frame.focus = self.focus;
2345 }
2346
2347 self.next_frame.deferred_draws.extend(
2348 self.rendered_frame.deferred_draws
2349 [range.start.deferred_draws_index..range.end.deferred_draws_index]
2350 .iter()
2351 .map(|deferred_draw| DeferredDraw {
2352 current_view: deferred_draw.current_view,
2353 parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2354 element_id_stack: deferred_draw.element_id_stack.clone(),
2355 text_style_stack: deferred_draw.text_style_stack.clone(),
2356 priority: deferred_draw.priority,
2357 element: None,
2358 absolute_offset: deferred_draw.absolute_offset,
2359 prepaint_range: deferred_draw.prepaint_range.clone(),
2360 paint_range: deferred_draw.paint_range.clone(),
2361 }),
2362 );
2363 }
2364
2365 pub(crate) fn paint_index(&self) -> PaintIndex {
2366 PaintIndex {
2367 scene_index: self.next_frame.scene.len(),
2368 mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2369 input_handlers_index: self.next_frame.input_handlers.len(),
2370 cursor_styles_index: self.next_frame.cursor_styles.len(),
2371 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2372 tab_handle_index: self.next_frame.tab_stops.paint_index(),
2373 line_layout_index: self.text_system.layout_index(),
2374 }
2375 }
2376
2377 pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2378 self.next_frame.cursor_styles.extend(
2379 self.rendered_frame.cursor_styles
2380 [range.start.cursor_styles_index..range.end.cursor_styles_index]
2381 .iter()
2382 .cloned(),
2383 );
2384 self.next_frame.input_handlers.extend(
2385 self.rendered_frame.input_handlers
2386 [range.start.input_handlers_index..range.end.input_handlers_index]
2387 .iter_mut()
2388 .map(|handler| handler.take()),
2389 );
2390 self.next_frame.mouse_listeners.extend(
2391 self.rendered_frame.mouse_listeners
2392 [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2393 .iter_mut()
2394 .map(|listener| listener.take()),
2395 );
2396 self.next_frame.accessed_element_states.extend(
2397 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2398 ..range.end.accessed_element_states_index]
2399 .iter()
2400 .map(|(id, type_id)| (id.clone(), *type_id)),
2401 );
2402 self.next_frame.tab_stops.replay(
2403 &self.rendered_frame.tab_stops.insertion_history
2404 [range.start.tab_handle_index..range.end.tab_handle_index],
2405 );
2406
2407 self.text_system
2408 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2409 self.next_frame.scene.replay(
2410 range.start.scene_index..range.end.scene_index,
2411 &self.rendered_frame.scene,
2412 );
2413 }
2414
2415 /// Push a text style onto the stack, and call a function with that style active.
2416 /// Use [`Window::text_style`] to get the current, combined text style. This method
2417 /// should only be called as part of element drawing.
2418 // This function is called in a highly recursive manner in editor
2419 // prepainting, make sure its inlined to reduce the stack burden
2420 #[inline]
2421 pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2422 where
2423 F: FnOnce(&mut Self) -> R,
2424 {
2425 self.invalidator.debug_assert_paint_or_prepaint();
2426 if let Some(style) = style {
2427 self.text_style_stack.push(style);
2428 let result = f(self);
2429 self.text_style_stack.pop();
2430 result
2431 } else {
2432 f(self)
2433 }
2434 }
2435
2436 /// Updates the cursor style at the platform level. This method should only be called
2437 /// during the paint phase of element drawing.
2438 pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
2439 self.invalidator.debug_assert_paint();
2440 self.next_frame.cursor_styles.push(CursorStyleRequest {
2441 hitbox_id: Some(hitbox.id),
2442 style,
2443 });
2444 }
2445
2446 /// Updates the cursor style for the entire window at the platform level. A cursor
2447 /// style using this method will have precedence over any cursor style set using
2448 /// `set_cursor_style`. This method should only be called during the paint
2449 /// phase of element drawing.
2450 pub fn set_window_cursor_style(&mut self, style: CursorStyle) {
2451 self.invalidator.debug_assert_paint();
2452 self.next_frame.cursor_styles.push(CursorStyleRequest {
2453 hitbox_id: None,
2454 style,
2455 })
2456 }
2457
2458 /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2459 /// during the paint phase of element drawing.
2460 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2461 self.invalidator.debug_assert_prepaint();
2462 let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2463 self.next_frame
2464 .tooltip_requests
2465 .push(Some(TooltipRequest { id, tooltip }));
2466 id
2467 }
2468
2469 /// Invoke the given function with the given content mask after intersecting it
2470 /// with the current mask. This method should only be called during element drawing.
2471 // This function is called in a highly recursive manner in editor
2472 // prepainting, make sure its inlined to reduce the stack burden
2473 #[inline]
2474 pub fn with_content_mask<R>(
2475 &mut self,
2476 mask: Option<ContentMask<Pixels>>,
2477 f: impl FnOnce(&mut Self) -> R,
2478 ) -> R {
2479 self.invalidator.debug_assert_paint_or_prepaint();
2480 if let Some(mask) = mask {
2481 let mask = mask.intersect(&self.content_mask());
2482 self.content_mask_stack.push(mask);
2483 let result = f(self);
2484 self.content_mask_stack.pop();
2485 result
2486 } else {
2487 f(self)
2488 }
2489 }
2490
2491 /// Updates the global element offset relative to the current offset. This is used to implement
2492 /// scrolling. This method should only be called during the prepaint phase of element drawing.
2493 pub fn with_element_offset<R>(
2494 &mut self,
2495 offset: Point<Pixels>,
2496 f: impl FnOnce(&mut Self) -> R,
2497 ) -> R {
2498 self.invalidator.debug_assert_prepaint();
2499
2500 if offset.is_zero() {
2501 return f(self);
2502 };
2503
2504 let abs_offset = self.element_offset() + offset;
2505 self.with_absolute_element_offset(abs_offset, f)
2506 }
2507
2508 /// Updates the global element offset based on the given offset. This is used to implement
2509 /// drag handles and other manual painting of elements. This method should only be called during
2510 /// the prepaint phase of element drawing.
2511 pub fn with_absolute_element_offset<R>(
2512 &mut self,
2513 offset: Point<Pixels>,
2514 f: impl FnOnce(&mut Self) -> R,
2515 ) -> R {
2516 self.invalidator.debug_assert_prepaint();
2517 self.element_offset_stack.push(offset);
2518 let result = f(self);
2519 self.element_offset_stack.pop();
2520 result
2521 }
2522
2523 pub(crate) fn with_element_opacity<R>(
2524 &mut self,
2525 opacity: Option<f32>,
2526 f: impl FnOnce(&mut Self) -> R,
2527 ) -> R {
2528 self.invalidator.debug_assert_paint_or_prepaint();
2529
2530 let Some(opacity) = opacity else {
2531 return f(self);
2532 };
2533
2534 let previous_opacity = self.element_opacity;
2535 self.element_opacity = previous_opacity * opacity;
2536 let result = f(self);
2537 self.element_opacity = previous_opacity;
2538 result
2539 }
2540
2541 /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2542 /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2543 /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2544 /// element offset and prepaint again. See [`crate::List`] for an example. This method should only be
2545 /// called during the prepaint phase of element drawing.
2546 pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2547 self.invalidator.debug_assert_prepaint();
2548 let index = self.prepaint_index();
2549 let result = f(self);
2550 if result.is_err() {
2551 self.next_frame.hitboxes.truncate(index.hitboxes_index);
2552 self.next_frame
2553 .tooltip_requests
2554 .truncate(index.tooltips_index);
2555 self.next_frame
2556 .deferred_draws
2557 .truncate(index.deferred_draws_index);
2558 self.next_frame
2559 .dispatch_tree
2560 .truncate(index.dispatch_tree_index);
2561 self.next_frame
2562 .accessed_element_states
2563 .truncate(index.accessed_element_states_index);
2564 self.text_system.truncate_layouts(index.line_layout_index);
2565 }
2566 result
2567 }
2568
2569 /// When you call this method during [`Element::prepaint`], containing elements will attempt to
2570 /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2571 /// [`Element::prepaint`] again with a new set of bounds. See [`crate::List`] for an example of an element
2572 /// that supports this method being called on the elements it contains. This method should only be
2573 /// called during the prepaint phase of element drawing.
2574 pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2575 self.invalidator.debug_assert_prepaint();
2576 self.requested_autoscroll = Some(bounds);
2577 }
2578
2579 /// This method can be called from a containing element such as [`crate::List`] to support the autoscroll behavior
2580 /// described in [`Self::request_autoscroll`].
2581 pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2582 self.invalidator.debug_assert_prepaint();
2583 self.requested_autoscroll.take()
2584 }
2585
2586 /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2587 /// Your view will be re-drawn once the asset has finished loading.
2588 ///
2589 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2590 /// time.
2591 pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2592 let (task, is_first) = cx.fetch_asset::<A>(source);
2593 task.clone().now_or_never().or_else(|| {
2594 if is_first {
2595 let entity_id = self.current_view();
2596 self.spawn(cx, {
2597 let task = task.clone();
2598 async move |cx| {
2599 task.await;
2600
2601 cx.on_next_frame(move |_, cx| {
2602 cx.notify(entity_id);
2603 });
2604 }
2605 })
2606 .detach();
2607 }
2608
2609 None
2610 })
2611 }
2612
2613 /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2614 /// Your view will not be re-drawn once the asset has finished loading.
2615 ///
2616 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2617 /// time.
2618 pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2619 let (task, _) = cx.fetch_asset::<A>(source);
2620 task.now_or_never()
2621 }
2622 /// Obtain the current element offset. This method should only be called during the
2623 /// prepaint phase of element drawing.
2624 pub fn element_offset(&self) -> Point<Pixels> {
2625 self.invalidator.debug_assert_prepaint();
2626 self.element_offset_stack
2627 .last()
2628 .copied()
2629 .unwrap_or_default()
2630 }
2631
2632 /// Obtain the current element opacity. This method should only be called during the
2633 /// prepaint phase of element drawing.
2634 #[inline]
2635 pub(crate) fn element_opacity(&self) -> f32 {
2636 self.invalidator.debug_assert_paint_or_prepaint();
2637 self.element_opacity
2638 }
2639
2640 /// Obtain the current content mask. This method should only be called during element drawing.
2641 pub fn content_mask(&self) -> ContentMask<Pixels> {
2642 self.invalidator.debug_assert_paint_or_prepaint();
2643 self.content_mask_stack
2644 .last()
2645 .cloned()
2646 .unwrap_or_else(|| ContentMask {
2647 bounds: Bounds {
2648 origin: Point::default(),
2649 size: self.viewport_size,
2650 },
2651 })
2652 }
2653
2654 /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2655 /// This can be used within a custom element to distinguish multiple sets of child elements.
2656 pub fn with_element_namespace<R>(
2657 &mut self,
2658 element_id: impl Into<ElementId>,
2659 f: impl FnOnce(&mut Self) -> R,
2660 ) -> R {
2661 self.element_id_stack.push(element_id.into());
2662 let result = f(self);
2663 self.element_id_stack.pop();
2664 result
2665 }
2666
2667 /// Use a piece of state that exists as long this element is being rendered in consecutive frames.
2668 pub fn use_keyed_state<S: 'static>(
2669 &mut self,
2670 key: impl Into<ElementId>,
2671 cx: &mut App,
2672 init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2673 ) -> Entity<S> {
2674 let current_view = self.current_view();
2675 self.with_global_id(key.into(), |global_id, window| {
2676 window.with_element_state(global_id, |state: Option<Entity<S>>, window| {
2677 if let Some(state) = state {
2678 (state.clone(), state)
2679 } else {
2680 let new_state = cx.new(|cx| init(window, cx));
2681 cx.observe(&new_state, move |_, cx| {
2682 cx.notify(current_view);
2683 })
2684 .detach();
2685 (new_state.clone(), new_state)
2686 }
2687 })
2688 })
2689 }
2690
2691 /// Immediately push an element ID onto the stack. Useful for simplifying IDs in lists
2692 pub fn with_id<R>(&mut self, id: impl Into<ElementId>, f: impl FnOnce(&mut Self) -> R) -> R {
2693 self.with_global_id(id.into(), |_, window| f(window))
2694 }
2695
2696 /// Use a piece of state that exists as long this element is being rendered in consecutive frames, without needing to specify a key
2697 ///
2698 /// NOTE: This method uses the location of the caller to generate an ID for this state.
2699 /// If this is not sufficient to identify your state (e.g. you're rendering a list item),
2700 /// you can provide a custom ElementID using the `use_keyed_state` method.
2701 #[track_caller]
2702 pub fn use_state<S: 'static>(
2703 &mut self,
2704 cx: &mut App,
2705 init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2706 ) -> Entity<S> {
2707 self.use_keyed_state(
2708 ElementId::CodeLocation(*core::panic::Location::caller()),
2709 cx,
2710 init,
2711 )
2712 }
2713
2714 /// Updates or initializes state for an element with the given id that lives across multiple
2715 /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2716 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2717 /// when drawing the next frame. This method should only be called as part of element drawing.
2718 pub fn with_element_state<S, R>(
2719 &mut self,
2720 global_id: &GlobalElementId,
2721 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2722 ) -> R
2723 where
2724 S: 'static,
2725 {
2726 self.invalidator.debug_assert_paint_or_prepaint();
2727
2728 let key = (global_id.clone(), TypeId::of::<S>());
2729 self.next_frame.accessed_element_states.push(key.clone());
2730
2731 if let Some(any) = self
2732 .next_frame
2733 .element_states
2734 .remove(&key)
2735 .or_else(|| self.rendered_frame.element_states.remove(&key))
2736 {
2737 let ElementStateBox {
2738 inner,
2739 #[cfg(debug_assertions)]
2740 type_name,
2741 } = any;
2742 // Using the extra inner option to avoid needing to reallocate a new box.
2743 let mut state_box = inner
2744 .downcast::<Option<S>>()
2745 .map_err(|_| {
2746 #[cfg(debug_assertions)]
2747 {
2748 anyhow::anyhow!(
2749 "invalid element state type for id, requested {:?}, actual: {:?}",
2750 std::any::type_name::<S>(),
2751 type_name
2752 )
2753 }
2754
2755 #[cfg(not(debug_assertions))]
2756 {
2757 anyhow::anyhow!(
2758 "invalid element state type for id, requested {:?}",
2759 std::any::type_name::<S>(),
2760 )
2761 }
2762 })
2763 .unwrap();
2764
2765 let state = state_box.take().expect(
2766 "reentrant call to with_element_state for the same state type and element id",
2767 );
2768 let (result, state) = f(Some(state), self);
2769 state_box.replace(state);
2770 self.next_frame.element_states.insert(
2771 key,
2772 ElementStateBox {
2773 inner: state_box,
2774 #[cfg(debug_assertions)]
2775 type_name,
2776 },
2777 );
2778 result
2779 } else {
2780 let (result, state) = f(None, self);
2781 self.next_frame.element_states.insert(
2782 key,
2783 ElementStateBox {
2784 inner: Box::new(Some(state)),
2785 #[cfg(debug_assertions)]
2786 type_name: std::any::type_name::<S>(),
2787 },
2788 );
2789 result
2790 }
2791 }
2792
2793 /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2794 /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2795 /// when the element is guaranteed to have an id.
2796 ///
2797 /// The first option means 'no ID provided'
2798 /// The second option means 'not yet initialized'
2799 pub fn with_optional_element_state<S, R>(
2800 &mut self,
2801 global_id: Option<&GlobalElementId>,
2802 f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2803 ) -> R
2804 where
2805 S: 'static,
2806 {
2807 self.invalidator.debug_assert_paint_or_prepaint();
2808
2809 if let Some(global_id) = global_id {
2810 self.with_element_state(global_id, |state, cx| {
2811 let (result, state) = f(Some(state), cx);
2812 let state =
2813 state.expect("you must return some state when you pass some element id");
2814 (result, state)
2815 })
2816 } else {
2817 let (result, state) = f(None, self);
2818 debug_assert!(
2819 state.is_none(),
2820 "you must not return an element state when passing None for the global id"
2821 );
2822 result
2823 }
2824 }
2825
2826 /// Executes the given closure within the context of a tab group.
2827 #[inline]
2828 pub fn with_tab_group<R>(&mut self, index: Option<isize>, f: impl FnOnce(&mut Self) -> R) -> R {
2829 if let Some(index) = index {
2830 self.next_frame.tab_stops.begin_group(index);
2831 let result = f(self);
2832 self.next_frame.tab_stops.end_group();
2833 result
2834 } else {
2835 f(self)
2836 }
2837 }
2838
2839 /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2840 /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2841 /// with higher values being drawn on top.
2842 ///
2843 /// This method should only be called as part of the prepaint phase of element drawing.
2844 pub fn defer_draw(
2845 &mut self,
2846 element: AnyElement,
2847 absolute_offset: Point<Pixels>,
2848 priority: usize,
2849 ) {
2850 self.invalidator.debug_assert_prepaint();
2851 let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2852 self.next_frame.deferred_draws.push(DeferredDraw {
2853 current_view: self.current_view(),
2854 parent_node,
2855 element_id_stack: self.element_id_stack.clone(),
2856 text_style_stack: self.text_style_stack.clone(),
2857 priority,
2858 element: Some(element),
2859 absolute_offset,
2860 prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2861 paint_range: PaintIndex::default()..PaintIndex::default(),
2862 });
2863 }
2864
2865 /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2866 /// of geometry that are non-overlapping and have the same draw order. This is typically used
2867 /// for performance reasons.
2868 ///
2869 /// This method should only be called as part of the paint phase of element drawing.
2870 pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2871 self.invalidator.debug_assert_paint();
2872
2873 let scale_factor = self.scale_factor();
2874 let content_mask = self.content_mask();
2875 let clipped_bounds = bounds.intersect(&content_mask.bounds);
2876 if !clipped_bounds.is_empty() {
2877 self.next_frame
2878 .scene
2879 .push_layer(clipped_bounds.scale(scale_factor));
2880 }
2881
2882 let result = f(self);
2883
2884 if !clipped_bounds.is_empty() {
2885 self.next_frame.scene.pop_layer();
2886 }
2887
2888 result
2889 }
2890
2891 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2892 ///
2893 /// This method should only be called as part of the paint phase of element drawing.
2894 pub fn paint_shadows(
2895 &mut self,
2896 bounds: Bounds<Pixels>,
2897 corner_radii: Corners<Pixels>,
2898 shadows: &[BoxShadow],
2899 ) {
2900 self.invalidator.debug_assert_paint();
2901
2902 let scale_factor = self.scale_factor();
2903 let content_mask = self.content_mask();
2904 let opacity = self.element_opacity();
2905 for shadow in shadows {
2906 let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2907 self.next_frame.scene.insert_primitive(Shadow {
2908 order: 0,
2909 blur_radius: shadow.blur_radius.scale(scale_factor),
2910 bounds: shadow_bounds.scale(scale_factor),
2911 content_mask: content_mask.scale(scale_factor),
2912 corner_radii: corner_radii.scale(scale_factor),
2913 color: shadow.color.opacity(opacity),
2914 });
2915 }
2916 }
2917
2918 /// Paint one or more quads into the scene for the next frame at the current stacking context.
2919 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2920 /// see [`fill`], [`outline`], and [`quad`] to construct this type.
2921 ///
2922 /// This method should only be called as part of the paint phase of element drawing.
2923 ///
2924 /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2925 /// where the circular arcs meet. This will not display well when combined with dashed borders.
2926 /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2927 pub fn paint_quad(&mut self, quad: PaintQuad) {
2928 self.invalidator.debug_assert_paint();
2929
2930 let scale_factor = self.scale_factor();
2931 let content_mask = self.content_mask();
2932 let opacity = self.element_opacity();
2933 self.next_frame.scene.insert_primitive(Quad {
2934 order: 0,
2935 bounds: quad.bounds.scale(scale_factor),
2936 content_mask: content_mask.scale(scale_factor),
2937 background: quad.background.opacity(opacity),
2938 border_color: quad.border_color.opacity(opacity),
2939 corner_radii: quad.corner_radii.scale(scale_factor),
2940 border_widths: quad.border_widths.scale(scale_factor),
2941 border_style: quad.border_style,
2942 });
2943 }
2944
2945 /// Paint the given `Path` into the scene for the next frame at the current z-index.
2946 ///
2947 /// This method should only be called as part of the paint phase of element drawing.
2948 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2949 self.invalidator.debug_assert_paint();
2950
2951 let scale_factor = self.scale_factor();
2952 let content_mask = self.content_mask();
2953 let opacity = self.element_opacity();
2954 path.content_mask = content_mask;
2955 let color: Background = color.into();
2956 path.color = color.opacity(opacity);
2957 self.next_frame
2958 .scene
2959 .insert_primitive(path.scale(scale_factor));
2960 }
2961
2962 /// Paint an underline into the scene for the next frame at the current z-index.
2963 ///
2964 /// This method should only be called as part of the paint phase of element drawing.
2965 pub fn paint_underline(
2966 &mut self,
2967 origin: Point<Pixels>,
2968 width: Pixels,
2969 style: &UnderlineStyle,
2970 ) {
2971 self.invalidator.debug_assert_paint();
2972
2973 let scale_factor = self.scale_factor();
2974 let height = if style.wavy {
2975 style.thickness * 3.
2976 } else {
2977 style.thickness
2978 };
2979 let bounds = Bounds {
2980 origin,
2981 size: size(width, height),
2982 };
2983 let content_mask = self.content_mask();
2984 let element_opacity = self.element_opacity();
2985
2986 self.next_frame.scene.insert_primitive(Underline {
2987 order: 0,
2988 pad: 0,
2989 bounds: bounds.scale(scale_factor),
2990 content_mask: content_mask.scale(scale_factor),
2991 color: style.color.unwrap_or_default().opacity(element_opacity),
2992 thickness: style.thickness.scale(scale_factor),
2993 wavy: if style.wavy { 1 } else { 0 },
2994 });
2995 }
2996
2997 /// Paint a strikethrough into the scene for the next frame at the current z-index.
2998 ///
2999 /// This method should only be called as part of the paint phase of element drawing.
3000 pub fn paint_strikethrough(
3001 &mut self,
3002 origin: Point<Pixels>,
3003 width: Pixels,
3004 style: &StrikethroughStyle,
3005 ) {
3006 self.invalidator.debug_assert_paint();
3007
3008 let scale_factor = self.scale_factor();
3009 let height = style.thickness;
3010 let bounds = Bounds {
3011 origin,
3012 size: size(width, height),
3013 };
3014 let content_mask = self.content_mask();
3015 let opacity = self.element_opacity();
3016
3017 self.next_frame.scene.insert_primitive(Underline {
3018 order: 0,
3019 pad: 0,
3020 bounds: bounds.scale(scale_factor),
3021 content_mask: content_mask.scale(scale_factor),
3022 thickness: style.thickness.scale(scale_factor),
3023 color: style.color.unwrap_or_default().opacity(opacity),
3024 wavy: 0,
3025 });
3026 }
3027
3028 /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
3029 ///
3030 /// The y component of the origin is the baseline of the glyph.
3031 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3032 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3033 /// This method is only useful if you need to paint a single glyph that has already been shaped.
3034 ///
3035 /// This method should only be called as part of the paint phase of element drawing.
3036 pub fn paint_glyph(
3037 &mut self,
3038 origin: Point<Pixels>,
3039 font_id: FontId,
3040 glyph_id: GlyphId,
3041 font_size: Pixels,
3042 color: Hsla,
3043 ) -> Result<()> {
3044 self.invalidator.debug_assert_paint();
3045
3046 let element_opacity = self.element_opacity();
3047 let scale_factor = self.scale_factor();
3048 let glyph_origin = origin.scale(scale_factor);
3049
3050 let subpixel_variant = Point {
3051 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS_X as f32).floor() as u8,
3052 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS_Y as f32).floor() as u8,
3053 };
3054 let params = RenderGlyphParams {
3055 font_id,
3056 glyph_id,
3057 font_size,
3058 subpixel_variant,
3059 scale_factor,
3060 is_emoji: false,
3061 };
3062
3063 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
3064 if !raster_bounds.is_zero() {
3065 let tile = self
3066 .sprite_atlas
3067 .get_or_insert_with(¶ms.clone().into(), &mut || {
3068 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
3069 Ok(Some((size, Cow::Owned(bytes))))
3070 })?
3071 .expect("Callback above only errors or returns Some");
3072 let bounds = Bounds {
3073 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3074 size: tile.bounds.size.map(Into::into),
3075 };
3076 let content_mask = self.content_mask().scale(scale_factor);
3077 self.next_frame.scene.insert_primitive(MonochromeSprite {
3078 order: 0,
3079 pad: 0,
3080 bounds,
3081 content_mask,
3082 color: color.opacity(element_opacity),
3083 tile,
3084 transformation: TransformationMatrix::unit(),
3085 });
3086 }
3087 Ok(())
3088 }
3089
3090 /// Paints an emoji glyph into the scene for the next frame at the current z-index.
3091 ///
3092 /// The y component of the origin is the baseline of the glyph.
3093 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3094 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3095 /// This method is only useful if you need to paint a single emoji that has already been shaped.
3096 ///
3097 /// This method should only be called as part of the paint phase of element drawing.
3098 pub fn paint_emoji(
3099 &mut self,
3100 origin: Point<Pixels>,
3101 font_id: FontId,
3102 glyph_id: GlyphId,
3103 font_size: Pixels,
3104 ) -> Result<()> {
3105 self.invalidator.debug_assert_paint();
3106
3107 let scale_factor = self.scale_factor();
3108 let glyph_origin = origin.scale(scale_factor);
3109 let params = RenderGlyphParams {
3110 font_id,
3111 glyph_id,
3112 font_size,
3113 // We don't render emojis with subpixel variants.
3114 subpixel_variant: Default::default(),
3115 scale_factor,
3116 is_emoji: true,
3117 };
3118
3119 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
3120 if !raster_bounds.is_zero() {
3121 let tile = self
3122 .sprite_atlas
3123 .get_or_insert_with(¶ms.clone().into(), &mut || {
3124 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
3125 Ok(Some((size, Cow::Owned(bytes))))
3126 })?
3127 .expect("Callback above only errors or returns Some");
3128
3129 let bounds = Bounds {
3130 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3131 size: tile.bounds.size.map(Into::into),
3132 };
3133 let content_mask = self.content_mask().scale(scale_factor);
3134 let opacity = self.element_opacity();
3135
3136 self.next_frame.scene.insert_primitive(PolychromeSprite {
3137 order: 0,
3138 pad: 0,
3139 grayscale: false,
3140 bounds,
3141 corner_radii: Default::default(),
3142 content_mask,
3143 tile,
3144 opacity,
3145 });
3146 }
3147 Ok(())
3148 }
3149
3150 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
3151 ///
3152 /// This method should only be called as part of the paint phase of element drawing.
3153 pub fn paint_svg(
3154 &mut self,
3155 bounds: Bounds<Pixels>,
3156 path: SharedString,
3157 mut data: Option<&[u8]>,
3158 transformation: TransformationMatrix,
3159 color: Hsla,
3160 cx: &App,
3161 ) -> Result<()> {
3162 self.invalidator.debug_assert_paint();
3163
3164 let element_opacity = self.element_opacity();
3165 let scale_factor = self.scale_factor();
3166
3167 let bounds = bounds.scale(scale_factor);
3168 let params = RenderSvgParams {
3169 path,
3170 size: bounds.size.map(|pixels| {
3171 DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
3172 }),
3173 };
3174
3175 let Some(tile) =
3176 self.sprite_atlas
3177 .get_or_insert_with(¶ms.clone().into(), &mut || {
3178 let Some((size, bytes)) = cx.svg_renderer.render_alpha_mask(¶ms, data)?
3179 else {
3180 return Ok(None);
3181 };
3182 Ok(Some((size, Cow::Owned(bytes))))
3183 })?
3184 else {
3185 return Ok(());
3186 };
3187 let content_mask = self.content_mask().scale(scale_factor);
3188 let svg_bounds = Bounds {
3189 origin: bounds.center()
3190 - Point::new(
3191 ScaledPixels(tile.bounds.size.width.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3192 ScaledPixels(tile.bounds.size.height.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3193 ),
3194 size: tile
3195 .bounds
3196 .size
3197 .map(|value| ScaledPixels(value.0 as f32 / SMOOTH_SVG_SCALE_FACTOR)),
3198 };
3199
3200 self.next_frame.scene.insert_primitive(MonochromeSprite {
3201 order: 0,
3202 pad: 0,
3203 bounds: svg_bounds
3204 .map_origin(|origin| origin.round())
3205 .map_size(|size| size.ceil()),
3206 content_mask,
3207 color: color.opacity(element_opacity),
3208 tile,
3209 transformation,
3210 });
3211
3212 Ok(())
3213 }
3214
3215 /// Paint an image into the scene for the next frame at the current z-index.
3216 /// This method will panic if the frame_index is not valid
3217 ///
3218 /// This method should only be called as part of the paint phase of element drawing.
3219 pub fn paint_image(
3220 &mut self,
3221 bounds: Bounds<Pixels>,
3222 corner_radii: Corners<Pixels>,
3223 data: Arc<RenderImage>,
3224 frame_index: usize,
3225 grayscale: bool,
3226 ) -> Result<()> {
3227 self.invalidator.debug_assert_paint();
3228
3229 let scale_factor = self.scale_factor();
3230 let bounds = bounds.scale(scale_factor);
3231 let params = RenderImageParams {
3232 image_id: data.id,
3233 frame_index,
3234 };
3235
3236 let tile = self
3237 .sprite_atlas
3238 .get_or_insert_with(¶ms.into(), &mut || {
3239 Ok(Some((
3240 data.size(frame_index),
3241 Cow::Borrowed(
3242 data.as_bytes(frame_index)
3243 .expect("It's the caller's job to pass a valid frame index"),
3244 ),
3245 )))
3246 })?
3247 .expect("Callback above only returns Some");
3248 let content_mask = self.content_mask().scale(scale_factor);
3249 let corner_radii = corner_radii.scale(scale_factor);
3250 let opacity = self.element_opacity();
3251
3252 self.next_frame.scene.insert_primitive(PolychromeSprite {
3253 order: 0,
3254 pad: 0,
3255 grayscale,
3256 bounds: bounds
3257 .map_origin(|origin| origin.floor())
3258 .map_size(|size| size.ceil()),
3259 content_mask,
3260 corner_radii,
3261 tile,
3262 opacity,
3263 });
3264 Ok(())
3265 }
3266
3267 /// Paint a surface into the scene for the next frame at the current z-index.
3268 ///
3269 /// This method should only be called as part of the paint phase of element drawing.
3270 #[cfg(target_os = "macos")]
3271 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
3272 use crate::PaintSurface;
3273
3274 self.invalidator.debug_assert_paint();
3275
3276 let scale_factor = self.scale_factor();
3277 let bounds = bounds.scale(scale_factor);
3278 let content_mask = self.content_mask().scale(scale_factor);
3279 self.next_frame.scene.insert_primitive(PaintSurface {
3280 order: 0,
3281 bounds,
3282 content_mask,
3283 image_buffer,
3284 });
3285 }
3286
3287 /// Removes an image from the sprite atlas.
3288 pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
3289 for frame_index in 0..data.frame_count() {
3290 let params = RenderImageParams {
3291 image_id: data.id,
3292 frame_index,
3293 };
3294
3295 self.sprite_atlas.remove(¶ms.clone().into());
3296 }
3297
3298 Ok(())
3299 }
3300
3301 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
3302 /// layout is being requested, along with the layout ids of any children. This method is called during
3303 /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
3304 ///
3305 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3306 #[must_use]
3307 pub fn request_layout(
3308 &mut self,
3309 style: Style,
3310 children: impl IntoIterator<Item = LayoutId>,
3311 cx: &mut App,
3312 ) -> LayoutId {
3313 self.invalidator.debug_assert_prepaint();
3314
3315 cx.layout_id_buffer.clear();
3316 cx.layout_id_buffer.extend(children);
3317 let rem_size = self.rem_size();
3318 let scale_factor = self.scale_factor();
3319
3320 self.layout_engine.as_mut().unwrap().request_layout(
3321 style,
3322 rem_size,
3323 scale_factor,
3324 &cx.layout_id_buffer,
3325 )
3326 }
3327
3328 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
3329 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
3330 /// determine the element's size. One place this is used internally is when measuring text.
3331 ///
3332 /// The given closure is invoked at layout time with the known dimensions and available space and
3333 /// returns a `Size`.
3334 ///
3335 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3336 pub fn request_measured_layout<F>(&mut self, style: Style, measure: F) -> LayoutId
3337 where
3338 F: Fn(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
3339 + 'static,
3340 {
3341 self.invalidator.debug_assert_prepaint();
3342
3343 let rem_size = self.rem_size();
3344 let scale_factor = self.scale_factor();
3345 self.layout_engine
3346 .as_mut()
3347 .unwrap()
3348 .request_measured_layout(style, rem_size, scale_factor, measure)
3349 }
3350
3351 /// Compute the layout for the given id within the given available space.
3352 /// This method is called for its side effect, typically by the framework prior to painting.
3353 /// After calling it, you can request the bounds of the given layout node id or any descendant.
3354 ///
3355 /// This method should only be called as part of the prepaint phase of element drawing.
3356 pub fn compute_layout(
3357 &mut self,
3358 layout_id: LayoutId,
3359 available_space: Size<AvailableSpace>,
3360 cx: &mut App,
3361 ) {
3362 self.invalidator.debug_assert_prepaint();
3363
3364 let mut layout_engine = self.layout_engine.take().unwrap();
3365 layout_engine.compute_layout(layout_id, available_space, self, cx);
3366 self.layout_engine = Some(layout_engine);
3367 }
3368
3369 /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
3370 /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
3371 ///
3372 /// This method should only be called as part of element drawing.
3373 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
3374 self.invalidator.debug_assert_prepaint();
3375
3376 let scale_factor = self.scale_factor();
3377 let mut bounds = self
3378 .layout_engine
3379 .as_mut()
3380 .unwrap()
3381 .layout_bounds(layout_id, scale_factor)
3382 .map(Into::into);
3383 bounds.origin += self.element_offset();
3384 bounds
3385 }
3386
3387 /// This method should be called during `prepaint`. You can use
3388 /// the returned [Hitbox] during `paint` or in an event handler
3389 /// to determine whether the inserted hitbox was the topmost.
3390 ///
3391 /// This method should only be called as part of the prepaint phase of element drawing.
3392 pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
3393 self.invalidator.debug_assert_prepaint();
3394
3395 let content_mask = self.content_mask();
3396 let mut id = self.next_hitbox_id;
3397 self.next_hitbox_id = self.next_hitbox_id.next();
3398 let hitbox = Hitbox {
3399 id,
3400 bounds,
3401 content_mask,
3402 behavior,
3403 };
3404 self.next_frame.hitboxes.push(hitbox.clone());
3405 hitbox
3406 }
3407
3408 /// Set a hitbox which will act as a control area of the platform window.
3409 ///
3410 /// This method should only be called as part of the paint phase of element drawing.
3411 pub fn insert_window_control_hitbox(&mut self, area: WindowControlArea, hitbox: Hitbox) {
3412 self.invalidator.debug_assert_paint();
3413 self.next_frame.window_control_hitboxes.push((area, hitbox));
3414 }
3415
3416 /// Sets the key context for the current element. This context will be used to translate
3417 /// keybindings into actions.
3418 ///
3419 /// This method should only be called as part of the paint phase of element drawing.
3420 pub fn set_key_context(&mut self, context: KeyContext) {
3421 self.invalidator.debug_assert_paint();
3422 self.next_frame.dispatch_tree.set_key_context(context);
3423 }
3424
3425 /// Sets the focus handle for the current element. This handle will be used to manage focus state
3426 /// and keyboard event dispatch for the element.
3427 ///
3428 /// This method should only be called as part of the prepaint phase of element drawing.
3429 pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3430 self.invalidator.debug_assert_prepaint();
3431 if focus_handle.is_focused(self) {
3432 self.next_frame.focus = Some(focus_handle.id);
3433 }
3434 self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3435 }
3436
3437 /// Sets the view id for the current element, which will be used to manage view caching.
3438 ///
3439 /// This method should only be called as part of element prepaint. We plan on removing this
3440 /// method eventually when we solve some issues that require us to construct editor elements
3441 /// directly instead of always using editors via views.
3442 pub fn set_view_id(&mut self, view_id: EntityId) {
3443 self.invalidator.debug_assert_prepaint();
3444 self.next_frame.dispatch_tree.set_view_id(view_id);
3445 }
3446
3447 /// Get the entity ID for the currently rendering view
3448 pub fn current_view(&self) -> EntityId {
3449 self.invalidator.debug_assert_paint_or_prepaint();
3450 self.rendered_entity_stack.last().copied().unwrap()
3451 }
3452
3453 pub(crate) fn with_rendered_view<R>(
3454 &mut self,
3455 id: EntityId,
3456 f: impl FnOnce(&mut Self) -> R,
3457 ) -> R {
3458 self.rendered_entity_stack.push(id);
3459 let result = f(self);
3460 self.rendered_entity_stack.pop();
3461 result
3462 }
3463
3464 /// Executes the provided function with the specified image cache.
3465 pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3466 where
3467 F: FnOnce(&mut Self) -> R,
3468 {
3469 if let Some(image_cache) = image_cache {
3470 self.image_cache_stack.push(image_cache);
3471 let result = f(self);
3472 self.image_cache_stack.pop();
3473 result
3474 } else {
3475 f(self)
3476 }
3477 }
3478
3479 /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3480 /// platform to receive textual input with proper integration with concerns such
3481 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3482 /// rendered.
3483 ///
3484 /// This method should only be called as part of the paint phase of element drawing.
3485 ///
3486 /// [element_input_handler]: crate::ElementInputHandler
3487 pub fn handle_input(
3488 &mut self,
3489 focus_handle: &FocusHandle,
3490 input_handler: impl InputHandler,
3491 cx: &App,
3492 ) {
3493 self.invalidator.debug_assert_paint();
3494
3495 if focus_handle.is_focused(self) {
3496 let cx = self.to_async(cx);
3497 self.next_frame
3498 .input_handlers
3499 .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3500 }
3501 }
3502
3503 /// Register a mouse event listener on the window for the next frame. The type of event
3504 /// is determined by the first parameter of the given listener. When the next frame is rendered
3505 /// the listener will be cleared.
3506 ///
3507 /// This method should only be called as part of the paint phase of element drawing.
3508 pub fn on_mouse_event<Event: MouseEvent>(
3509 &mut self,
3510 mut listener: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3511 ) {
3512 self.invalidator.debug_assert_paint();
3513
3514 self.next_frame.mouse_listeners.push(Some(Box::new(
3515 move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3516 if let Some(event) = event.downcast_ref() {
3517 listener(event, phase, window, cx)
3518 }
3519 },
3520 )));
3521 }
3522
3523 /// Register a key event listener on this node for the next frame. The type of event
3524 /// is determined by the first parameter of the given listener. When the next frame is rendered
3525 /// the listener will be cleared.
3526 ///
3527 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3528 /// a specific need to register a listener yourself.
3529 ///
3530 /// This method should only be called as part of the paint phase of element drawing.
3531 pub fn on_key_event<Event: KeyEvent>(
3532 &mut self,
3533 listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3534 ) {
3535 self.invalidator.debug_assert_paint();
3536
3537 self.next_frame.dispatch_tree.on_key_event(Rc::new(
3538 move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3539 if let Some(event) = event.downcast_ref::<Event>() {
3540 listener(event, phase, window, cx)
3541 }
3542 },
3543 ));
3544 }
3545
3546 /// Register a modifiers changed event listener on the window for the next frame.
3547 ///
3548 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3549 /// a specific need to register a global listener.
3550 ///
3551 /// This method should only be called as part of the paint phase of element drawing.
3552 pub fn on_modifiers_changed(
3553 &mut self,
3554 listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3555 ) {
3556 self.invalidator.debug_assert_paint();
3557
3558 self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3559 move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3560 listener(event, window, cx)
3561 },
3562 ));
3563 }
3564
3565 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3566 /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3567 /// Returns a subscription and persists until the subscription is dropped.
3568 pub fn on_focus_in(
3569 &mut self,
3570 handle: &FocusHandle,
3571 cx: &mut App,
3572 mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3573 ) -> Subscription {
3574 let focus_id = handle.id;
3575 let (subscription, activate) =
3576 self.new_focus_listener(Box::new(move |event, window, cx| {
3577 if event.is_focus_in(focus_id) {
3578 listener(window, cx);
3579 }
3580 true
3581 }));
3582 cx.defer(move |_| activate());
3583 subscription
3584 }
3585
3586 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3587 /// Returns a subscription and persists until the subscription is dropped.
3588 pub fn on_focus_out(
3589 &mut self,
3590 handle: &FocusHandle,
3591 cx: &mut App,
3592 mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3593 ) -> Subscription {
3594 let focus_id = handle.id;
3595 let (subscription, activate) =
3596 self.new_focus_listener(Box::new(move |event, window, cx| {
3597 if let Some(blurred_id) = event.previous_focus_path.last().copied()
3598 && event.is_focus_out(focus_id)
3599 {
3600 let event = FocusOutEvent {
3601 blurred: WeakFocusHandle {
3602 id: blurred_id,
3603 handles: Arc::downgrade(&cx.focus_handles),
3604 },
3605 };
3606 listener(event, window, cx)
3607 }
3608 true
3609 }));
3610 cx.defer(move |_| activate());
3611 subscription
3612 }
3613
3614 fn reset_cursor_style(&self, cx: &mut App) {
3615 // Set the cursor only if we're the active window.
3616 if self.is_window_hovered() {
3617 let style = self
3618 .rendered_frame
3619 .cursor_style(self)
3620 .unwrap_or(CursorStyle::Arrow);
3621 cx.platform.set_cursor_style(style);
3622 }
3623 }
3624
3625 /// Dispatch a given keystroke as though the user had typed it.
3626 /// You can create a keystroke with Keystroke::parse("").
3627 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3628 let keystroke = keystroke.with_simulated_ime();
3629 let result = self.dispatch_event(
3630 PlatformInput::KeyDown(KeyDownEvent {
3631 keystroke: keystroke.clone(),
3632 is_held: false,
3633 prefer_character_input: false,
3634 }),
3635 cx,
3636 );
3637 if !result.propagate {
3638 return true;
3639 }
3640
3641 if let Some(input) = keystroke.key_char
3642 && let Some(mut input_handler) = self.platform_window.take_input_handler()
3643 {
3644 input_handler.dispatch_input(&input, self, cx);
3645 self.platform_window.set_input_handler(input_handler);
3646 return true;
3647 }
3648
3649 false
3650 }
3651
3652 /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3653 /// binding for the action (last binding added to the keymap).
3654 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3655 self.highest_precedence_binding_for_action(action)
3656 .map(|binding| {
3657 binding
3658 .keystrokes()
3659 .iter()
3660 .map(ToString::to_string)
3661 .collect::<Vec<_>>()
3662 .join(" ")
3663 })
3664 .unwrap_or_else(|| action.name().to_string())
3665 }
3666
3667 /// Dispatch a mouse or keyboard event on the window.
3668 #[profiling::function]
3669 pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3670 self.last_input_timestamp.set(Instant::now());
3671
3672 // Track whether this input was keyboard-based for focus-visible styling
3673 self.last_input_modality = match &event {
3674 PlatformInput::KeyDown(_) | PlatformInput::ModifiersChanged(_) => {
3675 InputModality::Keyboard
3676 }
3677 PlatformInput::MouseDown(e) if e.is_focusing() => InputModality::Mouse,
3678 _ => self.last_input_modality,
3679 };
3680
3681 // Handlers may set this to false by calling `stop_propagation`.
3682 cx.propagate_event = true;
3683 // Handlers may set this to true by calling `prevent_default`.
3684 self.default_prevented = false;
3685
3686 let event = match event {
3687 // Track the mouse position with our own state, since accessing the platform
3688 // API for the mouse position can only occur on the main thread.
3689 PlatformInput::MouseMove(mouse_move) => {
3690 self.mouse_position = mouse_move.position;
3691 self.modifiers = mouse_move.modifiers;
3692 PlatformInput::MouseMove(mouse_move)
3693 }
3694 PlatformInput::MouseDown(mouse_down) => {
3695 self.mouse_position = mouse_down.position;
3696 self.modifiers = mouse_down.modifiers;
3697 PlatformInput::MouseDown(mouse_down)
3698 }
3699 PlatformInput::MouseUp(mouse_up) => {
3700 self.mouse_position = mouse_up.position;
3701 self.modifiers = mouse_up.modifiers;
3702 PlatformInput::MouseUp(mouse_up)
3703 }
3704 PlatformInput::MouseExited(mouse_exited) => {
3705 self.modifiers = mouse_exited.modifiers;
3706 PlatformInput::MouseExited(mouse_exited)
3707 }
3708 PlatformInput::ModifiersChanged(modifiers_changed) => {
3709 self.modifiers = modifiers_changed.modifiers;
3710 self.capslock = modifiers_changed.capslock;
3711 PlatformInput::ModifiersChanged(modifiers_changed)
3712 }
3713 PlatformInput::ScrollWheel(scroll_wheel) => {
3714 self.mouse_position = scroll_wheel.position;
3715 self.modifiers = scroll_wheel.modifiers;
3716 PlatformInput::ScrollWheel(scroll_wheel)
3717 }
3718 // Translate dragging and dropping of external files from the operating system
3719 // to internal drag and drop events.
3720 PlatformInput::FileDrop(file_drop) => match file_drop {
3721 FileDropEvent::Entered { position, paths } => {
3722 self.mouse_position = position;
3723 if cx.active_drag.is_none() {
3724 cx.active_drag = Some(AnyDrag {
3725 value: Arc::new(paths.clone()),
3726 view: cx.new(|_| paths).into(),
3727 cursor_offset: position,
3728 cursor_style: None,
3729 });
3730 }
3731 PlatformInput::MouseMove(MouseMoveEvent {
3732 position,
3733 pressed_button: Some(MouseButton::Left),
3734 modifiers: Modifiers::default(),
3735 })
3736 }
3737 FileDropEvent::Pending { position } => {
3738 self.mouse_position = position;
3739 PlatformInput::MouseMove(MouseMoveEvent {
3740 position,
3741 pressed_button: Some(MouseButton::Left),
3742 modifiers: Modifiers::default(),
3743 })
3744 }
3745 FileDropEvent::Submit { position } => {
3746 cx.activate(true);
3747 self.mouse_position = position;
3748 PlatformInput::MouseUp(MouseUpEvent {
3749 button: MouseButton::Left,
3750 position,
3751 modifiers: Modifiers::default(),
3752 click_count: 1,
3753 })
3754 }
3755 FileDropEvent::Exited => {
3756 cx.active_drag.take();
3757 PlatformInput::FileDrop(FileDropEvent::Exited)
3758 }
3759 },
3760 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3761 };
3762
3763 if let Some(any_mouse_event) = event.mouse_event() {
3764 self.dispatch_mouse_event(any_mouse_event, cx);
3765 } else if let Some(any_key_event) = event.keyboard_event() {
3766 self.dispatch_key_event(any_key_event, cx);
3767 }
3768
3769 DispatchEventResult {
3770 propagate: cx.propagate_event,
3771 default_prevented: self.default_prevented,
3772 }
3773 }
3774
3775 fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3776 let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3777 if hit_test != self.mouse_hit_test {
3778 self.mouse_hit_test = hit_test;
3779 self.reset_cursor_style(cx);
3780 }
3781
3782 #[cfg(any(feature = "inspector", debug_assertions))]
3783 if self.is_inspector_picking(cx) {
3784 self.handle_inspector_mouse_event(event, cx);
3785 // When inspector is picking, all other mouse handling is skipped.
3786 return;
3787 }
3788
3789 let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3790
3791 // Capture phase, events bubble from back to front. Handlers for this phase are used for
3792 // special purposes, such as detecting events outside of a given Bounds.
3793 for listener in &mut mouse_listeners {
3794 let listener = listener.as_mut().unwrap();
3795 listener(event, DispatchPhase::Capture, self, cx);
3796 if !cx.propagate_event {
3797 break;
3798 }
3799 }
3800
3801 // Bubble phase, where most normal handlers do their work.
3802 if cx.propagate_event {
3803 for listener in mouse_listeners.iter_mut().rev() {
3804 let listener = listener.as_mut().unwrap();
3805 listener(event, DispatchPhase::Bubble, self, cx);
3806 if !cx.propagate_event {
3807 break;
3808 }
3809 }
3810 }
3811
3812 self.rendered_frame.mouse_listeners = mouse_listeners;
3813
3814 if cx.has_active_drag() {
3815 if event.is::<MouseMoveEvent>() {
3816 // If this was a mouse move event, redraw the window so that the
3817 // active drag can follow the mouse cursor.
3818 self.refresh();
3819 } else if event.is::<MouseUpEvent>() {
3820 // If this was a mouse up event, cancel the active drag and redraw
3821 // the window.
3822 cx.active_drag = None;
3823 self.refresh();
3824 }
3825 }
3826 }
3827
3828 fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3829 if self.invalidator.is_dirty() {
3830 self.draw(cx).clear();
3831 }
3832
3833 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3834 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3835
3836 let mut keystroke: Option<Keystroke> = None;
3837
3838 if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3839 if event.modifiers.number_of_modifiers() == 0
3840 && self.pending_modifier.modifiers.number_of_modifiers() == 1
3841 && !self.pending_modifier.saw_keystroke
3842 {
3843 let key = match self.pending_modifier.modifiers {
3844 modifiers if modifiers.shift => Some("shift"),
3845 modifiers if modifiers.control => Some("control"),
3846 modifiers if modifiers.alt => Some("alt"),
3847 modifiers if modifiers.platform => Some("platform"),
3848 modifiers if modifiers.function => Some("function"),
3849 _ => None,
3850 };
3851 if let Some(key) = key {
3852 keystroke = Some(Keystroke {
3853 key: key.to_string(),
3854 key_char: None,
3855 modifiers: Modifiers::default(),
3856 });
3857 }
3858 }
3859
3860 if self.pending_modifier.modifiers.number_of_modifiers() == 0
3861 && event.modifiers.number_of_modifiers() == 1
3862 {
3863 self.pending_modifier.saw_keystroke = false
3864 }
3865 self.pending_modifier.modifiers = event.modifiers
3866 } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3867 self.pending_modifier.saw_keystroke = true;
3868 keystroke = Some(key_down_event.keystroke.clone());
3869 }
3870
3871 let Some(keystroke) = keystroke else {
3872 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3873 return;
3874 };
3875
3876 cx.propagate_event = true;
3877 self.dispatch_keystroke_interceptors(event, self.context_stack(), cx);
3878 if !cx.propagate_event {
3879 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3880 return;
3881 }
3882
3883 let mut currently_pending = self.pending_input.take().unwrap_or_default();
3884 if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3885 currently_pending = PendingInput::default();
3886 }
3887
3888 let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3889 currently_pending.keystrokes,
3890 keystroke,
3891 &dispatch_path,
3892 );
3893
3894 if !match_result.to_replay.is_empty() {
3895 self.replay_pending_input(match_result.to_replay, cx);
3896 cx.propagate_event = true;
3897 }
3898
3899 if !match_result.pending.is_empty() {
3900 currently_pending.timer.take();
3901 currently_pending.keystrokes = match_result.pending;
3902 currently_pending.focus = self.focus;
3903
3904 let text_input_requires_timeout = event
3905 .downcast_ref::<KeyDownEvent>()
3906 .filter(|key_down| key_down.keystroke.key_char.is_some())
3907 .and_then(|_| self.platform_window.take_input_handler())
3908 .map_or(false, |mut input_handler| {
3909 let accepts = input_handler.accepts_text_input(self, cx);
3910 self.platform_window.set_input_handler(input_handler);
3911 accepts
3912 });
3913
3914 currently_pending.needs_timeout |=
3915 match_result.pending_has_binding || text_input_requires_timeout;
3916
3917 if currently_pending.needs_timeout {
3918 currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3919 cx.background_executor.timer(Duration::from_secs(1)).await;
3920 cx.update(move |window, cx| {
3921 let Some(currently_pending) = window
3922 .pending_input
3923 .take()
3924 .filter(|pending| pending.focus == window.focus)
3925 else {
3926 return;
3927 };
3928
3929 let node_id = window.focus_node_id_in_rendered_frame(window.focus);
3930 let dispatch_path =
3931 window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3932
3933 let to_replay = window
3934 .rendered_frame
3935 .dispatch_tree
3936 .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3937
3938 window.pending_input_changed(cx);
3939 window.replay_pending_input(to_replay, cx)
3940 })
3941 .log_err();
3942 }));
3943 } else {
3944 currently_pending.timer = None;
3945 }
3946 self.pending_input = Some(currently_pending);
3947 self.pending_input_changed(cx);
3948 cx.propagate_event = false;
3949 return;
3950 }
3951
3952 let skip_bindings = event
3953 .downcast_ref::<KeyDownEvent>()
3954 .filter(|key_down_event| key_down_event.prefer_character_input)
3955 .map(|_| {
3956 self.platform_window
3957 .take_input_handler()
3958 .map_or(false, |mut input_handler| {
3959 let accepts = input_handler.accepts_text_input(self, cx);
3960 self.platform_window.set_input_handler(input_handler);
3961 // If modifiers are not excessive (e.g. AltGr), and the input handler is accepting text input,
3962 // we prefer the text input over bindings.
3963 accepts
3964 })
3965 })
3966 .unwrap_or(false);
3967
3968 if !skip_bindings {
3969 for binding in match_result.bindings {
3970 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3971 if !cx.propagate_event {
3972 self.dispatch_keystroke_observers(
3973 event,
3974 Some(binding.action),
3975 match_result.context_stack,
3976 cx,
3977 );
3978 self.pending_input_changed(cx);
3979 return;
3980 }
3981 }
3982 }
3983
3984 self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
3985 self.pending_input_changed(cx);
3986 }
3987
3988 fn finish_dispatch_key_event(
3989 &mut self,
3990 event: &dyn Any,
3991 dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3992 context_stack: Vec<KeyContext>,
3993 cx: &mut App,
3994 ) {
3995 self.dispatch_key_down_up_event(event, &dispatch_path, cx);
3996 if !cx.propagate_event {
3997 return;
3998 }
3999
4000 self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
4001 if !cx.propagate_event {
4002 return;
4003 }
4004
4005 self.dispatch_keystroke_observers(event, None, context_stack, cx);
4006 }
4007
4008 fn pending_input_changed(&mut self, cx: &mut App) {
4009 self.pending_input_observers
4010 .clone()
4011 .retain(&(), |callback| callback(self, cx));
4012 }
4013
4014 fn dispatch_key_down_up_event(
4015 &mut self,
4016 event: &dyn Any,
4017 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
4018 cx: &mut App,
4019 ) {
4020 // Capture phase
4021 for node_id in dispatch_path {
4022 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4023
4024 for key_listener in node.key_listeners.clone() {
4025 key_listener(event, DispatchPhase::Capture, self, cx);
4026 if !cx.propagate_event {
4027 return;
4028 }
4029 }
4030 }
4031
4032 // Bubble phase
4033 for node_id in dispatch_path.iter().rev() {
4034 // Handle low level key events
4035 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4036 for key_listener in node.key_listeners.clone() {
4037 key_listener(event, DispatchPhase::Bubble, self, cx);
4038 if !cx.propagate_event {
4039 return;
4040 }
4041 }
4042 }
4043 }
4044
4045 fn dispatch_modifiers_changed_event(
4046 &mut self,
4047 event: &dyn Any,
4048 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
4049 cx: &mut App,
4050 ) {
4051 let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
4052 return;
4053 };
4054 for node_id in dispatch_path.iter().rev() {
4055 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4056 for listener in node.modifiers_changed_listeners.clone() {
4057 listener(event, self, cx);
4058 if !cx.propagate_event {
4059 return;
4060 }
4061 }
4062 }
4063 }
4064
4065 /// Determine whether a potential multi-stroke key binding is in progress on this window.
4066 pub fn has_pending_keystrokes(&self) -> bool {
4067 self.pending_input.is_some()
4068 }
4069
4070 pub(crate) fn clear_pending_keystrokes(&mut self) {
4071 self.pending_input.take();
4072 }
4073
4074 /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
4075 pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
4076 self.pending_input
4077 .as_ref()
4078 .map(|pending_input| pending_input.keystrokes.as_slice())
4079 }
4080
4081 fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
4082 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4083 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
4084
4085 'replay: for replay in replays {
4086 let event = KeyDownEvent {
4087 keystroke: replay.keystroke.clone(),
4088 is_held: false,
4089 prefer_character_input: true,
4090 };
4091
4092 cx.propagate_event = true;
4093 for binding in replay.bindings {
4094 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
4095 if !cx.propagate_event {
4096 self.dispatch_keystroke_observers(
4097 &event,
4098 Some(binding.action),
4099 Vec::default(),
4100 cx,
4101 );
4102 continue 'replay;
4103 }
4104 }
4105
4106 self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
4107 if !cx.propagate_event {
4108 continue 'replay;
4109 }
4110 if let Some(input) = replay.keystroke.key_char.as_ref().cloned()
4111 && let Some(mut input_handler) = self.platform_window.take_input_handler()
4112 {
4113 input_handler.dispatch_input(&input, self, cx);
4114 self.platform_window.set_input_handler(input_handler)
4115 }
4116 }
4117 }
4118
4119 fn focus_node_id_in_rendered_frame(&self, focus_id: Option<FocusId>) -> DispatchNodeId {
4120 focus_id
4121 .and_then(|focus_id| {
4122 self.rendered_frame
4123 .dispatch_tree
4124 .focusable_node_id(focus_id)
4125 })
4126 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id())
4127 }
4128
4129 fn dispatch_action_on_node(
4130 &mut self,
4131 node_id: DispatchNodeId,
4132 action: &dyn Action,
4133 cx: &mut App,
4134 ) {
4135 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
4136
4137 // Capture phase for global actions.
4138 cx.propagate_event = true;
4139 if let Some(mut global_listeners) = cx
4140 .global_action_listeners
4141 .remove(&action.as_any().type_id())
4142 {
4143 for listener in &global_listeners {
4144 listener(action.as_any(), DispatchPhase::Capture, cx);
4145 if !cx.propagate_event {
4146 break;
4147 }
4148 }
4149
4150 global_listeners.extend(
4151 cx.global_action_listeners
4152 .remove(&action.as_any().type_id())
4153 .unwrap_or_default(),
4154 );
4155
4156 cx.global_action_listeners
4157 .insert(action.as_any().type_id(), global_listeners);
4158 }
4159
4160 if !cx.propagate_event {
4161 return;
4162 }
4163
4164 // Capture phase for window actions.
4165 for node_id in &dispatch_path {
4166 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4167 for DispatchActionListener {
4168 action_type,
4169 listener,
4170 } in node.action_listeners.clone()
4171 {
4172 let any_action = action.as_any();
4173 if action_type == any_action.type_id() {
4174 listener(any_action, DispatchPhase::Capture, self, cx);
4175
4176 if !cx.propagate_event {
4177 return;
4178 }
4179 }
4180 }
4181 }
4182
4183 // Bubble phase for window actions.
4184 for node_id in dispatch_path.iter().rev() {
4185 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4186 for DispatchActionListener {
4187 action_type,
4188 listener,
4189 } in node.action_listeners.clone()
4190 {
4191 let any_action = action.as_any();
4192 if action_type == any_action.type_id() {
4193 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4194 listener(any_action, DispatchPhase::Bubble, self, cx);
4195
4196 if !cx.propagate_event {
4197 return;
4198 }
4199 }
4200 }
4201 }
4202
4203 // Bubble phase for global actions.
4204 if let Some(mut global_listeners) = cx
4205 .global_action_listeners
4206 .remove(&action.as_any().type_id())
4207 {
4208 for listener in global_listeners.iter().rev() {
4209 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4210
4211 listener(action.as_any(), DispatchPhase::Bubble, cx);
4212 if !cx.propagate_event {
4213 break;
4214 }
4215 }
4216
4217 global_listeners.extend(
4218 cx.global_action_listeners
4219 .remove(&action.as_any().type_id())
4220 .unwrap_or_default(),
4221 );
4222
4223 cx.global_action_listeners
4224 .insert(action.as_any().type_id(), global_listeners);
4225 }
4226 }
4227
4228 /// Register the given handler to be invoked whenever the global of the given type
4229 /// is updated.
4230 pub fn observe_global<G: Global>(
4231 &mut self,
4232 cx: &mut App,
4233 f: impl Fn(&mut Window, &mut App) + 'static,
4234 ) -> Subscription {
4235 let window_handle = self.handle;
4236 let (subscription, activate) = cx.global_observers.insert(
4237 TypeId::of::<G>(),
4238 Box::new(move |cx| {
4239 window_handle
4240 .update(cx, |_, window, cx| f(window, cx))
4241 .is_ok()
4242 }),
4243 );
4244 cx.defer(move |_| activate());
4245 subscription
4246 }
4247
4248 /// Focus the current window and bring it to the foreground at the platform level.
4249 pub fn activate_window(&self) {
4250 self.platform_window.activate();
4251 }
4252
4253 /// Minimize the current window at the platform level.
4254 pub fn minimize_window(&self) {
4255 self.platform_window.minimize();
4256 }
4257
4258 /// Toggle full screen status on the current window at the platform level.
4259 pub fn toggle_fullscreen(&self) {
4260 self.platform_window.toggle_fullscreen();
4261 }
4262
4263 /// Updates the IME panel position suggestions for languages like japanese, chinese.
4264 pub fn invalidate_character_coordinates(&self) {
4265 self.on_next_frame(|window, cx| {
4266 if let Some(mut input_handler) = window.platform_window.take_input_handler() {
4267 if let Some(bounds) = input_handler.selected_bounds(window, cx) {
4268 window.platform_window.update_ime_position(bounds);
4269 }
4270 window.platform_window.set_input_handler(input_handler);
4271 }
4272 });
4273 }
4274
4275 /// Present a platform dialog.
4276 /// The provided message will be presented, along with buttons for each answer.
4277 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
4278 pub fn prompt<T>(
4279 &mut self,
4280 level: PromptLevel,
4281 message: &str,
4282 detail: Option<&str>,
4283 answers: &[T],
4284 cx: &mut App,
4285 ) -> oneshot::Receiver<usize>
4286 where
4287 T: Clone + Into<PromptButton>,
4288 {
4289 let prompt_builder = cx.prompt_builder.take();
4290 let Some(prompt_builder) = prompt_builder else {
4291 unreachable!("Re-entrant window prompting is not supported by GPUI");
4292 };
4293
4294 let answers = answers
4295 .iter()
4296 .map(|answer| answer.clone().into())
4297 .collect::<Vec<_>>();
4298
4299 let receiver = match &prompt_builder {
4300 PromptBuilder::Default => self
4301 .platform_window
4302 .prompt(level, message, detail, &answers)
4303 .unwrap_or_else(|| {
4304 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4305 }),
4306 PromptBuilder::Custom(_) => {
4307 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4308 }
4309 };
4310
4311 cx.prompt_builder = Some(prompt_builder);
4312
4313 receiver
4314 }
4315
4316 fn build_custom_prompt(
4317 &mut self,
4318 prompt_builder: &PromptBuilder,
4319 level: PromptLevel,
4320 message: &str,
4321 detail: Option<&str>,
4322 answers: &[PromptButton],
4323 cx: &mut App,
4324 ) -> oneshot::Receiver<usize> {
4325 let (sender, receiver) = oneshot::channel();
4326 let handle = PromptHandle::new(sender);
4327 let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
4328 self.prompt = Some(handle);
4329 receiver
4330 }
4331
4332 /// Returns the current context stack.
4333 pub fn context_stack(&self) -> Vec<KeyContext> {
4334 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4335 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4336 dispatch_tree
4337 .dispatch_path(node_id)
4338 .iter()
4339 .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
4340 .collect()
4341 }
4342
4343 /// Returns all available actions for the focused element.
4344 pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
4345 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4346 let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
4347 for action_type in cx.global_action_listeners.keys() {
4348 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
4349 let action = cx.actions.build_action_type(action_type).ok();
4350 if let Some(action) = action {
4351 actions.insert(ix, action);
4352 }
4353 }
4354 }
4355 actions
4356 }
4357
4358 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
4359 /// returned in the order they were added. For display, the last binding should take precedence.
4360 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
4361 self.rendered_frame
4362 .dispatch_tree
4363 .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
4364 }
4365
4366 /// Returns the highest precedence key binding that invokes an action on the currently focused
4367 /// element. This is more efficient than getting the last result of `bindings_for_action`.
4368 pub fn highest_precedence_binding_for_action(&self, action: &dyn Action) -> Option<KeyBinding> {
4369 self.rendered_frame
4370 .dispatch_tree
4371 .highest_precedence_binding_for_action(
4372 action,
4373 &self.rendered_frame.dispatch_tree.context_stack,
4374 )
4375 }
4376
4377 /// Returns the key bindings for an action in a context.
4378 pub fn bindings_for_action_in_context(
4379 &self,
4380 action: &dyn Action,
4381 context: KeyContext,
4382 ) -> Vec<KeyBinding> {
4383 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4384 dispatch_tree.bindings_for_action(action, &[context])
4385 }
4386
4387 /// Returns the highest precedence key binding for an action in a context. This is more
4388 /// efficient than getting the last result of `bindings_for_action_in_context`.
4389 pub fn highest_precedence_binding_for_action_in_context(
4390 &self,
4391 action: &dyn Action,
4392 context: KeyContext,
4393 ) -> Option<KeyBinding> {
4394 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4395 dispatch_tree.highest_precedence_binding_for_action(action, &[context])
4396 }
4397
4398 /// Returns any bindings that would invoke an action on the given focus handle if it were
4399 /// focused. Bindings are returned in the order they were added. For display, the last binding
4400 /// should take precedence.
4401 pub fn bindings_for_action_in(
4402 &self,
4403 action: &dyn Action,
4404 focus_handle: &FocusHandle,
4405 ) -> Vec<KeyBinding> {
4406 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4407 let Some(context_stack) = self.context_stack_for_focus_handle(focus_handle) else {
4408 return vec![];
4409 };
4410 dispatch_tree.bindings_for_action(action, &context_stack)
4411 }
4412
4413 /// Returns the highest precedence key binding that would invoke an action on the given focus
4414 /// handle if it were focused. This is more efficient than getting the last result of
4415 /// `bindings_for_action_in`.
4416 pub fn highest_precedence_binding_for_action_in(
4417 &self,
4418 action: &dyn Action,
4419 focus_handle: &FocusHandle,
4420 ) -> Option<KeyBinding> {
4421 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4422 let context_stack = self.context_stack_for_focus_handle(focus_handle)?;
4423 dispatch_tree.highest_precedence_binding_for_action(action, &context_stack)
4424 }
4425
4426 fn context_stack_for_focus_handle(
4427 &self,
4428 focus_handle: &FocusHandle,
4429 ) -> Option<Vec<KeyContext>> {
4430 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4431 let node_id = dispatch_tree.focusable_node_id(focus_handle.id)?;
4432 let context_stack: Vec<_> = dispatch_tree
4433 .dispatch_path(node_id)
4434 .into_iter()
4435 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
4436 .collect();
4437 Some(context_stack)
4438 }
4439
4440 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
4441 pub fn listener_for<T: 'static, E>(
4442 &self,
4443 view: &Entity<T>,
4444 f: impl Fn(&mut T, &E, &mut Window, &mut Context<T>) + 'static,
4445 ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
4446 let view = view.downgrade();
4447 move |e: &E, window: &mut Window, cx: &mut App| {
4448 view.update(cx, |view, cx| f(view, e, window, cx)).ok();
4449 }
4450 }
4451
4452 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
4453 pub fn handler_for<E: 'static, Callback: Fn(&mut E, &mut Window, &mut Context<E>) + 'static>(
4454 &self,
4455 entity: &Entity<E>,
4456 f: Callback,
4457 ) -> impl Fn(&mut Window, &mut App) + 'static {
4458 let entity = entity.downgrade();
4459 move |window: &mut Window, cx: &mut App| {
4460 entity.update(cx, |entity, cx| f(entity, window, cx)).ok();
4461 }
4462 }
4463
4464 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
4465 /// If the callback returns false, the window won't be closed.
4466 pub fn on_window_should_close(
4467 &self,
4468 cx: &App,
4469 f: impl Fn(&mut Window, &mut App) -> bool + 'static,
4470 ) {
4471 let mut cx = self.to_async(cx);
4472 self.platform_window.on_should_close(Box::new(move || {
4473 cx.update(|window, cx| f(window, cx)).unwrap_or(true)
4474 }))
4475 }
4476
4477 /// Register an action listener on this node for the next frame. The type of action
4478 /// is determined by the first parameter of the given listener. When the next frame is rendered
4479 /// the listener will be cleared.
4480 ///
4481 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4482 /// a specific need to register a listener yourself.
4483 ///
4484 /// This method should only be called as part of the paint phase of element drawing.
4485 pub fn on_action(
4486 &mut self,
4487 action_type: TypeId,
4488 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4489 ) {
4490 self.invalidator.debug_assert_paint();
4491
4492 self.next_frame
4493 .dispatch_tree
4494 .on_action(action_type, Rc::new(listener));
4495 }
4496
4497 /// Register a capturing action listener on this node for the next frame if the condition is true.
4498 /// The type of action is determined by the first parameter of the given listener. When the next
4499 /// frame is rendered the listener will be cleared.
4500 ///
4501 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4502 /// a specific need to register a listener yourself.
4503 ///
4504 /// This method should only be called as part of the paint phase of element drawing.
4505 pub fn on_action_when(
4506 &mut self,
4507 condition: bool,
4508 action_type: TypeId,
4509 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4510 ) {
4511 self.invalidator.debug_assert_paint();
4512
4513 if condition {
4514 self.next_frame
4515 .dispatch_tree
4516 .on_action(action_type, Rc::new(listener));
4517 }
4518 }
4519
4520 /// Read information about the GPU backing this window.
4521 /// Currently returns None on Mac and Windows.
4522 pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4523 self.platform_window.gpu_specs()
4524 }
4525
4526 /// Perform titlebar double-click action.
4527 /// This is macOS specific.
4528 pub fn titlebar_double_click(&self) {
4529 self.platform_window.titlebar_double_click();
4530 }
4531
4532 /// Gets the window's title at the platform level.
4533 /// This is macOS specific.
4534 pub fn window_title(&self) -> String {
4535 self.platform_window.get_title()
4536 }
4537
4538 /// Returns a list of all tabbed windows and their titles.
4539 /// This is macOS specific.
4540 pub fn tabbed_windows(&self) -> Option<Vec<SystemWindowTab>> {
4541 self.platform_window.tabbed_windows()
4542 }
4543
4544 /// Returns the tab bar visibility.
4545 /// This is macOS specific.
4546 pub fn tab_bar_visible(&self) -> bool {
4547 self.platform_window.tab_bar_visible()
4548 }
4549
4550 /// Merges all open windows into a single tabbed window.
4551 /// This is macOS specific.
4552 pub fn merge_all_windows(&self) {
4553 self.platform_window.merge_all_windows()
4554 }
4555
4556 /// Moves the tab to a new containing window.
4557 /// This is macOS specific.
4558 pub fn move_tab_to_new_window(&self) {
4559 self.platform_window.move_tab_to_new_window()
4560 }
4561
4562 /// Shows or hides the window tab overview.
4563 /// This is macOS specific.
4564 pub fn toggle_window_tab_overview(&self) {
4565 self.platform_window.toggle_window_tab_overview()
4566 }
4567
4568 /// Sets the tabbing identifier for the window.
4569 /// This is macOS specific.
4570 pub fn set_tabbing_identifier(&self, tabbing_identifier: Option<String>) {
4571 self.platform_window
4572 .set_tabbing_identifier(tabbing_identifier)
4573 }
4574
4575 /// Toggles the inspector mode on this window.
4576 #[cfg(any(feature = "inspector", debug_assertions))]
4577 pub fn toggle_inspector(&mut self, cx: &mut App) {
4578 self.inspector = match self.inspector {
4579 None => Some(cx.new(|_| Inspector::new())),
4580 Some(_) => None,
4581 };
4582 self.refresh();
4583 }
4584
4585 /// Returns true if the window is in inspector mode.
4586 pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4587 #[cfg(any(feature = "inspector", debug_assertions))]
4588 {
4589 if let Some(inspector) = &self.inspector {
4590 return inspector.read(_cx).is_picking();
4591 }
4592 }
4593 false
4594 }
4595
4596 /// Executes the provided function with mutable access to an inspector state.
4597 #[cfg(any(feature = "inspector", debug_assertions))]
4598 pub fn with_inspector_state<T: 'static, R>(
4599 &mut self,
4600 _inspector_id: Option<&crate::InspectorElementId>,
4601 cx: &mut App,
4602 f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4603 ) -> R {
4604 if let Some(inspector_id) = _inspector_id
4605 && let Some(inspector) = &self.inspector
4606 {
4607 let inspector = inspector.clone();
4608 let active_element_id = inspector.read(cx).active_element_id();
4609 if Some(inspector_id) == active_element_id {
4610 return inspector.update(cx, |inspector, _cx| {
4611 inspector.with_active_element_state(self, f)
4612 });
4613 }
4614 }
4615 f(&mut None, self)
4616 }
4617
4618 #[cfg(any(feature = "inspector", debug_assertions))]
4619 pub(crate) fn build_inspector_element_id(
4620 &mut self,
4621 path: crate::InspectorElementPath,
4622 ) -> crate::InspectorElementId {
4623 self.invalidator.debug_assert_paint_or_prepaint();
4624 let path = Rc::new(path);
4625 let next_instance_id = self
4626 .next_frame
4627 .next_inspector_instance_ids
4628 .entry(path.clone())
4629 .or_insert(0);
4630 let instance_id = *next_instance_id;
4631 *next_instance_id += 1;
4632 crate::InspectorElementId { path, instance_id }
4633 }
4634
4635 #[cfg(any(feature = "inspector", debug_assertions))]
4636 fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4637 if let Some(inspector) = self.inspector.take() {
4638 let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4639 inspector_element.prepaint_as_root(
4640 point(self.viewport_size.width - inspector_width, px(0.0)),
4641 size(inspector_width, self.viewport_size.height).into(),
4642 self,
4643 cx,
4644 );
4645 self.inspector = Some(inspector);
4646 Some(inspector_element)
4647 } else {
4648 None
4649 }
4650 }
4651
4652 #[cfg(any(feature = "inspector", debug_assertions))]
4653 fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4654 if let Some(mut inspector_element) = inspector_element {
4655 inspector_element.paint(self, cx);
4656 };
4657 }
4658
4659 /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4660 /// inspect UI elements by clicking on them.
4661 #[cfg(any(feature = "inspector", debug_assertions))]
4662 pub fn insert_inspector_hitbox(
4663 &mut self,
4664 hitbox_id: HitboxId,
4665 inspector_id: Option<&crate::InspectorElementId>,
4666 cx: &App,
4667 ) {
4668 self.invalidator.debug_assert_paint_or_prepaint();
4669 if !self.is_inspector_picking(cx) {
4670 return;
4671 }
4672 if let Some(inspector_id) = inspector_id {
4673 self.next_frame
4674 .inspector_hitboxes
4675 .insert(hitbox_id, inspector_id.clone());
4676 }
4677 }
4678
4679 #[cfg(any(feature = "inspector", debug_assertions))]
4680 fn paint_inspector_hitbox(&mut self, cx: &App) {
4681 if let Some(inspector) = self.inspector.as_ref() {
4682 let inspector = inspector.read(cx);
4683 if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
4684 && let Some(hitbox) = self
4685 .next_frame
4686 .hitboxes
4687 .iter()
4688 .find(|hitbox| hitbox.id == hitbox_id)
4689 {
4690 self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4691 }
4692 }
4693 }
4694
4695 #[cfg(any(feature = "inspector", debug_assertions))]
4696 fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4697 let Some(inspector) = self.inspector.clone() else {
4698 return;
4699 };
4700 if event.downcast_ref::<MouseMoveEvent>().is_some() {
4701 inspector.update(cx, |inspector, _cx| {
4702 if let Some((_, inspector_id)) =
4703 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4704 {
4705 inspector.hover(inspector_id, self);
4706 }
4707 });
4708 } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4709 inspector.update(cx, |inspector, _cx| {
4710 if let Some((_, inspector_id)) =
4711 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4712 {
4713 inspector.select(inspector_id, self);
4714 }
4715 });
4716 } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4717 // This should be kept in sync with SCROLL_LINES in x11 platform.
4718 const SCROLL_LINES: f32 = 3.0;
4719 const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4720 let delta_y = event
4721 .delta
4722 .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4723 .y;
4724 if let Some(inspector) = self.inspector.clone() {
4725 inspector.update(cx, |inspector, _cx| {
4726 if let Some(depth) = inspector.pick_depth.as_mut() {
4727 *depth += f32::from(delta_y) / SCROLL_PIXELS_PER_LAYER;
4728 let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4729 if *depth < 0.0 {
4730 *depth = 0.0;
4731 } else if *depth > max_depth {
4732 *depth = max_depth;
4733 }
4734 if let Some((_, inspector_id)) =
4735 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4736 {
4737 inspector.set_active_element_id(inspector_id, self);
4738 }
4739 }
4740 });
4741 }
4742 }
4743 }
4744
4745 #[cfg(any(feature = "inspector", debug_assertions))]
4746 fn hovered_inspector_hitbox(
4747 &self,
4748 inspector: &Inspector,
4749 frame: &Frame,
4750 ) -> Option<(HitboxId, crate::InspectorElementId)> {
4751 if let Some(pick_depth) = inspector.pick_depth {
4752 let depth = (pick_depth as i64).try_into().unwrap_or(0);
4753 let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4754 let skip_count = (depth as usize).min(max_skipped);
4755 for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4756 if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4757 return Some((*hitbox_id, inspector_id.clone()));
4758 }
4759 }
4760 }
4761 None
4762 }
4763
4764 /// For testing: set the current modifier keys state.
4765 /// This does not generate any events.
4766 #[cfg(any(test, feature = "test-support"))]
4767 pub fn set_modifiers(&mut self, modifiers: Modifiers) {
4768 self.modifiers = modifiers;
4769 }
4770}
4771
4772// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4773slotmap::new_key_type! {
4774 /// A unique identifier for a window.
4775 pub struct WindowId;
4776}
4777
4778impl WindowId {
4779 /// Converts this window ID to a `u64`.
4780 pub fn as_u64(&self) -> u64 {
4781 self.0.as_ffi()
4782 }
4783}
4784
4785impl From<u64> for WindowId {
4786 fn from(value: u64) -> Self {
4787 WindowId(slotmap::KeyData::from_ffi(value))
4788 }
4789}
4790
4791/// A handle to a window with a specific root view type.
4792/// Note that this does not keep the window alive on its own.
4793#[derive(Deref, DerefMut)]
4794pub struct WindowHandle<V> {
4795 #[deref]
4796 #[deref_mut]
4797 pub(crate) any_handle: AnyWindowHandle,
4798 state_type: PhantomData<fn(V) -> V>,
4799}
4800
4801impl<V> Debug for WindowHandle<V> {
4802 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4803 f.debug_struct("WindowHandle")
4804 .field("any_handle", &self.any_handle.id.as_u64())
4805 .finish()
4806 }
4807}
4808
4809impl<V: 'static + Render> WindowHandle<V> {
4810 /// Creates a new handle from a window ID.
4811 /// This does not check if the root type of the window is `V`.
4812 pub fn new(id: WindowId) -> Self {
4813 WindowHandle {
4814 any_handle: AnyWindowHandle {
4815 id,
4816 state_type: TypeId::of::<V>(),
4817 },
4818 state_type: PhantomData,
4819 }
4820 }
4821
4822 /// Get the root view out of this window.
4823 ///
4824 /// This will fail if the window is closed or if the root view's type does not match `V`.
4825 #[cfg(any(test, feature = "test-support"))]
4826 pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4827 where
4828 C: AppContext,
4829 {
4830 crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4831 root_view
4832 .downcast::<V>()
4833 .map_err(|_| anyhow!("the type of the window's root view has changed"))
4834 }))
4835 }
4836
4837 /// Updates the root view of this window.
4838 ///
4839 /// This will fail if the window has been closed or if the root view's type does not match
4840 pub fn update<C, R>(
4841 &self,
4842 cx: &mut C,
4843 update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4844 ) -> Result<R>
4845 where
4846 C: AppContext,
4847 {
4848 cx.update_window(self.any_handle, |root_view, window, cx| {
4849 let view = root_view
4850 .downcast::<V>()
4851 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4852
4853 Ok(view.update(cx, |view, cx| update(view, window, cx)))
4854 })?
4855 }
4856
4857 /// Read the root view out of this window.
4858 ///
4859 /// This will fail if the window is closed or if the root view's type does not match `V`.
4860 pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
4861 let x = cx
4862 .windows
4863 .get(self.id)
4864 .and_then(|window| {
4865 window
4866 .as_deref()
4867 .and_then(|window| window.root.clone())
4868 .map(|root_view| root_view.downcast::<V>())
4869 })
4870 .context("window not found")?
4871 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4872
4873 Ok(x.read(cx))
4874 }
4875
4876 /// Read the root view out of this window, with a callback
4877 ///
4878 /// This will fail if the window is closed or if the root view's type does not match `V`.
4879 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4880 where
4881 C: AppContext,
4882 {
4883 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
4884 }
4885
4886 /// Read the root view pointer off of this window.
4887 ///
4888 /// This will fail if the window is closed or if the root view's type does not match `V`.
4889 pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4890 where
4891 C: AppContext,
4892 {
4893 cx.read_window(self, |root_view, _cx| root_view)
4894 }
4895
4896 /// Check if this window is 'active'.
4897 ///
4898 /// Will return `None` if the window is closed or currently
4899 /// borrowed.
4900 pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4901 cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4902 .ok()
4903 }
4904}
4905
4906impl<V> Copy for WindowHandle<V> {}
4907
4908impl<V> Clone for WindowHandle<V> {
4909 fn clone(&self) -> Self {
4910 *self
4911 }
4912}
4913
4914impl<V> PartialEq for WindowHandle<V> {
4915 fn eq(&self, other: &Self) -> bool {
4916 self.any_handle == other.any_handle
4917 }
4918}
4919
4920impl<V> Eq for WindowHandle<V> {}
4921
4922impl<V> Hash for WindowHandle<V> {
4923 fn hash<H: Hasher>(&self, state: &mut H) {
4924 self.any_handle.hash(state);
4925 }
4926}
4927
4928impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
4929 fn from(val: WindowHandle<V>) -> Self {
4930 val.any_handle
4931 }
4932}
4933
4934/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
4935#[derive(Copy, Clone, PartialEq, Eq, Hash)]
4936pub struct AnyWindowHandle {
4937 pub(crate) id: WindowId,
4938 state_type: TypeId,
4939}
4940
4941impl AnyWindowHandle {
4942 /// Get the ID of this window.
4943 pub fn window_id(&self) -> WindowId {
4944 self.id
4945 }
4946
4947 /// Attempt to convert this handle to a window handle with a specific root view type.
4948 /// If the types do not match, this will return `None`.
4949 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
4950 if TypeId::of::<T>() == self.state_type {
4951 Some(WindowHandle {
4952 any_handle: *self,
4953 state_type: PhantomData,
4954 })
4955 } else {
4956 None
4957 }
4958 }
4959
4960 /// Updates the state of the root view of this window.
4961 ///
4962 /// This will fail if the window has been closed.
4963 pub fn update<C, R>(
4964 self,
4965 cx: &mut C,
4966 update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
4967 ) -> Result<R>
4968 where
4969 C: AppContext,
4970 {
4971 cx.update_window(self, update)
4972 }
4973
4974 /// Read the state of the root view of this window.
4975 ///
4976 /// This will fail if the window has been closed.
4977 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
4978 where
4979 C: AppContext,
4980 T: 'static,
4981 {
4982 let view = self
4983 .downcast::<T>()
4984 .context("the type of the window's root view has changed")?;
4985
4986 cx.read_window(&view, read)
4987 }
4988}
4989
4990impl HasWindowHandle for Window {
4991 fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
4992 self.platform_window.window_handle()
4993 }
4994}
4995
4996impl HasDisplayHandle for Window {
4997 fn display_handle(
4998 &self,
4999 ) -> std::result::Result<raw_window_handle::DisplayHandle<'_>, HandleError> {
5000 self.platform_window.display_handle()
5001 }
5002}
5003
5004/// An identifier for an [`Element`].
5005///
5006/// Can be constructed with a string, a number, or both, as well
5007/// as other internal representations.
5008#[derive(Clone, Debug, Eq, PartialEq, Hash)]
5009pub enum ElementId {
5010 /// The ID of a View element
5011 View(EntityId),
5012 /// An integer ID.
5013 Integer(u64),
5014 /// A string based ID.
5015 Name(SharedString),
5016 /// A UUID.
5017 Uuid(Uuid),
5018 /// An ID that's equated with a focus handle.
5019 FocusHandle(FocusId),
5020 /// A combination of a name and an integer.
5021 NamedInteger(SharedString, u64),
5022 /// A path.
5023 Path(Arc<std::path::Path>),
5024 /// A code location.
5025 CodeLocation(core::panic::Location<'static>),
5026 /// A labeled child of an element.
5027 NamedChild(Arc<ElementId>, SharedString),
5028}
5029
5030impl ElementId {
5031 /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
5032 pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
5033 Self::NamedInteger(name.into(), integer as u64)
5034 }
5035}
5036
5037impl Display for ElementId {
5038 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
5039 match self {
5040 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
5041 ElementId::Integer(ix) => write!(f, "{}", ix)?,
5042 ElementId::Name(name) => write!(f, "{}", name)?,
5043 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
5044 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
5045 ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
5046 ElementId::Path(path) => write!(f, "{}", path.display())?,
5047 ElementId::CodeLocation(location) => write!(f, "{}", location)?,
5048 ElementId::NamedChild(id, name) => write!(f, "{}-{}", id, name)?,
5049 }
5050
5051 Ok(())
5052 }
5053}
5054
5055impl TryInto<SharedString> for ElementId {
5056 type Error = anyhow::Error;
5057
5058 fn try_into(self) -> anyhow::Result<SharedString> {
5059 if let ElementId::Name(name) = self {
5060 Ok(name)
5061 } else {
5062 anyhow::bail!("element id is not string")
5063 }
5064 }
5065}
5066
5067impl From<usize> for ElementId {
5068 fn from(id: usize) -> Self {
5069 ElementId::Integer(id as u64)
5070 }
5071}
5072
5073impl From<i32> for ElementId {
5074 fn from(id: i32) -> Self {
5075 Self::Integer(id as u64)
5076 }
5077}
5078
5079impl From<SharedString> for ElementId {
5080 fn from(name: SharedString) -> Self {
5081 ElementId::Name(name)
5082 }
5083}
5084
5085impl From<Arc<std::path::Path>> for ElementId {
5086 fn from(path: Arc<std::path::Path>) -> Self {
5087 ElementId::Path(path)
5088 }
5089}
5090
5091impl From<&'static str> for ElementId {
5092 fn from(name: &'static str) -> Self {
5093 ElementId::Name(name.into())
5094 }
5095}
5096
5097impl<'a> From<&'a FocusHandle> for ElementId {
5098 fn from(handle: &'a FocusHandle) -> Self {
5099 ElementId::FocusHandle(handle.id)
5100 }
5101}
5102
5103impl From<(&'static str, EntityId)> for ElementId {
5104 fn from((name, id): (&'static str, EntityId)) -> Self {
5105 ElementId::NamedInteger(name.into(), id.as_u64())
5106 }
5107}
5108
5109impl From<(&'static str, usize)> for ElementId {
5110 fn from((name, id): (&'static str, usize)) -> Self {
5111 ElementId::NamedInteger(name.into(), id as u64)
5112 }
5113}
5114
5115impl From<(SharedString, usize)> for ElementId {
5116 fn from((name, id): (SharedString, usize)) -> Self {
5117 ElementId::NamedInteger(name, id as u64)
5118 }
5119}
5120
5121impl From<(&'static str, u64)> for ElementId {
5122 fn from((name, id): (&'static str, u64)) -> Self {
5123 ElementId::NamedInteger(name.into(), id)
5124 }
5125}
5126
5127impl From<Uuid> for ElementId {
5128 fn from(value: Uuid) -> Self {
5129 Self::Uuid(value)
5130 }
5131}
5132
5133impl From<(&'static str, u32)> for ElementId {
5134 fn from((name, id): (&'static str, u32)) -> Self {
5135 ElementId::NamedInteger(name.into(), id.into())
5136 }
5137}
5138
5139impl<T: Into<SharedString>> From<(ElementId, T)> for ElementId {
5140 fn from((id, name): (ElementId, T)) -> Self {
5141 ElementId::NamedChild(Arc::new(id), name.into())
5142 }
5143}
5144
5145impl From<&'static core::panic::Location<'static>> for ElementId {
5146 fn from(location: &'static core::panic::Location<'static>) -> Self {
5147 ElementId::CodeLocation(*location)
5148 }
5149}
5150
5151/// A rectangle to be rendered in the window at the given position and size.
5152/// Passed as an argument [`Window::paint_quad`].
5153#[derive(Clone)]
5154pub struct PaintQuad {
5155 /// The bounds of the quad within the window.
5156 pub bounds: Bounds<Pixels>,
5157 /// The radii of the quad's corners.
5158 pub corner_radii: Corners<Pixels>,
5159 /// The background color of the quad.
5160 pub background: Background,
5161 /// The widths of the quad's borders.
5162 pub border_widths: Edges<Pixels>,
5163 /// The color of the quad's borders.
5164 pub border_color: Hsla,
5165 /// The style of the quad's borders.
5166 pub border_style: BorderStyle,
5167}
5168
5169impl PaintQuad {
5170 /// Sets the corner radii of the quad.
5171 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
5172 PaintQuad {
5173 corner_radii: corner_radii.into(),
5174 ..self
5175 }
5176 }
5177
5178 /// Sets the border widths of the quad.
5179 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
5180 PaintQuad {
5181 border_widths: border_widths.into(),
5182 ..self
5183 }
5184 }
5185
5186 /// Sets the border color of the quad.
5187 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
5188 PaintQuad {
5189 border_color: border_color.into(),
5190 ..self
5191 }
5192 }
5193
5194 /// Sets the background color of the quad.
5195 pub fn background(self, background: impl Into<Background>) -> Self {
5196 PaintQuad {
5197 background: background.into(),
5198 ..self
5199 }
5200 }
5201}
5202
5203/// Creates a quad with the given parameters.
5204pub fn quad(
5205 bounds: Bounds<Pixels>,
5206 corner_radii: impl Into<Corners<Pixels>>,
5207 background: impl Into<Background>,
5208 border_widths: impl Into<Edges<Pixels>>,
5209 border_color: impl Into<Hsla>,
5210 border_style: BorderStyle,
5211) -> PaintQuad {
5212 PaintQuad {
5213 bounds,
5214 corner_radii: corner_radii.into(),
5215 background: background.into(),
5216 border_widths: border_widths.into(),
5217 border_color: border_color.into(),
5218 border_style,
5219 }
5220}
5221
5222/// Creates a filled quad with the given bounds and background color.
5223pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
5224 PaintQuad {
5225 bounds: bounds.into(),
5226 corner_radii: (0.).into(),
5227 background: background.into(),
5228 border_widths: (0.).into(),
5229 border_color: transparent_black(),
5230 border_style: BorderStyle::default(),
5231 }
5232}
5233
5234/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
5235pub fn outline(
5236 bounds: impl Into<Bounds<Pixels>>,
5237 border_color: impl Into<Hsla>,
5238 border_style: BorderStyle,
5239) -> PaintQuad {
5240 PaintQuad {
5241 bounds: bounds.into(),
5242 corner_radii: (0.).into(),
5243 background: transparent_black().into(),
5244 border_widths: (1.).into(),
5245 border_color: border_color.into(),
5246 border_style,
5247 }
5248}