shaders.wgsl

   1/* Functions useful for debugging:
   2
   3// A heat map color for debugging (blue -> cyan -> green -> yellow -> red).
   4fn heat_map_color(value: f32, minValue: f32, maxValue: f32, position: vec2<f32>) -> vec4<f32> {
   5    // Normalize value to 0-1 range
   6    let t = clamp((value - minValue) / (maxValue - minValue), 0.0, 1.0);
   7
   8    // Heat map color calculation
   9    let r = t * t;
  10    let g = 4.0 * t * (1.0 - t);
  11    let b = (1.0 - t) * (1.0 - t);
  12    let heat_color = vec3<f32>(r, g, b);
  13
  14    // Create a checkerboard pattern (black and white)
  15    let sum = floor(position.x / 3) + floor(position.y / 3);
  16    let is_odd = fract(sum * 0.5); // 0.0 for even, 0.5 for odd
  17    let checker_value = is_odd * 2.0; // 0.0 for even, 1.0 for odd
  18    let checker_color = vec3<f32>(checker_value);
  19
  20    // Determine if value is in range (1.0 if in range, 0.0 if out of range)
  21    let in_range = step(minValue, value) * step(value, maxValue);
  22
  23    // Mix checkerboard and heat map based on whether value is in range
  24    let final_color = mix(checker_color, heat_color, in_range);
  25
  26    return vec4<f32>(final_color, 1.0);
  27}
  28
  29*/
  30
  31struct GlobalParams {
  32    viewport_size: vec2<f32>,
  33    premultiplied_alpha: u32,
  34    pad: u32,
  35}
  36
  37var<uniform> globals: GlobalParams;
  38var t_sprite: texture_2d<f32>;
  39var s_sprite: sampler;
  40
  41const M_PI_F: f32 = 3.1415926;
  42const GRAYSCALE_FACTORS: vec3<f32> = vec3<f32>(0.2126, 0.7152, 0.0722);
  43
  44struct Bounds {
  45    origin: vec2<f32>,
  46    size: vec2<f32>,
  47}
  48
  49struct Corners {
  50    top_left: f32,
  51    top_right: f32,
  52    bottom_right: f32,
  53    bottom_left: f32,
  54}
  55
  56struct ContentMask {
  57    bounds: Bounds,
  58    corner_radii: Corners,
  59}
  60
  61struct Edges {
  62    top: f32,
  63    right: f32,
  64    bottom: f32,
  65    left: f32,
  66}
  67
  68struct Hsla {
  69    h: f32,
  70    s: f32,
  71    l: f32,
  72    a: f32,
  73}
  74
  75struct LinearColorStop {
  76    color: Hsla,
  77    percentage: f32,
  78}
  79
  80struct Background {
  81    // 0u is Solid
  82    // 1u is LinearGradient
  83    // 2u is PatternSlash
  84    tag: u32,
  85    // 0u is sRGB linear color
  86    // 1u is Oklab color
  87    color_space: u32,
  88    solid: Hsla,
  89    gradient_angle_or_pattern_height: f32,
  90    colors: array<LinearColorStop, 2>,
  91    pad: u32,
  92}
  93
  94struct AtlasTextureId {
  95    index: u32,
  96    kind: u32,
  97}
  98
  99struct AtlasBounds {
 100    origin: vec2<i32>,
 101    size: vec2<i32>,
 102}
 103
 104struct AtlasTile {
 105    texture_id: AtlasTextureId,
 106    tile_id: u32,
 107    padding: u32,
 108    bounds: AtlasBounds,
 109}
 110
 111struct TransformationMatrix {
 112    rotation_scale: mat2x2<f32>,
 113    translation: vec2<f32>,
 114}
 115
 116fn to_device_position_impl(position: vec2<f32>) -> vec4<f32> {
 117    let device_position = position / globals.viewport_size * vec2<f32>(2.0, -2.0) + vec2<f32>(-1.0, 1.0);
 118    return vec4<f32>(device_position, 0.0, 1.0);
 119}
 120
 121fn to_device_position(unit_vertex: vec2<f32>, bounds: Bounds) -> vec4<f32> {
 122    let position = unit_vertex * vec2<f32>(bounds.size) + bounds.origin;
 123    return to_device_position_impl(position);
 124}
 125
 126fn to_device_position_transformed(unit_vertex: vec2<f32>, bounds: Bounds, transform: TransformationMatrix) -> vec4<f32> {
 127    let position = unit_vertex * vec2<f32>(bounds.size) + bounds.origin;
 128    //Note: Rust side stores it as row-major, so transposing here
 129    let transformed = transpose(transform.rotation_scale) * position + transform.translation;
 130    return to_device_position_impl(transformed);
 131}
 132
 133fn to_tile_position(unit_vertex: vec2<f32>, tile: AtlasTile) -> vec2<f32> {
 134  let atlas_size = vec2<f32>(textureDimensions(t_sprite, 0));
 135  return (vec2<f32>(tile.bounds.origin) + unit_vertex * vec2<f32>(tile.bounds.size)) / atlas_size;
 136}
 137
 138fn distance_from_clip_rect_impl(position: vec2<f32>, clip_bounds: Bounds) -> vec4<f32> {
 139    let tl = position - clip_bounds.origin;
 140    let br = clip_bounds.origin + clip_bounds.size - position;
 141    return vec4<f32>(tl.x, br.x, tl.y, br.y);
 142}
 143
 144fn distance_from_clip_rect(unit_vertex: vec2<f32>, bounds: Bounds, clip_bounds: Bounds) -> vec4<f32> {
 145    let position = unit_vertex * vec2<f32>(bounds.size) + bounds.origin;
 146    return distance_from_clip_rect_impl(position, clip_bounds);
 147}
 148
 149// https://gamedev.stackexchange.com/questions/92015/optimized-linear-to-srgb-glsl
 150fn srgb_to_linear(srgb: vec3<f32>) -> vec3<f32> {
 151    let cutoff = srgb < vec3<f32>(0.04045);
 152    let higher = pow((srgb + vec3<f32>(0.055)) / vec3<f32>(1.055), vec3<f32>(2.4));
 153    let lower = srgb / vec3<f32>(12.92);
 154    return select(higher, lower, cutoff);
 155}
 156
 157fn linear_to_srgb(linear: vec3<f32>) -> vec3<f32> {
 158    let cutoff = linear < vec3<f32>(0.0031308);
 159    let higher = vec3<f32>(1.055) * pow(linear, vec3<f32>(1.0 / 2.4)) - vec3<f32>(0.055);
 160    let lower = linear * vec3<f32>(12.92);
 161    return select(higher, lower, cutoff);
 162}
 163
 164/// Convert a linear color to sRGBA space.
 165fn linear_to_srgba(color: vec4<f32>) -> vec4<f32> {
 166    return vec4<f32>(linear_to_srgb(color.rgb), color.a);
 167}
 168
 169/// Convert a sRGBA color to linear space.
 170fn srgba_to_linear(color: vec4<f32>) -> vec4<f32> {
 171    return vec4<f32>(srgb_to_linear(color.rgb), color.a);
 172}
 173
 174/// Hsla to linear RGBA conversion.
 175fn hsla_to_rgba(hsla: Hsla) -> vec4<f32> {
 176    let h = hsla.h * 6.0; // Now, it's an angle but scaled in [0, 6) range
 177    let s = hsla.s;
 178    let l = hsla.l;
 179    let a = hsla.a;
 180
 181    let c = (1.0 - abs(2.0 * l - 1.0)) * s;
 182    let x = c * (1.0 - abs(h % 2.0 - 1.0));
 183    let m = l - c / 2.0;
 184    var color = vec3<f32>(m);
 185
 186    if (h >= 0.0 && h < 1.0) {
 187        color.r += c;
 188        color.g += x;
 189    } else if (h >= 1.0 && h < 2.0) {
 190        color.r += x;
 191        color.g += c;
 192    } else if (h >= 2.0 && h < 3.0) {
 193        color.g += c;
 194        color.b += x;
 195    } else if (h >= 3.0 && h < 4.0) {
 196        color.g += x;
 197        color.b += c;
 198    } else if (h >= 4.0 && h < 5.0) {
 199        color.r += x;
 200        color.b += c;
 201    } else {
 202        color.r += c;
 203        color.b += x;
 204    }
 205
 206    // Input colors are assumed to be in sRGB space,
 207    // but blending and rendering needs to happen in linear space.
 208    // The output will be converted to sRGB by either the target
 209    // texture format or the swapchain color space.
 210    let linear = srgb_to_linear(color);
 211    return vec4<f32>(linear, a);
 212}
 213
 214/// Convert a linear sRGB to Oklab space.
 215/// Reference: https://bottosson.github.io/posts/oklab/#converting-from-linear-srgb-to-oklab
 216fn linear_srgb_to_oklab(color: vec4<f32>) -> vec4<f32> {
 217	let l = 0.4122214708 * color.r + 0.5363325363 * color.g + 0.0514459929 * color.b;
 218	let m = 0.2119034982 * color.r + 0.6806995451 * color.g + 0.1073969566 * color.b;
 219	let s = 0.0883024619 * color.r + 0.2817188376 * color.g + 0.6299787005 * color.b;
 220
 221	let l_ = pow(l, 1.0 / 3.0);
 222	let m_ = pow(m, 1.0 / 3.0);
 223	let s_ = pow(s, 1.0 / 3.0);
 224
 225	return vec4<f32>(
 226		0.2104542553 * l_ + 0.7936177850 * m_ - 0.0040720468 * s_,
 227		1.9779984951 * l_ - 2.4285922050 * m_ + 0.4505937099 * s_,
 228		0.0259040371 * l_ + 0.7827717662 * m_ - 0.8086757660 * s_,
 229		color.a
 230	);
 231}
 232
 233/// Convert an Oklab color to linear sRGB space.
 234fn oklab_to_linear_srgb(color: vec4<f32>) -> vec4<f32> {
 235	let l_ = color.r + 0.3963377774 * color.g + 0.2158037573 * color.b;
 236	let m_ = color.r - 0.1055613458 * color.g - 0.0638541728 * color.b;
 237	let s_ = color.r - 0.0894841775 * color.g - 1.2914855480 * color.b;
 238
 239	let l = l_ * l_ * l_;
 240	let m = m_ * m_ * m_;
 241	let s = s_ * s_ * s_;
 242
 243	return vec4<f32>(
 244		4.0767416621 * l - 3.3077115913 * m + 0.2309699292 * s,
 245		-1.2684380046 * l + 2.6097574011 * m - 0.3413193965 * s,
 246		-0.0041960863 * l - 0.7034186147 * m + 1.7076147010 * s,
 247		color.a
 248	);
 249}
 250
 251fn over(below: vec4<f32>, above: vec4<f32>) -> vec4<f32> {
 252    let alpha = above.a + below.a * (1.0 - above.a);
 253    let color = (above.rgb * above.a + below.rgb * below.a * (1.0 - above.a)) / alpha;
 254    return vec4<f32>(color, alpha);
 255}
 256
 257// A standard gaussian function, used for weighting samples
 258fn gaussian(x: f32, sigma: f32) -> f32{
 259    return exp(-(x * x) / (2.0 * sigma * sigma)) / (sqrt(2.0 * M_PI_F) * sigma);
 260}
 261
 262// This approximates the error function, needed for the gaussian integral
 263fn erf(v: vec2<f32>) -> vec2<f32> {
 264    let s = sign(v);
 265    let a = abs(v);
 266    let r1 = 1.0 + (0.278393 + (0.230389 + (0.000972 + 0.078108 * a) * a) * a) * a;
 267    let r2 = r1 * r1;
 268    return s - s / (r2 * r2);
 269}
 270
 271fn blur_along_x(x: f32, y: f32, sigma: f32, corner: f32, half_size: vec2<f32>) -> f32 {
 272  let delta = min(half_size.y - corner - abs(y), 0.0);
 273  let curved = half_size.x - corner + sqrt(max(0.0, corner * corner - delta * delta));
 274  let integral = 0.5 + 0.5 * erf((x + vec2<f32>(-curved, curved)) * (sqrt(0.5) / sigma));
 275  return integral.y - integral.x;
 276}
 277
 278// Selects corner radius based on quadrant.
 279fn pick_corner_radius(center_to_point: vec2<f32>, radii: Corners) -> f32 {
 280    if (center_to_point.x < 0.0) {
 281        if (center_to_point.y < 0.0) {
 282            return radii.top_left;
 283        } else {
 284            return radii.bottom_left;
 285        }
 286    } else {
 287        if (center_to_point.y < 0.0) {
 288            return radii.top_right;
 289        } else {
 290            return radii.bottom_right;
 291        }
 292    }
 293}
 294
 295// Signed distance of the point to the quad's border - positive outside the
 296// border, and negative inside.
 297//
 298// See comments on similar code using `quad_sdf_impl` in `fs_quad` for
 299// explanation.
 300fn quad_sdf(point: vec2<f32>, bounds: Bounds, corner_radii: Corners) -> f32 {
 301    let half_size = bounds.size / 2.0;
 302    let center = bounds.origin + half_size;
 303    let center_to_point = point - center;
 304    let corner_radius = pick_corner_radius(center_to_point, corner_radii);
 305    let corner_to_point = abs(center_to_point) - half_size;
 306    let corner_center_to_point = corner_to_point + corner_radius;
 307    return quad_sdf_impl(corner_center_to_point, corner_radius);
 308}
 309
 310fn quad_sdf_impl(corner_center_to_point: vec2<f32>, corner_radius: f32) -> f32 {
 311    if (corner_radius == 0.0) {
 312        // Fast path for unrounded corners.
 313        return max(corner_center_to_point.x, corner_center_to_point.y);
 314    } else {
 315        // Signed distance of the point from a quad that is inset by corner_radius.
 316        // It is negative inside this quad, and positive outside.
 317        let signed_distance_to_inset_quad =
 318            // 0 inside the inset quad, and positive outside.
 319            length(max(vec2<f32>(0.0), corner_center_to_point)) +
 320            // 0 outside the inset quad, and negative inside.
 321            min(0.0, max(corner_center_to_point.x, corner_center_to_point.y));
 322
 323        return signed_distance_to_inset_quad - corner_radius;
 324    }
 325}
 326
 327// Abstract away the final color transformation based on the
 328// target alpha compositing mode.
 329fn blend_color(color: vec4<f32>, alpha_factor: f32) -> vec4<f32> {
 330    let alpha = color.a * alpha_factor;
 331    let multiplier = select(1.0, alpha, globals.premultiplied_alpha != 0u);
 332    return vec4<f32>(color.rgb * multiplier, alpha);
 333}
 334
 335
 336struct GradientColor {
 337    solid: vec4<f32>,
 338    color0: vec4<f32>,
 339    color1: vec4<f32>,
 340}
 341
 342fn prepare_gradient_color(tag: u32, color_space: u32,
 343    solid: Hsla, colors: array<LinearColorStop, 2>) -> GradientColor {
 344    var result = GradientColor();
 345
 346    if (tag == 0u || tag == 2u) {
 347        result.solid = hsla_to_rgba(solid);
 348    } else if (tag == 1u) {
 349        // The hsla_to_rgba is returns a linear sRGB color
 350        result.color0 = hsla_to_rgba(colors[0].color);
 351        result.color1 = hsla_to_rgba(colors[1].color);
 352
 353        // Prepare color space in vertex for avoid conversion
 354        // in fragment shader for performance reasons
 355        if (color_space == 0u) {
 356            // sRGB
 357            result.color0 = linear_to_srgba(result.color0);
 358            result.color1 = linear_to_srgba(result.color1);
 359        } else if (color_space == 1u) {
 360            // Oklab
 361            result.color0 = linear_srgb_to_oklab(result.color0);
 362            result.color1 = linear_srgb_to_oklab(result.color1);
 363        }
 364    }
 365
 366    return result;
 367}
 368
 369fn gradient_color(background: Background, position: vec2<f32>, bounds: Bounds,
 370    solid_color: vec4<f32>, color0: vec4<f32>, color1: vec4<f32>) -> vec4<f32> {
 371    var background_color = vec4<f32>(0.0);
 372
 373    switch (background.tag) {
 374        default: {
 375            return solid_color;
 376        }
 377        case 1u: {
 378            // Linear gradient background.
 379            // -90 degrees to match the CSS gradient angle.
 380            let angle = background.gradient_angle_or_pattern_height;
 381            let radians = (angle % 360.0 - 90.0) * M_PI_F / 180.0;
 382            var direction = vec2<f32>(cos(radians), sin(radians));
 383            let stop0_percentage = background.colors[0].percentage;
 384            let stop1_percentage = background.colors[1].percentage;
 385
 386            // Expand the short side to be the same as the long side
 387            if (bounds.size.x > bounds.size.y) {
 388                direction.y *= bounds.size.y / bounds.size.x;
 389            } else {
 390                direction.x *= bounds.size.x / bounds.size.y;
 391            }
 392
 393            // Get the t value for the linear gradient with the color stop percentages.
 394            let half_size = bounds.size / 2.0;
 395            let center = bounds.origin + half_size;
 396            let center_to_point = position - center;
 397            var t = dot(center_to_point, direction) / length(direction);
 398            // Check the direct to determine the use x or y
 399            if (abs(direction.x) > abs(direction.y)) {
 400                t = (t + half_size.x) / bounds.size.x;
 401            } else {
 402                t = (t + half_size.y) / bounds.size.y;
 403            }
 404
 405            // Adjust t based on the stop percentages
 406            t = (t - stop0_percentage) / (stop1_percentage - stop0_percentage);
 407            t = clamp(t, 0.0, 1.0);
 408
 409            switch (background.color_space) {
 410                default: {
 411                    background_color = srgba_to_linear(mix(color0, color1, t));
 412                }
 413                case 1u: {
 414                    let oklab_color = mix(color0, color1, t);
 415                    background_color = oklab_to_linear_srgb(oklab_color);
 416                }
 417            }
 418        }
 419        case 2u: {
 420            let gradient_angle_or_pattern_height = background.gradient_angle_or_pattern_height;
 421            let pattern_width = (gradient_angle_or_pattern_height / 65535.0f) / 255.0f;
 422            let pattern_interval = (gradient_angle_or_pattern_height % 65535.0f) / 255.0f;
 423            let pattern_height = pattern_width + pattern_interval;
 424            let stripe_angle = M_PI_F / 4.0;
 425            let pattern_period = pattern_height * sin(stripe_angle);
 426            let rotation = mat2x2<f32>(
 427                cos(stripe_angle), -sin(stripe_angle),
 428                sin(stripe_angle), cos(stripe_angle)
 429            );
 430            let relative_position = position - bounds.origin;
 431            let rotated_point = rotation * relative_position;
 432            let pattern = rotated_point.x % pattern_period;
 433            let distance = min(pattern, pattern_period - pattern) - pattern_period * (pattern_width / pattern_height) /  2.0f;
 434            background_color = solid_color;
 435            background_color.a *= saturate(0.5 - distance);
 436        }
 437    }
 438
 439    return background_color;
 440}
 441
 442// --- quads --- //
 443
 444struct Quad {
 445    order: u32,
 446    border_style: u32,
 447    bounds: Bounds,
 448    content_mask: ContentMask,
 449    background: Background,
 450    border_color: Hsla,
 451    corner_radii: Corners,
 452    border_widths: Edges,
 453}
 454var<storage, read> b_quads: array<Quad>;
 455
 456struct QuadVarying {
 457    @builtin(position) position: vec4<f32>,
 458    @location(0) @interpolate(flat) border_color: vec4<f32>,
 459    @location(1) @interpolate(flat) quad_id: u32,
 460    // TODO: use `clip_distance` once Naga supports it
 461    @location(2) clip_distances: vec4<f32>,
 462    @location(3) @interpolate(flat) background_solid: vec4<f32>,
 463    @location(4) @interpolate(flat) background_color0: vec4<f32>,
 464    @location(5) @interpolate(flat) background_color1: vec4<f32>,
 465}
 466
 467@vertex
 468fn vs_quad(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> QuadVarying {
 469    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
 470    let quad = b_quads[instance_id];
 471
 472    var out = QuadVarying();
 473    out.position = to_device_position(unit_vertex, quad.bounds);
 474
 475    let gradient = prepare_gradient_color(
 476        quad.background.tag,
 477        quad.background.color_space,
 478        quad.background.solid,
 479        quad.background.colors
 480    );
 481    out.background_solid = gradient.solid;
 482    out.background_color0 = gradient.color0;
 483    out.background_color1 = gradient.color1;
 484    out.border_color = hsla_to_rgba(quad.border_color);
 485    out.quad_id = instance_id;
 486    out.clip_distances = distance_from_clip_rect(unit_vertex, quad.bounds, quad.content_mask.bounds);
 487    return out;
 488}
 489
 490@fragment
 491fn fs_quad(input: QuadVarying) -> @location(0) vec4<f32> {
 492    // Alpha clip first, since we don't have `clip_distance`.
 493    if (any(input.clip_distances < vec4<f32>(0.0))) {
 494        return vec4<f32>(0.0);
 495    }
 496
 497    let quad = b_quads[input.quad_id];
 498
 499    // Signed distance field threshold for inclusion of pixels. 0.5 is the
 500    // minimum distance between the center of the pixel and the edge.
 501    let antialias_threshold = 0.5;
 502
 503    var background_color = gradient_color(quad.background, input.position.xy, quad.bounds,
 504        input.background_solid, input.background_color0, input.background_color1);
 505    var border_color = input.border_color;
 506
 507    // Apply content_mask corner radii clipping
 508    let clip_sdf = quad_sdf(input.position.xy, quad.content_mask.bounds, quad.content_mask.corner_radii);
 509    let clip_alpha = saturate(antialias_threshold - clip_sdf);
 510    background_color.a *= clip_alpha;
 511    border_color.a *= clip_alpha;
 512
 513    let unrounded = quad.corner_radii.top_left == 0.0 &&
 514        quad.corner_radii.bottom_left == 0.0 &&
 515        quad.corner_radii.top_right == 0.0 &&
 516        quad.corner_radii.bottom_right == 0.0;
 517
 518    // Fast path when the quad is not rounded and doesn't have any border
 519    if (quad.border_widths.top == 0.0 &&
 520            quad.border_widths.left == 0.0 &&
 521            quad.border_widths.right == 0.0 &&
 522            quad.border_widths.bottom == 0.0 &&
 523            unrounded) {
 524        return blend_color(background_color, 1.0);
 525    }
 526
 527    let size = quad.bounds.size;
 528    let half_size = size / 2.0;
 529    let point = input.position.xy - quad.bounds.origin;
 530    let center_to_point = point - half_size;
 531
 532    // Radius of the nearest corner
 533    let corner_radius = pick_corner_radius(center_to_point, quad.corner_radii);
 534
 535    // Width of the nearest borders
 536    let border = vec2<f32>(
 537        select(
 538            quad.border_widths.right,
 539            quad.border_widths.left,
 540            center_to_point.x < 0.0),
 541        select(
 542            quad.border_widths.bottom,
 543            quad.border_widths.top,
 544            center_to_point.y < 0.0));
 545
 546    // 0-width borders are reduced so that `inner_sdf >= antialias_threshold`.
 547    // The purpose of this is to not draw antialiasing pixels in this case.
 548    let reduced_border =
 549        vec2<f32>(select(border.x, -antialias_threshold, border.x == 0.0),
 550                  select(border.y, -antialias_threshold, border.y == 0.0));
 551
 552    // Vector from the corner of the quad bounds to the point, after mirroring
 553    // the point into the bottom right quadrant. Both components are <= 0.
 554    let corner_to_point = abs(center_to_point) - half_size;
 555
 556    // Vector from the point to the center of the rounded corner's circle, also
 557    // mirrored into bottom right quadrant.
 558    let corner_center_to_point = corner_to_point + corner_radius;
 559
 560    // Whether the nearest point on the border is rounded
 561    let is_near_rounded_corner =
 562            corner_center_to_point.x >= 0 &&
 563            corner_center_to_point.y >= 0;
 564
 565    // Vector from straight border inner corner to point.
 566    let straight_border_inner_corner_to_point = corner_to_point + reduced_border;
 567
 568    // Whether the point is beyond the inner edge of the straight border.
 569    let is_beyond_inner_straight_border =
 570            straight_border_inner_corner_to_point.x > 0 ||
 571            straight_border_inner_corner_to_point.y > 0;
 572
 573    // Whether the point is far enough inside the quad, such that the pixels are
 574    // not affected by the straight border.
 575    let is_within_inner_straight_border =
 576        straight_border_inner_corner_to_point.x < -antialias_threshold &&
 577        straight_border_inner_corner_to_point.y < -antialias_threshold;
 578
 579    // Fast path for points that must be part of the background.
 580    //
 581    // This could be optimized further for large rounded corners by including
 582    // points in an inscribed rectangle, or some other quick linear check.
 583    // However, that might negatively impact performance in the case of
 584    // reasonable sizes for rounded corners.
 585    if (is_within_inner_straight_border && !is_near_rounded_corner) {
 586        return blend_color(background_color, 1.0);
 587    }
 588
 589    // Signed distance of the point to the outside edge of the quad's border. It
 590    // is positive outside this edge, and negative inside.
 591    let outer_sdf = quad_sdf_impl(corner_center_to_point, corner_radius);
 592
 593    // Approximate signed distance of the point to the inside edge of the quad's
 594    // border. It is negative outside this edge (within the border), and
 595    // positive inside.
 596    //
 597    // This is not always an accurate signed distance:
 598    // * The rounded portions with varying border width use an approximation of
 599    //   nearest-point-on-ellipse.
 600    // * When it is quickly known to be outside the edge, -1.0 is used.
 601    var inner_sdf = 0.0;
 602    if (corner_center_to_point.x <= 0 || corner_center_to_point.y <= 0) {
 603        // Fast paths for straight borders.
 604        inner_sdf = -max(straight_border_inner_corner_to_point.x,
 605                         straight_border_inner_corner_to_point.y);
 606    } else if (is_beyond_inner_straight_border) {
 607        // Fast path for points that must be outside the inner edge.
 608        inner_sdf = -1.0;
 609    } else if (reduced_border.x == reduced_border.y) {
 610        // Fast path for circular inner edge.
 611        inner_sdf = -(outer_sdf + reduced_border.x);
 612    } else {
 613        let ellipse_radii = max(vec2<f32>(0.0), corner_radius - reduced_border);
 614        inner_sdf = quarter_ellipse_sdf(corner_center_to_point, ellipse_radii);
 615    }
 616
 617    // Negative when inside the border
 618    let border_sdf = max(inner_sdf, outer_sdf);
 619
 620    var color = background_color;
 621    if (border_sdf < antialias_threshold) {
 622        // Dashed border logic when border_style == 1
 623        if (quad.border_style == 1) {
 624            // Position along the perimeter in "dash space", where each dash
 625            // period has length 1
 626            var t = 0.0;
 627
 628            // Total number of dash periods, so that the dash spacing can be
 629            // adjusted to evenly divide it
 630            var max_t = 0.0;
 631
 632            // Border width is proportional to dash size. This is the behavior
 633            // used by browsers, but also avoids dashes from different segments
 634            // overlapping when dash size is smaller than the border width.
 635            //
 636            // Dash pattern: (2 * border width) dash, (1 * border width) gap
 637            let dash_length_per_width = 2.0;
 638            let dash_gap_per_width = 1.0;
 639            let dash_period_per_width = dash_length_per_width + dash_gap_per_width;
 640
 641            // Since the dash size is determined by border width, the density of
 642            // dashes varies. Multiplying a pixel distance by this returns a
 643            // position in dash space - it has units (dash period / pixels). So
 644            // a dash velocity of (1 / 10) is 1 dash every 10 pixels.
 645            var dash_velocity = 0.0;
 646
 647            // Dividing this by the border width gives the dash velocity
 648            let dv_numerator = 1.0 / dash_period_per_width;
 649
 650            if (unrounded) {
 651                // When corners aren't rounded, the dashes are separately laid
 652                // out on each straight line, rather than around the whole
 653                // perimeter. This way each line starts and ends with a dash.
 654                let is_horizontal =
 655                        corner_center_to_point.x <
 656                        corner_center_to_point.y;
 657                var border_width = select(border.y, border.x, is_horizontal);
 658                // When border width of some side is 0, we need to use the other side width for dash velocity.
 659                if (border_width == 0.0) {
 660                    border_width = select(border.x, border.y, is_horizontal);
 661                }
 662                dash_velocity = dv_numerator / border_width;
 663                t = select(point.y, point.x, is_horizontal) * dash_velocity;
 664                max_t = select(size.y, size.x, is_horizontal) * dash_velocity;
 665            } else {
 666                // When corners are rounded, the dashes are laid out clockwise
 667                // around the whole perimeter.
 668
 669                let r_tr = quad.corner_radii.top_right;
 670                let r_br = quad.corner_radii.bottom_right;
 671                let r_bl = quad.corner_radii.bottom_left;
 672                let r_tl = quad.corner_radii.top_left;
 673
 674                let w_t = quad.border_widths.top;
 675                let w_r = quad.border_widths.right;
 676                let w_b = quad.border_widths.bottom;
 677                let w_l = quad.border_widths.left;
 678
 679                // Straight side dash velocities
 680                let dv_t = select(dv_numerator / w_t, 0.0, w_t <= 0.0);
 681                let dv_r = select(dv_numerator / w_r, 0.0, w_r <= 0.0);
 682                let dv_b = select(dv_numerator / w_b, 0.0, w_b <= 0.0);
 683                let dv_l = select(dv_numerator / w_l, 0.0, w_l <= 0.0);
 684
 685                // Straight side lengths in dash space
 686                let s_t = (size.x - r_tl - r_tr) * dv_t;
 687                let s_r = (size.y - r_tr - r_br) * dv_r;
 688                let s_b = (size.x - r_br - r_bl) * dv_b;
 689                let s_l = (size.y - r_bl - r_tl) * dv_l;
 690
 691                let corner_dash_velocity_tr = corner_dash_velocity(dv_t, dv_r);
 692                let corner_dash_velocity_br = corner_dash_velocity(dv_b, dv_r);
 693                let corner_dash_velocity_bl = corner_dash_velocity(dv_b, dv_l);
 694                let corner_dash_velocity_tl = corner_dash_velocity(dv_t, dv_l);
 695
 696                // Corner lengths in dash space
 697                let c_tr = r_tr * (M_PI_F / 2.0) * corner_dash_velocity_tr;
 698                let c_br = r_br * (M_PI_F / 2.0) * corner_dash_velocity_br;
 699                let c_bl = r_bl * (M_PI_F / 2.0) * corner_dash_velocity_bl;
 700                let c_tl = r_tl * (M_PI_F / 2.0) * corner_dash_velocity_tl;
 701
 702                // Cumulative dash space upto each segment
 703                let upto_tr = s_t;
 704                let upto_r = upto_tr + c_tr;
 705                let upto_br = upto_r + s_r;
 706                let upto_b = upto_br + c_br;
 707                let upto_bl = upto_b + s_b;
 708                let upto_l = upto_bl + c_bl;
 709                let upto_tl = upto_l + s_l;
 710                max_t = upto_tl + c_tl;
 711
 712                if (is_near_rounded_corner) {
 713                    let radians = atan2(corner_center_to_point.y,
 714                                        corner_center_to_point.x);
 715                    let corner_t = radians * corner_radius;
 716
 717                    if (center_to_point.x >= 0.0) {
 718                        if (center_to_point.y < 0.0) {
 719                            dash_velocity = corner_dash_velocity_tr;
 720                            // Subtracted because radians is pi/2 to 0 when
 721                            // going clockwise around the top right corner,
 722                            // since the y axis has been flipped
 723                            t = upto_r - corner_t * dash_velocity;
 724                        } else {
 725                            dash_velocity = corner_dash_velocity_br;
 726                            // Added because radians is 0 to pi/2 when going
 727                            // clockwise around the bottom-right corner
 728                            t = upto_br + corner_t * dash_velocity;
 729                        }
 730                    } else {
 731                        if (center_to_point.y >= 0.0) {
 732                            dash_velocity = corner_dash_velocity_bl;
 733                            // Subtracted because radians is pi/2 to 0 when
 734                            // going clockwise around the bottom-left corner,
 735                            // since the x axis has been flipped
 736                            t = upto_l - corner_t * dash_velocity;
 737                        } else {
 738                            dash_velocity = corner_dash_velocity_tl;
 739                            // Added because radians is 0 to pi/2 when going
 740                            // clockwise around the top-left corner, since both
 741                            // axis were flipped
 742                            t = upto_tl + corner_t * dash_velocity;
 743                        }
 744                    }
 745                } else {
 746                    // Straight borders
 747                    let is_horizontal =
 748                            corner_center_to_point.x <
 749                            corner_center_to_point.y;
 750                    if (is_horizontal) {
 751                        if (center_to_point.y < 0.0) {
 752                            dash_velocity = dv_t;
 753                            t = (point.x - r_tl) * dash_velocity;
 754                        } else {
 755                            dash_velocity = dv_b;
 756                            t = upto_bl - (point.x - r_bl) * dash_velocity;
 757                        }
 758                    } else {
 759                        if (center_to_point.x < 0.0) {
 760                            dash_velocity = dv_l;
 761                            t = upto_tl - (point.y - r_tl) * dash_velocity;
 762                        } else {
 763                            dash_velocity = dv_r;
 764                            t = upto_r + (point.y - r_tr) * dash_velocity;
 765                        }
 766                    }
 767                }
 768            }
 769
 770            let dash_length = dash_length_per_width / dash_period_per_width;
 771            let desired_dash_gap = dash_gap_per_width / dash_period_per_width;
 772
 773            // Straight borders should start and end with a dash, so max_t is
 774            // reduced to cause this.
 775            max_t -= select(0.0, dash_length, unrounded);
 776            if (max_t >= 1.0) {
 777                // Adjust dash gap to evenly divide max_t.
 778                let dash_count = floor(max_t);
 779                let dash_period = max_t / dash_count;
 780                border_color.a *= dash_alpha(
 781                    t,
 782                    dash_period,
 783                    dash_length,
 784                    dash_velocity,
 785                    antialias_threshold);
 786            } else if (unrounded) {
 787                // When there isn't enough space for the full gap between the
 788                // two start / end dashes of a straight border, reduce gap to
 789                // make them fit.
 790                let dash_gap = max_t - dash_length;
 791                if (dash_gap > 0.0) {
 792                    let dash_period = dash_length + dash_gap;
 793                    border_color.a *= dash_alpha(
 794                        t,
 795                        dash_period,
 796                        dash_length,
 797                        dash_velocity,
 798                        antialias_threshold);
 799                }
 800            }
 801        }
 802
 803        // Blend the border on top of the background and then linearly interpolate
 804        // between the two as we slide inside the background.
 805        let blended_border = over(background_color, border_color);
 806        color = mix(background_color, blended_border,
 807                    saturate(antialias_threshold - inner_sdf));
 808    }
 809
 810    return blend_color(color, saturate(antialias_threshold - outer_sdf));
 811}
 812
 813// Returns the dash velocity of a corner given the dash velocity of the two
 814// sides, by returning the slower velocity (larger dashes).
 815//
 816// Since 0 is used for dash velocity when the border width is 0 (instead of
 817// +inf), this returns the other dash velocity in that case.
 818//
 819// An alternative to this might be to appropriately interpolate the dash
 820// velocity around the corner, but that seems overcomplicated.
 821fn corner_dash_velocity(dv1: f32, dv2: f32) -> f32 {
 822    if (dv1 == 0.0) {
 823        return dv2;
 824    } else if (dv2 == 0.0) {
 825        return dv1;
 826    } else {
 827        return min(dv1, dv2);
 828    }
 829}
 830
 831// Returns alpha used to render antialiased dashes.
 832// `t` is within the dash when `fmod(t, period) < length`.
 833fn dash_alpha(t: f32, period: f32, length: f32, dash_velocity: f32, antialias_threshold: f32) -> f32 {
 834    let half_period = period / 2;
 835    let half_length = length / 2;
 836    // Value in [-half_period, half_period].
 837    // The dash is in [-half_length, half_length].
 838    let centered = fmod(t + half_period - half_length, period) - half_period;
 839    // Signed distance for the dash, negative values are inside the dash.
 840    let signed_distance = abs(centered) - half_length;
 841    // Antialiased alpha based on the signed distance.
 842    return saturate(antialias_threshold - signed_distance / dash_velocity);
 843}
 844
 845// This approximates distance to the nearest point to a quarter ellipse in a way
 846// that is sufficient for anti-aliasing when the ellipse is not very eccentric.
 847// The components of `point` are expected to be positive.
 848//
 849// Negative on the outside and positive on the inside.
 850fn quarter_ellipse_sdf(point: vec2<f32>, radii: vec2<f32>) -> f32 {
 851    // Scale the space to treat the ellipse like a unit circle.
 852    let circle_vec = point / radii;
 853    let unit_circle_sdf = length(circle_vec) - 1.0;
 854    // Approximate up-scaling of the length by using the average of the radii.
 855    //
 856    // TODO: A better solution would be to use the gradient of the implicit
 857    // function for an ellipse to approximate a scaling factor.
 858    return unit_circle_sdf * (radii.x + radii.y) * -0.5;
 859}
 860
 861// Modulus that has the same sign as `a`.
 862fn fmod(a: f32, b: f32) -> f32 {
 863    return a - b * trunc(a / b);
 864}
 865
 866// --- shadows --- //
 867
 868struct Shadow {
 869    order: u32,
 870    blur_radius: f32,
 871    bounds: Bounds,
 872    corner_radii: Corners,
 873    content_mask: ContentMask,
 874    color: Hsla,
 875}
 876var<storage, read> b_shadows: array<Shadow>;
 877
 878struct ShadowVarying {
 879    @builtin(position) position: vec4<f32>,
 880    @location(0) @interpolate(flat) color: vec4<f32>,
 881    @location(1) @interpolate(flat) shadow_id: u32,
 882    //TODO: use `clip_distance` once Naga supports it
 883    @location(3) clip_distances: vec4<f32>,
 884}
 885
 886@vertex
 887fn vs_shadow(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> ShadowVarying {
 888    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
 889    var shadow = b_shadows[instance_id];
 890
 891    let margin = 3.0 * shadow.blur_radius;
 892    // Set the bounds of the shadow and adjust its size based on the shadow's
 893    // spread radius to achieve the spreading effect
 894    shadow.bounds.origin -= vec2<f32>(margin);
 895    shadow.bounds.size += 2.0 * vec2<f32>(margin);
 896
 897    var out = ShadowVarying();
 898    out.position = to_device_position(unit_vertex, shadow.bounds);
 899    out.color = hsla_to_rgba(shadow.color);
 900    out.shadow_id = instance_id;
 901    out.clip_distances = distance_from_clip_rect(unit_vertex, shadow.bounds, shadow.content_mask.bounds);
 902    return out;
 903}
 904
 905@fragment
 906fn fs_shadow(input: ShadowVarying) -> @location(0) vec4<f32> {
 907    // Alpha clip first, since we don't have `clip_distance`.
 908    if (any(input.clip_distances < vec4<f32>(0.0))) {
 909        return vec4<f32>(0.0);
 910    }
 911
 912    let shadow = b_shadows[input.shadow_id];
 913    let half_size = shadow.bounds.size / 2.0;
 914    let center = shadow.bounds.origin + half_size;
 915    let center_to_point = input.position.xy - center;
 916    let corner_radius = pick_corner_radius(center_to_point, shadow.corner_radii);
 917
 918    // The signal is only non-zero in a limited range, so don't waste samples
 919    let low = center_to_point.y - half_size.y;
 920    let high = center_to_point.y + half_size.y;
 921    let start = clamp(-3.0 * shadow.blur_radius, low, high);
 922    let end = clamp(3.0 * shadow.blur_radius, low, high);
 923
 924    // Accumulate samples (we can get away with surprisingly few samples)
 925    let step = (end - start) / 4.0;
 926    var y = start + step * 0.5;
 927    var alpha = 0.0;
 928    for (var i = 0; i < 4; i += 1) {
 929        let blur = blur_along_x(center_to_point.x, center_to_point.y - y,
 930            shadow.blur_radius, corner_radius, half_size);
 931        alpha +=  blur * gaussian(y, shadow.blur_radius) * step;
 932        y += step;
 933    }
 934
 935    return blend_color(input.color, alpha);
 936}
 937
 938// --- path rasterization --- //
 939
 940struct PathRasterizationVertex {
 941    xy_position: vec2<f32>,
 942    st_position: vec2<f32>,
 943    color: Background,
 944    bounds: Bounds,
 945}
 946
 947var<storage, read> b_path_vertices: array<PathRasterizationVertex>;
 948
 949struct PathRasterizationVarying {
 950    @builtin(position) position: vec4<f32>,
 951    @location(0) st_position: vec2<f32>,
 952    @location(1) vertex_id: u32,
 953    //TODO: use `clip_distance` once Naga supports it
 954    @location(3) clip_distances: vec4<f32>,
 955}
 956
 957@vertex
 958fn vs_path_rasterization(@builtin(vertex_index) vertex_id: u32) -> PathRasterizationVarying {
 959    let v = b_path_vertices[vertex_id];
 960
 961    var out = PathRasterizationVarying();
 962    out.position = to_device_position_impl(v.xy_position);
 963    out.st_position = v.st_position;
 964    out.vertex_id = vertex_id;
 965    out.clip_distances = distance_from_clip_rect_impl(v.xy_position, v.bounds);
 966    return out;
 967}
 968
 969@fragment
 970fn fs_path_rasterization(input: PathRasterizationVarying) -> @location(0) vec4<f32> {
 971    let dx = dpdx(input.st_position);
 972    let dy = dpdy(input.st_position);
 973    if (any(input.clip_distances < vec4<f32>(0.0))) {
 974        return vec4<f32>(0.0);
 975    }
 976
 977    let v = b_path_vertices[input.vertex_id];
 978    let background = v.color;
 979    let bounds = v.bounds;
 980
 981    var alpha: f32;
 982    if (length(vec2<f32>(dx.x, dy.x)) < 0.001) {
 983        // If the gradient is too small, return a solid color.
 984        alpha = 1.0;
 985    } else {
 986        let gradient = 2.0 * input.st_position.xx * vec2<f32>(dx.x, dy.x) - vec2<f32>(dx.y, dy.y);
 987        let f = input.st_position.x * input.st_position.x - input.st_position.y;
 988        let distance = f / length(gradient);
 989        alpha = saturate(0.5 - distance);
 990    }
 991    let gradient_color = prepare_gradient_color(
 992        background.tag,
 993        background.color_space,
 994        background.solid,
 995        background.colors,
 996    );
 997    let color = gradient_color(background, input.position.xy, bounds,
 998        gradient_color.solid, gradient_color.color0, gradient_color.color1);
 999    return vec4<f32>(color.rgb * color.a * alpha, color.a * alpha);
1000}
1001
1002// --- paths --- //
1003
1004struct PathSprite {
1005    bounds: Bounds,
1006}
1007var<storage, read> b_path_sprites: array<PathSprite>;
1008
1009struct PathVarying {
1010    @builtin(position) position: vec4<f32>,
1011    @location(0) texture_coords: vec2<f32>,
1012}
1013
1014@vertex
1015fn vs_path(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> PathVarying {
1016    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
1017    let sprite = b_path_sprites[instance_id];
1018    // Don't apply content mask because it was already accounted for when rasterizing the path.
1019    let device_position = to_device_position(unit_vertex, sprite.bounds);
1020    // For screen-space intermediate texture, convert screen position to texture coordinates
1021    let screen_position = sprite.bounds.origin + unit_vertex * sprite.bounds.size;
1022    let texture_coords = screen_position / globals.viewport_size;
1023
1024    var out = PathVarying();
1025    out.position = device_position;
1026    out.texture_coords = texture_coords;
1027
1028    return out;
1029}
1030
1031@fragment
1032fn fs_path(input: PathVarying) -> @location(0) vec4<f32> {
1033    let sample = textureSample(t_sprite, s_sprite, input.texture_coords);
1034    return sample;
1035}
1036
1037// --- underlines --- //
1038
1039struct Underline {
1040    order: u32,
1041    pad: u32,
1042    bounds: Bounds,
1043    content_mask: ContentMask,
1044    color: Hsla,
1045    thickness: f32,
1046    wavy: u32,
1047}
1048var<storage, read> b_underlines: array<Underline>;
1049
1050struct UnderlineVarying {
1051    @builtin(position) position: vec4<f32>,
1052    @location(0) @interpolate(flat) color: vec4<f32>,
1053    @location(1) @interpolate(flat) underline_id: u32,
1054    //TODO: use `clip_distance` once Naga supports it
1055    @location(3) clip_distances: vec4<f32>,
1056}
1057
1058@vertex
1059fn vs_underline(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> UnderlineVarying {
1060    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
1061    let underline = b_underlines[instance_id];
1062
1063    var out = UnderlineVarying();
1064    out.position = to_device_position(unit_vertex, underline.bounds);
1065    out.color = hsla_to_rgba(underline.color);
1066    out.underline_id = instance_id;
1067    out.clip_distances = distance_from_clip_rect(unit_vertex, underline.bounds, underline.content_mask.bounds);
1068    return out;
1069}
1070
1071@fragment
1072fn fs_underline(input: UnderlineVarying) -> @location(0) vec4<f32> {
1073    const WAVE_FREQUENCY: f32 = 2.0;
1074    const WAVE_HEIGHT_RATIO: f32 = 0.8;
1075
1076    // Alpha clip first, since we don't have `clip_distance`.
1077    if (any(input.clip_distances < vec4<f32>(0.0))) {
1078        return vec4<f32>(0.0);
1079    }
1080
1081    let underline = b_underlines[input.underline_id];
1082    if ((underline.wavy & 0xFFu) == 0u)
1083    {
1084        return blend_color(input.color, input.color.a);
1085    }
1086
1087    let half_thickness = underline.thickness * 0.5;
1088
1089    let st = (input.position.xy - underline.bounds.origin) / underline.bounds.size.y - vec2<f32>(0.0, 0.5);
1090    let frequency = M_PI_F * WAVE_FREQUENCY * underline.thickness / underline.bounds.size.y;
1091    let amplitude = (underline.thickness * WAVE_HEIGHT_RATIO) / underline.bounds.size.y;
1092
1093    let sine = sin(st.x * frequency) * amplitude;
1094    let dSine = cos(st.x * frequency) * amplitude * frequency;
1095    let distance = (st.y - sine) / sqrt(1.0 + dSine * dSine);
1096    let distance_in_pixels = distance * underline.bounds.size.y;
1097    let distance_from_top_border = distance_in_pixels - half_thickness;
1098    let distance_from_bottom_border = distance_in_pixels + half_thickness;
1099    let alpha = saturate(0.5 - max(-distance_from_bottom_border, distance_from_top_border));
1100    return blend_color(input.color, alpha * input.color.a);
1101}
1102
1103// --- monochrome sprites --- //
1104
1105struct MonochromeSprite {
1106    order: u32,
1107    pad: u32,
1108    bounds: Bounds,
1109    content_mask: ContentMask,
1110    color: Hsla,
1111    tile: AtlasTile,
1112    transformation: TransformationMatrix,
1113}
1114var<storage, read> b_mono_sprites: array<MonochromeSprite>;
1115
1116struct MonoSpriteVarying {
1117    @builtin(position) position: vec4<f32>,
1118    @location(0) tile_position: vec2<f32>,
1119    @location(1) @interpolate(flat) color: vec4<f32>,
1120    @location(3) clip_distances: vec4<f32>,
1121}
1122
1123@vertex
1124fn vs_mono_sprite(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> MonoSpriteVarying {
1125    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
1126    let sprite = b_mono_sprites[instance_id];
1127
1128    var out = MonoSpriteVarying();
1129    out.position = to_device_position_transformed(unit_vertex, sprite.bounds, sprite.transformation);
1130
1131    out.tile_position = to_tile_position(unit_vertex, sprite.tile);
1132    out.color = hsla_to_rgba(sprite.color);
1133    out.clip_distances = distance_from_clip_rect(unit_vertex, sprite.bounds, sprite.content_mask.bounds);
1134    return out;
1135}
1136
1137@fragment
1138fn fs_mono_sprite(input: MonoSpriteVarying) -> @location(0) vec4<f32> {
1139    let sample = textureSample(t_sprite, s_sprite, input.tile_position).r;
1140    // Alpha clip after using the derivatives.
1141    if (any(input.clip_distances < vec4<f32>(0.0))) {
1142        return vec4<f32>(0.0);
1143    }
1144    return blend_color(input.color, sample);
1145}
1146
1147// --- polychrome sprites --- //
1148
1149struct PolychromeSprite {
1150    order: u32,
1151    pad: u32,
1152    grayscale: u32,
1153    opacity: f32,
1154    bounds: Bounds,
1155    content_mask: ContentMask,
1156    corner_radii: Corners,
1157    tile: AtlasTile,
1158}
1159var<storage, read> b_poly_sprites: array<PolychromeSprite>;
1160
1161struct PolySpriteVarying {
1162    @builtin(position) position: vec4<f32>,
1163    @location(0) tile_position: vec2<f32>,
1164    @location(1) @interpolate(flat) sprite_id: u32,
1165    @location(3) clip_distances: vec4<f32>,
1166}
1167
1168@vertex
1169fn vs_poly_sprite(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> PolySpriteVarying {
1170    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
1171    let sprite = b_poly_sprites[instance_id];
1172
1173    var out = PolySpriteVarying();
1174    out.position = to_device_position(unit_vertex, sprite.bounds);
1175    out.tile_position = to_tile_position(unit_vertex, sprite.tile);
1176    out.sprite_id = instance_id;
1177    out.clip_distances = distance_from_clip_rect(unit_vertex, sprite.bounds, sprite.content_mask.bounds);
1178    return out;
1179}
1180
1181@fragment
1182fn fs_poly_sprite(input: PolySpriteVarying) -> @location(0) vec4<f32> {
1183    let sample = textureSample(t_sprite, s_sprite, input.tile_position);
1184    // Alpha clip after using the derivatives.
1185    if (any(input.clip_distances < vec4<f32>(0.0))) {
1186        return vec4<f32>(0.0);
1187    }
1188
1189    let sprite = b_poly_sprites[input.sprite_id];
1190    let distance = quad_sdf(input.position.xy, sprite.bounds, sprite.corner_radii);
1191
1192    var color = sample;
1193    if ((sprite.grayscale & 0xFFu) != 0u) {
1194        let grayscale = dot(color.rgb, GRAYSCALE_FACTORS);
1195        color = vec4<f32>(vec3<f32>(grayscale), sample.a);
1196    }
1197    return blend_color(color, sprite.opacity * saturate(0.5 - distance));
1198}
1199
1200// --- surfaces --- //
1201
1202struct SurfaceParams {
1203    bounds: Bounds,
1204    content_mask: Bounds,
1205}
1206
1207var<uniform> surface_locals: SurfaceParams;
1208var t_y: texture_2d<f32>;
1209var t_cb_cr: texture_2d<f32>;
1210var s_surface: sampler;
1211
1212const ycbcr_to_RGB = mat4x4<f32>(
1213    vec4<f32>( 1.0000f,  1.0000f,  1.0000f, 0.0),
1214    vec4<f32>( 0.0000f, -0.3441f,  1.7720f, 0.0),
1215    vec4<f32>( 1.4020f, -0.7141f,  0.0000f, 0.0),
1216    vec4<f32>(-0.7010f,  0.5291f, -0.8860f, 1.0),
1217);
1218
1219struct SurfaceVarying {
1220    @builtin(position) position: vec4<f32>,
1221    @location(0) texture_position: vec2<f32>,
1222    @location(3) clip_distances: vec4<f32>,
1223}
1224
1225@vertex
1226fn vs_surface(@builtin(vertex_index) vertex_id: u32) -> SurfaceVarying {
1227    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
1228
1229    var out = SurfaceVarying();
1230    out.position = to_device_position(unit_vertex, surface_locals.bounds);
1231    out.texture_position = unit_vertex;
1232    out.clip_distances = distance_from_clip_rect(unit_vertex, surface_locals.bounds, surface_locals.content_mask);
1233    return out;
1234}
1235
1236@fragment
1237fn fs_surface(input: SurfaceVarying) -> @location(0) vec4<f32> {
1238    // Alpha clip after using the derivatives.
1239    if (any(input.clip_distances < vec4<f32>(0.0))) {
1240        return vec4<f32>(0.0);
1241    }
1242
1243    let y_cb_cr = vec4<f32>(
1244        textureSampleLevel(t_y, s_surface, input.texture_position, 0.0).r,
1245        textureSampleLevel(t_cb_cr, s_surface, input.texture_position, 0.0).rg,
1246        1.0);
1247
1248    return ycbcr_to_RGB * y_cb_cr;
1249}
1250
1251fn max_corner_radii(a: Corners, b: Corners) -> Corners {
1252    return Corners(
1253        max(a.top_left, b.top_left),
1254        max(a.top_right, b.top_right),
1255        max(a.bottom_right, b.bottom_right),
1256        max(a.bottom_left, b.bottom_left)
1257    );
1258}