open_ai.rs

  1use anyhow::{Result, anyhow};
  2use collections::{BTreeMap, HashMap};
  3use futures::Stream;
  4use futures::{FutureExt, StreamExt, future, future::BoxFuture};
  5use gpui::{AnyView, App, AsyncApp, Context, Entity, SharedString, Task, Window};
  6use http_client::HttpClient;
  7use language_model::{
  8    ApiKeyState, AuthenticateError, EnvVar, LanguageModel, LanguageModelCompletionError,
  9    LanguageModelCompletionEvent, LanguageModelId, LanguageModelName, LanguageModelProvider,
 10    LanguageModelProviderId, LanguageModelProviderName, LanguageModelProviderState,
 11    LanguageModelRequest, LanguageModelToolChoice, LanguageModelToolResultContent,
 12    LanguageModelToolUse, MessageContent, RateLimiter, Role, StopReason, TokenUsage, env_var,
 13};
 14use menu;
 15use open_ai::{
 16    ImageUrl, Model, OPEN_AI_API_URL, ReasoningEffort, ResponseStreamEvent, stream_completion,
 17};
 18use settings::{OpenAiAvailableModel as AvailableModel, Settings, SettingsStore};
 19use std::pin::Pin;
 20use std::str::FromStr as _;
 21use std::sync::{Arc, LazyLock};
 22use strum::IntoEnumIterator;
 23use ui::{ButtonLink, ConfiguredApiCard, List, ListBulletItem, prelude::*};
 24use ui_input::InputField;
 25use util::ResultExt;
 26
 27const PROVIDER_ID: LanguageModelProviderId = language_model::OPEN_AI_PROVIDER_ID;
 28const PROVIDER_NAME: LanguageModelProviderName = language_model::OPEN_AI_PROVIDER_NAME;
 29
 30const API_KEY_ENV_VAR_NAME: &str = "OPENAI_API_KEY";
 31static API_KEY_ENV_VAR: LazyLock<EnvVar> = env_var!(API_KEY_ENV_VAR_NAME);
 32
 33#[derive(Default, Clone, Debug, PartialEq)]
 34pub struct OpenAiSettings {
 35    pub api_url: String,
 36    pub available_models: Vec<AvailableModel>,
 37}
 38
 39pub struct OpenAiLanguageModelProvider {
 40    http_client: Arc<dyn HttpClient>,
 41    state: Entity<State>,
 42}
 43
 44pub struct State {
 45    api_key_state: ApiKeyState,
 46}
 47
 48impl State {
 49    fn is_authenticated(&self) -> bool {
 50        self.api_key_state.has_key()
 51    }
 52
 53    fn set_api_key(&mut self, api_key: Option<String>, cx: &mut Context<Self>) -> Task<Result<()>> {
 54        let api_url = OpenAiLanguageModelProvider::api_url(cx);
 55        self.api_key_state
 56            .store(api_url, api_key, |this| &mut this.api_key_state, cx)
 57    }
 58
 59    fn authenticate(&mut self, cx: &mut Context<Self>) -> Task<Result<(), AuthenticateError>> {
 60        let api_url = OpenAiLanguageModelProvider::api_url(cx);
 61        self.api_key_state
 62            .load_if_needed(api_url, |this| &mut this.api_key_state, cx)
 63    }
 64}
 65
 66impl OpenAiLanguageModelProvider {
 67    pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut App) -> Self {
 68        let state = cx.new(|cx| {
 69            cx.observe_global::<SettingsStore>(|this: &mut State, cx| {
 70                let api_url = Self::api_url(cx);
 71                this.api_key_state
 72                    .handle_url_change(api_url, |this| &mut this.api_key_state, cx);
 73                cx.notify();
 74            })
 75            .detach();
 76            State {
 77                api_key_state: ApiKeyState::new(Self::api_url(cx), (*API_KEY_ENV_VAR).clone()),
 78            }
 79        });
 80
 81        Self { http_client, state }
 82    }
 83
 84    fn create_language_model(&self, model: open_ai::Model) -> Arc<dyn LanguageModel> {
 85        Arc::new(OpenAiLanguageModel {
 86            id: LanguageModelId::from(model.id().to_string()),
 87            model,
 88            state: self.state.clone(),
 89            http_client: self.http_client.clone(),
 90            request_limiter: RateLimiter::new(4),
 91        })
 92    }
 93
 94    fn settings(cx: &App) -> &OpenAiSettings {
 95        &crate::AllLanguageModelSettings::get_global(cx).openai
 96    }
 97
 98    fn api_url(cx: &App) -> SharedString {
 99        let api_url = &Self::settings(cx).api_url;
100        if api_url.is_empty() {
101            open_ai::OPEN_AI_API_URL.into()
102        } else {
103            SharedString::new(api_url.as_str())
104        }
105    }
106}
107
108impl LanguageModelProviderState for OpenAiLanguageModelProvider {
109    type ObservableEntity = State;
110
111    fn observable_entity(&self) -> Option<Entity<Self::ObservableEntity>> {
112        Some(self.state.clone())
113    }
114}
115
116impl LanguageModelProvider for OpenAiLanguageModelProvider {
117    fn id(&self) -> LanguageModelProviderId {
118        PROVIDER_ID
119    }
120
121    fn name(&self) -> LanguageModelProviderName {
122        PROVIDER_NAME
123    }
124
125    fn icon(&self) -> IconName {
126        IconName::AiOpenAi
127    }
128
129    fn default_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
130        Some(self.create_language_model(open_ai::Model::default()))
131    }
132
133    fn default_fast_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
134        Some(self.create_language_model(open_ai::Model::default_fast()))
135    }
136
137    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
138        let mut models = BTreeMap::default();
139
140        // Add base models from open_ai::Model::iter()
141        for model in open_ai::Model::iter() {
142            if !matches!(model, open_ai::Model::Custom { .. }) {
143                models.insert(model.id().to_string(), model);
144            }
145        }
146
147        // Override with available models from settings
148        for model in &OpenAiLanguageModelProvider::settings(cx).available_models {
149            models.insert(
150                model.name.clone(),
151                open_ai::Model::Custom {
152                    name: model.name.clone(),
153                    display_name: model.display_name.clone(),
154                    max_tokens: model.max_tokens,
155                    max_output_tokens: model.max_output_tokens,
156                    max_completion_tokens: model.max_completion_tokens,
157                    reasoning_effort: model.reasoning_effort.clone(),
158                },
159            );
160        }
161
162        models
163            .into_values()
164            .map(|model| self.create_language_model(model))
165            .collect()
166    }
167
168    fn is_authenticated(&self, cx: &App) -> bool {
169        self.state.read(cx).is_authenticated()
170    }
171
172    fn authenticate(&self, cx: &mut App) -> Task<Result<(), AuthenticateError>> {
173        self.state.update(cx, |state, cx| state.authenticate(cx))
174    }
175
176    fn configuration_view(
177        &self,
178        _target_agent: language_model::ConfigurationViewTargetAgent,
179        window: &mut Window,
180        cx: &mut App,
181    ) -> AnyView {
182        cx.new(|cx| ConfigurationView::new(self.state.clone(), window, cx))
183            .into()
184    }
185
186    fn reset_credentials(&self, cx: &mut App) -> Task<Result<()>> {
187        self.state
188            .update(cx, |state, cx| state.set_api_key(None, cx))
189    }
190}
191
192pub struct OpenAiLanguageModel {
193    id: LanguageModelId,
194    model: open_ai::Model,
195    state: Entity<State>,
196    http_client: Arc<dyn HttpClient>,
197    request_limiter: RateLimiter,
198}
199
200impl OpenAiLanguageModel {
201    fn stream_completion(
202        &self,
203        request: open_ai::Request,
204        cx: &AsyncApp,
205    ) -> BoxFuture<'static, Result<futures::stream::BoxStream<'static, Result<ResponseStreamEvent>>>>
206    {
207        let http_client = self.http_client.clone();
208
209        let Ok((api_key, api_url)) = self.state.read_with(cx, |state, cx| {
210            let api_url = OpenAiLanguageModelProvider::api_url(cx);
211            (state.api_key_state.key(&api_url), api_url)
212        }) else {
213            return future::ready(Err(anyhow!("App state dropped"))).boxed();
214        };
215
216        let future = self.request_limiter.stream(async move {
217            let provider = PROVIDER_NAME;
218            let Some(api_key) = api_key else {
219                return Err(LanguageModelCompletionError::NoApiKey { provider });
220            };
221            let request = stream_completion(
222                http_client.as_ref(),
223                provider.0.as_str(),
224                &api_url,
225                &api_key,
226                request,
227            );
228            let response = request.await?;
229            Ok(response)
230        });
231
232        async move { Ok(future.await?.boxed()) }.boxed()
233    }
234}
235
236impl LanguageModel for OpenAiLanguageModel {
237    fn id(&self) -> LanguageModelId {
238        self.id.clone()
239    }
240
241    fn name(&self) -> LanguageModelName {
242        LanguageModelName::from(self.model.display_name().to_string())
243    }
244
245    fn provider_id(&self) -> LanguageModelProviderId {
246        PROVIDER_ID
247    }
248
249    fn provider_name(&self) -> LanguageModelProviderName {
250        PROVIDER_NAME
251    }
252
253    fn supports_tools(&self) -> bool {
254        true
255    }
256
257    fn supports_images(&self) -> bool {
258        use open_ai::Model;
259        match &self.model {
260            Model::FourOmni
261            | Model::FourOmniMini
262            | Model::FourPointOne
263            | Model::FourPointOneMini
264            | Model::FourPointOneNano
265            | Model::Five
266            | Model::FiveMini
267            | Model::FiveNano
268            | Model::FivePointOne
269            | Model::FivePointTwo
270            | Model::O1
271            | Model::O3
272            | Model::O4Mini => true,
273            Model::ThreePointFiveTurbo
274            | Model::Four
275            | Model::FourTurbo
276            | Model::O3Mini
277            | Model::Custom { .. } => false,
278        }
279    }
280
281    fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
282        match choice {
283            LanguageModelToolChoice::Auto => true,
284            LanguageModelToolChoice::Any => true,
285            LanguageModelToolChoice::None => true,
286        }
287    }
288
289    fn telemetry_id(&self) -> String {
290        format!("openai/{}", self.model.id())
291    }
292
293    fn max_token_count(&self) -> u64 {
294        self.model.max_token_count()
295    }
296
297    fn max_output_tokens(&self) -> Option<u64> {
298        self.model.max_output_tokens()
299    }
300
301    fn count_tokens(
302        &self,
303        request: LanguageModelRequest,
304        cx: &App,
305    ) -> BoxFuture<'static, Result<u64>> {
306        count_open_ai_tokens(request, self.model.clone(), cx)
307    }
308
309    fn stream_completion(
310        &self,
311        request: LanguageModelRequest,
312        cx: &AsyncApp,
313    ) -> BoxFuture<
314        'static,
315        Result<
316            futures::stream::BoxStream<
317                'static,
318                Result<LanguageModelCompletionEvent, LanguageModelCompletionError>,
319            >,
320            LanguageModelCompletionError,
321        >,
322    > {
323        let request = into_open_ai(
324            request,
325            self.model.id(),
326            self.model.supports_parallel_tool_calls(),
327            self.model.supports_prompt_cache_key(),
328            self.max_output_tokens(),
329            self.model.reasoning_effort(),
330        );
331        let completions = self.stream_completion(request, cx);
332        async move {
333            let mapper = OpenAiEventMapper::new();
334            Ok(mapper.map_stream(completions.await?).boxed())
335        }
336        .boxed()
337    }
338}
339
340pub fn into_open_ai(
341    request: LanguageModelRequest,
342    model_id: &str,
343    supports_parallel_tool_calls: bool,
344    supports_prompt_cache_key: bool,
345    max_output_tokens: Option<u64>,
346    reasoning_effort: Option<ReasoningEffort>,
347) -> open_ai::Request {
348    let stream = !model_id.starts_with("o1-");
349
350    let mut messages = Vec::new();
351    for message in request.messages {
352        for content in message.content {
353            match content {
354                MessageContent::Text(text) | MessageContent::Thinking { text, .. } => {
355                    if !text.trim().is_empty() {
356                        add_message_content_part(
357                            open_ai::MessagePart::Text { text },
358                            message.role,
359                            &mut messages,
360                        );
361                    }
362                }
363                MessageContent::RedactedThinking(_) => {}
364                MessageContent::Image(image) => {
365                    add_message_content_part(
366                        open_ai::MessagePart::Image {
367                            image_url: ImageUrl {
368                                url: image.to_base64_url(),
369                                detail: None,
370                            },
371                        },
372                        message.role,
373                        &mut messages,
374                    );
375                }
376                MessageContent::ToolUse(tool_use) => {
377                    let tool_call = open_ai::ToolCall {
378                        id: tool_use.id.to_string(),
379                        content: open_ai::ToolCallContent::Function {
380                            function: open_ai::FunctionContent {
381                                name: tool_use.name.to_string(),
382                                arguments: serde_json::to_string(&tool_use.input)
383                                    .unwrap_or_default(),
384                            },
385                        },
386                    };
387
388                    if let Some(open_ai::RequestMessage::Assistant { tool_calls, .. }) =
389                        messages.last_mut()
390                    {
391                        tool_calls.push(tool_call);
392                    } else {
393                        messages.push(open_ai::RequestMessage::Assistant {
394                            content: None,
395                            tool_calls: vec![tool_call],
396                        });
397                    }
398                }
399                MessageContent::ToolResult(tool_result) => {
400                    let content = match &tool_result.content {
401                        LanguageModelToolResultContent::Text(text) => {
402                            vec![open_ai::MessagePart::Text {
403                                text: text.to_string(),
404                            }]
405                        }
406                        LanguageModelToolResultContent::Image(image) => {
407                            vec![open_ai::MessagePart::Image {
408                                image_url: ImageUrl {
409                                    url: image.to_base64_url(),
410                                    detail: None,
411                                },
412                            }]
413                        }
414                    };
415
416                    messages.push(open_ai::RequestMessage::Tool {
417                        content: content.into(),
418                        tool_call_id: tool_result.tool_use_id.to_string(),
419                    });
420                }
421            }
422        }
423    }
424
425    open_ai::Request {
426        model: model_id.into(),
427        messages,
428        stream,
429        stop: request.stop,
430        temperature: request.temperature.or(Some(1.0)),
431        max_completion_tokens: max_output_tokens,
432        parallel_tool_calls: if supports_parallel_tool_calls && !request.tools.is_empty() {
433            // Disable parallel tool calls, as the Agent currently expects a maximum of one per turn.
434            Some(false)
435        } else {
436            None
437        },
438        prompt_cache_key: if supports_prompt_cache_key {
439            request.thread_id
440        } else {
441            None
442        },
443        tools: request
444            .tools
445            .into_iter()
446            .map(|tool| open_ai::ToolDefinition::Function {
447                function: open_ai::FunctionDefinition {
448                    name: tool.name,
449                    description: Some(tool.description),
450                    parameters: Some(tool.input_schema),
451                },
452            })
453            .collect(),
454        tool_choice: request.tool_choice.map(|choice| match choice {
455            LanguageModelToolChoice::Auto => open_ai::ToolChoice::Auto,
456            LanguageModelToolChoice::Any => open_ai::ToolChoice::Required,
457            LanguageModelToolChoice::None => open_ai::ToolChoice::None,
458        }),
459        reasoning_effort,
460    }
461}
462
463fn add_message_content_part(
464    new_part: open_ai::MessagePart,
465    role: Role,
466    messages: &mut Vec<open_ai::RequestMessage>,
467) {
468    match (role, messages.last_mut()) {
469        (Role::User, Some(open_ai::RequestMessage::User { content }))
470        | (
471            Role::Assistant,
472            Some(open_ai::RequestMessage::Assistant {
473                content: Some(content),
474                ..
475            }),
476        )
477        | (Role::System, Some(open_ai::RequestMessage::System { content, .. })) => {
478            content.push_part(new_part);
479        }
480        _ => {
481            messages.push(match role {
482                Role::User => open_ai::RequestMessage::User {
483                    content: open_ai::MessageContent::from(vec![new_part]),
484                },
485                Role::Assistant => open_ai::RequestMessage::Assistant {
486                    content: Some(open_ai::MessageContent::from(vec![new_part])),
487                    tool_calls: Vec::new(),
488                },
489                Role::System => open_ai::RequestMessage::System {
490                    content: open_ai::MessageContent::from(vec![new_part]),
491                },
492            });
493        }
494    }
495}
496
497pub struct OpenAiEventMapper {
498    tool_calls_by_index: HashMap<usize, RawToolCall>,
499}
500
501impl OpenAiEventMapper {
502    pub fn new() -> Self {
503        Self {
504            tool_calls_by_index: HashMap::default(),
505        }
506    }
507
508    pub fn map_stream(
509        mut self,
510        events: Pin<Box<dyn Send + Stream<Item = Result<ResponseStreamEvent>>>>,
511    ) -> impl Stream<Item = Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
512    {
513        events.flat_map(move |event| {
514            futures::stream::iter(match event {
515                Ok(event) => self.map_event(event),
516                Err(error) => vec![Err(LanguageModelCompletionError::from(anyhow!(error)))],
517            })
518        })
519    }
520
521    pub fn map_event(
522        &mut self,
523        event: ResponseStreamEvent,
524    ) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
525        let mut events = Vec::new();
526        if let Some(usage) = event.usage {
527            events.push(Ok(LanguageModelCompletionEvent::UsageUpdate(TokenUsage {
528                input_tokens: usage.prompt_tokens,
529                output_tokens: usage.completion_tokens,
530                cache_creation_input_tokens: 0,
531                cache_read_input_tokens: 0,
532            })));
533        }
534
535        let Some(choice) = event.choices.first() else {
536            return events;
537        };
538
539        if let Some(delta) = choice.delta.as_ref() {
540            if let Some(content) = delta.content.clone() {
541                events.push(Ok(LanguageModelCompletionEvent::Text(content)));
542            }
543
544            if let Some(tool_calls) = delta.tool_calls.as_ref() {
545                for tool_call in tool_calls {
546                    let entry = self.tool_calls_by_index.entry(tool_call.index).or_default();
547
548                    if let Some(tool_id) = tool_call.id.clone() {
549                        entry.id = tool_id;
550                    }
551
552                    if let Some(function) = tool_call.function.as_ref() {
553                        if let Some(name) = function.name.clone() {
554                            entry.name = name;
555                        }
556
557                        if let Some(arguments) = function.arguments.clone() {
558                            entry.arguments.push_str(&arguments);
559                        }
560                    }
561                }
562            }
563        }
564
565        match choice.finish_reason.as_deref() {
566            Some("stop") => {
567                events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::EndTurn)));
568            }
569            Some("tool_calls") => {
570                events.extend(self.tool_calls_by_index.drain().map(|(_, tool_call)| {
571                    match serde_json::Value::from_str(&tool_call.arguments) {
572                        Ok(input) => Ok(LanguageModelCompletionEvent::ToolUse(
573                            LanguageModelToolUse {
574                                id: tool_call.id.clone().into(),
575                                name: tool_call.name.as_str().into(),
576                                is_input_complete: true,
577                                input,
578                                raw_input: tool_call.arguments.clone(),
579                                thought_signature: None,
580                            },
581                        )),
582                        Err(error) => Ok(LanguageModelCompletionEvent::ToolUseJsonParseError {
583                            id: tool_call.id.into(),
584                            tool_name: tool_call.name.into(),
585                            raw_input: tool_call.arguments.clone().into(),
586                            json_parse_error: error.to_string(),
587                        }),
588                    }
589                }));
590
591                events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::ToolUse)));
592            }
593            Some(stop_reason) => {
594                log::error!("Unexpected OpenAI stop_reason: {stop_reason:?}",);
595                events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::EndTurn)));
596            }
597            None => {}
598        }
599
600        events
601    }
602}
603
604#[derive(Default)]
605struct RawToolCall {
606    id: String,
607    name: String,
608    arguments: String,
609}
610
611pub(crate) fn collect_tiktoken_messages(
612    request: LanguageModelRequest,
613) -> Vec<tiktoken_rs::ChatCompletionRequestMessage> {
614    request
615        .messages
616        .into_iter()
617        .map(|message| tiktoken_rs::ChatCompletionRequestMessage {
618            role: match message.role {
619                Role::User => "user".into(),
620                Role::Assistant => "assistant".into(),
621                Role::System => "system".into(),
622            },
623            content: Some(message.string_contents()),
624            name: None,
625            function_call: None,
626        })
627        .collect::<Vec<_>>()
628}
629
630pub fn count_open_ai_tokens(
631    request: LanguageModelRequest,
632    model: Model,
633    cx: &App,
634) -> BoxFuture<'static, Result<u64>> {
635    cx.background_spawn(async move {
636        let messages = collect_tiktoken_messages(request);
637        match model {
638            Model::Custom { max_tokens, .. } => {
639                let model = if max_tokens >= 100_000 {
640                    // If the max tokens is 100k or more, it is likely the o200k_base tokenizer from gpt4o
641                    "gpt-4o"
642                } else {
643                    // Otherwise fallback to gpt-4, since only cl100k_base and o200k_base are
644                    // supported with this tiktoken method
645                    "gpt-4"
646                };
647                tiktoken_rs::num_tokens_from_messages(model, &messages)
648            }
649            // Currently supported by tiktoken_rs
650            // Sometimes tiktoken-rs is behind on model support. If that is the case, make a new branch
651            // arm with an override. We enumerate all supported models here so that we can check if new
652            // models are supported yet or not.
653            Model::ThreePointFiveTurbo
654            | Model::Four
655            | Model::FourTurbo
656            | Model::FourOmni
657            | Model::FourOmniMini
658            | Model::FourPointOne
659            | Model::FourPointOneMini
660            | Model::FourPointOneNano
661            | Model::O1
662            | Model::O3
663            | Model::O3Mini
664            | Model::O4Mini
665            | Model::Five
666            | Model::FiveMini
667            | Model::FiveNano => tiktoken_rs::num_tokens_from_messages(model.id(), &messages),
668            // GPT-5.1 and 5.2 don't have dedicated tiktoken support; use gpt-5 tokenizer
669            Model::FivePointOne | Model::FivePointTwo => {
670                tiktoken_rs::num_tokens_from_messages("gpt-5", &messages)
671            }
672        }
673        .map(|tokens| tokens as u64)
674    })
675    .boxed()
676}
677
678struct ConfigurationView {
679    api_key_editor: Entity<InputField>,
680    state: Entity<State>,
681    load_credentials_task: Option<Task<()>>,
682}
683
684impl ConfigurationView {
685    fn new(state: Entity<State>, window: &mut Window, cx: &mut Context<Self>) -> Self {
686        let api_key_editor = cx.new(|cx| {
687            InputField::new(
688                window,
689                cx,
690                "sk-000000000000000000000000000000000000000000000000",
691            )
692        });
693
694        cx.observe(&state, |_, _, cx| {
695            cx.notify();
696        })
697        .detach();
698
699        let load_credentials_task = Some(cx.spawn_in(window, {
700            let state = state.clone();
701            async move |this, cx| {
702                if let Some(task) = state
703                    .update(cx, |state, cx| state.authenticate(cx))
704                    .log_err()
705                {
706                    // We don't log an error, because "not signed in" is also an error.
707                    let _ = task.await;
708                }
709                this.update(cx, |this, cx| {
710                    this.load_credentials_task = None;
711                    cx.notify();
712                })
713                .log_err();
714            }
715        }));
716
717        Self {
718            api_key_editor,
719            state,
720            load_credentials_task,
721        }
722    }
723
724    fn save_api_key(&mut self, _: &menu::Confirm, window: &mut Window, cx: &mut Context<Self>) {
725        let api_key = self.api_key_editor.read(cx).text(cx).trim().to_string();
726        if api_key.is_empty() {
727            return;
728        }
729
730        // url changes can cause the editor to be displayed again
731        self.api_key_editor
732            .update(cx, |editor, cx| editor.set_text("", window, cx));
733
734        let state = self.state.clone();
735        cx.spawn_in(window, async move |_, cx| {
736            state
737                .update(cx, |state, cx| state.set_api_key(Some(api_key), cx))?
738                .await
739        })
740        .detach_and_log_err(cx);
741    }
742
743    fn reset_api_key(&mut self, window: &mut Window, cx: &mut Context<Self>) {
744        self.api_key_editor
745            .update(cx, |input, cx| input.set_text("", window, cx));
746
747        let state = self.state.clone();
748        cx.spawn_in(window, async move |_, cx| {
749            state
750                .update(cx, |state, cx| state.set_api_key(None, cx))?
751                .await
752        })
753        .detach_and_log_err(cx);
754    }
755
756    fn should_render_editor(&self, cx: &mut Context<Self>) -> bool {
757        !self.state.read(cx).is_authenticated()
758    }
759}
760
761impl Render for ConfigurationView {
762    fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
763        let env_var_set = self.state.read(cx).api_key_state.is_from_env_var();
764        let configured_card_label = if env_var_set {
765            format!("API key set in {API_KEY_ENV_VAR_NAME} environment variable")
766        } else {
767            let api_url = OpenAiLanguageModelProvider::api_url(cx);
768            if api_url == OPEN_AI_API_URL {
769                "API key configured".to_string()
770            } else {
771                format!("API key configured for {}", api_url)
772            }
773        };
774
775        let api_key_section = if self.should_render_editor(cx) {
776            v_flex()
777                .on_action(cx.listener(Self::save_api_key))
778                .child(Label::new("To use Zed's agent with OpenAI, you need to add an API key. Follow these steps:"))
779                .child(
780                    List::new()
781                        .child(
782                            ListBulletItem::new("")
783                                .child(Label::new("Create one by visiting"))
784                                .child(ButtonLink::new("OpenAI's console", "https://platform.openai.com/api-keys"))
785                        )
786                        .child(
787                            ListBulletItem::new("Ensure your OpenAI account has credits")
788                        )
789                        .child(
790                            ListBulletItem::new("Paste your API key below and hit enter to start using the agent")
791                        ),
792                )
793                .child(self.api_key_editor.clone())
794                .child(
795                    Label::new(format!(
796                        "You can also assign the {API_KEY_ENV_VAR_NAME} environment variable and restart Zed."
797                    ))
798                    .size(LabelSize::Small)
799                    .color(Color::Muted),
800                )
801                .child(
802                    Label::new(
803                        "Note that having a subscription for another service like GitHub Copilot won't work.",
804                    )
805                    .size(LabelSize::Small).color(Color::Muted),
806                )
807                .into_any_element()
808        } else {
809            ConfiguredApiCard::new(configured_card_label)
810                .disabled(env_var_set)
811                .on_click(cx.listener(|this, _, window, cx| this.reset_api_key(window, cx)))
812                .when(env_var_set, |this| {
813                    this.tooltip_label(format!("To reset your API key, unset the {API_KEY_ENV_VAR_NAME} environment variable."))
814                })
815                .into_any_element()
816        };
817
818        let compatible_api_section = h_flex()
819            .mt_1p5()
820            .gap_0p5()
821            .flex_wrap()
822            .when(self.should_render_editor(cx), |this| {
823                this.pt_1p5()
824                    .border_t_1()
825                    .border_color(cx.theme().colors().border_variant)
826            })
827            .child(
828                h_flex()
829                    .gap_2()
830                    .child(
831                        Icon::new(IconName::Info)
832                            .size(IconSize::XSmall)
833                            .color(Color::Muted),
834                    )
835                    .child(Label::new("Zed also supports OpenAI-compatible models.")),
836            )
837            .child(
838                Button::new("docs", "Learn More")
839                    .icon(IconName::ArrowUpRight)
840                    .icon_size(IconSize::Small)
841                    .icon_color(Color::Muted)
842                    .on_click(move |_, _window, cx| {
843                        cx.open_url("https://zed.dev/docs/ai/llm-providers#openai-api-compatible")
844                    }),
845            );
846
847        if self.load_credentials_task.is_some() {
848            div().child(Label::new("Loading credentials…")).into_any()
849        } else {
850            v_flex()
851                .size_full()
852                .child(api_key_section)
853                .child(compatible_api_section)
854                .into_any()
855        }
856    }
857}
858
859#[cfg(test)]
860mod tests {
861    use gpui::TestAppContext;
862    use language_model::LanguageModelRequestMessage;
863
864    use super::*;
865
866    #[gpui::test]
867    fn tiktoken_rs_support(cx: &TestAppContext) {
868        let request = LanguageModelRequest {
869            thread_id: None,
870            prompt_id: None,
871            intent: None,
872            mode: None,
873            messages: vec![LanguageModelRequestMessage {
874                role: Role::User,
875                content: vec![MessageContent::Text("message".into())],
876                cache: false,
877                reasoning_details: None,
878            }],
879            tools: vec![],
880            tool_choice: None,
881            stop: vec![],
882            temperature: None,
883            thinking_allowed: true,
884        };
885
886        // Validate that all models are supported by tiktoken-rs
887        for model in Model::iter() {
888            let count = cx
889                .executor()
890                .block(count_open_ai_tokens(
891                    request.clone(),
892                    model,
893                    &cx.app.borrow(),
894                ))
895                .unwrap();
896            assert!(count > 0);
897        }
898    }
899}