1#[cfg(any(feature = "inspector", debug_assertions))]
2use crate::Inspector;
3use crate::{
4 Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
5 AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Capslock,
6 Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
7 DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
8 FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
9 KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
10 LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
11 MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
12 PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptButton, PromptLevel, Quad,
13 Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge,
14 SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS, ScaledPixels, Scene, Shadow, SharedString, Size,
15 StrikethroughStyle, Style, SubscriberSet, Subscription, TabHandles, TaffyLayoutEngine, Task,
16 TextStyle, TextStyleRefinement, TransformationMatrix, Underline, UnderlineStyle,
17 WindowAppearance, WindowBackgroundAppearance, WindowBounds, WindowControls, WindowDecorations,
18 WindowOptions, WindowParams, WindowTextSystem, point, prelude::*, px, rems, size,
19 transparent_black,
20};
21use anyhow::{Context as _, Result, anyhow};
22use collections::{FxHashMap, FxHashSet};
23#[cfg(target_os = "macos")]
24use core_video::pixel_buffer::CVPixelBuffer;
25use derive_more::{Deref, DerefMut};
26use futures::FutureExt;
27use futures::channel::oneshot;
28use itertools::FoldWhile::{Continue, Done};
29use itertools::Itertools;
30use parking_lot::RwLock;
31use raw_window_handle::{HandleError, HasDisplayHandle, HasWindowHandle};
32use refineable::Refineable;
33use slotmap::SlotMap;
34use smallvec::SmallVec;
35use std::{
36 any::{Any, TypeId},
37 borrow::Cow,
38 cell::{Cell, RefCell},
39 cmp,
40 fmt::{Debug, Display},
41 hash::{Hash, Hasher},
42 marker::PhantomData,
43 mem,
44 ops::{DerefMut, Range},
45 rc::Rc,
46 sync::{
47 Arc, Weak,
48 atomic::{AtomicUsize, Ordering::SeqCst},
49 },
50 time::{Duration, Instant},
51};
52use util::post_inc;
53use util::{ResultExt, measure};
54use uuid::Uuid;
55
56mod prompts;
57
58use crate::util::atomic_incr_if_not_zero;
59pub use prompts::*;
60
61pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1024.), px(700.));
62
63/// Represents the two different phases when dispatching events.
64#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
65pub enum DispatchPhase {
66 /// After the capture phase comes the bubble phase, in which mouse event listeners are
67 /// invoked front to back and keyboard event listeners are invoked from the focused element
68 /// to the root of the element tree. This is the phase you'll most commonly want to use when
69 /// registering event listeners.
70 #[default]
71 Bubble,
72 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
73 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
74 /// is used for special purposes such as clearing the "pressed" state for click events. If
75 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
76 /// outside of the immediate region may rely on detecting non-local events during this phase.
77 Capture,
78}
79
80impl DispatchPhase {
81 /// Returns true if this represents the "bubble" phase.
82 #[inline]
83 pub fn bubble(self) -> bool {
84 self == DispatchPhase::Bubble
85 }
86
87 /// Returns true if this represents the "capture" phase.
88 #[inline]
89 pub fn capture(self) -> bool {
90 self == DispatchPhase::Capture
91 }
92}
93
94struct WindowInvalidatorInner {
95 pub dirty: bool,
96 pub draw_phase: DrawPhase,
97 pub dirty_views: FxHashSet<EntityId>,
98}
99
100#[derive(Clone)]
101pub(crate) struct WindowInvalidator {
102 inner: Rc<RefCell<WindowInvalidatorInner>>,
103}
104
105impl WindowInvalidator {
106 pub fn new() -> Self {
107 WindowInvalidator {
108 inner: Rc::new(RefCell::new(WindowInvalidatorInner {
109 dirty: true,
110 draw_phase: DrawPhase::None,
111 dirty_views: FxHashSet::default(),
112 })),
113 }
114 }
115
116 pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
117 let mut inner = self.inner.borrow_mut();
118 inner.dirty_views.insert(entity);
119 if inner.draw_phase == DrawPhase::None {
120 inner.dirty = true;
121 cx.push_effect(Effect::Notify { emitter: entity });
122 true
123 } else {
124 false
125 }
126 }
127
128 pub fn is_dirty(&self) -> bool {
129 self.inner.borrow().dirty
130 }
131
132 pub fn set_dirty(&self, dirty: bool) {
133 self.inner.borrow_mut().dirty = dirty
134 }
135
136 pub fn set_phase(&self, phase: DrawPhase) {
137 self.inner.borrow_mut().draw_phase = phase
138 }
139
140 pub fn take_views(&self) -> FxHashSet<EntityId> {
141 mem::take(&mut self.inner.borrow_mut().dirty_views)
142 }
143
144 pub fn replace_views(&self, views: FxHashSet<EntityId>) {
145 self.inner.borrow_mut().dirty_views = views;
146 }
147
148 pub fn not_drawing(&self) -> bool {
149 self.inner.borrow().draw_phase == DrawPhase::None
150 }
151
152 #[track_caller]
153 pub fn debug_assert_paint(&self) {
154 debug_assert!(
155 matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
156 "this method can only be called during paint"
157 );
158 }
159
160 #[track_caller]
161 pub fn debug_assert_prepaint(&self) {
162 debug_assert!(
163 matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
164 "this method can only be called during request_layout, or prepaint"
165 );
166 }
167
168 #[track_caller]
169 pub fn debug_assert_paint_or_prepaint(&self) {
170 debug_assert!(
171 matches!(
172 self.inner.borrow().draw_phase,
173 DrawPhase::Paint | DrawPhase::Prepaint
174 ),
175 "this method can only be called during request_layout, prepaint, or paint"
176 );
177 }
178}
179
180type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
181
182pub(crate) type AnyWindowFocusListener =
183 Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
184
185pub(crate) struct WindowFocusEvent {
186 pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
187 pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
188}
189
190impl WindowFocusEvent {
191 pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
192 !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
193 }
194
195 pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
196 self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
197 }
198}
199
200/// This is provided when subscribing for `Context::on_focus_out` events.
201pub struct FocusOutEvent {
202 /// A weak focus handle representing what was blurred.
203 pub blurred: WeakFocusHandle,
204}
205
206slotmap::new_key_type! {
207 /// A globally unique identifier for a focusable element.
208 pub struct FocusId;
209}
210
211thread_local! {
212 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(1024 * 1024));
213}
214
215/// Returned when the element arena has been used and so must be cleared before the next draw.
216#[must_use]
217pub struct ArenaClearNeeded;
218
219impl ArenaClearNeeded {
220 /// Clear the element arena.
221 pub fn clear(self) {
222 ELEMENT_ARENA.with_borrow_mut(|element_arena| {
223 element_arena.clear();
224 });
225 }
226}
227
228pub(crate) type FocusMap = RwLock<SlotMap<FocusId, FocusRef>>;
229pub(crate) struct FocusRef {
230 pub(crate) ref_count: AtomicUsize,
231 pub(crate) tab_index: isize,
232 pub(crate) tab_stop: bool,
233}
234
235impl FocusId {
236 /// Obtains whether the element associated with this handle is currently focused.
237 pub fn is_focused(&self, window: &Window) -> bool {
238 window.focus == Some(*self)
239 }
240
241 /// Obtains whether the element associated with this handle contains the focused
242 /// element or is itself focused.
243 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
244 window
245 .focused(cx)
246 .is_some_and(|focused| self.contains(focused.id, window))
247 }
248
249 /// Obtains whether the element associated with this handle is contained within the
250 /// focused element or is itself focused.
251 pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
252 let focused = window.focused(cx);
253 focused.is_some_and(|focused| focused.id.contains(*self, window))
254 }
255
256 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
257 pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
258 window
259 .rendered_frame
260 .dispatch_tree
261 .focus_contains(*self, other)
262 }
263}
264
265/// A handle which can be used to track and manipulate the focused element in a window.
266pub struct FocusHandle {
267 pub(crate) id: FocusId,
268 handles: Arc<FocusMap>,
269 /// The index of this element in the tab order.
270 pub tab_index: isize,
271 /// Whether this element can be focused by tab navigation.
272 pub tab_stop: bool,
273}
274
275impl std::fmt::Debug for FocusHandle {
276 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
277 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
278 }
279}
280
281impl FocusHandle {
282 pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
283 let id = handles.write().insert(FocusRef {
284 ref_count: AtomicUsize::new(1),
285 tab_index: 0,
286 tab_stop: false,
287 });
288
289 Self {
290 id,
291 tab_index: 0,
292 tab_stop: false,
293 handles: handles.clone(),
294 }
295 }
296
297 pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
298 let lock = handles.read();
299 let focus = lock.get(id)?;
300 if atomic_incr_if_not_zero(&focus.ref_count) == 0 {
301 return None;
302 }
303 Some(Self {
304 id,
305 tab_index: focus.tab_index,
306 tab_stop: focus.tab_stop,
307 handles: handles.clone(),
308 })
309 }
310
311 /// Sets the tab index of the element associated with this handle.
312 pub fn tab_index(mut self, index: isize) -> Self {
313 self.tab_index = index;
314 if let Some(focus) = self.handles.write().get_mut(self.id) {
315 focus.tab_index = index;
316 }
317 self
318 }
319
320 /// Sets whether the element associated with this handle is a tab stop.
321 ///
322 /// When `false`, the element will not be included in the tab order.
323 pub fn tab_stop(mut self, tab_stop: bool) -> Self {
324 self.tab_stop = tab_stop;
325 if let Some(focus) = self.handles.write().get_mut(self.id) {
326 focus.tab_stop = tab_stop;
327 }
328 self
329 }
330
331 /// Converts this focus handle into a weak variant, which does not prevent it from being released.
332 pub fn downgrade(&self) -> WeakFocusHandle {
333 WeakFocusHandle {
334 id: self.id,
335 handles: Arc::downgrade(&self.handles),
336 }
337 }
338
339 /// Moves the focus to the element associated with this handle.
340 pub fn focus(&self, window: &mut Window) {
341 window.focus(self)
342 }
343
344 /// Obtains whether the element associated with this handle is currently focused.
345 pub fn is_focused(&self, window: &Window) -> bool {
346 self.id.is_focused(window)
347 }
348
349 /// Obtains whether the element associated with this handle contains the focused
350 /// element or is itself focused.
351 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
352 self.id.contains_focused(window, cx)
353 }
354
355 /// Obtains whether the element associated with this handle is contained within the
356 /// focused element or is itself focused.
357 pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
358 self.id.within_focused(window, cx)
359 }
360
361 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
362 pub fn contains(&self, other: &Self, window: &Window) -> bool {
363 self.id.contains(other.id, window)
364 }
365
366 /// Dispatch an action on the element that rendered this focus handle
367 pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
368 if let Some(node_id) = window
369 .rendered_frame
370 .dispatch_tree
371 .focusable_node_id(self.id)
372 {
373 window.dispatch_action_on_node(node_id, action, cx)
374 }
375 }
376}
377
378impl Clone for FocusHandle {
379 fn clone(&self) -> Self {
380 Self::for_id(self.id, &self.handles).unwrap()
381 }
382}
383
384impl PartialEq for FocusHandle {
385 fn eq(&self, other: &Self) -> bool {
386 self.id == other.id
387 }
388}
389
390impl Eq for FocusHandle {}
391
392impl Drop for FocusHandle {
393 fn drop(&mut self) {
394 self.handles
395 .read()
396 .get(self.id)
397 .unwrap()
398 .ref_count
399 .fetch_sub(1, SeqCst);
400 }
401}
402
403/// A weak reference to a focus handle.
404#[derive(Clone, Debug)]
405pub struct WeakFocusHandle {
406 pub(crate) id: FocusId,
407 pub(crate) handles: Weak<FocusMap>,
408}
409
410impl WeakFocusHandle {
411 /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
412 pub fn upgrade(&self) -> Option<FocusHandle> {
413 let handles = self.handles.upgrade()?;
414 FocusHandle::for_id(self.id, &handles)
415 }
416}
417
418impl PartialEq for WeakFocusHandle {
419 fn eq(&self, other: &WeakFocusHandle) -> bool {
420 self.id == other.id
421 }
422}
423
424impl Eq for WeakFocusHandle {}
425
426impl PartialEq<FocusHandle> for WeakFocusHandle {
427 fn eq(&self, other: &FocusHandle) -> bool {
428 self.id == other.id
429 }
430}
431
432impl PartialEq<WeakFocusHandle> for FocusHandle {
433 fn eq(&self, other: &WeakFocusHandle) -> bool {
434 self.id == other.id
435 }
436}
437
438/// Focusable allows users of your view to easily
439/// focus it (using window.focus_view(cx, view))
440pub trait Focusable: 'static {
441 /// Returns the focus handle associated with this view.
442 fn focus_handle(&self, cx: &App) -> FocusHandle;
443}
444
445impl<V: Focusable> Focusable for Entity<V> {
446 fn focus_handle(&self, cx: &App) -> FocusHandle {
447 self.read(cx).focus_handle(cx)
448 }
449}
450
451/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
452/// where the lifecycle of the view is handled by another view.
453pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
454
455impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
456
457/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
458pub struct DismissEvent;
459
460type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
461
462pub(crate) type AnyMouseListener =
463 Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
464
465#[derive(Clone)]
466pub(crate) struct CursorStyleRequest {
467 pub(crate) hitbox_id: Option<HitboxId>,
468 pub(crate) style: CursorStyle,
469}
470
471#[derive(Default, Eq, PartialEq)]
472pub(crate) struct HitTest {
473 pub(crate) ids: SmallVec<[HitboxId; 8]>,
474 pub(crate) hover_hitbox_count: usize,
475}
476
477/// A type of window control area that corresponds to the platform window.
478#[derive(Clone, Copy, Debug, Eq, PartialEq)]
479pub enum WindowControlArea {
480 /// An area that allows dragging of the platform window.
481 Drag,
482 /// An area that allows closing of the platform window.
483 Close,
484 /// An area that allows maximizing of the platform window.
485 Max,
486 /// An area that allows minimizing of the platform window.
487 Min,
488}
489
490/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
491#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
492pub struct HitboxId(u64);
493
494impl HitboxId {
495 /// Checks if the hitbox with this ID is currently hovered. Except when handling
496 /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
497 /// events or paint hover styles.
498 ///
499 /// See [`Hitbox::is_hovered`] for details.
500 pub fn is_hovered(self, window: &Window) -> bool {
501 let hit_test = &window.mouse_hit_test;
502 for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
503 if self == *id {
504 return true;
505 }
506 }
507 false
508 }
509
510 /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
511 /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
512 /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
513 /// this distinction.
514 pub fn should_handle_scroll(self, window: &Window) -> bool {
515 window.mouse_hit_test.ids.contains(&self)
516 }
517
518 fn next(mut self) -> HitboxId {
519 HitboxId(self.0.wrapping_add(1))
520 }
521}
522
523/// A rectangular region that potentially blocks hitboxes inserted prior.
524/// See [Window::insert_hitbox] for more details.
525#[derive(Clone, Debug, Deref)]
526pub struct Hitbox {
527 /// A unique identifier for the hitbox.
528 pub id: HitboxId,
529 /// The bounds of the hitbox.
530 #[deref]
531 pub bounds: Bounds<Pixels>,
532 /// The content mask when the hitbox was inserted.
533 pub content_mask: ContentMask<Pixels>,
534 /// Flags that specify hitbox behavior.
535 pub behavior: HitboxBehavior,
536}
537
538impl Hitbox {
539 /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
540 /// typically what you want when determining whether to handle mouse events or paint hover
541 /// styles.
542 ///
543 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
544 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
545 /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
546 ///
547 /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
548 /// Concretely, this is due to use-cases like overlays that cause the elements under to be
549 /// non-interactive while still allowing scrolling. More abstractly, this is because
550 /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
551 /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
552 /// container.
553 pub fn is_hovered(&self, window: &Window) -> bool {
554 self.id.is_hovered(window)
555 }
556
557 /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
558 /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
559 /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
560 ///
561 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
562 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
563 pub fn should_handle_scroll(&self, window: &Window) -> bool {
564 self.id.should_handle_scroll(window)
565 }
566}
567
568/// How the hitbox affects mouse behavior.
569#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
570pub enum HitboxBehavior {
571 /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
572 #[default]
573 Normal,
574
575 /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
576 /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
577 /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
578 /// [`InteractiveElement::occlude`].
579 ///
580 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
581 /// bubble-phase handler for every mouse event type:
582 ///
583 /// ```
584 /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
585 /// if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
586 /// cx.stop_propagation();
587 /// }
588 /// }
589 /// ```
590 ///
591 /// This has effects beyond event handling - any use of hitbox checking, such as hover
592 /// styles and tooltops. These other behaviors are the main point of this mechanism. An
593 /// alternative might be to not affect mouse event handling - but this would allow
594 /// inconsistent UI where clicks and moves interact with elements that are not considered to
595 /// be hovered.
596 BlockMouse,
597
598 /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
599 /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
600 /// interaction except scroll events to be ignored - see the documentation of
601 /// [`Hitbox::is_hovered`] for details. This flag is set by
602 /// [`InteractiveElement::block_mouse_except_scroll`].
603 ///
604 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
605 /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
606 ///
607 /// ```
608 /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, _cx| {
609 /// if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
610 /// cx.stop_propagation();
611 /// }
612 /// }
613 /// ```
614 ///
615 /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
616 /// handled differently than other mouse events. If also blocking these scroll events is
617 /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
618 ///
619 /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
620 /// hover styles and tooltops. These other behaviors are the main point of this mechanism.
621 /// An alternative might be to not affect mouse event handling - but this would allow
622 /// inconsistent UI where clicks and moves interact with elements that are not considered to
623 /// be hovered.
624 BlockMouseExceptScroll,
625}
626
627/// An identifier for a tooltip.
628#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
629pub struct TooltipId(usize);
630
631impl TooltipId {
632 /// Checks if the tooltip is currently hovered.
633 pub fn is_hovered(&self, window: &Window) -> bool {
634 window
635 .tooltip_bounds
636 .as_ref()
637 .is_some_and(|tooltip_bounds| {
638 tooltip_bounds.id == *self
639 && tooltip_bounds.bounds.contains(&window.mouse_position())
640 })
641 }
642}
643
644pub(crate) struct TooltipBounds {
645 id: TooltipId,
646 bounds: Bounds<Pixels>,
647}
648
649#[derive(Clone)]
650pub(crate) struct TooltipRequest {
651 id: TooltipId,
652 tooltip: AnyTooltip,
653}
654
655pub(crate) struct DeferredDraw {
656 current_view: EntityId,
657 priority: usize,
658 parent_node: DispatchNodeId,
659 element_id_stack: SmallVec<[ElementId; 32]>,
660 text_style_stack: Vec<TextStyleRefinement>,
661 element: Option<AnyElement>,
662 absolute_offset: Point<Pixels>,
663 prepaint_range: Range<PrepaintStateIndex>,
664 paint_range: Range<PaintIndex>,
665}
666
667pub(crate) struct Frame {
668 pub(crate) focus: Option<FocusId>,
669 pub(crate) window_active: bool,
670 pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
671 accessed_element_states: Vec<(GlobalElementId, TypeId)>,
672 pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
673 pub(crate) dispatch_tree: DispatchTree,
674 pub(crate) scene: Scene,
675 pub(crate) hitboxes: Vec<Hitbox>,
676 pub(crate) window_control_hitboxes: Vec<(WindowControlArea, Hitbox)>,
677 pub(crate) deferred_draws: Vec<DeferredDraw>,
678 pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
679 pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
680 pub(crate) cursor_styles: Vec<CursorStyleRequest>,
681 #[cfg(any(test, feature = "test-support"))]
682 pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
683 #[cfg(any(feature = "inspector", debug_assertions))]
684 pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
685 #[cfg(any(feature = "inspector", debug_assertions))]
686 pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
687 pub(crate) tab_handles: TabHandles,
688}
689
690#[derive(Clone, Default)]
691pub(crate) struct PrepaintStateIndex {
692 hitboxes_index: usize,
693 tooltips_index: usize,
694 deferred_draws_index: usize,
695 dispatch_tree_index: usize,
696 accessed_element_states_index: usize,
697 line_layout_index: LineLayoutIndex,
698}
699
700#[derive(Clone, Default)]
701pub(crate) struct PaintIndex {
702 scene_index: usize,
703 mouse_listeners_index: usize,
704 input_handlers_index: usize,
705 cursor_styles_index: usize,
706 accessed_element_states_index: usize,
707 tab_handle_index: usize,
708 line_layout_index: LineLayoutIndex,
709}
710
711impl Frame {
712 pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
713 Frame {
714 focus: None,
715 window_active: false,
716 element_states: FxHashMap::default(),
717 accessed_element_states: Vec::new(),
718 mouse_listeners: Vec::new(),
719 dispatch_tree,
720 scene: Scene::default(),
721 hitboxes: Vec::new(),
722 window_control_hitboxes: Vec::new(),
723 deferred_draws: Vec::new(),
724 input_handlers: Vec::new(),
725 tooltip_requests: Vec::new(),
726 cursor_styles: Vec::new(),
727
728 #[cfg(any(test, feature = "test-support"))]
729 debug_bounds: FxHashMap::default(),
730
731 #[cfg(any(feature = "inspector", debug_assertions))]
732 next_inspector_instance_ids: FxHashMap::default(),
733
734 #[cfg(any(feature = "inspector", debug_assertions))]
735 inspector_hitboxes: FxHashMap::default(),
736 tab_handles: TabHandles::default(),
737 }
738 }
739
740 pub(crate) fn clear(&mut self) {
741 self.element_states.clear();
742 self.accessed_element_states.clear();
743 self.mouse_listeners.clear();
744 self.dispatch_tree.clear();
745 self.scene.clear();
746 self.input_handlers.clear();
747 self.tooltip_requests.clear();
748 self.cursor_styles.clear();
749 self.hitboxes.clear();
750 self.window_control_hitboxes.clear();
751 self.deferred_draws.clear();
752 self.tab_handles.clear();
753 self.focus = None;
754
755 #[cfg(any(feature = "inspector", debug_assertions))]
756 {
757 self.next_inspector_instance_ids.clear();
758 self.inspector_hitboxes.clear();
759 }
760 }
761
762 pub(crate) fn cursor_style(&self, window: &Window) -> Option<CursorStyle> {
763 self.cursor_styles
764 .iter()
765 .rev()
766 .fold_while(None, |style, request| match request.hitbox_id {
767 None => Done(Some(request.style)),
768 Some(hitbox_id) => Continue(
769 style.or_else(|| hitbox_id.is_hovered(window).then_some(request.style)),
770 ),
771 })
772 .into_inner()
773 }
774
775 pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
776 let mut set_hover_hitbox_count = false;
777 let mut hit_test = HitTest::default();
778 for hitbox in self.hitboxes.iter().rev() {
779 let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
780 if bounds.contains(&position) {
781 hit_test.ids.push(hitbox.id);
782 if !set_hover_hitbox_count
783 && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
784 {
785 hit_test.hover_hitbox_count = hit_test.ids.len();
786 set_hover_hitbox_count = true;
787 }
788 if hitbox.behavior == HitboxBehavior::BlockMouse {
789 break;
790 }
791 }
792 }
793 if !set_hover_hitbox_count {
794 hit_test.hover_hitbox_count = hit_test.ids.len();
795 }
796 hit_test
797 }
798
799 pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
800 self.focus
801 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
802 .unwrap_or_default()
803 }
804
805 pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
806 for element_state_key in &self.accessed_element_states {
807 if let Some((element_state_key, element_state)) =
808 prev_frame.element_states.remove_entry(element_state_key)
809 {
810 self.element_states.insert(element_state_key, element_state);
811 }
812 }
813
814 self.scene.finish();
815 }
816}
817
818/// Holds the state for a specific window.
819pub struct Window {
820 pub(crate) handle: AnyWindowHandle,
821 pub(crate) invalidator: WindowInvalidator,
822 pub(crate) removed: bool,
823 pub(crate) platform_window: Box<dyn PlatformWindow>,
824 display_id: Option<DisplayId>,
825 sprite_atlas: Arc<dyn PlatformAtlas>,
826 text_system: Arc<WindowTextSystem>,
827 rem_size: Pixels,
828 /// The stack of override values for the window's rem size.
829 ///
830 /// This is used by `with_rem_size` to allow rendering an element tree with
831 /// a given rem size.
832 rem_size_override_stack: SmallVec<[Pixels; 8]>,
833 pub(crate) viewport_size: Size<Pixels>,
834 layout_engine: Option<TaffyLayoutEngine>,
835 pub(crate) root: Option<AnyView>,
836 pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
837 pub(crate) text_style_stack: Vec<TextStyleRefinement>,
838 pub(crate) rendered_entity_stack: Vec<EntityId>,
839 pub(crate) element_offset_stack: Vec<Point<Pixels>>,
840 pub(crate) element_opacity: Option<f32>,
841 pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
842 pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
843 pub(crate) image_cache_stack: Vec<AnyImageCache>,
844 pub(crate) rendered_frame: Frame,
845 pub(crate) next_frame: Frame,
846 next_hitbox_id: HitboxId,
847 pub(crate) next_tooltip_id: TooltipId,
848 pub(crate) tooltip_bounds: Option<TooltipBounds>,
849 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
850 pub(crate) dirty_views: FxHashSet<EntityId>,
851 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
852 pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
853 default_prevented: bool,
854 mouse_position: Point<Pixels>,
855 mouse_hit_test: HitTest,
856 modifiers: Modifiers,
857 capslock: Capslock,
858 scale_factor: f32,
859 pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
860 appearance: WindowAppearance,
861 pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
862 active: Rc<Cell<bool>>,
863 hovered: Rc<Cell<bool>>,
864 pub(crate) needs_present: Rc<Cell<bool>>,
865 pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
866 pub(crate) refreshing: bool,
867 pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
868 pub(crate) focus: Option<FocusId>,
869 focus_enabled: bool,
870 pending_input: Option<PendingInput>,
871 pending_modifier: ModifierState,
872 pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
873 prompt: Option<RenderablePromptHandle>,
874 pub(crate) client_inset: Option<Pixels>,
875 #[cfg(any(feature = "inspector", debug_assertions))]
876 inspector: Option<Entity<Inspector>>,
877}
878
879#[derive(Clone, Debug, Default)]
880struct ModifierState {
881 modifiers: Modifiers,
882 saw_keystroke: bool,
883}
884
885#[derive(Clone, Copy, Debug, Eq, PartialEq)]
886pub(crate) enum DrawPhase {
887 None,
888 Prepaint,
889 Paint,
890 Focus,
891}
892
893#[derive(Default, Debug)]
894struct PendingInput {
895 keystrokes: SmallVec<[Keystroke; 1]>,
896 focus: Option<FocusId>,
897 timer: Option<Task<()>>,
898}
899
900pub(crate) struct ElementStateBox {
901 pub(crate) inner: Box<dyn Any>,
902 #[cfg(debug_assertions)]
903 pub(crate) type_name: &'static str,
904}
905
906fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> Bounds<Pixels> {
907 const DEFAULT_WINDOW_OFFSET: Point<Pixels> = point(px(0.), px(35.));
908
909 // TODO, BUG: if you open a window with the currently active window
910 // on the stack, this will erroneously select the 'unwrap_or_else'
911 // code path
912 cx.active_window()
913 .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok())
914 .map(|mut bounds| {
915 bounds.origin += DEFAULT_WINDOW_OFFSET;
916 bounds
917 })
918 .unwrap_or_else(|| {
919 let display = display_id
920 .map(|id| cx.find_display(id))
921 .unwrap_or_else(|| cx.primary_display());
922
923 display
924 .map(|display| display.default_bounds())
925 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE))
926 })
927}
928
929impl Window {
930 pub(crate) fn new(
931 handle: AnyWindowHandle,
932 options: WindowOptions,
933 cx: &mut App,
934 ) -> Result<Self> {
935 let WindowOptions {
936 window_bounds,
937 titlebar,
938 focus,
939 show,
940 kind,
941 is_movable,
942 is_resizable,
943 is_minimizable,
944 display_id,
945 window_background,
946 app_id,
947 window_min_size,
948 window_decorations,
949 } = options;
950
951 let bounds = window_bounds
952 .map(|bounds| bounds.get_bounds())
953 .unwrap_or_else(|| default_bounds(display_id, cx));
954 let mut platform_window = cx.platform.open_window(
955 handle,
956 WindowParams {
957 bounds,
958 titlebar,
959 kind,
960 is_movable,
961 is_resizable,
962 is_minimizable,
963 focus,
964 show,
965 display_id,
966 window_min_size,
967 },
968 )?;
969 let display_id = platform_window.display().map(|display| display.id());
970 let sprite_atlas = platform_window.sprite_atlas();
971 let mouse_position = platform_window.mouse_position();
972 let modifiers = platform_window.modifiers();
973 let capslock = platform_window.capslock();
974 let content_size = platform_window.content_size();
975 let scale_factor = platform_window.scale_factor();
976 let appearance = platform_window.appearance();
977 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
978 let invalidator = WindowInvalidator::new();
979 let active = Rc::new(Cell::new(platform_window.is_active()));
980 let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
981 let needs_present = Rc::new(Cell::new(false));
982 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
983 let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
984
985 platform_window
986 .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
987 platform_window.set_background_appearance(window_background);
988
989 if let Some(ref window_open_state) = window_bounds {
990 match window_open_state {
991 WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
992 WindowBounds::Maximized(_) => platform_window.zoom(),
993 WindowBounds::Windowed(_) => {}
994 }
995 }
996
997 platform_window.on_close(Box::new({
998 let mut cx = cx.to_async();
999 move || {
1000 let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
1001 }
1002 }));
1003 platform_window.on_request_frame(Box::new({
1004 let mut cx = cx.to_async();
1005 let invalidator = invalidator.clone();
1006 let active = active.clone();
1007 let needs_present = needs_present.clone();
1008 let next_frame_callbacks = next_frame_callbacks.clone();
1009 let last_input_timestamp = last_input_timestamp.clone();
1010 move |request_frame_options| {
1011 let next_frame_callbacks = next_frame_callbacks.take();
1012 if !next_frame_callbacks.is_empty() {
1013 handle
1014 .update(&mut cx, |_, window, cx| {
1015 for callback in next_frame_callbacks {
1016 callback(window, cx);
1017 }
1018 })
1019 .log_err();
1020 }
1021
1022 // Keep presenting the current scene for 1 extra second since the
1023 // last input to prevent the display from underclocking the refresh rate.
1024 let needs_present = request_frame_options.require_presentation
1025 || needs_present.get()
1026 || (active.get()
1027 && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
1028
1029 if invalidator.is_dirty() || request_frame_options.force_render {
1030 measure("frame duration", || {
1031 handle
1032 .update(&mut cx, |_, window, cx| {
1033 let arena_clear_needed = window.draw(cx);
1034 window.present();
1035 // drop the arena elements after present to reduce latency
1036 arena_clear_needed.clear();
1037 })
1038 .log_err();
1039 })
1040 } else if needs_present {
1041 handle
1042 .update(&mut cx, |_, window, _| window.present())
1043 .log_err();
1044 }
1045
1046 handle
1047 .update(&mut cx, |_, window, _| {
1048 window.complete_frame();
1049 })
1050 .log_err();
1051 }
1052 }));
1053 platform_window.on_resize(Box::new({
1054 let mut cx = cx.to_async();
1055 move |_, _| {
1056 handle
1057 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1058 .log_err();
1059 }
1060 }));
1061 platform_window.on_moved(Box::new({
1062 let mut cx = cx.to_async();
1063 move || {
1064 handle
1065 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1066 .log_err();
1067 }
1068 }));
1069 platform_window.on_appearance_changed(Box::new({
1070 let mut cx = cx.to_async();
1071 move || {
1072 handle
1073 .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
1074 .log_err();
1075 }
1076 }));
1077 platform_window.on_active_status_change(Box::new({
1078 let mut cx = cx.to_async();
1079 move |active| {
1080 handle
1081 .update(&mut cx, |_, window, cx| {
1082 window.active.set(active);
1083 window.modifiers = window.platform_window.modifiers();
1084 window.capslock = window.platform_window.capslock();
1085 window
1086 .activation_observers
1087 .clone()
1088 .retain(&(), |callback| callback(window, cx));
1089 window.refresh();
1090 })
1091 .log_err();
1092 }
1093 }));
1094 platform_window.on_hover_status_change(Box::new({
1095 let mut cx = cx.to_async();
1096 move |active| {
1097 handle
1098 .update(&mut cx, |_, window, _| {
1099 window.hovered.set(active);
1100 window.refresh();
1101 })
1102 .log_err();
1103 }
1104 }));
1105 platform_window.on_input({
1106 let mut cx = cx.to_async();
1107 Box::new(move |event| {
1108 handle
1109 .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1110 .log_err()
1111 .unwrap_or(DispatchEventResult::default())
1112 })
1113 });
1114 platform_window.on_hit_test_window_control({
1115 let mut cx = cx.to_async();
1116 Box::new(move || {
1117 handle
1118 .update(&mut cx, |_, window, _cx| {
1119 for (area, hitbox) in &window.rendered_frame.window_control_hitboxes {
1120 if window.mouse_hit_test.ids.contains(&hitbox.id) {
1121 return Some(*area);
1122 }
1123 }
1124 None
1125 })
1126 .log_err()
1127 .unwrap_or(None)
1128 })
1129 });
1130
1131 if let Some(app_id) = app_id {
1132 platform_window.set_app_id(&app_id);
1133 }
1134
1135 platform_window.map_window().unwrap();
1136
1137 Ok(Window {
1138 handle,
1139 invalidator,
1140 removed: false,
1141 platform_window,
1142 display_id,
1143 sprite_atlas,
1144 text_system,
1145 rem_size: px(16.),
1146 rem_size_override_stack: SmallVec::new(),
1147 viewport_size: content_size,
1148 layout_engine: Some(TaffyLayoutEngine::new()),
1149 root: None,
1150 element_id_stack: SmallVec::default(),
1151 text_style_stack: Vec::new(),
1152 rendered_entity_stack: Vec::new(),
1153 element_offset_stack: Vec::new(),
1154 content_mask_stack: Vec::new(),
1155 element_opacity: None,
1156 requested_autoscroll: None,
1157 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1158 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1159 next_frame_callbacks,
1160 next_hitbox_id: HitboxId(0),
1161 next_tooltip_id: TooltipId::default(),
1162 tooltip_bounds: None,
1163 dirty_views: FxHashSet::default(),
1164 focus_listeners: SubscriberSet::new(),
1165 focus_lost_listeners: SubscriberSet::new(),
1166 default_prevented: true,
1167 mouse_position,
1168 mouse_hit_test: HitTest::default(),
1169 modifiers,
1170 capslock,
1171 scale_factor,
1172 bounds_observers: SubscriberSet::new(),
1173 appearance,
1174 appearance_observers: SubscriberSet::new(),
1175 active,
1176 hovered,
1177 needs_present,
1178 last_input_timestamp,
1179 refreshing: false,
1180 activation_observers: SubscriberSet::new(),
1181 focus: None,
1182 focus_enabled: true,
1183 pending_input: None,
1184 pending_modifier: ModifierState::default(),
1185 pending_input_observers: SubscriberSet::new(),
1186 prompt: None,
1187 client_inset: None,
1188 image_cache_stack: Vec::new(),
1189 #[cfg(any(feature = "inspector", debug_assertions))]
1190 inspector: None,
1191 })
1192 }
1193
1194 pub(crate) fn new_focus_listener(
1195 &self,
1196 value: AnyWindowFocusListener,
1197 ) -> (Subscription, impl FnOnce() + use<>) {
1198 self.focus_listeners.insert((), value)
1199 }
1200}
1201
1202#[derive(Clone, Debug, Default, PartialEq, Eq)]
1203pub(crate) struct DispatchEventResult {
1204 pub propagate: bool,
1205 pub default_prevented: bool,
1206}
1207
1208/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1209/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1210/// to leave room to support more complex shapes in the future.
1211#[derive(Clone, Debug, Default, PartialEq, Eq)]
1212#[repr(C)]
1213pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1214 /// The bounds
1215 pub bounds: Bounds<P>,
1216}
1217
1218impl ContentMask<Pixels> {
1219 /// Scale the content mask's pixel units by the given scaling factor.
1220 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1221 ContentMask {
1222 bounds: self.bounds.scale(factor),
1223 }
1224 }
1225
1226 /// Intersect the content mask with the given content mask.
1227 pub fn intersect(&self, other: &Self) -> Self {
1228 let bounds = self.bounds.intersect(&other.bounds);
1229 ContentMask { bounds }
1230 }
1231}
1232
1233impl Window {
1234 fn mark_view_dirty(&mut self, view_id: EntityId) {
1235 // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1236 // should already be dirty.
1237 for view_id in self
1238 .rendered_frame
1239 .dispatch_tree
1240 .view_path(view_id)
1241 .into_iter()
1242 .rev()
1243 {
1244 if !self.dirty_views.insert(view_id) {
1245 break;
1246 }
1247 }
1248 }
1249
1250 /// Registers a callback to be invoked when the window appearance changes.
1251 pub fn observe_window_appearance(
1252 &self,
1253 mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1254 ) -> Subscription {
1255 let (subscription, activate) = self.appearance_observers.insert(
1256 (),
1257 Box::new(move |window, cx| {
1258 callback(window, cx);
1259 true
1260 }),
1261 );
1262 activate();
1263 subscription
1264 }
1265
1266 /// Replaces the root entity of the window with a new one.
1267 pub fn replace_root<E>(
1268 &mut self,
1269 cx: &mut App,
1270 build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1271 ) -> Entity<E>
1272 where
1273 E: 'static + Render,
1274 {
1275 let view = cx.new(|cx| build_view(self, cx));
1276 self.root = Some(view.clone().into());
1277 self.refresh();
1278 view
1279 }
1280
1281 /// Returns the root entity of the window, if it has one.
1282 pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1283 where
1284 E: 'static + Render,
1285 {
1286 self.root
1287 .as_ref()
1288 .map(|view| view.clone().downcast::<E>().ok())
1289 }
1290
1291 /// Obtain a handle to the window that belongs to this context.
1292 pub fn window_handle(&self) -> AnyWindowHandle {
1293 self.handle
1294 }
1295
1296 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1297 pub fn refresh(&mut self) {
1298 if self.invalidator.not_drawing() {
1299 self.refreshing = true;
1300 self.invalidator.set_dirty(true);
1301 }
1302 }
1303
1304 /// Close this window.
1305 pub fn remove_window(&mut self) {
1306 self.removed = true;
1307 }
1308
1309 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1310 pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1311 self.focus
1312 .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1313 }
1314
1315 /// Move focus to the element associated with the given [`FocusHandle`].
1316 pub fn focus(&mut self, handle: &FocusHandle) {
1317 if !self.focus_enabled || self.focus == Some(handle.id) {
1318 return;
1319 }
1320
1321 self.focus = Some(handle.id);
1322 self.clear_pending_keystrokes();
1323 self.refresh();
1324 }
1325
1326 /// Remove focus from all elements within this context's window.
1327 pub fn blur(&mut self) {
1328 if !self.focus_enabled {
1329 return;
1330 }
1331
1332 self.focus = None;
1333 self.refresh();
1334 }
1335
1336 /// Blur the window and don't allow anything in it to be focused again.
1337 pub fn disable_focus(&mut self) {
1338 self.blur();
1339 self.focus_enabled = false;
1340 }
1341
1342 /// Move focus to next tab stop.
1343 pub fn focus_next(&mut self) {
1344 if !self.focus_enabled {
1345 return;
1346 }
1347
1348 if let Some(handle) = self.rendered_frame.tab_handles.next(self.focus.as_ref()) {
1349 self.focus(&handle)
1350 }
1351 }
1352
1353 /// Move focus to previous tab stop.
1354 pub fn focus_prev(&mut self) {
1355 if !self.focus_enabled {
1356 return;
1357 }
1358
1359 if let Some(handle) = self.rendered_frame.tab_handles.prev(self.focus.as_ref()) {
1360 self.focus(&handle)
1361 }
1362 }
1363
1364 /// Accessor for the text system.
1365 pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1366 &self.text_system
1367 }
1368
1369 /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1370 pub fn text_style(&self) -> TextStyle {
1371 let mut style = TextStyle::default();
1372 for refinement in &self.text_style_stack {
1373 style.refine(refinement);
1374 }
1375 style
1376 }
1377
1378 /// Check if the platform window is maximized
1379 /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1380 pub fn is_maximized(&self) -> bool {
1381 self.platform_window.is_maximized()
1382 }
1383
1384 /// request a certain window decoration (Wayland)
1385 pub fn request_decorations(&self, decorations: WindowDecorations) {
1386 self.platform_window.request_decorations(decorations);
1387 }
1388
1389 /// Start a window resize operation (Wayland)
1390 pub fn start_window_resize(&self, edge: ResizeEdge) {
1391 self.platform_window.start_window_resize(edge);
1392 }
1393
1394 /// Return the `WindowBounds` to indicate that how a window should be opened
1395 /// after it has been closed
1396 pub fn window_bounds(&self) -> WindowBounds {
1397 self.platform_window.window_bounds()
1398 }
1399
1400 /// Return the `WindowBounds` excluding insets (Wayland and X11)
1401 pub fn inner_window_bounds(&self) -> WindowBounds {
1402 self.platform_window.inner_window_bounds()
1403 }
1404
1405 /// Dispatch the given action on the currently focused element.
1406 pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1407 let focus_id = self.focused(cx).map(|handle| handle.id);
1408
1409 let window = self.handle;
1410 cx.defer(move |cx| {
1411 window
1412 .update(cx, |_, window, cx| {
1413 let node_id = window.focus_node_id_in_rendered_frame(focus_id);
1414 window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1415 })
1416 .log_err();
1417 })
1418 }
1419
1420 pub(crate) fn dispatch_keystroke_observers(
1421 &mut self,
1422 event: &dyn Any,
1423 action: Option<Box<dyn Action>>,
1424 context_stack: Vec<KeyContext>,
1425 cx: &mut App,
1426 ) {
1427 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1428 return;
1429 };
1430
1431 cx.keystroke_observers.clone().retain(&(), move |callback| {
1432 (callback)(
1433 &KeystrokeEvent {
1434 keystroke: key_down_event.keystroke.clone(),
1435 action: action.as_ref().map(|action| action.boxed_clone()),
1436 context_stack: context_stack.clone(),
1437 },
1438 self,
1439 cx,
1440 )
1441 });
1442 }
1443
1444 pub(crate) fn dispatch_keystroke_interceptors(
1445 &mut self,
1446 event: &dyn Any,
1447 context_stack: Vec<KeyContext>,
1448 cx: &mut App,
1449 ) {
1450 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1451 return;
1452 };
1453
1454 cx.keystroke_interceptors
1455 .clone()
1456 .retain(&(), move |callback| {
1457 (callback)(
1458 &KeystrokeEvent {
1459 keystroke: key_down_event.keystroke.clone(),
1460 action: None,
1461 context_stack: context_stack.clone(),
1462 },
1463 self,
1464 cx,
1465 )
1466 });
1467 }
1468
1469 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1470 /// that are currently on the stack to be returned to the app.
1471 pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1472 let handle = self.handle;
1473 cx.defer(move |cx| {
1474 handle.update(cx, |_, window, cx| f(window, cx)).ok();
1475 });
1476 }
1477
1478 /// Subscribe to events emitted by a entity.
1479 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1480 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1481 pub fn observe<T: 'static>(
1482 &mut self,
1483 observed: &Entity<T>,
1484 cx: &mut App,
1485 mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1486 ) -> Subscription {
1487 let entity_id = observed.entity_id();
1488 let observed = observed.downgrade();
1489 let window_handle = self.handle;
1490 cx.new_observer(
1491 entity_id,
1492 Box::new(move |cx| {
1493 window_handle
1494 .update(cx, |_, window, cx| {
1495 if let Some(handle) = observed.upgrade() {
1496 on_notify(handle, window, cx);
1497 true
1498 } else {
1499 false
1500 }
1501 })
1502 .unwrap_or(false)
1503 }),
1504 )
1505 }
1506
1507 /// Subscribe to events emitted by a entity.
1508 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1509 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1510 pub fn subscribe<Emitter, Evt>(
1511 &mut self,
1512 entity: &Entity<Emitter>,
1513 cx: &mut App,
1514 mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1515 ) -> Subscription
1516 where
1517 Emitter: EventEmitter<Evt>,
1518 Evt: 'static,
1519 {
1520 let entity_id = entity.entity_id();
1521 let handle = entity.downgrade();
1522 let window_handle = self.handle;
1523 cx.new_subscription(
1524 entity_id,
1525 (
1526 TypeId::of::<Evt>(),
1527 Box::new(move |event, cx| {
1528 window_handle
1529 .update(cx, |_, window, cx| {
1530 if let Some(entity) = handle.upgrade() {
1531 let event = event.downcast_ref().expect("invalid event type");
1532 on_event(entity, event, window, cx);
1533 true
1534 } else {
1535 false
1536 }
1537 })
1538 .unwrap_or(false)
1539 }),
1540 ),
1541 )
1542 }
1543
1544 /// Register a callback to be invoked when the given `Entity` is released.
1545 pub fn observe_release<T>(
1546 &self,
1547 entity: &Entity<T>,
1548 cx: &mut App,
1549 mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1550 ) -> Subscription
1551 where
1552 T: 'static,
1553 {
1554 let entity_id = entity.entity_id();
1555 let window_handle = self.handle;
1556 let (subscription, activate) = cx.release_listeners.insert(
1557 entity_id,
1558 Box::new(move |entity, cx| {
1559 let entity = entity.downcast_mut().expect("invalid entity type");
1560 let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1561 }),
1562 );
1563 activate();
1564 subscription
1565 }
1566
1567 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1568 /// await points in async code.
1569 pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1570 AsyncWindowContext::new_context(cx.to_async(), self.handle)
1571 }
1572
1573 /// Schedule the given closure to be run directly after the current frame is rendered.
1574 pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1575 RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1576 }
1577
1578 /// Schedule a frame to be drawn on the next animation frame.
1579 ///
1580 /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1581 /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1582 ///
1583 /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1584 pub fn request_animation_frame(&self) {
1585 let entity = self.current_view();
1586 self.on_next_frame(move |_, cx| cx.notify(entity));
1587 }
1588
1589 /// Spawn the future returned by the given closure on the application thread pool.
1590 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1591 /// use within your future.
1592 #[track_caller]
1593 pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1594 where
1595 R: 'static,
1596 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1597 {
1598 let handle = self.handle;
1599 cx.spawn(async move |app| {
1600 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1601 f(&mut async_window_cx).await
1602 })
1603 }
1604
1605 fn bounds_changed(&mut self, cx: &mut App) {
1606 self.scale_factor = self.platform_window.scale_factor();
1607 self.viewport_size = self.platform_window.content_size();
1608 self.display_id = self.platform_window.display().map(|display| display.id());
1609
1610 self.refresh();
1611
1612 self.bounds_observers
1613 .clone()
1614 .retain(&(), |callback| callback(self, cx));
1615 }
1616
1617 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1618 pub fn bounds(&self) -> Bounds<Pixels> {
1619 self.platform_window.bounds()
1620 }
1621
1622 /// Set the content size of the window.
1623 pub fn resize(&mut self, size: Size<Pixels>) {
1624 self.platform_window.resize(size);
1625 }
1626
1627 /// Returns whether or not the window is currently fullscreen
1628 pub fn is_fullscreen(&self) -> bool {
1629 self.platform_window.is_fullscreen()
1630 }
1631
1632 pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1633 self.appearance = self.platform_window.appearance();
1634
1635 self.appearance_observers
1636 .clone()
1637 .retain(&(), |callback| callback(self, cx));
1638 }
1639
1640 /// Returns the appearance of the current window.
1641 pub fn appearance(&self) -> WindowAppearance {
1642 self.appearance
1643 }
1644
1645 /// Returns the size of the drawable area within the window.
1646 pub fn viewport_size(&self) -> Size<Pixels> {
1647 self.viewport_size
1648 }
1649
1650 /// Returns whether this window is focused by the operating system (receiving key events).
1651 pub fn is_window_active(&self) -> bool {
1652 self.active.get()
1653 }
1654
1655 /// Returns whether this window is considered to be the window
1656 /// that currently owns the mouse cursor.
1657 /// On mac, this is equivalent to `is_window_active`.
1658 pub fn is_window_hovered(&self) -> bool {
1659 if cfg!(any(
1660 target_os = "windows",
1661 target_os = "linux",
1662 target_os = "freebsd"
1663 )) {
1664 self.hovered.get()
1665 } else {
1666 self.is_window_active()
1667 }
1668 }
1669
1670 /// Toggle zoom on the window.
1671 pub fn zoom_window(&self) {
1672 self.platform_window.zoom();
1673 }
1674
1675 /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1676 pub fn show_window_menu(&self, position: Point<Pixels>) {
1677 self.platform_window.show_window_menu(position)
1678 }
1679
1680 /// Tells the compositor to take control of window movement (Wayland and X11)
1681 ///
1682 /// Events may not be received during a move operation.
1683 pub fn start_window_move(&self) {
1684 self.platform_window.start_window_move()
1685 }
1686
1687 /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1688 pub fn set_client_inset(&mut self, inset: Pixels) {
1689 self.client_inset = Some(inset);
1690 self.platform_window.set_client_inset(inset);
1691 }
1692
1693 /// Returns the client_inset value by [`Self::set_client_inset`].
1694 pub fn client_inset(&self) -> Option<Pixels> {
1695 self.client_inset
1696 }
1697
1698 /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1699 pub fn window_decorations(&self) -> Decorations {
1700 self.platform_window.window_decorations()
1701 }
1702
1703 /// Returns which window controls are currently visible (Wayland)
1704 pub fn window_controls(&self) -> WindowControls {
1705 self.platform_window.window_controls()
1706 }
1707
1708 /// Updates the window's title at the platform level.
1709 pub fn set_window_title(&mut self, title: &str) {
1710 self.platform_window.set_title(title);
1711 }
1712
1713 /// Sets the application identifier.
1714 pub fn set_app_id(&mut self, app_id: &str) {
1715 self.platform_window.set_app_id(app_id);
1716 }
1717
1718 /// Sets the window background appearance.
1719 pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1720 self.platform_window
1721 .set_background_appearance(background_appearance);
1722 }
1723
1724 /// Mark the window as dirty at the platform level.
1725 pub fn set_window_edited(&mut self, edited: bool) {
1726 self.platform_window.set_edited(edited);
1727 }
1728
1729 /// Determine the display on which the window is visible.
1730 pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1731 cx.platform
1732 .displays()
1733 .into_iter()
1734 .find(|display| Some(display.id()) == self.display_id)
1735 }
1736
1737 /// Show the platform character palette.
1738 pub fn show_character_palette(&self) {
1739 self.platform_window.show_character_palette();
1740 }
1741
1742 /// The scale factor of the display associated with the window. For example, it could
1743 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1744 /// be rendered as two pixels on screen.
1745 pub fn scale_factor(&self) -> f32 {
1746 self.scale_factor
1747 }
1748
1749 /// The size of an em for the base font of the application. Adjusting this value allows the
1750 /// UI to scale, just like zooming a web page.
1751 pub fn rem_size(&self) -> Pixels {
1752 self.rem_size_override_stack
1753 .last()
1754 .copied()
1755 .unwrap_or(self.rem_size)
1756 }
1757
1758 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1759 /// UI to scale, just like zooming a web page.
1760 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1761 self.rem_size = rem_size.into();
1762 }
1763
1764 /// Acquire a globally unique identifier for the given ElementId.
1765 /// Only valid for the duration of the provided closure.
1766 pub fn with_global_id<R>(
1767 &mut self,
1768 element_id: ElementId,
1769 f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1770 ) -> R {
1771 self.element_id_stack.push(element_id);
1772 let global_id = GlobalElementId(self.element_id_stack.clone());
1773 let result = f(&global_id, self);
1774 self.element_id_stack.pop();
1775 result
1776 }
1777
1778 /// Executes the provided function with the specified rem size.
1779 ///
1780 /// This method must only be called as part of element drawing.
1781 pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1782 where
1783 F: FnOnce(&mut Self) -> R,
1784 {
1785 self.invalidator.debug_assert_paint_or_prepaint();
1786
1787 if let Some(rem_size) = rem_size {
1788 self.rem_size_override_stack.push(rem_size.into());
1789 let result = f(self);
1790 self.rem_size_override_stack.pop();
1791 result
1792 } else {
1793 f(self)
1794 }
1795 }
1796
1797 /// The line height associated with the current text style.
1798 pub fn line_height(&self) -> Pixels {
1799 self.text_style().line_height_in_pixels(self.rem_size())
1800 }
1801
1802 /// Call to prevent the default action of an event. Currently only used to prevent
1803 /// parent elements from becoming focused on mouse down.
1804 pub fn prevent_default(&mut self) {
1805 self.default_prevented = true;
1806 }
1807
1808 /// Obtain whether default has been prevented for the event currently being dispatched.
1809 pub fn default_prevented(&self) -> bool {
1810 self.default_prevented
1811 }
1812
1813 /// Determine whether the given action is available along the dispatch path to the currently focused element.
1814 pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1815 let node_id =
1816 self.focus_node_id_in_rendered_frame(self.focused(cx).map(|handle| handle.id));
1817 self.rendered_frame
1818 .dispatch_tree
1819 .is_action_available(action, node_id)
1820 }
1821
1822 /// The position of the mouse relative to the window.
1823 pub fn mouse_position(&self) -> Point<Pixels> {
1824 self.mouse_position
1825 }
1826
1827 /// The current state of the keyboard's modifiers
1828 pub fn modifiers(&self) -> Modifiers {
1829 self.modifiers
1830 }
1831
1832 /// The current state of the keyboard's capslock
1833 pub fn capslock(&self) -> Capslock {
1834 self.capslock
1835 }
1836
1837 fn complete_frame(&self) {
1838 self.platform_window.completed_frame();
1839 }
1840
1841 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1842 /// the contents of the new [Scene], use [present].
1843 #[profiling::function]
1844 pub fn draw(&mut self, cx: &mut App) -> ArenaClearNeeded {
1845 self.invalidate_entities();
1846 cx.entities.clear_accessed();
1847 debug_assert!(self.rendered_entity_stack.is_empty());
1848 self.invalidator.set_dirty(false);
1849 self.requested_autoscroll = None;
1850
1851 // Restore the previously-used input handler.
1852 if let Some(input_handler) = self.platform_window.take_input_handler() {
1853 self.rendered_frame.input_handlers.push(Some(input_handler));
1854 }
1855 self.draw_roots(cx);
1856 self.dirty_views.clear();
1857 self.next_frame.window_active = self.active.get();
1858
1859 // Register requested input handler with the platform window.
1860 if let Some(input_handler) = self.next_frame.input_handlers.pop() {
1861 self.platform_window
1862 .set_input_handler(input_handler.unwrap());
1863 }
1864
1865 self.layout_engine.as_mut().unwrap().clear();
1866 self.text_system().finish_frame();
1867 self.next_frame.finish(&mut self.rendered_frame);
1868
1869 self.invalidator.set_phase(DrawPhase::Focus);
1870 let previous_focus_path = self.rendered_frame.focus_path();
1871 let previous_window_active = self.rendered_frame.window_active;
1872 mem::swap(&mut self.rendered_frame, &mut self.next_frame);
1873 self.next_frame.clear();
1874 let current_focus_path = self.rendered_frame.focus_path();
1875 let current_window_active = self.rendered_frame.window_active;
1876
1877 if previous_focus_path != current_focus_path
1878 || previous_window_active != current_window_active
1879 {
1880 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
1881 self.focus_lost_listeners
1882 .clone()
1883 .retain(&(), |listener| listener(self, cx));
1884 }
1885
1886 let event = WindowFocusEvent {
1887 previous_focus_path: if previous_window_active {
1888 previous_focus_path
1889 } else {
1890 Default::default()
1891 },
1892 current_focus_path: if current_window_active {
1893 current_focus_path
1894 } else {
1895 Default::default()
1896 },
1897 };
1898 self.focus_listeners
1899 .clone()
1900 .retain(&(), |listener| listener(&event, self, cx));
1901 }
1902
1903 debug_assert!(self.rendered_entity_stack.is_empty());
1904 self.record_entities_accessed(cx);
1905 self.reset_cursor_style(cx);
1906 self.refreshing = false;
1907 self.invalidator.set_phase(DrawPhase::None);
1908 self.needs_present.set(true);
1909
1910 ArenaClearNeeded
1911 }
1912
1913 fn record_entities_accessed(&mut self, cx: &mut App) {
1914 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1915 let mut entities = mem::take(entities_ref.deref_mut());
1916 drop(entities_ref);
1917 let handle = self.handle;
1918 cx.record_entities_accessed(
1919 handle,
1920 // Try moving window invalidator into the Window
1921 self.invalidator.clone(),
1922 &entities,
1923 );
1924 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1925 mem::swap(&mut entities, entities_ref.deref_mut());
1926 }
1927
1928 fn invalidate_entities(&mut self) {
1929 let mut views = self.invalidator.take_views();
1930 for entity in views.drain() {
1931 self.mark_view_dirty(entity);
1932 }
1933 self.invalidator.replace_views(views);
1934 }
1935
1936 #[profiling::function]
1937 fn present(&self) {
1938 self.platform_window.draw(&self.rendered_frame.scene);
1939 self.needs_present.set(false);
1940 profiling::finish_frame!();
1941 }
1942
1943 fn draw_roots(&mut self, cx: &mut App) {
1944 self.invalidator.set_phase(DrawPhase::Prepaint);
1945 self.tooltip_bounds.take();
1946
1947 let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
1948 let root_size = {
1949 #[cfg(any(feature = "inspector", debug_assertions))]
1950 {
1951 if self.inspector.is_some() {
1952 let mut size = self.viewport_size;
1953 size.width = (size.width - _inspector_width).max(px(0.0));
1954 size
1955 } else {
1956 self.viewport_size
1957 }
1958 }
1959 #[cfg(not(any(feature = "inspector", debug_assertions)))]
1960 {
1961 self.viewport_size
1962 }
1963 };
1964
1965 // Layout all root elements.
1966 let mut root_element = self.root.as_ref().unwrap().clone().into_any();
1967 root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
1968
1969 #[cfg(any(feature = "inspector", debug_assertions))]
1970 let inspector_element = self.prepaint_inspector(_inspector_width, cx);
1971
1972 let mut sorted_deferred_draws =
1973 (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
1974 sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
1975 self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
1976
1977 let mut prompt_element = None;
1978 let mut active_drag_element = None;
1979 let mut tooltip_element = None;
1980 if let Some(prompt) = self.prompt.take() {
1981 let mut element = prompt.view.any_view().into_any();
1982 element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
1983 prompt_element = Some(element);
1984 self.prompt = Some(prompt);
1985 } else if let Some(active_drag) = cx.active_drag.take() {
1986 let mut element = active_drag.view.clone().into_any();
1987 let offset = self.mouse_position() - active_drag.cursor_offset;
1988 element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
1989 active_drag_element = Some(element);
1990 cx.active_drag = Some(active_drag);
1991 } else {
1992 tooltip_element = self.prepaint_tooltip(cx);
1993 }
1994
1995 self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
1996
1997 // Now actually paint the elements.
1998 self.invalidator.set_phase(DrawPhase::Paint);
1999 root_element.paint(self, cx);
2000
2001 #[cfg(any(feature = "inspector", debug_assertions))]
2002 self.paint_inspector(inspector_element, cx);
2003
2004 self.paint_deferred_draws(&sorted_deferred_draws, cx);
2005
2006 if let Some(mut prompt_element) = prompt_element {
2007 prompt_element.paint(self, cx);
2008 } else if let Some(mut drag_element) = active_drag_element {
2009 drag_element.paint(self, cx);
2010 } else if let Some(mut tooltip_element) = tooltip_element {
2011 tooltip_element.paint(self, cx);
2012 }
2013
2014 #[cfg(any(feature = "inspector", debug_assertions))]
2015 self.paint_inspector_hitbox(cx);
2016 }
2017
2018 fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
2019 // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
2020 for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
2021 let Some(Some(tooltip_request)) = self
2022 .next_frame
2023 .tooltip_requests
2024 .get(tooltip_request_index)
2025 .cloned()
2026 else {
2027 log::error!("Unexpectedly absent TooltipRequest");
2028 continue;
2029 };
2030 let mut element = tooltip_request.tooltip.view.clone().into_any();
2031 let mouse_position = tooltip_request.tooltip.mouse_position;
2032 let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
2033
2034 let mut tooltip_bounds =
2035 Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
2036 let window_bounds = Bounds {
2037 origin: Point::default(),
2038 size: self.viewport_size(),
2039 };
2040
2041 if tooltip_bounds.right() > window_bounds.right() {
2042 let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
2043 if new_x >= Pixels::ZERO {
2044 tooltip_bounds.origin.x = new_x;
2045 } else {
2046 tooltip_bounds.origin.x = cmp::max(
2047 Pixels::ZERO,
2048 tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
2049 );
2050 }
2051 }
2052
2053 if tooltip_bounds.bottom() > window_bounds.bottom() {
2054 let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
2055 if new_y >= Pixels::ZERO {
2056 tooltip_bounds.origin.y = new_y;
2057 } else {
2058 tooltip_bounds.origin.y = cmp::max(
2059 Pixels::ZERO,
2060 tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
2061 );
2062 }
2063 }
2064
2065 // It's possible for an element to have an active tooltip while not being painted (e.g.
2066 // via the `visible_on_hover` method). Since mouse listeners are not active in this
2067 // case, instead update the tooltip's visibility here.
2068 let is_visible =
2069 (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
2070 if !is_visible {
2071 continue;
2072 }
2073
2074 self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
2075 element.prepaint(window, cx)
2076 });
2077
2078 self.tooltip_bounds = Some(TooltipBounds {
2079 id: tooltip_request.id,
2080 bounds: tooltip_bounds,
2081 });
2082 return Some(element);
2083 }
2084 None
2085 }
2086
2087 fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2088 assert_eq!(self.element_id_stack.len(), 0);
2089
2090 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2091 for deferred_draw_ix in deferred_draw_indices {
2092 let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2093 self.element_id_stack
2094 .clone_from(&deferred_draw.element_id_stack);
2095 self.text_style_stack
2096 .clone_from(&deferred_draw.text_style_stack);
2097 self.next_frame
2098 .dispatch_tree
2099 .set_active_node(deferred_draw.parent_node);
2100
2101 let prepaint_start = self.prepaint_index();
2102 if let Some(element) = deferred_draw.element.as_mut() {
2103 self.with_rendered_view(deferred_draw.current_view, |window| {
2104 window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
2105 element.prepaint(window, cx)
2106 });
2107 })
2108 } else {
2109 self.reuse_prepaint(deferred_draw.prepaint_range.clone());
2110 }
2111 let prepaint_end = self.prepaint_index();
2112 deferred_draw.prepaint_range = prepaint_start..prepaint_end;
2113 }
2114 assert_eq!(
2115 self.next_frame.deferred_draws.len(),
2116 0,
2117 "cannot call defer_draw during deferred drawing"
2118 );
2119 self.next_frame.deferred_draws = deferred_draws;
2120 self.element_id_stack.clear();
2121 self.text_style_stack.clear();
2122 }
2123
2124 fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2125 assert_eq!(self.element_id_stack.len(), 0);
2126
2127 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2128 for deferred_draw_ix in deferred_draw_indices {
2129 let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2130 self.element_id_stack
2131 .clone_from(&deferred_draw.element_id_stack);
2132 self.next_frame
2133 .dispatch_tree
2134 .set_active_node(deferred_draw.parent_node);
2135
2136 let paint_start = self.paint_index();
2137 if let Some(element) = deferred_draw.element.as_mut() {
2138 self.with_rendered_view(deferred_draw.current_view, |window| {
2139 element.paint(window, cx);
2140 })
2141 } else {
2142 self.reuse_paint(deferred_draw.paint_range.clone());
2143 }
2144 let paint_end = self.paint_index();
2145 deferred_draw.paint_range = paint_start..paint_end;
2146 }
2147 self.next_frame.deferred_draws = deferred_draws;
2148 self.element_id_stack.clear();
2149 }
2150
2151 pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2152 PrepaintStateIndex {
2153 hitboxes_index: self.next_frame.hitboxes.len(),
2154 tooltips_index: self.next_frame.tooltip_requests.len(),
2155 deferred_draws_index: self.next_frame.deferred_draws.len(),
2156 dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2157 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2158 line_layout_index: self.text_system.layout_index(),
2159 }
2160 }
2161
2162 pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2163 self.next_frame.hitboxes.extend(
2164 self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2165 .iter()
2166 .cloned(),
2167 );
2168 self.next_frame.tooltip_requests.extend(
2169 self.rendered_frame.tooltip_requests
2170 [range.start.tooltips_index..range.end.tooltips_index]
2171 .iter_mut()
2172 .map(|request| request.take()),
2173 );
2174 self.next_frame.accessed_element_states.extend(
2175 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2176 ..range.end.accessed_element_states_index]
2177 .iter()
2178 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2179 );
2180 self.text_system
2181 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2182
2183 let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2184 range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2185 &mut self.rendered_frame.dispatch_tree,
2186 self.focus,
2187 );
2188
2189 if reused_subtree.contains_focus() {
2190 self.next_frame.focus = self.focus;
2191 }
2192
2193 self.next_frame.deferred_draws.extend(
2194 self.rendered_frame.deferred_draws
2195 [range.start.deferred_draws_index..range.end.deferred_draws_index]
2196 .iter()
2197 .map(|deferred_draw| DeferredDraw {
2198 current_view: deferred_draw.current_view,
2199 parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2200 element_id_stack: deferred_draw.element_id_stack.clone(),
2201 text_style_stack: deferred_draw.text_style_stack.clone(),
2202 priority: deferred_draw.priority,
2203 element: None,
2204 absolute_offset: deferred_draw.absolute_offset,
2205 prepaint_range: deferred_draw.prepaint_range.clone(),
2206 paint_range: deferred_draw.paint_range.clone(),
2207 }),
2208 );
2209 }
2210
2211 pub(crate) fn paint_index(&self) -> PaintIndex {
2212 PaintIndex {
2213 scene_index: self.next_frame.scene.len(),
2214 mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2215 input_handlers_index: self.next_frame.input_handlers.len(),
2216 cursor_styles_index: self.next_frame.cursor_styles.len(),
2217 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2218 tab_handle_index: self.next_frame.tab_handles.handles.len(),
2219 line_layout_index: self.text_system.layout_index(),
2220 }
2221 }
2222
2223 pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2224 self.next_frame.cursor_styles.extend(
2225 self.rendered_frame.cursor_styles
2226 [range.start.cursor_styles_index..range.end.cursor_styles_index]
2227 .iter()
2228 .cloned(),
2229 );
2230 self.next_frame.input_handlers.extend(
2231 self.rendered_frame.input_handlers
2232 [range.start.input_handlers_index..range.end.input_handlers_index]
2233 .iter_mut()
2234 .map(|handler| handler.take()),
2235 );
2236 self.next_frame.mouse_listeners.extend(
2237 self.rendered_frame.mouse_listeners
2238 [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2239 .iter_mut()
2240 .map(|listener| listener.take()),
2241 );
2242 self.next_frame.accessed_element_states.extend(
2243 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2244 ..range.end.accessed_element_states_index]
2245 .iter()
2246 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2247 );
2248 self.next_frame.tab_handles.handles.extend(
2249 self.rendered_frame.tab_handles.handles
2250 [range.start.tab_handle_index..range.end.tab_handle_index]
2251 .iter()
2252 .cloned(),
2253 );
2254
2255 self.text_system
2256 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2257 self.next_frame.scene.replay(
2258 range.start.scene_index..range.end.scene_index,
2259 &self.rendered_frame.scene,
2260 );
2261 }
2262
2263 /// Push a text style onto the stack, and call a function with that style active.
2264 /// Use [`Window::text_style`] to get the current, combined text style. This method
2265 /// should only be called as part of element drawing.
2266 pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2267 where
2268 F: FnOnce(&mut Self) -> R,
2269 {
2270 self.invalidator.debug_assert_paint_or_prepaint();
2271 if let Some(style) = style {
2272 self.text_style_stack.push(style);
2273 let result = f(self);
2274 self.text_style_stack.pop();
2275 result
2276 } else {
2277 f(self)
2278 }
2279 }
2280
2281 /// Updates the cursor style at the platform level. This method should only be called
2282 /// during the prepaint phase of element drawing.
2283 pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
2284 self.invalidator.debug_assert_paint();
2285 self.next_frame.cursor_styles.push(CursorStyleRequest {
2286 hitbox_id: Some(hitbox.id),
2287 style,
2288 });
2289 }
2290
2291 /// Updates the cursor style for the entire window at the platform level. A cursor
2292 /// style using this method will have precedence over any cursor style set using
2293 /// `set_cursor_style`. This method should only be called during the prepaint
2294 /// phase of element drawing.
2295 pub fn set_window_cursor_style(&mut self, style: CursorStyle) {
2296 self.invalidator.debug_assert_paint();
2297 self.next_frame.cursor_styles.push(CursorStyleRequest {
2298 hitbox_id: None,
2299 style,
2300 })
2301 }
2302
2303 /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2304 /// during the paint phase of element drawing.
2305 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2306 self.invalidator.debug_assert_prepaint();
2307 let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2308 self.next_frame
2309 .tooltip_requests
2310 .push(Some(TooltipRequest { id, tooltip }));
2311 id
2312 }
2313
2314 /// Invoke the given function with the given content mask after intersecting it
2315 /// with the current mask. This method should only be called during element drawing.
2316 pub fn with_content_mask<R>(
2317 &mut self,
2318 mask: Option<ContentMask<Pixels>>,
2319 f: impl FnOnce(&mut Self) -> R,
2320 ) -> R {
2321 self.invalidator.debug_assert_paint_or_prepaint();
2322 if let Some(mask) = mask {
2323 let mask = mask.intersect(&self.content_mask());
2324 self.content_mask_stack.push(mask);
2325 let result = f(self);
2326 self.content_mask_stack.pop();
2327 result
2328 } else {
2329 f(self)
2330 }
2331 }
2332
2333 /// Updates the global element offset relative to the current offset. This is used to implement
2334 /// scrolling. This method should only be called during the prepaint phase of element drawing.
2335 pub fn with_element_offset<R>(
2336 &mut self,
2337 offset: Point<Pixels>,
2338 f: impl FnOnce(&mut Self) -> R,
2339 ) -> R {
2340 self.invalidator.debug_assert_prepaint();
2341
2342 if offset.is_zero() {
2343 return f(self);
2344 };
2345
2346 let abs_offset = self.element_offset() + offset;
2347 self.with_absolute_element_offset(abs_offset, f)
2348 }
2349
2350 /// Updates the global element offset based on the given offset. This is used to implement
2351 /// drag handles and other manual painting of elements. This method should only be called during
2352 /// the prepaint phase of element drawing.
2353 pub fn with_absolute_element_offset<R>(
2354 &mut self,
2355 offset: Point<Pixels>,
2356 f: impl FnOnce(&mut Self) -> R,
2357 ) -> R {
2358 self.invalidator.debug_assert_prepaint();
2359 self.element_offset_stack.push(offset);
2360 let result = f(self);
2361 self.element_offset_stack.pop();
2362 result
2363 }
2364
2365 pub(crate) fn with_element_opacity<R>(
2366 &mut self,
2367 opacity: Option<f32>,
2368 f: impl FnOnce(&mut Self) -> R,
2369 ) -> R {
2370 if opacity.is_none() {
2371 return f(self);
2372 }
2373
2374 self.invalidator.debug_assert_paint_or_prepaint();
2375 self.element_opacity = opacity;
2376 let result = f(self);
2377 self.element_opacity = None;
2378 result
2379 }
2380
2381 /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2382 /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2383 /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2384 /// element offset and prepaint again. See [`List`] for an example. This method should only be
2385 /// called during the prepaint phase of element drawing.
2386 pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2387 self.invalidator.debug_assert_prepaint();
2388 let index = self.prepaint_index();
2389 let result = f(self);
2390 if result.is_err() {
2391 self.next_frame.hitboxes.truncate(index.hitboxes_index);
2392 self.next_frame
2393 .tooltip_requests
2394 .truncate(index.tooltips_index);
2395 self.next_frame
2396 .deferred_draws
2397 .truncate(index.deferred_draws_index);
2398 self.next_frame
2399 .dispatch_tree
2400 .truncate(index.dispatch_tree_index);
2401 self.next_frame
2402 .accessed_element_states
2403 .truncate(index.accessed_element_states_index);
2404 self.text_system.truncate_layouts(index.line_layout_index);
2405 }
2406 result
2407 }
2408
2409 /// When you call this method during [`prepaint`], containing elements will attempt to
2410 /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2411 /// [`prepaint`] again with a new set of bounds. See [`List`] for an example of an element
2412 /// that supports this method being called on the elements it contains. This method should only be
2413 /// called during the prepaint phase of element drawing.
2414 pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2415 self.invalidator.debug_assert_prepaint();
2416 self.requested_autoscroll = Some(bounds);
2417 }
2418
2419 /// This method can be called from a containing element such as [`List`] to support the autoscroll behavior
2420 /// described in [`request_autoscroll`].
2421 pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2422 self.invalidator.debug_assert_prepaint();
2423 self.requested_autoscroll.take()
2424 }
2425
2426 /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2427 /// Your view will be re-drawn once the asset has finished loading.
2428 ///
2429 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2430 /// time.
2431 pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2432 let (task, is_first) = cx.fetch_asset::<A>(source);
2433 task.clone().now_or_never().or_else(|| {
2434 if is_first {
2435 let entity_id = self.current_view();
2436 self.spawn(cx, {
2437 let task = task.clone();
2438 async move |cx| {
2439 task.await;
2440
2441 cx.on_next_frame(move |_, cx| {
2442 cx.notify(entity_id);
2443 });
2444 }
2445 })
2446 .detach();
2447 }
2448
2449 None
2450 })
2451 }
2452
2453 /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2454 /// Your view will not be re-drawn once the asset has finished loading.
2455 ///
2456 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2457 /// time.
2458 pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2459 let (task, _) = cx.fetch_asset::<A>(source);
2460 task.now_or_never()
2461 }
2462 /// Obtain the current element offset. This method should only be called during the
2463 /// prepaint phase of element drawing.
2464 pub fn element_offset(&self) -> Point<Pixels> {
2465 self.invalidator.debug_assert_prepaint();
2466 self.element_offset_stack
2467 .last()
2468 .copied()
2469 .unwrap_or_default()
2470 }
2471
2472 /// Obtain the current element opacity. This method should only be called during the
2473 /// prepaint phase of element drawing.
2474 pub(crate) fn element_opacity(&self) -> f32 {
2475 self.invalidator.debug_assert_paint_or_prepaint();
2476 self.element_opacity.unwrap_or(1.0)
2477 }
2478
2479 /// Obtain the current content mask. This method should only be called during element drawing.
2480 pub fn content_mask(&self) -> ContentMask<Pixels> {
2481 self.invalidator.debug_assert_paint_or_prepaint();
2482 self.content_mask_stack
2483 .last()
2484 .cloned()
2485 .unwrap_or_else(|| ContentMask {
2486 bounds: Bounds {
2487 origin: Point::default(),
2488 size: self.viewport_size,
2489 },
2490 })
2491 }
2492
2493 /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2494 /// This can be used within a custom element to distinguish multiple sets of child elements.
2495 pub fn with_element_namespace<R>(
2496 &mut self,
2497 element_id: impl Into<ElementId>,
2498 f: impl FnOnce(&mut Self) -> R,
2499 ) -> R {
2500 self.element_id_stack.push(element_id.into());
2501 let result = f(self);
2502 self.element_id_stack.pop();
2503 result
2504 }
2505
2506 /// Use a piece of state that exists as long this element is being rendered in consecutive frames.
2507 pub fn use_keyed_state<S: 'static>(
2508 &mut self,
2509 key: impl Into<ElementId>,
2510 cx: &mut App,
2511 init: impl FnOnce(&mut Self, &mut App) -> S,
2512 ) -> Entity<S> {
2513 let current_view = self.current_view();
2514 self.with_global_id(key.into(), |global_id, window| {
2515 window.with_element_state(global_id, |state: Option<Entity<S>>, window| {
2516 if let Some(state) = state {
2517 (state.clone(), state)
2518 } else {
2519 let new_state = cx.new(|cx| init(window, cx));
2520 cx.observe(&new_state, move |_, cx| {
2521 cx.notify(current_view);
2522 })
2523 .detach();
2524 (new_state.clone(), new_state)
2525 }
2526 })
2527 })
2528 }
2529
2530 /// Immediately push an element ID onto the stack. Useful for simplifying IDs in lists
2531 pub fn with_id<R>(&mut self, id: impl Into<ElementId>, f: impl FnOnce(&mut Self) -> R) -> R {
2532 self.with_global_id(id.into(), |_, window| f(window))
2533 }
2534
2535 /// Use a piece of state that exists as long this element is being rendered in consecutive frames, without needing to specify a key
2536 ///
2537 /// NOTE: This method uses the location of the caller to generate an ID for this state.
2538 /// If this is not sufficient to identify your state (e.g. you're rendering a list item),
2539 /// you can provide a custom ElementID using the `use_keyed_state` method.
2540 #[track_caller]
2541 pub fn use_state<S: 'static>(
2542 &mut self,
2543 cx: &mut App,
2544 init: impl FnOnce(&mut Self, &mut App) -> S,
2545 ) -> Entity<S> {
2546 self.use_keyed_state(
2547 ElementId::CodeLocation(*core::panic::Location::caller()),
2548 cx,
2549 init,
2550 )
2551 }
2552
2553 /// Updates or initializes state for an element with the given id that lives across multiple
2554 /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2555 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2556 /// when drawing the next frame. This method should only be called as part of element drawing.
2557 pub fn with_element_state<S, R>(
2558 &mut self,
2559 global_id: &GlobalElementId,
2560 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2561 ) -> R
2562 where
2563 S: 'static,
2564 {
2565 self.invalidator.debug_assert_paint_or_prepaint();
2566
2567 let key = (GlobalElementId(global_id.0.clone()), TypeId::of::<S>());
2568 self.next_frame
2569 .accessed_element_states
2570 .push((GlobalElementId(key.0.clone()), TypeId::of::<S>()));
2571
2572 if let Some(any) = self
2573 .next_frame
2574 .element_states
2575 .remove(&key)
2576 .or_else(|| self.rendered_frame.element_states.remove(&key))
2577 {
2578 let ElementStateBox {
2579 inner,
2580 #[cfg(debug_assertions)]
2581 type_name,
2582 } = any;
2583 // Using the extra inner option to avoid needing to reallocate a new box.
2584 let mut state_box = inner
2585 .downcast::<Option<S>>()
2586 .map_err(|_| {
2587 #[cfg(debug_assertions)]
2588 {
2589 anyhow::anyhow!(
2590 "invalid element state type for id, requested {:?}, actual: {:?}",
2591 std::any::type_name::<S>(),
2592 type_name
2593 )
2594 }
2595
2596 #[cfg(not(debug_assertions))]
2597 {
2598 anyhow::anyhow!(
2599 "invalid element state type for id, requested {:?}",
2600 std::any::type_name::<S>(),
2601 )
2602 }
2603 })
2604 .unwrap();
2605
2606 let state = state_box.take().expect(
2607 "reentrant call to with_element_state for the same state type and element id",
2608 );
2609 let (result, state) = f(Some(state), self);
2610 state_box.replace(state);
2611 self.next_frame.element_states.insert(
2612 key,
2613 ElementStateBox {
2614 inner: state_box,
2615 #[cfg(debug_assertions)]
2616 type_name,
2617 },
2618 );
2619 result
2620 } else {
2621 let (result, state) = f(None, self);
2622 self.next_frame.element_states.insert(
2623 key,
2624 ElementStateBox {
2625 inner: Box::new(Some(state)),
2626 #[cfg(debug_assertions)]
2627 type_name: std::any::type_name::<S>(),
2628 },
2629 );
2630 result
2631 }
2632 }
2633
2634 /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2635 /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2636 /// when the element is guaranteed to have an id.
2637 ///
2638 /// The first option means 'no ID provided'
2639 /// The second option means 'not yet initialized'
2640 pub fn with_optional_element_state<S, R>(
2641 &mut self,
2642 global_id: Option<&GlobalElementId>,
2643 f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2644 ) -> R
2645 where
2646 S: 'static,
2647 {
2648 self.invalidator.debug_assert_paint_or_prepaint();
2649
2650 if let Some(global_id) = global_id {
2651 self.with_element_state(global_id, |state, cx| {
2652 let (result, state) = f(Some(state), cx);
2653 let state =
2654 state.expect("you must return some state when you pass some element id");
2655 (result, state)
2656 })
2657 } else {
2658 let (result, state) = f(None, self);
2659 debug_assert!(
2660 state.is_none(),
2661 "you must not return an element state when passing None for the global id"
2662 );
2663 result
2664 }
2665 }
2666
2667 /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2668 /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2669 /// with higher values being drawn on top.
2670 ///
2671 /// This method should only be called as part of the prepaint phase of element drawing.
2672 pub fn defer_draw(
2673 &mut self,
2674 element: AnyElement,
2675 absolute_offset: Point<Pixels>,
2676 priority: usize,
2677 ) {
2678 self.invalidator.debug_assert_prepaint();
2679 let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2680 self.next_frame.deferred_draws.push(DeferredDraw {
2681 current_view: self.current_view(),
2682 parent_node,
2683 element_id_stack: self.element_id_stack.clone(),
2684 text_style_stack: self.text_style_stack.clone(),
2685 priority,
2686 element: Some(element),
2687 absolute_offset,
2688 prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2689 paint_range: PaintIndex::default()..PaintIndex::default(),
2690 });
2691 }
2692
2693 /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2694 /// of geometry that are non-overlapping and have the same draw order. This is typically used
2695 /// for performance reasons.
2696 ///
2697 /// This method should only be called as part of the paint phase of element drawing.
2698 pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2699 self.invalidator.debug_assert_paint();
2700
2701 let scale_factor = self.scale_factor();
2702 let content_mask = self.content_mask();
2703 let clipped_bounds = bounds.intersect(&content_mask.bounds);
2704 if !clipped_bounds.is_empty() {
2705 self.next_frame
2706 .scene
2707 .push_layer(clipped_bounds.scale(scale_factor));
2708 }
2709
2710 let result = f(self);
2711
2712 if !clipped_bounds.is_empty() {
2713 self.next_frame.scene.pop_layer();
2714 }
2715
2716 result
2717 }
2718
2719 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2720 ///
2721 /// This method should only be called as part of the paint phase of element drawing.
2722 pub fn paint_shadows(
2723 &mut self,
2724 bounds: Bounds<Pixels>,
2725 corner_radii: Corners<Pixels>,
2726 shadows: &[BoxShadow],
2727 ) {
2728 self.invalidator.debug_assert_paint();
2729
2730 let scale_factor = self.scale_factor();
2731 let content_mask = self.content_mask();
2732 let opacity = self.element_opacity();
2733 for shadow in shadows {
2734 let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2735 self.next_frame.scene.insert_primitive(Shadow {
2736 order: 0,
2737 blur_radius: shadow.blur_radius.scale(scale_factor),
2738 bounds: shadow_bounds.scale(scale_factor),
2739 content_mask: content_mask.scale(scale_factor),
2740 corner_radii: corner_radii.scale(scale_factor),
2741 color: shadow.color.opacity(opacity),
2742 });
2743 }
2744 }
2745
2746 /// Paint one or more quads into the scene for the next frame at the current stacking context.
2747 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2748 /// see [`fill`](crate::fill), [`outline`](crate::outline), and [`quad`](crate::quad) to construct this type.
2749 ///
2750 /// This method should only be called as part of the paint phase of element drawing.
2751 ///
2752 /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2753 /// where the circular arcs meet. This will not display well when combined with dashed borders.
2754 /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2755 pub fn paint_quad(&mut self, quad: PaintQuad) {
2756 self.invalidator.debug_assert_paint();
2757
2758 let scale_factor = self.scale_factor();
2759 let content_mask = self.content_mask();
2760 let opacity = self.element_opacity();
2761 self.next_frame.scene.insert_primitive(Quad {
2762 order: 0,
2763 bounds: quad.bounds.scale(scale_factor),
2764 content_mask: content_mask.scale(scale_factor),
2765 background: quad.background.opacity(opacity),
2766 border_color: quad.border_color.opacity(opacity),
2767 corner_radii: quad.corner_radii.scale(scale_factor),
2768 border_widths: quad.border_widths.scale(scale_factor),
2769 border_style: quad.border_style,
2770 });
2771 }
2772
2773 /// Paint the given `Path` into the scene for the next frame at the current z-index.
2774 ///
2775 /// This method should only be called as part of the paint phase of element drawing.
2776 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2777 self.invalidator.debug_assert_paint();
2778
2779 let scale_factor = self.scale_factor();
2780 let content_mask = self.content_mask();
2781 let opacity = self.element_opacity();
2782 path.content_mask = content_mask;
2783 let color: Background = color.into();
2784 path.color = color.opacity(opacity);
2785 self.next_frame
2786 .scene
2787 .insert_primitive(path.scale(scale_factor));
2788 }
2789
2790 /// Paint an underline into the scene for the next frame at the current z-index.
2791 ///
2792 /// This method should only be called as part of the paint phase of element drawing.
2793 pub fn paint_underline(
2794 &mut self,
2795 origin: Point<Pixels>,
2796 width: Pixels,
2797 style: &UnderlineStyle,
2798 ) {
2799 self.invalidator.debug_assert_paint();
2800
2801 let scale_factor = self.scale_factor();
2802 let height = if style.wavy {
2803 style.thickness * 3.
2804 } else {
2805 style.thickness
2806 };
2807 let bounds = Bounds {
2808 origin,
2809 size: size(width, height),
2810 };
2811 let content_mask = self.content_mask();
2812 let element_opacity = self.element_opacity();
2813
2814 self.next_frame.scene.insert_primitive(Underline {
2815 order: 0,
2816 pad: 0,
2817 bounds: bounds.scale(scale_factor),
2818 content_mask: content_mask.scale(scale_factor),
2819 color: style.color.unwrap_or_default().opacity(element_opacity),
2820 thickness: style.thickness.scale(scale_factor),
2821 wavy: if style.wavy { 1 } else { 0 },
2822 });
2823 }
2824
2825 /// Paint a strikethrough into the scene for the next frame at the current z-index.
2826 ///
2827 /// This method should only be called as part of the paint phase of element drawing.
2828 pub fn paint_strikethrough(
2829 &mut self,
2830 origin: Point<Pixels>,
2831 width: Pixels,
2832 style: &StrikethroughStyle,
2833 ) {
2834 self.invalidator.debug_assert_paint();
2835
2836 let scale_factor = self.scale_factor();
2837 let height = style.thickness;
2838 let bounds = Bounds {
2839 origin,
2840 size: size(width, height),
2841 };
2842 let content_mask = self.content_mask();
2843 let opacity = self.element_opacity();
2844
2845 self.next_frame.scene.insert_primitive(Underline {
2846 order: 0,
2847 pad: 0,
2848 bounds: bounds.scale(scale_factor),
2849 content_mask: content_mask.scale(scale_factor),
2850 thickness: style.thickness.scale(scale_factor),
2851 color: style.color.unwrap_or_default().opacity(opacity),
2852 wavy: 0,
2853 });
2854 }
2855
2856 /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
2857 ///
2858 /// The y component of the origin is the baseline of the glyph.
2859 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2860 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2861 /// This method is only useful if you need to paint a single glyph that has already been shaped.
2862 ///
2863 /// This method should only be called as part of the paint phase of element drawing.
2864 pub fn paint_glyph(
2865 &mut self,
2866 origin: Point<Pixels>,
2867 font_id: FontId,
2868 glyph_id: GlyphId,
2869 font_size: Pixels,
2870 color: Hsla,
2871 ) -> Result<()> {
2872 self.invalidator.debug_assert_paint();
2873
2874 let element_opacity = self.element_opacity();
2875 let scale_factor = self.scale_factor();
2876 let glyph_origin = origin.scale(scale_factor);
2877 let subpixel_variant = Point {
2878 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2879 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2880 };
2881 let params = RenderGlyphParams {
2882 font_id,
2883 glyph_id,
2884 font_size,
2885 subpixel_variant,
2886 scale_factor,
2887 is_emoji: false,
2888 };
2889
2890 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2891 if !raster_bounds.is_zero() {
2892 let tile = self
2893 .sprite_atlas
2894 .get_or_insert_with(¶ms.clone().into(), &mut || {
2895 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2896 Ok(Some((size, Cow::Owned(bytes))))
2897 })?
2898 .expect("Callback above only errors or returns Some");
2899 let bounds = Bounds {
2900 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2901 size: tile.bounds.size.map(Into::into),
2902 };
2903 let content_mask = self.content_mask().scale(scale_factor);
2904 self.next_frame.scene.insert_primitive(MonochromeSprite {
2905 order: 0,
2906 pad: 0,
2907 bounds,
2908 content_mask,
2909 color: color.opacity(element_opacity),
2910 tile,
2911 transformation: TransformationMatrix::unit(),
2912 });
2913 }
2914 Ok(())
2915 }
2916
2917 /// Paints an emoji glyph into the scene for the next frame at the current z-index.
2918 ///
2919 /// The y component of the origin is the baseline of the glyph.
2920 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2921 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2922 /// This method is only useful if you need to paint a single emoji that has already been shaped.
2923 ///
2924 /// This method should only be called as part of the paint phase of element drawing.
2925 pub fn paint_emoji(
2926 &mut self,
2927 origin: Point<Pixels>,
2928 font_id: FontId,
2929 glyph_id: GlyphId,
2930 font_size: Pixels,
2931 ) -> Result<()> {
2932 self.invalidator.debug_assert_paint();
2933
2934 let scale_factor = self.scale_factor();
2935 let glyph_origin = origin.scale(scale_factor);
2936 let params = RenderGlyphParams {
2937 font_id,
2938 glyph_id,
2939 font_size,
2940 // We don't render emojis with subpixel variants.
2941 subpixel_variant: Default::default(),
2942 scale_factor,
2943 is_emoji: true,
2944 };
2945
2946 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2947 if !raster_bounds.is_zero() {
2948 let tile = self
2949 .sprite_atlas
2950 .get_or_insert_with(¶ms.clone().into(), &mut || {
2951 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2952 Ok(Some((size, Cow::Owned(bytes))))
2953 })?
2954 .expect("Callback above only errors or returns Some");
2955
2956 let bounds = Bounds {
2957 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2958 size: tile.bounds.size.map(Into::into),
2959 };
2960 let content_mask = self.content_mask().scale(scale_factor);
2961 let opacity = self.element_opacity();
2962
2963 self.next_frame.scene.insert_primitive(PolychromeSprite {
2964 order: 0,
2965 pad: 0,
2966 grayscale: false,
2967 bounds,
2968 corner_radii: Default::default(),
2969 content_mask,
2970 tile,
2971 opacity,
2972 });
2973 }
2974 Ok(())
2975 }
2976
2977 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
2978 ///
2979 /// This method should only be called as part of the paint phase of element drawing.
2980 pub fn paint_svg(
2981 &mut self,
2982 bounds: Bounds<Pixels>,
2983 path: SharedString,
2984 transformation: TransformationMatrix,
2985 color: Hsla,
2986 cx: &App,
2987 ) -> Result<()> {
2988 self.invalidator.debug_assert_paint();
2989
2990 let element_opacity = self.element_opacity();
2991 let scale_factor = self.scale_factor();
2992 let bounds = bounds.scale(scale_factor);
2993 let params = RenderSvgParams {
2994 path,
2995 size: bounds.size.map(|pixels| {
2996 DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
2997 }),
2998 };
2999
3000 let Some(tile) =
3001 self.sprite_atlas
3002 .get_or_insert_with(¶ms.clone().into(), &mut || {
3003 let Some(bytes) = cx.svg_renderer.render(¶ms)? else {
3004 return Ok(None);
3005 };
3006 Ok(Some((params.size, Cow::Owned(bytes))))
3007 })?
3008 else {
3009 return Ok(());
3010 };
3011 let content_mask = self.content_mask().scale(scale_factor);
3012
3013 self.next_frame.scene.insert_primitive(MonochromeSprite {
3014 order: 0,
3015 pad: 0,
3016 bounds: bounds
3017 .map_origin(|origin| origin.floor())
3018 .map_size(|size| size.ceil()),
3019 content_mask,
3020 color: color.opacity(element_opacity),
3021 tile,
3022 transformation,
3023 });
3024
3025 Ok(())
3026 }
3027
3028 /// Paint an image into the scene for the next frame at the current z-index.
3029 /// This method will panic if the frame_index is not valid
3030 ///
3031 /// This method should only be called as part of the paint phase of element drawing.
3032 pub fn paint_image(
3033 &mut self,
3034 bounds: Bounds<Pixels>,
3035 corner_radii: Corners<Pixels>,
3036 data: Arc<RenderImage>,
3037 frame_index: usize,
3038 grayscale: bool,
3039 ) -> Result<()> {
3040 self.invalidator.debug_assert_paint();
3041
3042 let scale_factor = self.scale_factor();
3043 let bounds = bounds.scale(scale_factor);
3044 let params = RenderImageParams {
3045 image_id: data.id,
3046 frame_index,
3047 };
3048
3049 let tile = self
3050 .sprite_atlas
3051 .get_or_insert_with(¶ms.into(), &mut || {
3052 Ok(Some((
3053 data.size(frame_index),
3054 Cow::Borrowed(
3055 data.as_bytes(frame_index)
3056 .expect("It's the caller's job to pass a valid frame index"),
3057 ),
3058 )))
3059 })?
3060 .expect("Callback above only returns Some");
3061 let content_mask = self.content_mask().scale(scale_factor);
3062 let corner_radii = corner_radii.scale(scale_factor);
3063 let opacity = self.element_opacity();
3064
3065 self.next_frame.scene.insert_primitive(PolychromeSprite {
3066 order: 0,
3067 pad: 0,
3068 grayscale,
3069 bounds: bounds
3070 .map_origin(|origin| origin.floor())
3071 .map_size(|size| size.ceil()),
3072 content_mask,
3073 corner_radii,
3074 tile,
3075 opacity,
3076 });
3077 Ok(())
3078 }
3079
3080 /// Paint a surface into the scene for the next frame at the current z-index.
3081 ///
3082 /// This method should only be called as part of the paint phase of element drawing.
3083 #[cfg(target_os = "macos")]
3084 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
3085 use crate::PaintSurface;
3086
3087 self.invalidator.debug_assert_paint();
3088
3089 let scale_factor = self.scale_factor();
3090 let bounds = bounds.scale(scale_factor);
3091 let content_mask = self.content_mask().scale(scale_factor);
3092 self.next_frame.scene.insert_primitive(PaintSurface {
3093 order: 0,
3094 bounds,
3095 content_mask,
3096 image_buffer,
3097 });
3098 }
3099
3100 /// Removes an image from the sprite atlas.
3101 pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
3102 for frame_index in 0..data.frame_count() {
3103 let params = RenderImageParams {
3104 image_id: data.id,
3105 frame_index,
3106 };
3107
3108 self.sprite_atlas.remove(¶ms.clone().into());
3109 }
3110
3111 Ok(())
3112 }
3113
3114 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
3115 /// layout is being requested, along with the layout ids of any children. This method is called during
3116 /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
3117 ///
3118 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3119 #[must_use]
3120 pub fn request_layout(
3121 &mut self,
3122 style: Style,
3123 children: impl IntoIterator<Item = LayoutId>,
3124 cx: &mut App,
3125 ) -> LayoutId {
3126 self.invalidator.debug_assert_prepaint();
3127
3128 cx.layout_id_buffer.clear();
3129 cx.layout_id_buffer.extend(children);
3130 let rem_size = self.rem_size();
3131
3132 self.layout_engine
3133 .as_mut()
3134 .unwrap()
3135 .request_layout(style, rem_size, &cx.layout_id_buffer)
3136 }
3137
3138 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
3139 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
3140 /// determine the element's size. One place this is used internally is when measuring text.
3141 ///
3142 /// The given closure is invoked at layout time with the known dimensions and available space and
3143 /// returns a `Size`.
3144 ///
3145 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3146 pub fn request_measured_layout<
3147 F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
3148 + 'static,
3149 >(
3150 &mut self,
3151 style: Style,
3152 measure: F,
3153 ) -> LayoutId {
3154 self.invalidator.debug_assert_prepaint();
3155
3156 let rem_size = self.rem_size();
3157 self.layout_engine
3158 .as_mut()
3159 .unwrap()
3160 .request_measured_layout(style, rem_size, measure)
3161 }
3162
3163 /// Compute the layout for the given id within the given available space.
3164 /// This method is called for its side effect, typically by the framework prior to painting.
3165 /// After calling it, you can request the bounds of the given layout node id or any descendant.
3166 ///
3167 /// This method should only be called as part of the prepaint phase of element drawing.
3168 pub fn compute_layout(
3169 &mut self,
3170 layout_id: LayoutId,
3171 available_space: Size<AvailableSpace>,
3172 cx: &mut App,
3173 ) {
3174 self.invalidator.debug_assert_prepaint();
3175
3176 let mut layout_engine = self.layout_engine.take().unwrap();
3177 layout_engine.compute_layout(layout_id, available_space, self, cx);
3178 self.layout_engine = Some(layout_engine);
3179 }
3180
3181 /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
3182 /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
3183 ///
3184 /// This method should only be called as part of element drawing.
3185 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
3186 self.invalidator.debug_assert_prepaint();
3187
3188 let mut bounds = self
3189 .layout_engine
3190 .as_mut()
3191 .unwrap()
3192 .layout_bounds(layout_id)
3193 .map(Into::into);
3194 bounds.origin += self.element_offset();
3195 bounds
3196 }
3197
3198 /// This method should be called during `prepaint`. You can use
3199 /// the returned [Hitbox] during `paint` or in an event handler
3200 /// to determine whether the inserted hitbox was the topmost.
3201 ///
3202 /// This method should only be called as part of the prepaint phase of element drawing.
3203 pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
3204 self.invalidator.debug_assert_prepaint();
3205
3206 let content_mask = self.content_mask();
3207 let mut id = self.next_hitbox_id;
3208 self.next_hitbox_id = self.next_hitbox_id.next();
3209 let hitbox = Hitbox {
3210 id,
3211 bounds,
3212 content_mask,
3213 behavior,
3214 };
3215 self.next_frame.hitboxes.push(hitbox.clone());
3216 hitbox
3217 }
3218
3219 /// Set a hitbox which will act as a control area of the platform window.
3220 ///
3221 /// This method should only be called as part of the paint phase of element drawing.
3222 pub fn insert_window_control_hitbox(&mut self, area: WindowControlArea, hitbox: Hitbox) {
3223 self.invalidator.debug_assert_paint();
3224 self.next_frame.window_control_hitboxes.push((area, hitbox));
3225 }
3226
3227 /// Sets the key context for the current element. This context will be used to translate
3228 /// keybindings into actions.
3229 ///
3230 /// This method should only be called as part of the paint phase of element drawing.
3231 pub fn set_key_context(&mut self, context: KeyContext) {
3232 self.invalidator.debug_assert_paint();
3233 self.next_frame.dispatch_tree.set_key_context(context);
3234 }
3235
3236 /// Sets the focus handle for the current element. This handle will be used to manage focus state
3237 /// and keyboard event dispatch for the element.
3238 ///
3239 /// This method should only be called as part of the prepaint phase of element drawing.
3240 pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3241 self.invalidator.debug_assert_prepaint();
3242 if focus_handle.is_focused(self) {
3243 self.next_frame.focus = Some(focus_handle.id);
3244 }
3245 self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3246 }
3247
3248 /// Sets the view id for the current element, which will be used to manage view caching.
3249 ///
3250 /// This method should only be called as part of element prepaint. We plan on removing this
3251 /// method eventually when we solve some issues that require us to construct editor elements
3252 /// directly instead of always using editors via views.
3253 pub fn set_view_id(&mut self, view_id: EntityId) {
3254 self.invalidator.debug_assert_prepaint();
3255 self.next_frame.dispatch_tree.set_view_id(view_id);
3256 }
3257
3258 /// Get the entity ID for the currently rendering view
3259 pub fn current_view(&self) -> EntityId {
3260 self.invalidator.debug_assert_paint_or_prepaint();
3261 self.rendered_entity_stack.last().copied().unwrap()
3262 }
3263
3264 pub(crate) fn with_rendered_view<R>(
3265 &mut self,
3266 id: EntityId,
3267 f: impl FnOnce(&mut Self) -> R,
3268 ) -> R {
3269 self.rendered_entity_stack.push(id);
3270 let result = f(self);
3271 self.rendered_entity_stack.pop();
3272 result
3273 }
3274
3275 /// Executes the provided function with the specified image cache.
3276 pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3277 where
3278 F: FnOnce(&mut Self) -> R,
3279 {
3280 if let Some(image_cache) = image_cache {
3281 self.image_cache_stack.push(image_cache);
3282 let result = f(self);
3283 self.image_cache_stack.pop();
3284 result
3285 } else {
3286 f(self)
3287 }
3288 }
3289
3290 /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3291 /// platform to receive textual input with proper integration with concerns such
3292 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3293 /// rendered.
3294 ///
3295 /// This method should only be called as part of the paint phase of element drawing.
3296 ///
3297 /// [element_input_handler]: crate::ElementInputHandler
3298 pub fn handle_input(
3299 &mut self,
3300 focus_handle: &FocusHandle,
3301 input_handler: impl InputHandler,
3302 cx: &App,
3303 ) {
3304 self.invalidator.debug_assert_paint();
3305
3306 if focus_handle.is_focused(self) {
3307 let cx = self.to_async(cx);
3308 self.next_frame
3309 .input_handlers
3310 .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3311 }
3312 }
3313
3314 /// Register a mouse event listener on the window for the next frame. The type of event
3315 /// is determined by the first parameter of the given listener. When the next frame is rendered
3316 /// the listener will be cleared.
3317 ///
3318 /// This method should only be called as part of the paint phase of element drawing.
3319 pub fn on_mouse_event<Event: MouseEvent>(
3320 &mut self,
3321 mut handler: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3322 ) {
3323 self.invalidator.debug_assert_paint();
3324
3325 self.next_frame.mouse_listeners.push(Some(Box::new(
3326 move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3327 if let Some(event) = event.downcast_ref() {
3328 handler(event, phase, window, cx)
3329 }
3330 },
3331 )));
3332 }
3333
3334 /// Register a key event listener on the window for the next frame. The type of event
3335 /// is determined by the first parameter of the given listener. When the next frame is rendered
3336 /// the listener will be cleared.
3337 ///
3338 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3339 /// a specific need to register a global listener.
3340 ///
3341 /// This method should only be called as part of the paint phase of element drawing.
3342 pub fn on_key_event<Event: KeyEvent>(
3343 &mut self,
3344 listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3345 ) {
3346 self.invalidator.debug_assert_paint();
3347
3348 self.next_frame.dispatch_tree.on_key_event(Rc::new(
3349 move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3350 if let Some(event) = event.downcast_ref::<Event>() {
3351 listener(event, phase, window, cx)
3352 }
3353 },
3354 ));
3355 }
3356
3357 /// Register a modifiers changed event listener on the window for the next frame.
3358 ///
3359 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3360 /// a specific need to register a global listener.
3361 ///
3362 /// This method should only be called as part of the paint phase of element drawing.
3363 pub fn on_modifiers_changed(
3364 &mut self,
3365 listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3366 ) {
3367 self.invalidator.debug_assert_paint();
3368
3369 self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3370 move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3371 listener(event, window, cx)
3372 },
3373 ));
3374 }
3375
3376 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3377 /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3378 /// Returns a subscription and persists until the subscription is dropped.
3379 pub fn on_focus_in(
3380 &mut self,
3381 handle: &FocusHandle,
3382 cx: &mut App,
3383 mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3384 ) -> Subscription {
3385 let focus_id = handle.id;
3386 let (subscription, activate) =
3387 self.new_focus_listener(Box::new(move |event, window, cx| {
3388 if event.is_focus_in(focus_id) {
3389 listener(window, cx);
3390 }
3391 true
3392 }));
3393 cx.defer(move |_| activate());
3394 subscription
3395 }
3396
3397 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3398 /// Returns a subscription and persists until the subscription is dropped.
3399 pub fn on_focus_out(
3400 &mut self,
3401 handle: &FocusHandle,
3402 cx: &mut App,
3403 mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3404 ) -> Subscription {
3405 let focus_id = handle.id;
3406 let (subscription, activate) =
3407 self.new_focus_listener(Box::new(move |event, window, cx| {
3408 if let Some(blurred_id) = event.previous_focus_path.last().copied()
3409 && event.is_focus_out(focus_id)
3410 {
3411 let event = FocusOutEvent {
3412 blurred: WeakFocusHandle {
3413 id: blurred_id,
3414 handles: Arc::downgrade(&cx.focus_handles),
3415 },
3416 };
3417 listener(event, window, cx)
3418 }
3419 true
3420 }));
3421 cx.defer(move |_| activate());
3422 subscription
3423 }
3424
3425 fn reset_cursor_style(&self, cx: &mut App) {
3426 // Set the cursor only if we're the active window.
3427 if self.is_window_hovered() {
3428 let style = self
3429 .rendered_frame
3430 .cursor_style(self)
3431 .unwrap_or(CursorStyle::Arrow);
3432 cx.platform.set_cursor_style(style);
3433 }
3434 }
3435
3436 /// Dispatch a given keystroke as though the user had typed it.
3437 /// You can create a keystroke with Keystroke::parse("").
3438 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3439 let keystroke = keystroke.with_simulated_ime();
3440 let result = self.dispatch_event(
3441 PlatformInput::KeyDown(KeyDownEvent {
3442 keystroke: keystroke.clone(),
3443 is_held: false,
3444 }),
3445 cx,
3446 );
3447 if !result.propagate {
3448 return true;
3449 }
3450
3451 if let Some(input) = keystroke.key_char
3452 && let Some(mut input_handler) = self.platform_window.take_input_handler()
3453 {
3454 input_handler.dispatch_input(&input, self, cx);
3455 self.platform_window.set_input_handler(input_handler);
3456 return true;
3457 }
3458
3459 false
3460 }
3461
3462 /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3463 /// binding for the action (last binding added to the keymap).
3464 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3465 self.highest_precedence_binding_for_action(action)
3466 .map(|binding| {
3467 binding
3468 .keystrokes()
3469 .iter()
3470 .map(ToString::to_string)
3471 .collect::<Vec<_>>()
3472 .join(" ")
3473 })
3474 .unwrap_or_else(|| action.name().to_string())
3475 }
3476
3477 /// Dispatch a mouse or keyboard event on the window.
3478 #[profiling::function]
3479 pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3480 self.last_input_timestamp.set(Instant::now());
3481 // Handlers may set this to false by calling `stop_propagation`.
3482 cx.propagate_event = true;
3483 // Handlers may set this to true by calling `prevent_default`.
3484 self.default_prevented = false;
3485
3486 let event = match event {
3487 // Track the mouse position with our own state, since accessing the platform
3488 // API for the mouse position can only occur on the main thread.
3489 PlatformInput::MouseMove(mouse_move) => {
3490 self.mouse_position = mouse_move.position;
3491 self.modifiers = mouse_move.modifiers;
3492 PlatformInput::MouseMove(mouse_move)
3493 }
3494 PlatformInput::MouseDown(mouse_down) => {
3495 self.mouse_position = mouse_down.position;
3496 self.modifiers = mouse_down.modifiers;
3497 PlatformInput::MouseDown(mouse_down)
3498 }
3499 PlatformInput::MouseUp(mouse_up) => {
3500 self.mouse_position = mouse_up.position;
3501 self.modifiers = mouse_up.modifiers;
3502 PlatformInput::MouseUp(mouse_up)
3503 }
3504 PlatformInput::MouseExited(mouse_exited) => {
3505 self.modifiers = mouse_exited.modifiers;
3506 PlatformInput::MouseExited(mouse_exited)
3507 }
3508 PlatformInput::ModifiersChanged(modifiers_changed) => {
3509 self.modifiers = modifiers_changed.modifiers;
3510 self.capslock = modifiers_changed.capslock;
3511 PlatformInput::ModifiersChanged(modifiers_changed)
3512 }
3513 PlatformInput::ScrollWheel(scroll_wheel) => {
3514 self.mouse_position = scroll_wheel.position;
3515 self.modifiers = scroll_wheel.modifiers;
3516 PlatformInput::ScrollWheel(scroll_wheel)
3517 }
3518 // Translate dragging and dropping of external files from the operating system
3519 // to internal drag and drop events.
3520 PlatformInput::FileDrop(file_drop) => match file_drop {
3521 FileDropEvent::Entered { position, paths } => {
3522 self.mouse_position = position;
3523 if cx.active_drag.is_none() {
3524 cx.active_drag = Some(AnyDrag {
3525 value: Arc::new(paths.clone()),
3526 view: cx.new(|_| paths).into(),
3527 cursor_offset: position,
3528 cursor_style: None,
3529 });
3530 }
3531 PlatformInput::MouseMove(MouseMoveEvent {
3532 position,
3533 pressed_button: Some(MouseButton::Left),
3534 modifiers: Modifiers::default(),
3535 })
3536 }
3537 FileDropEvent::Pending { position } => {
3538 self.mouse_position = position;
3539 PlatformInput::MouseMove(MouseMoveEvent {
3540 position,
3541 pressed_button: Some(MouseButton::Left),
3542 modifiers: Modifiers::default(),
3543 })
3544 }
3545 FileDropEvent::Submit { position } => {
3546 cx.activate(true);
3547 self.mouse_position = position;
3548 PlatformInput::MouseUp(MouseUpEvent {
3549 button: MouseButton::Left,
3550 position,
3551 modifiers: Modifiers::default(),
3552 click_count: 1,
3553 })
3554 }
3555 FileDropEvent::Exited => {
3556 cx.active_drag.take();
3557 PlatformInput::FileDrop(FileDropEvent::Exited)
3558 }
3559 },
3560 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3561 };
3562
3563 if let Some(any_mouse_event) = event.mouse_event() {
3564 self.dispatch_mouse_event(any_mouse_event, cx);
3565 } else if let Some(any_key_event) = event.keyboard_event() {
3566 self.dispatch_key_event(any_key_event, cx);
3567 }
3568
3569 DispatchEventResult {
3570 propagate: cx.propagate_event,
3571 default_prevented: self.default_prevented,
3572 }
3573 }
3574
3575 fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3576 let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3577 if hit_test != self.mouse_hit_test {
3578 self.mouse_hit_test = hit_test;
3579 self.reset_cursor_style(cx);
3580 }
3581
3582 #[cfg(any(feature = "inspector", debug_assertions))]
3583 if self.is_inspector_picking(cx) {
3584 self.handle_inspector_mouse_event(event, cx);
3585 // When inspector is picking, all other mouse handling is skipped.
3586 return;
3587 }
3588
3589 let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3590
3591 // Capture phase, events bubble from back to front. Handlers for this phase are used for
3592 // special purposes, such as detecting events outside of a given Bounds.
3593 for listener in &mut mouse_listeners {
3594 let listener = listener.as_mut().unwrap();
3595 listener(event, DispatchPhase::Capture, self, cx);
3596 if !cx.propagate_event {
3597 break;
3598 }
3599 }
3600
3601 // Bubble phase, where most normal handlers do their work.
3602 if cx.propagate_event {
3603 for listener in mouse_listeners.iter_mut().rev() {
3604 let listener = listener.as_mut().unwrap();
3605 listener(event, DispatchPhase::Bubble, self, cx);
3606 if !cx.propagate_event {
3607 break;
3608 }
3609 }
3610 }
3611
3612 self.rendered_frame.mouse_listeners = mouse_listeners;
3613
3614 if cx.has_active_drag() {
3615 if event.is::<MouseMoveEvent>() {
3616 // If this was a mouse move event, redraw the window so that the
3617 // active drag can follow the mouse cursor.
3618 self.refresh();
3619 } else if event.is::<MouseUpEvent>() {
3620 // If this was a mouse up event, cancel the active drag and redraw
3621 // the window.
3622 cx.active_drag = None;
3623 self.refresh();
3624 }
3625 }
3626 }
3627
3628 fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3629 if self.invalidator.is_dirty() {
3630 self.draw(cx).clear();
3631 }
3632
3633 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3634 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3635
3636 let mut keystroke: Option<Keystroke> = None;
3637
3638 if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3639 if event.modifiers.number_of_modifiers() == 0
3640 && self.pending_modifier.modifiers.number_of_modifiers() == 1
3641 && !self.pending_modifier.saw_keystroke
3642 {
3643 let key = match self.pending_modifier.modifiers {
3644 modifiers if modifiers.shift => Some("shift"),
3645 modifiers if modifiers.control => Some("control"),
3646 modifiers if modifiers.alt => Some("alt"),
3647 modifiers if modifiers.platform => Some("platform"),
3648 modifiers if modifiers.function => Some("function"),
3649 _ => None,
3650 };
3651 if let Some(key) = key {
3652 keystroke = Some(Keystroke {
3653 key: key.to_string(),
3654 key_char: None,
3655 modifiers: Modifiers::default(),
3656 });
3657 }
3658 }
3659
3660 if self.pending_modifier.modifiers.number_of_modifiers() == 0
3661 && event.modifiers.number_of_modifiers() == 1
3662 {
3663 self.pending_modifier.saw_keystroke = false
3664 }
3665 self.pending_modifier.modifiers = event.modifiers
3666 } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3667 self.pending_modifier.saw_keystroke = true;
3668 keystroke = Some(key_down_event.keystroke.clone());
3669 }
3670
3671 let Some(keystroke) = keystroke else {
3672 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3673 return;
3674 };
3675
3676 cx.propagate_event = true;
3677 self.dispatch_keystroke_interceptors(event, self.context_stack(), cx);
3678 if !cx.propagate_event {
3679 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3680 return;
3681 }
3682
3683 let mut currently_pending = self.pending_input.take().unwrap_or_default();
3684 if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3685 currently_pending = PendingInput::default();
3686 }
3687
3688 let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3689 currently_pending.keystrokes,
3690 keystroke,
3691 &dispatch_path,
3692 );
3693
3694 if !match_result.to_replay.is_empty() {
3695 self.replay_pending_input(match_result.to_replay, cx);
3696 cx.propagate_event = true;
3697 }
3698
3699 if !match_result.pending.is_empty() {
3700 currently_pending.keystrokes = match_result.pending;
3701 currently_pending.focus = self.focus;
3702 currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3703 cx.background_executor.timer(Duration::from_secs(1)).await;
3704 cx.update(move |window, cx| {
3705 let Some(currently_pending) = window
3706 .pending_input
3707 .take()
3708 .filter(|pending| pending.focus == window.focus)
3709 else {
3710 return;
3711 };
3712
3713 let node_id = window.focus_node_id_in_rendered_frame(window.focus);
3714 let dispatch_path = window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3715
3716 let to_replay = window
3717 .rendered_frame
3718 .dispatch_tree
3719 .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3720
3721 window.pending_input_changed(cx);
3722 window.replay_pending_input(to_replay, cx)
3723 })
3724 .log_err();
3725 }));
3726 self.pending_input = Some(currently_pending);
3727 self.pending_input_changed(cx);
3728 cx.propagate_event = false;
3729 return;
3730 }
3731
3732 for binding in match_result.bindings {
3733 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3734 if !cx.propagate_event {
3735 self.dispatch_keystroke_observers(
3736 event,
3737 Some(binding.action),
3738 match_result.context_stack,
3739 cx,
3740 );
3741 self.pending_input_changed(cx);
3742 return;
3743 }
3744 }
3745
3746 self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
3747 self.pending_input_changed(cx);
3748 }
3749
3750 fn finish_dispatch_key_event(
3751 &mut self,
3752 event: &dyn Any,
3753 dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3754 context_stack: Vec<KeyContext>,
3755 cx: &mut App,
3756 ) {
3757 self.dispatch_key_down_up_event(event, &dispatch_path, cx);
3758 if !cx.propagate_event {
3759 return;
3760 }
3761
3762 self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
3763 if !cx.propagate_event {
3764 return;
3765 }
3766
3767 self.dispatch_keystroke_observers(event, None, context_stack, cx);
3768 }
3769
3770 fn pending_input_changed(&mut self, cx: &mut App) {
3771 self.pending_input_observers
3772 .clone()
3773 .retain(&(), |callback| callback(self, cx));
3774 }
3775
3776 fn dispatch_key_down_up_event(
3777 &mut self,
3778 event: &dyn Any,
3779 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3780 cx: &mut App,
3781 ) {
3782 // Capture phase
3783 for node_id in dispatch_path {
3784 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3785
3786 for key_listener in node.key_listeners.clone() {
3787 key_listener(event, DispatchPhase::Capture, self, cx);
3788 if !cx.propagate_event {
3789 return;
3790 }
3791 }
3792 }
3793
3794 // Bubble phase
3795 for node_id in dispatch_path.iter().rev() {
3796 // Handle low level key events
3797 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3798 for key_listener in node.key_listeners.clone() {
3799 key_listener(event, DispatchPhase::Bubble, self, cx);
3800 if !cx.propagate_event {
3801 return;
3802 }
3803 }
3804 }
3805 }
3806
3807 fn dispatch_modifiers_changed_event(
3808 &mut self,
3809 event: &dyn Any,
3810 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3811 cx: &mut App,
3812 ) {
3813 let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
3814 return;
3815 };
3816 for node_id in dispatch_path.iter().rev() {
3817 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3818 for listener in node.modifiers_changed_listeners.clone() {
3819 listener(event, self, cx);
3820 if !cx.propagate_event {
3821 return;
3822 }
3823 }
3824 }
3825 }
3826
3827 /// Determine whether a potential multi-stroke key binding is in progress on this window.
3828 pub fn has_pending_keystrokes(&self) -> bool {
3829 self.pending_input.is_some()
3830 }
3831
3832 pub(crate) fn clear_pending_keystrokes(&mut self) {
3833 self.pending_input.take();
3834 }
3835
3836 /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
3837 pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
3838 self.pending_input
3839 .as_ref()
3840 .map(|pending_input| pending_input.keystrokes.as_slice())
3841 }
3842
3843 fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
3844 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3845 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3846
3847 'replay: for replay in replays {
3848 let event = KeyDownEvent {
3849 keystroke: replay.keystroke.clone(),
3850 is_held: false,
3851 };
3852
3853 cx.propagate_event = true;
3854 for binding in replay.bindings {
3855 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3856 if !cx.propagate_event {
3857 self.dispatch_keystroke_observers(
3858 &event,
3859 Some(binding.action),
3860 Vec::default(),
3861 cx,
3862 );
3863 continue 'replay;
3864 }
3865 }
3866
3867 self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
3868 if !cx.propagate_event {
3869 continue 'replay;
3870 }
3871 if let Some(input) = replay.keystroke.key_char.as_ref().cloned()
3872 && let Some(mut input_handler) = self.platform_window.take_input_handler()
3873 {
3874 input_handler.dispatch_input(&input, self, cx);
3875 self.platform_window.set_input_handler(input_handler)
3876 }
3877 }
3878 }
3879
3880 fn focus_node_id_in_rendered_frame(&self, focus_id: Option<FocusId>) -> DispatchNodeId {
3881 focus_id
3882 .and_then(|focus_id| {
3883 self.rendered_frame
3884 .dispatch_tree
3885 .focusable_node_id(focus_id)
3886 })
3887 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id())
3888 }
3889
3890 fn dispatch_action_on_node(
3891 &mut self,
3892 node_id: DispatchNodeId,
3893 action: &dyn Action,
3894 cx: &mut App,
3895 ) {
3896 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3897
3898 // Capture phase for global actions.
3899 cx.propagate_event = true;
3900 if let Some(mut global_listeners) = cx
3901 .global_action_listeners
3902 .remove(&action.as_any().type_id())
3903 {
3904 for listener in &global_listeners {
3905 listener(action.as_any(), DispatchPhase::Capture, cx);
3906 if !cx.propagate_event {
3907 break;
3908 }
3909 }
3910
3911 global_listeners.extend(
3912 cx.global_action_listeners
3913 .remove(&action.as_any().type_id())
3914 .unwrap_or_default(),
3915 );
3916
3917 cx.global_action_listeners
3918 .insert(action.as_any().type_id(), global_listeners);
3919 }
3920
3921 if !cx.propagate_event {
3922 return;
3923 }
3924
3925 // Capture phase for window actions.
3926 for node_id in &dispatch_path {
3927 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3928 for DispatchActionListener {
3929 action_type,
3930 listener,
3931 } in node.action_listeners.clone()
3932 {
3933 let any_action = action.as_any();
3934 if action_type == any_action.type_id() {
3935 listener(any_action, DispatchPhase::Capture, self, cx);
3936
3937 if !cx.propagate_event {
3938 return;
3939 }
3940 }
3941 }
3942 }
3943
3944 // Bubble phase for window actions.
3945 for node_id in dispatch_path.iter().rev() {
3946 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3947 for DispatchActionListener {
3948 action_type,
3949 listener,
3950 } in node.action_listeners.clone()
3951 {
3952 let any_action = action.as_any();
3953 if action_type == any_action.type_id() {
3954 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3955 listener(any_action, DispatchPhase::Bubble, self, cx);
3956
3957 if !cx.propagate_event {
3958 return;
3959 }
3960 }
3961 }
3962 }
3963
3964 // Bubble phase for global actions.
3965 if let Some(mut global_listeners) = cx
3966 .global_action_listeners
3967 .remove(&action.as_any().type_id())
3968 {
3969 for listener in global_listeners.iter().rev() {
3970 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3971
3972 listener(action.as_any(), DispatchPhase::Bubble, cx);
3973 if !cx.propagate_event {
3974 break;
3975 }
3976 }
3977
3978 global_listeners.extend(
3979 cx.global_action_listeners
3980 .remove(&action.as_any().type_id())
3981 .unwrap_or_default(),
3982 );
3983
3984 cx.global_action_listeners
3985 .insert(action.as_any().type_id(), global_listeners);
3986 }
3987 }
3988
3989 /// Register the given handler to be invoked whenever the global of the given type
3990 /// is updated.
3991 pub fn observe_global<G: Global>(
3992 &mut self,
3993 cx: &mut App,
3994 f: impl Fn(&mut Window, &mut App) + 'static,
3995 ) -> Subscription {
3996 let window_handle = self.handle;
3997 let (subscription, activate) = cx.global_observers.insert(
3998 TypeId::of::<G>(),
3999 Box::new(move |cx| {
4000 window_handle
4001 .update(cx, |_, window, cx| f(window, cx))
4002 .is_ok()
4003 }),
4004 );
4005 cx.defer(move |_| activate());
4006 subscription
4007 }
4008
4009 /// Focus the current window and bring it to the foreground at the platform level.
4010 pub fn activate_window(&self) {
4011 self.platform_window.activate();
4012 }
4013
4014 /// Minimize the current window at the platform level.
4015 pub fn minimize_window(&self) {
4016 self.platform_window.minimize();
4017 }
4018
4019 /// Toggle full screen status on the current window at the platform level.
4020 pub fn toggle_fullscreen(&self) {
4021 self.platform_window.toggle_fullscreen();
4022 }
4023
4024 /// Updates the IME panel position suggestions for languages like japanese, chinese.
4025 pub fn invalidate_character_coordinates(&self) {
4026 self.on_next_frame(|window, cx| {
4027 if let Some(mut input_handler) = window.platform_window.take_input_handler() {
4028 if let Some(bounds) = input_handler.selected_bounds(window, cx) {
4029 window
4030 .platform_window
4031 .update_ime_position(bounds.scale(window.scale_factor()));
4032 }
4033 window.platform_window.set_input_handler(input_handler);
4034 }
4035 });
4036 }
4037
4038 /// Present a platform dialog.
4039 /// The provided message will be presented, along with buttons for each answer.
4040 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
4041 pub fn prompt<T>(
4042 &mut self,
4043 level: PromptLevel,
4044 message: &str,
4045 detail: Option<&str>,
4046 answers: &[T],
4047 cx: &mut App,
4048 ) -> oneshot::Receiver<usize>
4049 where
4050 T: Clone + Into<PromptButton>,
4051 {
4052 let prompt_builder = cx.prompt_builder.take();
4053 let Some(prompt_builder) = prompt_builder else {
4054 unreachable!("Re-entrant window prompting is not supported by GPUI");
4055 };
4056
4057 let answers = answers
4058 .iter()
4059 .map(|answer| answer.clone().into())
4060 .collect::<Vec<_>>();
4061
4062 let receiver = match &prompt_builder {
4063 PromptBuilder::Default => self
4064 .platform_window
4065 .prompt(level, message, detail, &answers)
4066 .unwrap_or_else(|| {
4067 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4068 }),
4069 PromptBuilder::Custom(_) => {
4070 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4071 }
4072 };
4073
4074 cx.prompt_builder = Some(prompt_builder);
4075
4076 receiver
4077 }
4078
4079 fn build_custom_prompt(
4080 &mut self,
4081 prompt_builder: &PromptBuilder,
4082 level: PromptLevel,
4083 message: &str,
4084 detail: Option<&str>,
4085 answers: &[PromptButton],
4086 cx: &mut App,
4087 ) -> oneshot::Receiver<usize> {
4088 let (sender, receiver) = oneshot::channel();
4089 let handle = PromptHandle::new(sender);
4090 let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
4091 self.prompt = Some(handle);
4092 receiver
4093 }
4094
4095 /// Returns the current context stack.
4096 pub fn context_stack(&self) -> Vec<KeyContext> {
4097 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4098 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4099 dispatch_tree
4100 .dispatch_path(node_id)
4101 .iter()
4102 .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
4103 .collect()
4104 }
4105
4106 /// Returns all available actions for the focused element.
4107 pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
4108 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4109 let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
4110 for action_type in cx.global_action_listeners.keys() {
4111 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
4112 let action = cx.actions.build_action_type(action_type).ok();
4113 if let Some(action) = action {
4114 actions.insert(ix, action);
4115 }
4116 }
4117 }
4118 actions
4119 }
4120
4121 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
4122 /// returned in the order they were added. For display, the last binding should take precedence.
4123 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
4124 self.rendered_frame
4125 .dispatch_tree
4126 .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
4127 }
4128
4129 /// Returns the highest precedence key binding that invokes an action on the currently focused
4130 /// element. This is more efficient than getting the last result of `bindings_for_action`.
4131 pub fn highest_precedence_binding_for_action(&self, action: &dyn Action) -> Option<KeyBinding> {
4132 self.rendered_frame
4133 .dispatch_tree
4134 .highest_precedence_binding_for_action(
4135 action,
4136 &self.rendered_frame.dispatch_tree.context_stack,
4137 )
4138 }
4139
4140 /// Returns the key bindings for an action in a context.
4141 pub fn bindings_for_action_in_context(
4142 &self,
4143 action: &dyn Action,
4144 context: KeyContext,
4145 ) -> Vec<KeyBinding> {
4146 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4147 dispatch_tree.bindings_for_action(action, &[context])
4148 }
4149
4150 /// Returns the highest precedence key binding for an action in a context. This is more
4151 /// efficient than getting the last result of `bindings_for_action_in_context`.
4152 pub fn highest_precedence_binding_for_action_in_context(
4153 &self,
4154 action: &dyn Action,
4155 context: KeyContext,
4156 ) -> Option<KeyBinding> {
4157 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4158 dispatch_tree.highest_precedence_binding_for_action(action, &[context])
4159 }
4160
4161 /// Returns any bindings that would invoke an action on the given focus handle if it were
4162 /// focused. Bindings are returned in the order they were added. For display, the last binding
4163 /// should take precedence.
4164 pub fn bindings_for_action_in(
4165 &self,
4166 action: &dyn Action,
4167 focus_handle: &FocusHandle,
4168 ) -> Vec<KeyBinding> {
4169 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4170 let Some(context_stack) = self.context_stack_for_focus_handle(focus_handle) else {
4171 return vec![];
4172 };
4173 dispatch_tree.bindings_for_action(action, &context_stack)
4174 }
4175
4176 /// Returns the highest precedence key binding that would invoke an action on the given focus
4177 /// handle if it were focused. This is more efficient than getting the last result of
4178 /// `bindings_for_action_in`.
4179 pub fn highest_precedence_binding_for_action_in(
4180 &self,
4181 action: &dyn Action,
4182 focus_handle: &FocusHandle,
4183 ) -> Option<KeyBinding> {
4184 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4185 let context_stack = self.context_stack_for_focus_handle(focus_handle)?;
4186 dispatch_tree.highest_precedence_binding_for_action(action, &context_stack)
4187 }
4188
4189 fn context_stack_for_focus_handle(
4190 &self,
4191 focus_handle: &FocusHandle,
4192 ) -> Option<Vec<KeyContext>> {
4193 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4194 let node_id = dispatch_tree.focusable_node_id(focus_handle.id)?;
4195 let context_stack: Vec<_> = dispatch_tree
4196 .dispatch_path(node_id)
4197 .into_iter()
4198 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
4199 .collect();
4200 Some(context_stack)
4201 }
4202
4203 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
4204 pub fn listener_for<V: Render, E>(
4205 &self,
4206 view: &Entity<V>,
4207 f: impl Fn(&mut V, &E, &mut Window, &mut Context<V>) + 'static,
4208 ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
4209 let view = view.downgrade();
4210 move |e: &E, window: &mut Window, cx: &mut App| {
4211 view.update(cx, |view, cx| f(view, e, window, cx)).ok();
4212 }
4213 }
4214
4215 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
4216 pub fn handler_for<V: Render, Callback: Fn(&mut V, &mut Window, &mut Context<V>) + 'static>(
4217 &self,
4218 view: &Entity<V>,
4219 f: Callback,
4220 ) -> impl Fn(&mut Window, &mut App) + use<V, Callback> {
4221 let view = view.downgrade();
4222 move |window: &mut Window, cx: &mut App| {
4223 view.update(cx, |view, cx| f(view, window, cx)).ok();
4224 }
4225 }
4226
4227 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
4228 /// If the callback returns false, the window won't be closed.
4229 pub fn on_window_should_close(
4230 &self,
4231 cx: &App,
4232 f: impl Fn(&mut Window, &mut App) -> bool + 'static,
4233 ) {
4234 let mut cx = self.to_async(cx);
4235 self.platform_window.on_should_close(Box::new(move || {
4236 cx.update(|window, cx| f(window, cx)).unwrap_or(true)
4237 }))
4238 }
4239
4240 /// Register an action listener on the window for the next frame. The type of action
4241 /// is determined by the first parameter of the given listener. When the next frame is rendered
4242 /// the listener will be cleared.
4243 ///
4244 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4245 /// a specific need to register a global listener.
4246 pub fn on_action(
4247 &mut self,
4248 action_type: TypeId,
4249 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4250 ) {
4251 self.next_frame
4252 .dispatch_tree
4253 .on_action(action_type, Rc::new(listener));
4254 }
4255
4256 /// Register an action listener on the window for the next frame if the condition is true.
4257 /// The type of action is determined by the first parameter of the given listener.
4258 /// When the next frame is rendered the listener will be cleared.
4259 ///
4260 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4261 /// a specific need to register a global listener.
4262 pub fn on_action_when(
4263 &mut self,
4264 condition: bool,
4265 action_type: TypeId,
4266 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4267 ) {
4268 if condition {
4269 self.next_frame
4270 .dispatch_tree
4271 .on_action(action_type, Rc::new(listener));
4272 }
4273 }
4274
4275 /// Read information about the GPU backing this window.
4276 /// Currently returns None on Mac and Windows.
4277 pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4278 self.platform_window.gpu_specs()
4279 }
4280
4281 /// Perform titlebar double-click action.
4282 /// This is MacOS specific.
4283 pub fn titlebar_double_click(&self) {
4284 self.platform_window.titlebar_double_click();
4285 }
4286
4287 /// Toggles the inspector mode on this window.
4288 #[cfg(any(feature = "inspector", debug_assertions))]
4289 pub fn toggle_inspector(&mut self, cx: &mut App) {
4290 self.inspector = match self.inspector {
4291 None => Some(cx.new(|_| Inspector::new())),
4292 Some(_) => None,
4293 };
4294 self.refresh();
4295 }
4296
4297 /// Returns true if the window is in inspector mode.
4298 pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4299 #[cfg(any(feature = "inspector", debug_assertions))]
4300 {
4301 if let Some(inspector) = &self.inspector {
4302 return inspector.read(_cx).is_picking();
4303 }
4304 }
4305 false
4306 }
4307
4308 /// Executes the provided function with mutable access to an inspector state.
4309 #[cfg(any(feature = "inspector", debug_assertions))]
4310 pub fn with_inspector_state<T: 'static, R>(
4311 &mut self,
4312 _inspector_id: Option<&crate::InspectorElementId>,
4313 cx: &mut App,
4314 f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4315 ) -> R {
4316 if let Some(inspector_id) = _inspector_id
4317 && let Some(inspector) = &self.inspector
4318 {
4319 let inspector = inspector.clone();
4320 let active_element_id = inspector.read(cx).active_element_id();
4321 if Some(inspector_id) == active_element_id {
4322 return inspector.update(cx, |inspector, _cx| {
4323 inspector.with_active_element_state(self, f)
4324 });
4325 }
4326 }
4327 f(&mut None, self)
4328 }
4329
4330 #[cfg(any(feature = "inspector", debug_assertions))]
4331 pub(crate) fn build_inspector_element_id(
4332 &mut self,
4333 path: crate::InspectorElementPath,
4334 ) -> crate::InspectorElementId {
4335 self.invalidator.debug_assert_paint_or_prepaint();
4336 let path = Rc::new(path);
4337 let next_instance_id = self
4338 .next_frame
4339 .next_inspector_instance_ids
4340 .entry(path.clone())
4341 .or_insert(0);
4342 let instance_id = *next_instance_id;
4343 *next_instance_id += 1;
4344 crate::InspectorElementId { path, instance_id }
4345 }
4346
4347 #[cfg(any(feature = "inspector", debug_assertions))]
4348 fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4349 if let Some(inspector) = self.inspector.take() {
4350 let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4351 inspector_element.prepaint_as_root(
4352 point(self.viewport_size.width - inspector_width, px(0.0)),
4353 size(inspector_width, self.viewport_size.height).into(),
4354 self,
4355 cx,
4356 );
4357 self.inspector = Some(inspector);
4358 Some(inspector_element)
4359 } else {
4360 None
4361 }
4362 }
4363
4364 #[cfg(any(feature = "inspector", debug_assertions))]
4365 fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4366 if let Some(mut inspector_element) = inspector_element {
4367 inspector_element.paint(self, cx);
4368 };
4369 }
4370
4371 /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4372 /// inspect UI elements by clicking on them.
4373 #[cfg(any(feature = "inspector", debug_assertions))]
4374 pub fn insert_inspector_hitbox(
4375 &mut self,
4376 hitbox_id: HitboxId,
4377 inspector_id: Option<&crate::InspectorElementId>,
4378 cx: &App,
4379 ) {
4380 self.invalidator.debug_assert_paint_or_prepaint();
4381 if !self.is_inspector_picking(cx) {
4382 return;
4383 }
4384 if let Some(inspector_id) = inspector_id {
4385 self.next_frame
4386 .inspector_hitboxes
4387 .insert(hitbox_id, inspector_id.clone());
4388 }
4389 }
4390
4391 #[cfg(any(feature = "inspector", debug_assertions))]
4392 fn paint_inspector_hitbox(&mut self, cx: &App) {
4393 if let Some(inspector) = self.inspector.as_ref() {
4394 let inspector = inspector.read(cx);
4395 if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
4396 && let Some(hitbox) = self
4397 .next_frame
4398 .hitboxes
4399 .iter()
4400 .find(|hitbox| hitbox.id == hitbox_id)
4401 {
4402 self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4403 }
4404 }
4405 }
4406
4407 #[cfg(any(feature = "inspector", debug_assertions))]
4408 fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4409 let Some(inspector) = self.inspector.clone() else {
4410 return;
4411 };
4412 if event.downcast_ref::<MouseMoveEvent>().is_some() {
4413 inspector.update(cx, |inspector, _cx| {
4414 if let Some((_, inspector_id)) =
4415 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4416 {
4417 inspector.hover(inspector_id, self);
4418 }
4419 });
4420 } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4421 inspector.update(cx, |inspector, _cx| {
4422 if let Some((_, inspector_id)) =
4423 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4424 {
4425 inspector.select(inspector_id, self);
4426 }
4427 });
4428 } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4429 // This should be kept in sync with SCROLL_LINES in x11 platform.
4430 const SCROLL_LINES: f32 = 3.0;
4431 const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4432 let delta_y = event
4433 .delta
4434 .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4435 .y;
4436 if let Some(inspector) = self.inspector.clone() {
4437 inspector.update(cx, |inspector, _cx| {
4438 if let Some(depth) = inspector.pick_depth.as_mut() {
4439 *depth += delta_y.0 / SCROLL_PIXELS_PER_LAYER;
4440 let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4441 if *depth < 0.0 {
4442 *depth = 0.0;
4443 } else if *depth > max_depth {
4444 *depth = max_depth;
4445 }
4446 if let Some((_, inspector_id)) =
4447 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4448 {
4449 inspector.set_active_element_id(inspector_id, self);
4450 }
4451 }
4452 });
4453 }
4454 }
4455 }
4456
4457 #[cfg(any(feature = "inspector", debug_assertions))]
4458 fn hovered_inspector_hitbox(
4459 &self,
4460 inspector: &Inspector,
4461 frame: &Frame,
4462 ) -> Option<(HitboxId, crate::InspectorElementId)> {
4463 if let Some(pick_depth) = inspector.pick_depth {
4464 let depth = (pick_depth as i64).try_into().unwrap_or(0);
4465 let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4466 let skip_count = (depth as usize).min(max_skipped);
4467 for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4468 if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4469 return Some((*hitbox_id, inspector_id.clone()));
4470 }
4471 }
4472 }
4473 None
4474 }
4475}
4476
4477// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4478slotmap::new_key_type! {
4479 /// A unique identifier for a window.
4480 pub struct WindowId;
4481}
4482
4483impl WindowId {
4484 /// Converts this window ID to a `u64`.
4485 pub fn as_u64(&self) -> u64 {
4486 self.0.as_ffi()
4487 }
4488}
4489
4490impl From<u64> for WindowId {
4491 fn from(value: u64) -> Self {
4492 WindowId(slotmap::KeyData::from_ffi(value))
4493 }
4494}
4495
4496/// A handle to a window with a specific root view type.
4497/// Note that this does not keep the window alive on its own.
4498#[derive(Deref, DerefMut)]
4499pub struct WindowHandle<V> {
4500 #[deref]
4501 #[deref_mut]
4502 pub(crate) any_handle: AnyWindowHandle,
4503 state_type: PhantomData<V>,
4504}
4505
4506impl<V: 'static + Render> WindowHandle<V> {
4507 /// Creates a new handle from a window ID.
4508 /// This does not check if the root type of the window is `V`.
4509 pub fn new(id: WindowId) -> Self {
4510 WindowHandle {
4511 any_handle: AnyWindowHandle {
4512 id,
4513 state_type: TypeId::of::<V>(),
4514 },
4515 state_type: PhantomData,
4516 }
4517 }
4518
4519 /// Get the root view out of this window.
4520 ///
4521 /// This will fail if the window is closed or if the root view's type does not match `V`.
4522 #[cfg(any(test, feature = "test-support"))]
4523 pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4524 where
4525 C: AppContext,
4526 {
4527 crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4528 root_view
4529 .downcast::<V>()
4530 .map_err(|_| anyhow!("the type of the window's root view has changed"))
4531 }))
4532 }
4533
4534 /// Updates the root view of this window.
4535 ///
4536 /// This will fail if the window has been closed or if the root view's type does not match
4537 pub fn update<C, R>(
4538 &self,
4539 cx: &mut C,
4540 update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4541 ) -> Result<R>
4542 where
4543 C: AppContext,
4544 {
4545 cx.update_window(self.any_handle, |root_view, window, cx| {
4546 let view = root_view
4547 .downcast::<V>()
4548 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4549
4550 Ok(view.update(cx, |view, cx| update(view, window, cx)))
4551 })?
4552 }
4553
4554 /// Read the root view out of this window.
4555 ///
4556 /// This will fail if the window is closed or if the root view's type does not match `V`.
4557 pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
4558 let x = cx
4559 .windows
4560 .get(self.id)
4561 .and_then(|window| {
4562 window
4563 .as_ref()
4564 .and_then(|window| window.root.clone())
4565 .map(|root_view| root_view.downcast::<V>())
4566 })
4567 .context("window not found")?
4568 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4569
4570 Ok(x.read(cx))
4571 }
4572
4573 /// Read the root view out of this window, with a callback
4574 ///
4575 /// This will fail if the window is closed or if the root view's type does not match `V`.
4576 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4577 where
4578 C: AppContext,
4579 {
4580 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
4581 }
4582
4583 /// Read the root view pointer off of this window.
4584 ///
4585 /// This will fail if the window is closed or if the root view's type does not match `V`.
4586 pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4587 where
4588 C: AppContext,
4589 {
4590 cx.read_window(self, |root_view, _cx| root_view)
4591 }
4592
4593 /// Check if this window is 'active'.
4594 ///
4595 /// Will return `None` if the window is closed or currently
4596 /// borrowed.
4597 pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4598 cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4599 .ok()
4600 }
4601}
4602
4603impl<V> Copy for WindowHandle<V> {}
4604
4605impl<V> Clone for WindowHandle<V> {
4606 fn clone(&self) -> Self {
4607 *self
4608 }
4609}
4610
4611impl<V> PartialEq for WindowHandle<V> {
4612 fn eq(&self, other: &Self) -> bool {
4613 self.any_handle == other.any_handle
4614 }
4615}
4616
4617impl<V> Eq for WindowHandle<V> {}
4618
4619impl<V> Hash for WindowHandle<V> {
4620 fn hash<H: Hasher>(&self, state: &mut H) {
4621 self.any_handle.hash(state);
4622 }
4623}
4624
4625impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
4626 fn from(val: WindowHandle<V>) -> Self {
4627 val.any_handle
4628 }
4629}
4630
4631unsafe impl<V> Send for WindowHandle<V> {}
4632unsafe impl<V> Sync for WindowHandle<V> {}
4633
4634/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
4635#[derive(Copy, Clone, PartialEq, Eq, Hash)]
4636pub struct AnyWindowHandle {
4637 pub(crate) id: WindowId,
4638 state_type: TypeId,
4639}
4640
4641impl AnyWindowHandle {
4642 /// Get the ID of this window.
4643 pub fn window_id(&self) -> WindowId {
4644 self.id
4645 }
4646
4647 /// Attempt to convert this handle to a window handle with a specific root view type.
4648 /// If the types do not match, this will return `None`.
4649 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
4650 if TypeId::of::<T>() == self.state_type {
4651 Some(WindowHandle {
4652 any_handle: *self,
4653 state_type: PhantomData,
4654 })
4655 } else {
4656 None
4657 }
4658 }
4659
4660 /// Updates the state of the root view of this window.
4661 ///
4662 /// This will fail if the window has been closed.
4663 pub fn update<C, R>(
4664 self,
4665 cx: &mut C,
4666 update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
4667 ) -> Result<R>
4668 where
4669 C: AppContext,
4670 {
4671 cx.update_window(self, update)
4672 }
4673
4674 /// Read the state of the root view of this window.
4675 ///
4676 /// This will fail if the window has been closed.
4677 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
4678 where
4679 C: AppContext,
4680 T: 'static,
4681 {
4682 let view = self
4683 .downcast::<T>()
4684 .context("the type of the window's root view has changed")?;
4685
4686 cx.read_window(&view, read)
4687 }
4688}
4689
4690impl HasWindowHandle for Window {
4691 fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
4692 self.platform_window.window_handle()
4693 }
4694}
4695
4696impl HasDisplayHandle for Window {
4697 fn display_handle(
4698 &self,
4699 ) -> std::result::Result<raw_window_handle::DisplayHandle<'_>, HandleError> {
4700 self.platform_window.display_handle()
4701 }
4702}
4703
4704/// An identifier for an [`Element`](crate::Element).
4705///
4706/// Can be constructed with a string, a number, or both, as well
4707/// as other internal representations.
4708#[derive(Clone, Debug, Eq, PartialEq, Hash)]
4709pub enum ElementId {
4710 /// The ID of a View element
4711 View(EntityId),
4712 /// An integer ID.
4713 Integer(u64),
4714 /// A string based ID.
4715 Name(SharedString),
4716 /// A UUID.
4717 Uuid(Uuid),
4718 /// An ID that's equated with a focus handle.
4719 FocusHandle(FocusId),
4720 /// A combination of a name and an integer.
4721 NamedInteger(SharedString, u64),
4722 /// A path.
4723 Path(Arc<std::path::Path>),
4724 /// A code location.
4725 CodeLocation(core::panic::Location<'static>),
4726 /// A labeled child of an element.
4727 NamedChild(Box<ElementId>, SharedString),
4728}
4729
4730impl ElementId {
4731 /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
4732 pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
4733 Self::NamedInteger(name.into(), integer as u64)
4734 }
4735}
4736
4737impl Display for ElementId {
4738 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4739 match self {
4740 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
4741 ElementId::Integer(ix) => write!(f, "{}", ix)?,
4742 ElementId::Name(name) => write!(f, "{}", name)?,
4743 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
4744 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
4745 ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
4746 ElementId::Path(path) => write!(f, "{}", path.display())?,
4747 ElementId::CodeLocation(location) => write!(f, "{}", location)?,
4748 ElementId::NamedChild(id, name) => write!(f, "{}-{}", id, name)?,
4749 }
4750
4751 Ok(())
4752 }
4753}
4754
4755impl TryInto<SharedString> for ElementId {
4756 type Error = anyhow::Error;
4757
4758 fn try_into(self) -> anyhow::Result<SharedString> {
4759 if let ElementId::Name(name) = self {
4760 Ok(name)
4761 } else {
4762 anyhow::bail!("element id is not string")
4763 }
4764 }
4765}
4766
4767impl From<usize> for ElementId {
4768 fn from(id: usize) -> Self {
4769 ElementId::Integer(id as u64)
4770 }
4771}
4772
4773impl From<i32> for ElementId {
4774 fn from(id: i32) -> Self {
4775 Self::Integer(id as u64)
4776 }
4777}
4778
4779impl From<SharedString> for ElementId {
4780 fn from(name: SharedString) -> Self {
4781 ElementId::Name(name)
4782 }
4783}
4784
4785impl From<Arc<std::path::Path>> for ElementId {
4786 fn from(path: Arc<std::path::Path>) -> Self {
4787 ElementId::Path(path)
4788 }
4789}
4790
4791impl From<&'static str> for ElementId {
4792 fn from(name: &'static str) -> Self {
4793 ElementId::Name(name.into())
4794 }
4795}
4796
4797impl<'a> From<&'a FocusHandle> for ElementId {
4798 fn from(handle: &'a FocusHandle) -> Self {
4799 ElementId::FocusHandle(handle.id)
4800 }
4801}
4802
4803impl From<(&'static str, EntityId)> for ElementId {
4804 fn from((name, id): (&'static str, EntityId)) -> Self {
4805 ElementId::NamedInteger(name.into(), id.as_u64())
4806 }
4807}
4808
4809impl From<(&'static str, usize)> for ElementId {
4810 fn from((name, id): (&'static str, usize)) -> Self {
4811 ElementId::NamedInteger(name.into(), id as u64)
4812 }
4813}
4814
4815impl From<(SharedString, usize)> for ElementId {
4816 fn from((name, id): (SharedString, usize)) -> Self {
4817 ElementId::NamedInteger(name, id as u64)
4818 }
4819}
4820
4821impl From<(&'static str, u64)> for ElementId {
4822 fn from((name, id): (&'static str, u64)) -> Self {
4823 ElementId::NamedInteger(name.into(), id)
4824 }
4825}
4826
4827impl From<Uuid> for ElementId {
4828 fn from(value: Uuid) -> Self {
4829 Self::Uuid(value)
4830 }
4831}
4832
4833impl From<(&'static str, u32)> for ElementId {
4834 fn from((name, id): (&'static str, u32)) -> Self {
4835 ElementId::NamedInteger(name.into(), id.into())
4836 }
4837}
4838
4839impl<T: Into<SharedString>> From<(ElementId, T)> for ElementId {
4840 fn from((id, name): (ElementId, T)) -> Self {
4841 ElementId::NamedChild(Box::new(id), name.into())
4842 }
4843}
4844
4845/// A rectangle to be rendered in the window at the given position and size.
4846/// Passed as an argument [`Window::paint_quad`].
4847#[derive(Clone)]
4848pub struct PaintQuad {
4849 /// The bounds of the quad within the window.
4850 pub bounds: Bounds<Pixels>,
4851 /// The radii of the quad's corners.
4852 pub corner_radii: Corners<Pixels>,
4853 /// The background color of the quad.
4854 pub background: Background,
4855 /// The widths of the quad's borders.
4856 pub border_widths: Edges<Pixels>,
4857 /// The color of the quad's borders.
4858 pub border_color: Hsla,
4859 /// The style of the quad's borders.
4860 pub border_style: BorderStyle,
4861}
4862
4863impl PaintQuad {
4864 /// Sets the corner radii of the quad.
4865 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
4866 PaintQuad {
4867 corner_radii: corner_radii.into(),
4868 ..self
4869 }
4870 }
4871
4872 /// Sets the border widths of the quad.
4873 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
4874 PaintQuad {
4875 border_widths: border_widths.into(),
4876 ..self
4877 }
4878 }
4879
4880 /// Sets the border color of the quad.
4881 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
4882 PaintQuad {
4883 border_color: border_color.into(),
4884 ..self
4885 }
4886 }
4887
4888 /// Sets the background color of the quad.
4889 pub fn background(self, background: impl Into<Background>) -> Self {
4890 PaintQuad {
4891 background: background.into(),
4892 ..self
4893 }
4894 }
4895}
4896
4897/// Creates a quad with the given parameters.
4898pub fn quad(
4899 bounds: Bounds<Pixels>,
4900 corner_radii: impl Into<Corners<Pixels>>,
4901 background: impl Into<Background>,
4902 border_widths: impl Into<Edges<Pixels>>,
4903 border_color: impl Into<Hsla>,
4904 border_style: BorderStyle,
4905) -> PaintQuad {
4906 PaintQuad {
4907 bounds,
4908 corner_radii: corner_radii.into(),
4909 background: background.into(),
4910 border_widths: border_widths.into(),
4911 border_color: border_color.into(),
4912 border_style,
4913 }
4914}
4915
4916/// Creates a filled quad with the given bounds and background color.
4917pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
4918 PaintQuad {
4919 bounds: bounds.into(),
4920 corner_radii: (0.).into(),
4921 background: background.into(),
4922 border_widths: (0.).into(),
4923 border_color: transparent_black(),
4924 border_style: BorderStyle::default(),
4925 }
4926}
4927
4928/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
4929pub fn outline(
4930 bounds: impl Into<Bounds<Pixels>>,
4931 border_color: impl Into<Hsla>,
4932 border_style: BorderStyle,
4933) -> PaintQuad {
4934 PaintQuad {
4935 bounds: bounds.into(),
4936 corner_radii: (0.).into(),
4937 background: transparent_black().into(),
4938 border_widths: (1.).into(),
4939 border_color: border_color.into(),
4940 border_style,
4941 }
4942}