1use crate::{
2 key_dispatch::DispatchActionListener, px, size, Action, AnyDrag, AnyView, AppContext,
3 AsyncWindowContext, AvailableSpace, Bounds, BoxShadow, Context, Corners, CursorStyle,
4 DevicePixels, DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId,
5 EventEmitter, FileDropEvent, Flatten, FocusEvent, FontId, GlobalElementId, GlyphId, Hsla,
6 ImageData, InputEvent, IsZero, KeyBinding, KeyContext, KeyDownEvent, KeystrokeEvent, LayoutId,
7 Model, ModelContext, Modifiers, MonochromeSprite, MouseButton, MouseMoveEvent, MouseUpEvent,
8 Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInputHandler, PlatformWindow, Point,
9 PolychromeSprite, PromptLevel, Quad, Render, RenderGlyphParams, RenderImageParams,
10 RenderSvgParams, ScaledPixels, Scene, SceneBuilder, Shadow, SharedString, Size, Style,
11 SubscriberSet, Subscription, Surface, TaffyLayoutEngine, Task, Underline, UnderlineStyle, View,
12 VisualContext, WeakView, WindowBounds, WindowOptions, SUBPIXEL_VARIANTS,
13};
14use anyhow::{anyhow, Context as _, Result};
15use collections::HashMap;
16use derive_more::{Deref, DerefMut};
17use futures::{
18 channel::{mpsc, oneshot},
19 StreamExt,
20};
21use media::core_video::CVImageBuffer;
22use parking_lot::RwLock;
23use slotmap::SlotMap;
24use smallvec::SmallVec;
25use std::{
26 any::{Any, TypeId},
27 borrow::{Borrow, BorrowMut, Cow},
28 fmt::Debug,
29 future::Future,
30 hash::{Hash, Hasher},
31 marker::PhantomData,
32 mem,
33 rc::Rc,
34 sync::{
35 atomic::{AtomicUsize, Ordering::SeqCst},
36 Arc,
37 },
38};
39use util::ResultExt;
40
41const ACTIVE_DRAG_Z_INDEX: u32 = 1;
42
43/// A global stacking order, which is created by stacking successive z-index values.
44/// Each z-index will always be interpreted in the context of its parent z-index.
45#[derive(Deref, DerefMut, Ord, PartialOrd, Eq, PartialEq, Clone, Default, Debug)]
46pub struct StackingOrder(pub(crate) SmallVec<[u32; 16]>);
47
48/// Represents the two different phases when dispatching events.
49#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
50pub enum DispatchPhase {
51 /// After the capture phase comes the bubble phase, in which mouse event listeners are
52 /// invoked front to back and keyboard event listeners are invoked from the focused element
53 /// to the root of the element tree. This is the phase you'll most commonly want to use when
54 /// registering event listeners.
55 #[default]
56 Bubble,
57 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
58 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
59 /// is used for special purposes such as clearing the "pressed" state for click events. If
60 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
61 /// outside of the immediate region may rely on detecting non-local events during this phase.
62 Capture,
63}
64
65impl DispatchPhase {
66 pub fn bubble(self) -> bool {
67 self == DispatchPhase::Bubble
68 }
69
70 pub fn capture(self) -> bool {
71 self == DispatchPhase::Capture
72 }
73}
74
75type AnyObserver = Box<dyn FnMut(&mut WindowContext) -> bool + 'static>;
76type AnyMouseListener = Box<dyn FnMut(&dyn Any, DispatchPhase, &mut WindowContext) + 'static>;
77type AnyFocusListener = Box<dyn Fn(&FocusEvent, &mut WindowContext) + 'static>;
78type AnyWindowFocusListener = Box<dyn FnMut(&FocusEvent, &mut WindowContext) -> bool + 'static>;
79
80slotmap::new_key_type! { pub struct FocusId; }
81
82impl FocusId {
83 /// Obtains whether the element associated with this handle is currently focused.
84 pub fn is_focused(&self, cx: &WindowContext) -> bool {
85 cx.window.focus == Some(*self)
86 }
87
88 /// Obtains whether the element associated with this handle contains the focused
89 /// element or is itself focused.
90 pub fn contains_focused(&self, cx: &WindowContext) -> bool {
91 cx.focused()
92 .map_or(false, |focused| self.contains(focused.id, cx))
93 }
94
95 /// Obtains whether the element associated with this handle is contained within the
96 /// focused element or is itself focused.
97 pub fn within_focused(&self, cx: &WindowContext) -> bool {
98 let focused = cx.focused();
99 focused.map_or(false, |focused| focused.id.contains(*self, cx))
100 }
101
102 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
103 pub(crate) fn contains(&self, other: Self, cx: &WindowContext) -> bool {
104 cx.window
105 .rendered_frame
106 .dispatch_tree
107 .focus_contains(*self, other)
108 }
109}
110
111/// A handle which can be used to track and manipulate the focused element in a window.
112pub struct FocusHandle {
113 pub(crate) id: FocusId,
114 handles: Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
115}
116
117impl std::fmt::Debug for FocusHandle {
118 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
119 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
120 }
121}
122
123impl FocusHandle {
124 pub(crate) fn new(handles: &Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>) -> Self {
125 let id = handles.write().insert(AtomicUsize::new(1));
126 Self {
127 id,
128 handles: handles.clone(),
129 }
130 }
131
132 pub(crate) fn for_id(
133 id: FocusId,
134 handles: &Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
135 ) -> Option<Self> {
136 let lock = handles.read();
137 let ref_count = lock.get(id)?;
138 if ref_count.load(SeqCst) == 0 {
139 None
140 } else {
141 ref_count.fetch_add(1, SeqCst);
142 Some(Self {
143 id,
144 handles: handles.clone(),
145 })
146 }
147 }
148
149 /// Moves the focus to the element associated with this handle.
150 pub fn focus(&self, cx: &mut WindowContext) {
151 cx.focus(self)
152 }
153
154 /// Obtains whether the element associated with this handle is currently focused.
155 pub fn is_focused(&self, cx: &WindowContext) -> bool {
156 self.id.is_focused(cx)
157 }
158
159 /// Obtains whether the element associated with this handle contains the focused
160 /// element or is itself focused.
161 pub fn contains_focused(&self, cx: &WindowContext) -> bool {
162 self.id.contains_focused(cx)
163 }
164
165 /// Obtains whether the element associated with this handle is contained within the
166 /// focused element or is itself focused.
167 pub fn within_focused(&self, cx: &WindowContext) -> bool {
168 self.id.within_focused(cx)
169 }
170
171 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
172 pub(crate) fn contains(&self, other: &Self, cx: &WindowContext) -> bool {
173 self.id.contains(other.id, cx)
174 }
175}
176
177impl Clone for FocusHandle {
178 fn clone(&self) -> Self {
179 Self::for_id(self.id, &self.handles).unwrap()
180 }
181}
182
183impl PartialEq for FocusHandle {
184 fn eq(&self, other: &Self) -> bool {
185 self.id == other.id
186 }
187}
188
189impl Eq for FocusHandle {}
190
191impl Drop for FocusHandle {
192 fn drop(&mut self) {
193 self.handles
194 .read()
195 .get(self.id)
196 .unwrap()
197 .fetch_sub(1, SeqCst);
198 }
199}
200
201/// FocusableView allows users of your view to easily
202/// focus it (using cx.focus_view(view))
203pub trait FocusableView: 'static + Render {
204 fn focus_handle(&self, cx: &AppContext) -> FocusHandle;
205}
206
207/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
208/// where the lifecycle of the view is handled by another view.
209pub trait ManagedView: FocusableView + EventEmitter<DismissEvent> {}
210
211impl<M: FocusableView + EventEmitter<DismissEvent>> ManagedView for M {}
212
213pub struct DismissEvent;
214
215// Holds the state for a specific window.
216pub struct Window {
217 pub(crate) handle: AnyWindowHandle,
218 pub(crate) removed: bool,
219 pub(crate) platform_window: Box<dyn PlatformWindow>,
220 display_id: DisplayId,
221 sprite_atlas: Arc<dyn PlatformAtlas>,
222 rem_size: Pixels,
223 viewport_size: Size<Pixels>,
224 layout_engine: Option<TaffyLayoutEngine>,
225 pub(crate) root_view: Option<AnyView>,
226 pub(crate) element_id_stack: GlobalElementId,
227 pub(crate) rendered_frame: Frame,
228 pub(crate) next_frame: Frame,
229 pub(crate) focus_handles: Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
230 pub(crate) focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
231 default_prevented: bool,
232 mouse_position: Point<Pixels>,
233 requested_cursor_style: Option<CursorStyle>,
234 scale_factor: f32,
235 bounds: WindowBounds,
236 bounds_observers: SubscriberSet<(), AnyObserver>,
237 active: bool,
238 pub(crate) dirty: bool,
239 activation_observers: SubscriberSet<(), AnyObserver>,
240 pub(crate) last_blur: Option<Option<FocusId>>,
241 pub(crate) focus: Option<FocusId>,
242}
243
244pub(crate) struct ElementStateBox {
245 inner: Box<dyn Any>,
246 #[cfg(debug_assertions)]
247 type_name: &'static str,
248}
249
250// #[derive(Default)]
251pub(crate) struct Frame {
252 pub(crate) element_states: HashMap<GlobalElementId, ElementStateBox>,
253 mouse_listeners: HashMap<TypeId, Vec<(StackingOrder, AnyMouseListener)>>,
254 pub(crate) dispatch_tree: DispatchTree,
255 pub(crate) focus_listeners: Vec<AnyFocusListener>,
256 pub(crate) scene_builder: SceneBuilder,
257 pub(crate) depth_map: Vec<(StackingOrder, Bounds<Pixels>)>,
258 pub(crate) z_index_stack: StackingOrder,
259 content_mask_stack: Vec<ContentMask<Pixels>>,
260 element_offset_stack: Vec<Point<Pixels>>,
261}
262
263impl Frame {
264 fn new(dispatch_tree: DispatchTree) -> Self {
265 Frame {
266 element_states: HashMap::default(),
267 mouse_listeners: HashMap::default(),
268 dispatch_tree,
269 focus_listeners: Vec::new(),
270 scene_builder: SceneBuilder::default(),
271 z_index_stack: StackingOrder::default(),
272 depth_map: Default::default(),
273 content_mask_stack: Vec::new(),
274 element_offset_stack: Vec::new(),
275 }
276 }
277
278 fn clear(&mut self) {
279 self.element_states.clear();
280 self.mouse_listeners.values_mut().for_each(Vec::clear);
281 self.focus_listeners.clear();
282 self.dispatch_tree.clear();
283 self.depth_map.clear();
284 }
285}
286
287impl Window {
288 pub(crate) fn new(
289 handle: AnyWindowHandle,
290 options: WindowOptions,
291 cx: &mut AppContext,
292 ) -> Self {
293 let platform_window = cx.platform.open_window(
294 handle,
295 options,
296 Box::new({
297 let mut cx = cx.to_async();
298 move || handle.update(&mut cx, |_, cx| cx.draw())
299 }),
300 );
301 let display_id = platform_window.display().id();
302 let sprite_atlas = platform_window.sprite_atlas();
303 let mouse_position = platform_window.mouse_position();
304 let content_size = platform_window.content_size();
305 let scale_factor = platform_window.scale_factor();
306 let bounds = platform_window.bounds();
307
308 platform_window.on_resize(Box::new({
309 let mut cx = cx.to_async();
310 move |_, _| {
311 handle
312 .update(&mut cx, |_, cx| cx.window_bounds_changed())
313 .log_err();
314 }
315 }));
316 platform_window.on_moved(Box::new({
317 let mut cx = cx.to_async();
318 move || {
319 handle
320 .update(&mut cx, |_, cx| cx.window_bounds_changed())
321 .log_err();
322 }
323 }));
324 platform_window.on_active_status_change(Box::new({
325 let mut cx = cx.to_async();
326 move |active| {
327 handle
328 .update(&mut cx, |_, cx| {
329 cx.window.active = active;
330 cx.window
331 .activation_observers
332 .clone()
333 .retain(&(), |callback| callback(cx));
334 })
335 .log_err();
336 }
337 }));
338
339 platform_window.on_input({
340 let mut cx = cx.to_async();
341 Box::new(move |event| {
342 handle
343 .update(&mut cx, |_, cx| cx.dispatch_event(event))
344 .log_err()
345 .unwrap_or(false)
346 })
347 });
348
349 Window {
350 handle,
351 removed: false,
352 platform_window,
353 display_id,
354 sprite_atlas,
355 rem_size: px(16.),
356 viewport_size: content_size,
357 layout_engine: Some(TaffyLayoutEngine::new()),
358 root_view: None,
359 element_id_stack: GlobalElementId::default(),
360 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
361 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
362 focus_handles: Arc::new(RwLock::new(SlotMap::with_key())),
363 focus_listeners: SubscriberSet::new(),
364 default_prevented: true,
365 mouse_position,
366 requested_cursor_style: None,
367 scale_factor,
368 bounds,
369 bounds_observers: SubscriberSet::new(),
370 active: false,
371 dirty: false,
372 activation_observers: SubscriberSet::new(),
373 last_blur: None,
374 focus: None,
375 }
376 }
377}
378
379/// Indicates which region of the window is visible. Content falling outside of this mask will not be
380/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
381/// to leave room to support more complex shapes in the future.
382#[derive(Clone, Debug, Default, PartialEq, Eq)]
383#[repr(C)]
384pub struct ContentMask<P: Clone + Default + Debug> {
385 pub bounds: Bounds<P>,
386}
387
388impl ContentMask<Pixels> {
389 /// Scale the content mask's pixel units by the given scaling factor.
390 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
391 ContentMask {
392 bounds: self.bounds.scale(factor),
393 }
394 }
395
396 /// Intersect the content mask with the given content mask.
397 pub fn intersect(&self, other: &Self) -> Self {
398 let bounds = self.bounds.intersect(&other.bounds);
399 ContentMask { bounds }
400 }
401}
402
403/// Provides access to application state in the context of a single window. Derefs
404/// to an `AppContext`, so you can also pass a `WindowContext` to any method that takes
405/// an `AppContext` and call any `AppContext` methods.
406pub struct WindowContext<'a> {
407 pub(crate) app: &'a mut AppContext,
408 pub(crate) window: &'a mut Window,
409}
410
411impl<'a> WindowContext<'a> {
412 pub(crate) fn new(app: &'a mut AppContext, window: &'a mut Window) -> Self {
413 Self { app, window }
414 }
415
416 /// Obtain a handle to the window that belongs to this context.
417 pub fn window_handle(&self) -> AnyWindowHandle {
418 self.window.handle
419 }
420
421 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
422 pub fn notify(&mut self) {
423 self.window.dirty = true;
424 }
425
426 /// Close this window.
427 pub fn remove_window(&mut self) {
428 self.window.removed = true;
429 }
430
431 /// Obtain a new `FocusHandle`, which allows you to track and manipulate the keyboard focus
432 /// for elements rendered within this window.
433 pub fn focus_handle(&mut self) -> FocusHandle {
434 FocusHandle::new(&self.window.focus_handles)
435 }
436
437 /// Obtain the currently focused `FocusHandle`. If no elements are focused, returns `None`.
438 pub fn focused(&self) -> Option<FocusHandle> {
439 self.window
440 .focus
441 .and_then(|id| FocusHandle::for_id(id, &self.window.focus_handles))
442 }
443
444 /// Move focus to the element associated with the given `FocusHandle`.
445 pub fn focus(&mut self, handle: &FocusHandle) {
446 if self.window.focus == Some(handle.id) {
447 return;
448 }
449
450 let focus_id = handle.id;
451
452 if self.window.last_blur.is_none() {
453 self.window.last_blur = Some(self.window.focus);
454 }
455
456 self.window.focus = Some(focus_id);
457 self.window
458 .rendered_frame
459 .dispatch_tree
460 .clear_pending_keystrokes();
461 self.app.push_effect(Effect::FocusChanged {
462 window_handle: self.window.handle,
463 focused: Some(focus_id),
464 });
465 self.notify();
466 }
467
468 /// Remove focus from all elements within this context's window.
469 pub fn blur(&mut self) {
470 if self.window.last_blur.is_none() {
471 self.window.last_blur = Some(self.window.focus);
472 }
473
474 self.window.focus = None;
475 self.app.push_effect(Effect::FocusChanged {
476 window_handle: self.window.handle,
477 focused: None,
478 });
479 self.notify();
480 }
481
482 pub fn dispatch_action(&mut self, action: Box<dyn Action>) {
483 let focus_handle = self.focused();
484
485 self.defer(move |cx| {
486 let node_id = focus_handle
487 .and_then(|handle| {
488 cx.window
489 .rendered_frame
490 .dispatch_tree
491 .focusable_node_id(handle.id)
492 })
493 .unwrap_or_else(|| cx.window.rendered_frame.dispatch_tree.root_node_id());
494
495 cx.propagate_event = true;
496 cx.dispatch_action_on_node(node_id, action);
497 })
498 }
499
500 pub(crate) fn dispatch_keystroke_observers(
501 &mut self,
502 event: &dyn Any,
503 action: Option<Box<dyn Action>>,
504 ) {
505 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
506 return;
507 };
508
509 self.keystroke_observers
510 .clone()
511 .retain(&(), move |callback| {
512 (callback)(
513 &KeystrokeEvent {
514 keystroke: key_down_event.keystroke.clone(),
515 action: action.as_ref().map(|action| action.boxed_clone()),
516 },
517 self,
518 );
519 true
520 });
521 }
522
523 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
524 /// that are currently on the stack to be returned to the app.
525 pub fn defer(&mut self, f: impl FnOnce(&mut WindowContext) + 'static) {
526 let handle = self.window.handle;
527 self.app.defer(move |cx| {
528 handle.update(cx, |_, cx| f(cx)).ok();
529 });
530 }
531
532 pub fn subscribe<Emitter, E, Evt>(
533 &mut self,
534 entity: &E,
535 mut on_event: impl FnMut(E, &Evt, &mut WindowContext<'_>) + 'static,
536 ) -> Subscription
537 where
538 Emitter: EventEmitter<Evt>,
539 E: Entity<Emitter>,
540 Evt: 'static,
541 {
542 let entity_id = entity.entity_id();
543 let entity = entity.downgrade();
544 let window_handle = self.window.handle;
545 let (subscription, activate) = self.app.event_listeners.insert(
546 entity_id,
547 (
548 TypeId::of::<Evt>(),
549 Box::new(move |event, cx| {
550 window_handle
551 .update(cx, |_, cx| {
552 if let Some(handle) = E::upgrade_from(&entity) {
553 let event = event.downcast_ref().expect("invalid event type");
554 on_event(handle, event, cx);
555 true
556 } else {
557 false
558 }
559 })
560 .unwrap_or(false)
561 }),
562 ),
563 );
564 self.app.defer(move |_| activate());
565 subscription
566 }
567
568 /// Create an `AsyncWindowContext`, which has a static lifetime and can be held across
569 /// await points in async code.
570 pub fn to_async(&self) -> AsyncWindowContext {
571 AsyncWindowContext::new(self.app.to_async(), self.window.handle)
572 }
573
574 /// Schedule the given closure to be run directly after the current frame is rendered.
575 pub fn on_next_frame(&mut self, callback: impl FnOnce(&mut WindowContext) + 'static) {
576 let handle = self.window.handle;
577 let display_id = self.window.display_id;
578
579 if !self.frame_consumers.contains_key(&display_id) {
580 let (tx, mut rx) = mpsc::unbounded::<()>();
581 self.platform.set_display_link_output_callback(
582 display_id,
583 Box::new(move |_current_time, _output_time| _ = tx.unbounded_send(())),
584 );
585
586 let consumer_task = self.app.spawn(|cx| async move {
587 while rx.next().await.is_some() {
588 cx.update(|cx| {
589 for callback in cx
590 .next_frame_callbacks
591 .get_mut(&display_id)
592 .unwrap()
593 .drain(..)
594 .collect::<SmallVec<[_; 32]>>()
595 {
596 callback(cx);
597 }
598 })
599 .ok();
600
601 // Flush effects, then stop the display link if no new next_frame_callbacks have been added.
602
603 cx.update(|cx| {
604 if cx.next_frame_callbacks.is_empty() {
605 cx.platform.stop_display_link(display_id);
606 }
607 })
608 .ok();
609 }
610 });
611 self.frame_consumers.insert(display_id, consumer_task);
612 }
613
614 if self.next_frame_callbacks.is_empty() {
615 self.platform.start_display_link(display_id);
616 }
617
618 self.next_frame_callbacks
619 .entry(display_id)
620 .or_default()
621 .push(Box::new(move |cx: &mut AppContext| {
622 cx.update_window(handle, |_root_view, cx| callback(cx)).ok();
623 }));
624 }
625
626 /// Spawn the future returned by the given closure on the application thread pool.
627 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
628 /// use within your future.
629 pub fn spawn<Fut, R>(&mut self, f: impl FnOnce(AsyncWindowContext) -> Fut) -> Task<R>
630 where
631 R: 'static,
632 Fut: Future<Output = R> + 'static,
633 {
634 self.app
635 .spawn(|app| f(AsyncWindowContext::new(app, self.window.handle)))
636 }
637
638 /// Update the global of the given type. The given closure is given simultaneous mutable
639 /// access both to the global and the context.
640 pub fn update_global<G, R>(&mut self, f: impl FnOnce(&mut G, &mut Self) -> R) -> R
641 where
642 G: 'static,
643 {
644 let mut global = self.app.lease_global::<G>();
645 let result = f(&mut global, self);
646 self.app.end_global_lease(global);
647 result
648 }
649
650 #[must_use]
651 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
652 /// layout is being requested, along with the layout ids of any children. This method is called during
653 /// calls to the `Element::layout` trait method and enables any element to participate in layout.
654 pub fn request_layout(
655 &mut self,
656 style: &Style,
657 children: impl IntoIterator<Item = LayoutId>,
658 ) -> LayoutId {
659 self.app.layout_id_buffer.clear();
660 self.app.layout_id_buffer.extend(children.into_iter());
661 let rem_size = self.rem_size();
662
663 self.window.layout_engine.as_mut().unwrap().request_layout(
664 style,
665 rem_size,
666 &self.app.layout_id_buffer,
667 )
668 }
669
670 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
671 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
672 /// determine the element's size. One place this is used internally is when measuring text.
673 ///
674 /// The given closure is invoked at layout time with the known dimensions and available space and
675 /// returns a `Size`.
676 pub fn request_measured_layout<
677 F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut WindowContext) -> Size<Pixels>
678 + 'static,
679 >(
680 &mut self,
681 style: Style,
682 measure: F,
683 ) -> LayoutId {
684 let rem_size = self.rem_size();
685 self.window
686 .layout_engine
687 .as_mut()
688 .unwrap()
689 .request_measured_layout(style, rem_size, measure)
690 }
691
692 pub fn compute_layout(&mut self, layout_id: LayoutId, available_space: Size<AvailableSpace>) {
693 let mut layout_engine = self.window.layout_engine.take().unwrap();
694 layout_engine.compute_layout(layout_id, available_space, self);
695 self.window.layout_engine = Some(layout_engine);
696 }
697
698 /// Obtain the bounds computed for the given LayoutId relative to the window. This method should not
699 /// be invoked until the paint phase begins, and will usually be invoked by GPUI itself automatically
700 /// in order to pass your element its `Bounds` automatically.
701 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
702 let mut bounds = self
703 .window
704 .layout_engine
705 .as_mut()
706 .unwrap()
707 .layout_bounds(layout_id)
708 .map(Into::into);
709 bounds.origin += self.element_offset();
710 bounds
711 }
712
713 fn window_bounds_changed(&mut self) {
714 self.window.scale_factor = self.window.platform_window.scale_factor();
715 self.window.viewport_size = self.window.platform_window.content_size();
716 self.window.bounds = self.window.platform_window.bounds();
717 self.window.display_id = self.window.platform_window.display().id();
718 self.notify();
719
720 self.window
721 .bounds_observers
722 .clone()
723 .retain(&(), |callback| callback(self));
724 }
725
726 pub fn window_bounds(&self) -> WindowBounds {
727 self.window.bounds
728 }
729
730 pub fn viewport_size(&self) -> Size<Pixels> {
731 self.window.viewport_size
732 }
733
734 pub fn is_window_active(&self) -> bool {
735 self.window.active
736 }
737
738 pub fn zoom_window(&self) {
739 self.window.platform_window.zoom();
740 }
741
742 pub fn set_window_title(&mut self, title: &str) {
743 self.window.platform_window.set_title(title);
744 }
745
746 pub fn display(&self) -> Option<Rc<dyn PlatformDisplay>> {
747 self.platform
748 .displays()
749 .into_iter()
750 .find(|display| display.id() == self.window.display_id)
751 }
752
753 pub fn show_character_palette(&self) {
754 self.window.platform_window.show_character_palette();
755 }
756
757 /// The scale factor of the display associated with the window. For example, it could
758 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
759 /// be rendered as two pixels on screen.
760 pub fn scale_factor(&self) -> f32 {
761 self.window.scale_factor
762 }
763
764 /// The size of an em for the base font of the application. Adjusting this value allows the
765 /// UI to scale, just like zooming a web page.
766 pub fn rem_size(&self) -> Pixels {
767 self.window.rem_size
768 }
769
770 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
771 /// UI to scale, just like zooming a web page.
772 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
773 self.window.rem_size = rem_size.into();
774 }
775
776 /// The line height associated with the current text style.
777 pub fn line_height(&self) -> Pixels {
778 let rem_size = self.rem_size();
779 let text_style = self.text_style();
780 text_style
781 .line_height
782 .to_pixels(text_style.font_size.into(), rem_size)
783 }
784
785 /// Call to prevent the default action of an event. Currently only used to prevent
786 /// parent elements from becoming focused on mouse down.
787 pub fn prevent_default(&mut self) {
788 self.window.default_prevented = true;
789 }
790
791 /// Obtain whether default has been prevented for the event currently being dispatched.
792 pub fn default_prevented(&self) -> bool {
793 self.window.default_prevented
794 }
795
796 /// Register a mouse event listener on the window for the next frame. The type of event
797 /// is determined by the first parameter of the given listener. When the next frame is rendered
798 /// the listener will be cleared.
799 ///
800 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
801 /// a specific need to register a global listener.
802 pub fn on_mouse_event<Event: 'static>(
803 &mut self,
804 handler: impl Fn(&Event, DispatchPhase, &mut WindowContext) + 'static,
805 ) {
806 let order = self.window.next_frame.z_index_stack.clone();
807 self.window
808 .next_frame
809 .mouse_listeners
810 .entry(TypeId::of::<Event>())
811 .or_default()
812 .push((
813 order,
814 Box::new(move |event: &dyn Any, phase, cx| {
815 handler(event.downcast_ref().unwrap(), phase, cx)
816 }),
817 ))
818 }
819
820 /// Register a key event listener on the window for the next frame. The type of event
821 /// is determined by the first parameter of the given listener. When the next frame is rendered
822 /// the listener will be cleared.
823 ///
824 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
825 /// a specific need to register a global listener.
826 pub fn on_key_event<Event: 'static>(
827 &mut self,
828 handler: impl Fn(&Event, DispatchPhase, &mut WindowContext) + 'static,
829 ) {
830 self.window
831 .next_frame
832 .dispatch_tree
833 .on_key_event(Rc::new(move |event, phase, cx| {
834 if let Some(event) = event.downcast_ref::<Event>() {
835 handler(event, phase, cx)
836 }
837 }));
838 }
839
840 /// Register an action listener on the window for the next frame. The type of action
841 /// is determined by the first parameter of the given listener. When the next frame is rendered
842 /// the listener will be cleared.
843 ///
844 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
845 /// a specific need to register a global listener.
846 pub fn on_action(
847 &mut self,
848 action_type: TypeId,
849 handler: impl Fn(&dyn Any, DispatchPhase, &mut WindowContext) + 'static,
850 ) {
851 self.window.next_frame.dispatch_tree.on_action(
852 action_type,
853 Rc::new(move |action, phase, cx| handler(action, phase, cx)),
854 );
855 }
856
857 pub fn is_action_available(&self, action: &dyn Action) -> bool {
858 let target = self
859 .focused()
860 .and_then(|focused_handle| {
861 self.window
862 .rendered_frame
863 .dispatch_tree
864 .focusable_node_id(focused_handle.id)
865 })
866 .unwrap_or_else(|| self.window.rendered_frame.dispatch_tree.root_node_id());
867 self.window
868 .rendered_frame
869 .dispatch_tree
870 .is_action_available(action, target)
871 }
872
873 /// The position of the mouse relative to the window.
874 pub fn mouse_position(&self) -> Point<Pixels> {
875 self.window.mouse_position
876 }
877
878 pub fn set_cursor_style(&mut self, style: CursorStyle) {
879 self.window.requested_cursor_style = Some(style)
880 }
881
882 /// Called during painting to invoke the given closure in a new stacking context. The given
883 /// z-index is interpreted relative to the previous call to `stack`.
884 pub fn with_z_index<R>(&mut self, z_index: u32, f: impl FnOnce(&mut Self) -> R) -> R {
885 self.window.next_frame.z_index_stack.push(z_index);
886 let result = f(self);
887 self.window.next_frame.z_index_stack.pop();
888 result
889 }
890
891 /// Called during painting to track which z-index is on top at each pixel position
892 pub fn add_opaque_layer(&mut self, bounds: Bounds<Pixels>) {
893 let stacking_order = self.window.next_frame.z_index_stack.clone();
894 let depth_map = &mut self.window.next_frame.depth_map;
895 match depth_map.binary_search_by(|(level, _)| stacking_order.cmp(&level)) {
896 Ok(i) | Err(i) => depth_map.insert(i, (stacking_order, bounds)),
897 }
898 }
899
900 /// Returns true if the top-most opaque layer painted over this point was part of the
901 /// same layer as the given stacking order.
902 pub fn was_top_layer(&self, point: &Point<Pixels>, level: &StackingOrder) -> bool {
903 for (stack, bounds) in self.window.rendered_frame.depth_map.iter() {
904 if bounds.contains(point) {
905 return level.starts_with(stack) || stack.starts_with(level);
906 }
907 }
908
909 false
910 }
911
912 pub fn was_top_layer_under_active_drag(
913 &self,
914 point: &Point<Pixels>,
915 level: &StackingOrder,
916 ) -> bool {
917 for (stack, bounds) in self.window.rendered_frame.depth_map.iter() {
918 if stack.starts_with(&[ACTIVE_DRAG_Z_INDEX]) {
919 continue;
920 }
921 if bounds.contains(point) {
922 return level.starts_with(stack) || stack.starts_with(level);
923 }
924 }
925
926 false
927 }
928
929 /// Called during painting to get the current stacking order.
930 pub fn stacking_order(&self) -> &StackingOrder {
931 &self.window.next_frame.z_index_stack
932 }
933
934 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
935 pub fn paint_shadows(
936 &mut self,
937 bounds: Bounds<Pixels>,
938 corner_radii: Corners<Pixels>,
939 shadows: &[BoxShadow],
940 ) {
941 let scale_factor = self.scale_factor();
942 let content_mask = self.content_mask();
943 let window = &mut *self.window;
944 for shadow in shadows {
945 let mut shadow_bounds = bounds;
946 shadow_bounds.origin += shadow.offset;
947 shadow_bounds.dilate(shadow.spread_radius);
948 window.next_frame.scene_builder.insert(
949 &window.next_frame.z_index_stack,
950 Shadow {
951 order: 0,
952 bounds: shadow_bounds.scale(scale_factor),
953 content_mask: content_mask.scale(scale_factor),
954 corner_radii: corner_radii.scale(scale_factor),
955 color: shadow.color,
956 blur_radius: shadow.blur_radius.scale(scale_factor),
957 },
958 );
959 }
960 }
961
962 /// Paint one or more quads into the scene for the next frame at the current stacking context.
963 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
964 pub fn paint_quad(
965 &mut self,
966 bounds: Bounds<Pixels>,
967 corner_radii: Corners<Pixels>,
968 background: impl Into<Hsla>,
969 border_widths: Edges<Pixels>,
970 border_color: impl Into<Hsla>,
971 ) {
972 let scale_factor = self.scale_factor();
973 let content_mask = self.content_mask();
974
975 let window = &mut *self.window;
976 window.next_frame.scene_builder.insert(
977 &window.next_frame.z_index_stack,
978 Quad {
979 order: 0,
980 bounds: bounds.scale(scale_factor),
981 content_mask: content_mask.scale(scale_factor),
982 background: background.into(),
983 border_color: border_color.into(),
984 corner_radii: corner_radii.scale(scale_factor),
985 border_widths: border_widths.scale(scale_factor),
986 },
987 );
988 }
989
990 /// Paint the given `Path` into the scene for the next frame at the current z-index.
991 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Hsla>) {
992 let scale_factor = self.scale_factor();
993 let content_mask = self.content_mask();
994 path.content_mask = content_mask;
995 path.color = color.into();
996 let window = &mut *self.window;
997 window
998 .next_frame
999 .scene_builder
1000 .insert(&window.next_frame.z_index_stack, path.scale(scale_factor));
1001 }
1002
1003 /// Paint an underline into the scene for the next frame at the current z-index.
1004 pub fn paint_underline(
1005 &mut self,
1006 origin: Point<Pixels>,
1007 width: Pixels,
1008 style: &UnderlineStyle,
1009 ) {
1010 let scale_factor = self.scale_factor();
1011 let height = if style.wavy {
1012 style.thickness * 3.
1013 } else {
1014 style.thickness
1015 };
1016 let bounds = Bounds {
1017 origin,
1018 size: size(width, height),
1019 };
1020 let content_mask = self.content_mask();
1021 let window = &mut *self.window;
1022 window.next_frame.scene_builder.insert(
1023 &window.next_frame.z_index_stack,
1024 Underline {
1025 order: 0,
1026 bounds: bounds.scale(scale_factor),
1027 content_mask: content_mask.scale(scale_factor),
1028 thickness: style.thickness.scale(scale_factor),
1029 color: style.color.unwrap_or_default(),
1030 wavy: style.wavy,
1031 },
1032 );
1033 }
1034
1035 /// Paint a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
1036 /// The y component of the origin is the baseline of the glyph.
1037 pub fn paint_glyph(
1038 &mut self,
1039 origin: Point<Pixels>,
1040 font_id: FontId,
1041 glyph_id: GlyphId,
1042 font_size: Pixels,
1043 color: Hsla,
1044 ) -> Result<()> {
1045 let scale_factor = self.scale_factor();
1046 let glyph_origin = origin.scale(scale_factor);
1047 let subpixel_variant = Point {
1048 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
1049 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
1050 };
1051 let params = RenderGlyphParams {
1052 font_id,
1053 glyph_id,
1054 font_size,
1055 subpixel_variant,
1056 scale_factor,
1057 is_emoji: false,
1058 };
1059
1060 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
1061 if !raster_bounds.is_zero() {
1062 let tile =
1063 self.window
1064 .sprite_atlas
1065 .get_or_insert_with(¶ms.clone().into(), &mut || {
1066 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
1067 Ok((size, Cow::Owned(bytes)))
1068 })?;
1069 let bounds = Bounds {
1070 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
1071 size: tile.bounds.size.map(Into::into),
1072 };
1073 let content_mask = self.content_mask().scale(scale_factor);
1074 let window = &mut *self.window;
1075 window.next_frame.scene_builder.insert(
1076 &window.next_frame.z_index_stack,
1077 MonochromeSprite {
1078 order: 0,
1079 bounds,
1080 content_mask,
1081 color,
1082 tile,
1083 },
1084 );
1085 }
1086 Ok(())
1087 }
1088
1089 /// Paint an emoji glyph into the scene for the next frame at the current z-index.
1090 /// The y component of the origin is the baseline of the glyph.
1091 pub fn paint_emoji(
1092 &mut self,
1093 origin: Point<Pixels>,
1094 font_id: FontId,
1095 glyph_id: GlyphId,
1096 font_size: Pixels,
1097 ) -> Result<()> {
1098 let scale_factor = self.scale_factor();
1099 let glyph_origin = origin.scale(scale_factor);
1100 let params = RenderGlyphParams {
1101 font_id,
1102 glyph_id,
1103 font_size,
1104 // We don't render emojis with subpixel variants.
1105 subpixel_variant: Default::default(),
1106 scale_factor,
1107 is_emoji: true,
1108 };
1109
1110 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
1111 if !raster_bounds.is_zero() {
1112 let tile =
1113 self.window
1114 .sprite_atlas
1115 .get_or_insert_with(¶ms.clone().into(), &mut || {
1116 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
1117 Ok((size, Cow::Owned(bytes)))
1118 })?;
1119 let bounds = Bounds {
1120 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
1121 size: tile.bounds.size.map(Into::into),
1122 };
1123 let content_mask = self.content_mask().scale(scale_factor);
1124 let window = &mut *self.window;
1125
1126 window.next_frame.scene_builder.insert(
1127 &window.next_frame.z_index_stack,
1128 PolychromeSprite {
1129 order: 0,
1130 bounds,
1131 corner_radii: Default::default(),
1132 content_mask,
1133 tile,
1134 grayscale: false,
1135 },
1136 );
1137 }
1138 Ok(())
1139 }
1140
1141 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
1142 pub fn paint_svg(
1143 &mut self,
1144 bounds: Bounds<Pixels>,
1145 path: SharedString,
1146 color: Hsla,
1147 ) -> Result<()> {
1148 let scale_factor = self.scale_factor();
1149 let bounds = bounds.scale(scale_factor);
1150 // Render the SVG at twice the size to get a higher quality result.
1151 let params = RenderSvgParams {
1152 path,
1153 size: bounds
1154 .size
1155 .map(|pixels| DevicePixels::from((pixels.0 * 2.).ceil() as i32)),
1156 };
1157
1158 let tile =
1159 self.window
1160 .sprite_atlas
1161 .get_or_insert_with(¶ms.clone().into(), &mut || {
1162 let bytes = self.svg_renderer.render(¶ms)?;
1163 Ok((params.size, Cow::Owned(bytes)))
1164 })?;
1165 let content_mask = self.content_mask().scale(scale_factor);
1166
1167 let window = &mut *self.window;
1168 window.next_frame.scene_builder.insert(
1169 &window.next_frame.z_index_stack,
1170 MonochromeSprite {
1171 order: 0,
1172 bounds,
1173 content_mask,
1174 color,
1175 tile,
1176 },
1177 );
1178
1179 Ok(())
1180 }
1181
1182 /// Paint an image into the scene for the next frame at the current z-index.
1183 pub fn paint_image(
1184 &mut self,
1185 bounds: Bounds<Pixels>,
1186 corner_radii: Corners<Pixels>,
1187 data: Arc<ImageData>,
1188 grayscale: bool,
1189 ) -> Result<()> {
1190 let scale_factor = self.scale_factor();
1191 let bounds = bounds.scale(scale_factor);
1192 let params = RenderImageParams { image_id: data.id };
1193
1194 let tile = self
1195 .window
1196 .sprite_atlas
1197 .get_or_insert_with(¶ms.clone().into(), &mut || {
1198 Ok((data.size(), Cow::Borrowed(data.as_bytes())))
1199 })?;
1200 let content_mask = self.content_mask().scale(scale_factor);
1201 let corner_radii = corner_radii.scale(scale_factor);
1202
1203 let window = &mut *self.window;
1204 window.next_frame.scene_builder.insert(
1205 &window.next_frame.z_index_stack,
1206 PolychromeSprite {
1207 order: 0,
1208 bounds,
1209 content_mask,
1210 corner_radii,
1211 tile,
1212 grayscale,
1213 },
1214 );
1215 Ok(())
1216 }
1217
1218 /// Paint a surface into the scene for the next frame at the current z-index.
1219 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVImageBuffer) {
1220 let scale_factor = self.scale_factor();
1221 let bounds = bounds.scale(scale_factor);
1222 let content_mask = self.content_mask().scale(scale_factor);
1223 let window = &mut *self.window;
1224 window.next_frame.scene_builder.insert(
1225 &window.next_frame.z_index_stack,
1226 Surface {
1227 order: 0,
1228 bounds,
1229 content_mask,
1230 image_buffer,
1231 },
1232 );
1233 }
1234
1235 /// Draw pixels to the display for this window based on the contents of its scene.
1236 pub(crate) fn draw(&mut self) -> Scene {
1237 self.text_system().start_frame();
1238 self.window.platform_window.clear_input_handler();
1239 self.window.layout_engine.as_mut().unwrap().clear();
1240 self.window.next_frame.clear();
1241 let root_view = self.window.root_view.take().unwrap();
1242
1243 self.with_z_index(0, |cx| {
1244 cx.with_key_dispatch(Some(KeyContext::default()), None, |_, cx| {
1245 for (action_type, action_listeners) in &cx.app.global_action_listeners {
1246 for action_listener in action_listeners.iter().cloned() {
1247 cx.window.next_frame.dispatch_tree.on_action(
1248 *action_type,
1249 Rc::new(move |action, phase, cx| action_listener(action, phase, cx)),
1250 )
1251 }
1252 }
1253
1254 let available_space = cx.window.viewport_size.map(Into::into);
1255 root_view.draw(Point::default(), available_space, cx);
1256 })
1257 });
1258
1259 if let Some(active_drag) = self.app.active_drag.take() {
1260 self.with_z_index(ACTIVE_DRAG_Z_INDEX, |cx| {
1261 let offset = cx.mouse_position() - active_drag.cursor_offset;
1262 let available_space = size(AvailableSpace::MinContent, AvailableSpace::MinContent);
1263 active_drag.view.draw(offset, available_space, cx);
1264 });
1265 self.active_drag = Some(active_drag);
1266 } else if let Some(active_tooltip) = self.app.active_tooltip.take() {
1267 self.with_z_index(1, |cx| {
1268 let available_space = size(AvailableSpace::MinContent, AvailableSpace::MinContent);
1269 active_tooltip
1270 .view
1271 .draw(active_tooltip.cursor_offset, available_space, cx);
1272 });
1273 }
1274
1275 self.window
1276 .next_frame
1277 .dispatch_tree
1278 .preserve_pending_keystrokes(
1279 &mut self.window.rendered_frame.dispatch_tree,
1280 self.window.focus,
1281 );
1282 self.window.root_view = Some(root_view);
1283
1284 let window = &mut self.window;
1285 mem::swap(&mut window.rendered_frame, &mut window.next_frame);
1286
1287 let scene = self.window.rendered_frame.scene_builder.build();
1288 let cursor_style = self
1289 .window
1290 .requested_cursor_style
1291 .take()
1292 .unwrap_or(CursorStyle::Arrow);
1293 self.platform.set_cursor_style(cursor_style);
1294 self.window.dirty = false;
1295
1296 scene
1297 }
1298
1299 /// Dispatch a mouse or keyboard event on the window.
1300 pub fn dispatch_event(&mut self, event: InputEvent) -> bool {
1301 // Handlers may set this to false by calling `stop_propagation`
1302 self.app.propagate_event = true;
1303 self.window.default_prevented = false;
1304
1305 let event = match event {
1306 // Track the mouse position with our own state, since accessing the platform
1307 // API for the mouse position can only occur on the main thread.
1308 InputEvent::MouseMove(mouse_move) => {
1309 self.window.mouse_position = mouse_move.position;
1310 InputEvent::MouseMove(mouse_move)
1311 }
1312 InputEvent::MouseDown(mouse_down) => {
1313 self.window.mouse_position = mouse_down.position;
1314 InputEvent::MouseDown(mouse_down)
1315 }
1316 InputEvent::MouseUp(mouse_up) => {
1317 self.window.mouse_position = mouse_up.position;
1318 InputEvent::MouseUp(mouse_up)
1319 }
1320 // Translate dragging and dropping of external files from the operating system
1321 // to internal drag and drop events.
1322 InputEvent::FileDrop(file_drop) => match file_drop {
1323 FileDropEvent::Entered { position, files } => {
1324 self.window.mouse_position = position;
1325 if self.active_drag.is_none() {
1326 self.active_drag = Some(AnyDrag {
1327 view: self.build_view(|_| files).into(),
1328 cursor_offset: position,
1329 });
1330 }
1331 InputEvent::MouseMove(MouseMoveEvent {
1332 position,
1333 pressed_button: Some(MouseButton::Left),
1334 modifiers: Modifiers::default(),
1335 })
1336 }
1337 FileDropEvent::Pending { position } => {
1338 self.window.mouse_position = position;
1339 InputEvent::MouseMove(MouseMoveEvent {
1340 position,
1341 pressed_button: Some(MouseButton::Left),
1342 modifiers: Modifiers::default(),
1343 })
1344 }
1345 FileDropEvent::Submit { position } => {
1346 self.activate(true);
1347 self.window.mouse_position = position;
1348 InputEvent::MouseUp(MouseUpEvent {
1349 button: MouseButton::Left,
1350 position,
1351 modifiers: Modifiers::default(),
1352 click_count: 1,
1353 })
1354 }
1355 FileDropEvent::Exited => InputEvent::MouseUp(MouseUpEvent {
1356 button: MouseButton::Left,
1357 position: Point::default(),
1358 modifiers: Modifiers::default(),
1359 click_count: 1,
1360 }),
1361 },
1362 _ => event,
1363 };
1364
1365 if let Some(any_mouse_event) = event.mouse_event() {
1366 self.dispatch_mouse_event(any_mouse_event);
1367 } else if let Some(any_key_event) = event.keyboard_event() {
1368 self.dispatch_key_event(any_key_event);
1369 }
1370
1371 !self.app.propagate_event
1372 }
1373
1374 fn dispatch_mouse_event(&mut self, event: &dyn Any) {
1375 if let Some(mut handlers) = self
1376 .window
1377 .rendered_frame
1378 .mouse_listeners
1379 .remove(&event.type_id())
1380 {
1381 // Because handlers may add other handlers, we sort every time.
1382 handlers.sort_by(|(a, _), (b, _)| a.cmp(b));
1383
1384 // Capture phase, events bubble from back to front. Handlers for this phase are used for
1385 // special purposes, such as detecting events outside of a given Bounds.
1386 for (_, handler) in &mut handlers {
1387 handler(event, DispatchPhase::Capture, self);
1388 if !self.app.propagate_event {
1389 break;
1390 }
1391 }
1392
1393 // Bubble phase, where most normal handlers do their work.
1394 if self.app.propagate_event {
1395 for (_, handler) in handlers.iter_mut().rev() {
1396 handler(event, DispatchPhase::Bubble, self);
1397 if !self.app.propagate_event {
1398 break;
1399 }
1400 }
1401 }
1402
1403 if self.app.propagate_event && event.downcast_ref::<MouseUpEvent>().is_some() {
1404 self.active_drag = None;
1405 }
1406
1407 self.window
1408 .rendered_frame
1409 .mouse_listeners
1410 .insert(event.type_id(), handlers);
1411 }
1412 }
1413
1414 fn dispatch_key_event(&mut self, event: &dyn Any) {
1415 let node_id = self
1416 .window
1417 .focus
1418 .and_then(|focus_id| {
1419 self.window
1420 .rendered_frame
1421 .dispatch_tree
1422 .focusable_node_id(focus_id)
1423 })
1424 .unwrap_or_else(|| self.window.rendered_frame.dispatch_tree.root_node_id());
1425
1426 let dispatch_path = self
1427 .window
1428 .rendered_frame
1429 .dispatch_tree
1430 .dispatch_path(node_id);
1431
1432 let mut actions: Vec<Box<dyn Action>> = Vec::new();
1433
1434 // Capture phase
1435 let mut context_stack: SmallVec<[KeyContext; 16]> = SmallVec::new();
1436 self.propagate_event = true;
1437
1438 for node_id in &dispatch_path {
1439 let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
1440
1441 if let Some(context) = node.context.clone() {
1442 context_stack.push(context);
1443 }
1444
1445 for key_listener in node.key_listeners.clone() {
1446 key_listener(event, DispatchPhase::Capture, self);
1447 if !self.propagate_event {
1448 return;
1449 }
1450 }
1451 }
1452
1453 // Bubble phase
1454 for node_id in dispatch_path.iter().rev() {
1455 // Handle low level key events
1456 let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
1457 for key_listener in node.key_listeners.clone() {
1458 key_listener(event, DispatchPhase::Bubble, self);
1459 if !self.propagate_event {
1460 return;
1461 }
1462 }
1463
1464 // Match keystrokes
1465 let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
1466 if node.context.is_some() {
1467 if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
1468 let mut new_actions = self
1469 .window
1470 .rendered_frame
1471 .dispatch_tree
1472 .dispatch_key(&key_down_event.keystroke, &context_stack);
1473 actions.append(&mut new_actions);
1474 }
1475
1476 context_stack.pop();
1477 }
1478 }
1479
1480 for action in actions {
1481 self.dispatch_action_on_node(node_id, action.boxed_clone());
1482 if !self.propagate_event {
1483 self.dispatch_keystroke_observers(event, Some(action));
1484 return;
1485 }
1486 }
1487 self.dispatch_keystroke_observers(event, None);
1488 }
1489
1490 pub fn has_pending_keystrokes(&self) -> bool {
1491 self.window
1492 .rendered_frame
1493 .dispatch_tree
1494 .has_pending_keystrokes()
1495 }
1496
1497 fn dispatch_action_on_node(&mut self, node_id: DispatchNodeId, action: Box<dyn Action>) {
1498 let dispatch_path = self
1499 .window
1500 .rendered_frame
1501 .dispatch_tree
1502 .dispatch_path(node_id);
1503
1504 // Capture phase
1505 for node_id in &dispatch_path {
1506 let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
1507 for DispatchActionListener {
1508 action_type,
1509 listener,
1510 } in node.action_listeners.clone()
1511 {
1512 let any_action = action.as_any();
1513 if action_type == any_action.type_id() {
1514 listener(any_action, DispatchPhase::Capture, self);
1515 if !self.propagate_event {
1516 return;
1517 }
1518 }
1519 }
1520 }
1521 // Bubble phase
1522 for node_id in dispatch_path.iter().rev() {
1523 let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
1524 for DispatchActionListener {
1525 action_type,
1526 listener,
1527 } in node.action_listeners.clone()
1528 {
1529 let any_action = action.as_any();
1530 if action_type == any_action.type_id() {
1531 self.propagate_event = false; // Actions stop propagation by default during the bubble phase
1532 listener(any_action, DispatchPhase::Bubble, self);
1533 if !self.propagate_event {
1534 return;
1535 }
1536 }
1537 }
1538 }
1539 }
1540
1541 /// Register the given handler to be invoked whenever the global of the given type
1542 /// is updated.
1543 pub fn observe_global<G: 'static>(
1544 &mut self,
1545 f: impl Fn(&mut WindowContext<'_>) + 'static,
1546 ) -> Subscription {
1547 let window_handle = self.window.handle;
1548 let (subscription, activate) = self.global_observers.insert(
1549 TypeId::of::<G>(),
1550 Box::new(move |cx| window_handle.update(cx, |_, cx| f(cx)).is_ok()),
1551 );
1552 self.app.defer(move |_| activate());
1553 subscription
1554 }
1555
1556 pub fn activate_window(&self) {
1557 self.window.platform_window.activate();
1558 }
1559
1560 pub fn minimize_window(&self) {
1561 self.window.platform_window.minimize();
1562 }
1563
1564 pub fn toggle_full_screen(&self) {
1565 self.window.platform_window.toggle_full_screen();
1566 }
1567
1568 pub fn prompt(
1569 &self,
1570 level: PromptLevel,
1571 msg: &str,
1572 answers: &[&str],
1573 ) -> oneshot::Receiver<usize> {
1574 self.window.platform_window.prompt(level, msg, answers)
1575 }
1576
1577 pub fn available_actions(&self) -> Vec<Box<dyn Action>> {
1578 let node_id = self
1579 .window
1580 .focus
1581 .and_then(|focus_id| {
1582 self.window
1583 .rendered_frame
1584 .dispatch_tree
1585 .focusable_node_id(focus_id)
1586 })
1587 .unwrap_or_else(|| self.window.rendered_frame.dispatch_tree.root_node_id());
1588
1589 self.window
1590 .rendered_frame
1591 .dispatch_tree
1592 .available_actions(node_id)
1593 }
1594
1595 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
1596 self.window
1597 .rendered_frame
1598 .dispatch_tree
1599 .bindings_for_action(
1600 action,
1601 &self.window.rendered_frame.dispatch_tree.context_stack,
1602 )
1603 }
1604
1605 pub fn bindings_for_action_in(
1606 &self,
1607 action: &dyn Action,
1608 focus_handle: &FocusHandle,
1609 ) -> Vec<KeyBinding> {
1610 let dispatch_tree = &self.window.rendered_frame.dispatch_tree;
1611
1612 let Some(node_id) = dispatch_tree.focusable_node_id(focus_handle.id) else {
1613 return vec![];
1614 };
1615 let context_stack = dispatch_tree
1616 .dispatch_path(node_id)
1617 .into_iter()
1618 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
1619 .collect();
1620 dispatch_tree.bindings_for_action(action, &context_stack)
1621 }
1622
1623 pub fn listener_for<V: Render, E>(
1624 &self,
1625 view: &View<V>,
1626 f: impl Fn(&mut V, &E, &mut ViewContext<V>) + 'static,
1627 ) -> impl Fn(&E, &mut WindowContext) + 'static {
1628 let view = view.downgrade();
1629 move |e: &E, cx: &mut WindowContext| {
1630 view.update(cx, |view, cx| f(view, e, cx)).ok();
1631 }
1632 }
1633
1634 pub fn handler_for<V: Render>(
1635 &self,
1636 view: &View<V>,
1637 f: impl Fn(&mut V, &mut ViewContext<V>) + 'static,
1638 ) -> impl Fn(&mut WindowContext) {
1639 let view = view.downgrade();
1640 move |cx: &mut WindowContext| {
1641 view.update(cx, |view, cx| f(view, cx)).ok();
1642 }
1643 }
1644
1645 //========== ELEMENT RELATED FUNCTIONS ===========
1646 pub fn with_key_dispatch<R>(
1647 &mut self,
1648 context: Option<KeyContext>,
1649 focus_handle: Option<FocusHandle>,
1650 f: impl FnOnce(Option<FocusHandle>, &mut Self) -> R,
1651 ) -> R {
1652 let window = &mut self.window;
1653 window.next_frame.dispatch_tree.push_node(context.clone());
1654 if let Some(focus_handle) = focus_handle.as_ref() {
1655 window
1656 .next_frame
1657 .dispatch_tree
1658 .make_focusable(focus_handle.id);
1659 }
1660 let result = f(focus_handle, self);
1661
1662 self.window.next_frame.dispatch_tree.pop_node();
1663
1664 result
1665 }
1666
1667 /// Register a focus listener for the next frame only. It will be cleared
1668 /// on the next frame render. You should use this method only from within elements,
1669 /// and we may want to enforce that better via a different context type.
1670 // todo!() Move this to `FrameContext` to emphasize its individuality?
1671 pub fn on_focus_changed(
1672 &mut self,
1673 listener: impl Fn(&FocusEvent, &mut WindowContext) + 'static,
1674 ) {
1675 self.window
1676 .next_frame
1677 .focus_listeners
1678 .push(Box::new(move |event, cx| {
1679 listener(event, cx);
1680 }));
1681 }
1682
1683 /// Set an input handler, such as [ElementInputHandler], which interfaces with the
1684 /// platform to receive textual input with proper integration with concerns such
1685 /// as IME interactions.
1686 pub fn handle_input(
1687 &mut self,
1688 focus_handle: &FocusHandle,
1689 input_handler: impl PlatformInputHandler,
1690 ) {
1691 if focus_handle.is_focused(self) {
1692 self.window
1693 .platform_window
1694 .set_input_handler(Box::new(input_handler));
1695 }
1696 }
1697
1698 pub fn on_window_should_close(&mut self, f: impl Fn(&mut WindowContext) -> bool + 'static) {
1699 let mut this = self.to_async();
1700 self.window
1701 .platform_window
1702 .on_should_close(Box::new(move || this.update(|_, cx| f(cx)).unwrap_or(true)))
1703 }
1704}
1705
1706impl Context for WindowContext<'_> {
1707 type Result<T> = T;
1708
1709 fn build_model<T>(
1710 &mut self,
1711 build_model: impl FnOnce(&mut ModelContext<'_, T>) -> T,
1712 ) -> Model<T>
1713 where
1714 T: 'static,
1715 {
1716 let slot = self.app.entities.reserve();
1717 let model = build_model(&mut ModelContext::new(&mut *self.app, slot.downgrade()));
1718 self.entities.insert(slot, model)
1719 }
1720
1721 fn update_model<T: 'static, R>(
1722 &mut self,
1723 model: &Model<T>,
1724 update: impl FnOnce(&mut T, &mut ModelContext<'_, T>) -> R,
1725 ) -> R {
1726 let mut entity = self.entities.lease(model);
1727 let result = update(
1728 &mut *entity,
1729 &mut ModelContext::new(&mut *self.app, model.downgrade()),
1730 );
1731 self.entities.end_lease(entity);
1732 result
1733 }
1734
1735 fn update_window<T, F>(&mut self, window: AnyWindowHandle, update: F) -> Result<T>
1736 where
1737 F: FnOnce(AnyView, &mut WindowContext<'_>) -> T,
1738 {
1739 if window == self.window.handle {
1740 let root_view = self.window.root_view.clone().unwrap();
1741 Ok(update(root_view, self))
1742 } else {
1743 window.update(self.app, update)
1744 }
1745 }
1746
1747 fn read_model<T, R>(
1748 &self,
1749 handle: &Model<T>,
1750 read: impl FnOnce(&T, &AppContext) -> R,
1751 ) -> Self::Result<R>
1752 where
1753 T: 'static,
1754 {
1755 let entity = self.entities.read(handle);
1756 read(&*entity, &*self.app)
1757 }
1758
1759 fn read_window<T, R>(
1760 &self,
1761 window: &WindowHandle<T>,
1762 read: impl FnOnce(View<T>, &AppContext) -> R,
1763 ) -> Result<R>
1764 where
1765 T: 'static,
1766 {
1767 if window.any_handle == self.window.handle {
1768 let root_view = self
1769 .window
1770 .root_view
1771 .clone()
1772 .unwrap()
1773 .downcast::<T>()
1774 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
1775 Ok(read(root_view, self))
1776 } else {
1777 self.app.read_window(window, read)
1778 }
1779 }
1780}
1781
1782impl VisualContext for WindowContext<'_> {
1783 fn build_view<V>(
1784 &mut self,
1785 build_view_state: impl FnOnce(&mut ViewContext<'_, V>) -> V,
1786 ) -> Self::Result<View<V>>
1787 where
1788 V: 'static + Render,
1789 {
1790 let slot = self.app.entities.reserve();
1791 let view = View {
1792 model: slot.clone(),
1793 };
1794 let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view);
1795 let entity = build_view_state(&mut cx);
1796 cx.entities.insert(slot, entity);
1797
1798 cx.new_view_observers
1799 .clone()
1800 .retain(&TypeId::of::<V>(), |observer| {
1801 let any_view = AnyView::from(view.clone());
1802 (observer)(any_view, self);
1803 true
1804 });
1805
1806 view
1807 }
1808
1809 /// Update the given view. Prefer calling `View::update` instead, which calls this method.
1810 fn update_view<T: 'static, R>(
1811 &mut self,
1812 view: &View<T>,
1813 update: impl FnOnce(&mut T, &mut ViewContext<'_, T>) -> R,
1814 ) -> Self::Result<R> {
1815 let mut lease = self.app.entities.lease(&view.model);
1816 let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view);
1817 let result = update(&mut *lease, &mut cx);
1818 cx.app.entities.end_lease(lease);
1819 result
1820 }
1821
1822 fn replace_root_view<V>(
1823 &mut self,
1824 build_view: impl FnOnce(&mut ViewContext<'_, V>) -> V,
1825 ) -> Self::Result<View<V>>
1826 where
1827 V: 'static + Render,
1828 {
1829 let slot = self.app.entities.reserve();
1830 let view = View {
1831 model: slot.clone(),
1832 };
1833 let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view);
1834 let entity = build_view(&mut cx);
1835 self.entities.insert(slot, entity);
1836 self.window.root_view = Some(view.clone().into());
1837 view
1838 }
1839
1840 fn focus_view<V: crate::FocusableView>(&mut self, view: &View<V>) -> Self::Result<()> {
1841 self.update_view(view, |view, cx| {
1842 view.focus_handle(cx).clone().focus(cx);
1843 })
1844 }
1845
1846 fn dismiss_view<V>(&mut self, view: &View<V>) -> Self::Result<()>
1847 where
1848 V: ManagedView,
1849 {
1850 self.update_view(view, |_, cx| cx.emit(DismissEvent))
1851 }
1852}
1853
1854impl<'a> std::ops::Deref for WindowContext<'a> {
1855 type Target = AppContext;
1856
1857 fn deref(&self) -> &Self::Target {
1858 &self.app
1859 }
1860}
1861
1862impl<'a> std::ops::DerefMut for WindowContext<'a> {
1863 fn deref_mut(&mut self) -> &mut Self::Target {
1864 &mut self.app
1865 }
1866}
1867
1868impl<'a> Borrow<AppContext> for WindowContext<'a> {
1869 fn borrow(&self) -> &AppContext {
1870 &self.app
1871 }
1872}
1873
1874impl<'a> BorrowMut<AppContext> for WindowContext<'a> {
1875 fn borrow_mut(&mut self) -> &mut AppContext {
1876 &mut self.app
1877 }
1878}
1879
1880pub trait BorrowWindow: BorrowMut<Window> + BorrowMut<AppContext> {
1881 fn app_mut(&mut self) -> &mut AppContext {
1882 self.borrow_mut()
1883 }
1884
1885 fn app(&self) -> &AppContext {
1886 self.borrow()
1887 }
1888
1889 fn window(&self) -> &Window {
1890 self.borrow()
1891 }
1892
1893 fn window_mut(&mut self) -> &mut Window {
1894 self.borrow_mut()
1895 }
1896
1897 /// Pushes the given element id onto the global stack and invokes the given closure
1898 /// with a `GlobalElementId`, which disambiguates the given id in the context of its ancestor
1899 /// ids. Because elements are discarded and recreated on each frame, the `GlobalElementId` is
1900 /// used to associate state with identified elements across separate frames.
1901 fn with_element_id<R>(
1902 &mut self,
1903 id: Option<impl Into<ElementId>>,
1904 f: impl FnOnce(&mut Self) -> R,
1905 ) -> R {
1906 if let Some(id) = id.map(Into::into) {
1907 let window = self.window_mut();
1908 window.element_id_stack.push(id.into());
1909 let result = f(self);
1910 let window: &mut Window = self.borrow_mut();
1911 window.element_id_stack.pop();
1912 result
1913 } else {
1914 f(self)
1915 }
1916 }
1917
1918 /// Invoke the given function with the given content mask after intersecting it
1919 /// with the current mask.
1920 fn with_content_mask<R>(
1921 &mut self,
1922 mask: Option<ContentMask<Pixels>>,
1923 f: impl FnOnce(&mut Self) -> R,
1924 ) -> R {
1925 if let Some(mask) = mask {
1926 let mask = mask.intersect(&self.content_mask());
1927 self.window_mut().next_frame.content_mask_stack.push(mask);
1928 let result = f(self);
1929 self.window_mut().next_frame.content_mask_stack.pop();
1930 result
1931 } else {
1932 f(self)
1933 }
1934 }
1935
1936 /// Invoke the given function with the content mask reset to that
1937 /// of the window.
1938 fn break_content_mask<R>(&mut self, f: impl FnOnce(&mut Self) -> R) -> R {
1939 let mask = ContentMask {
1940 bounds: Bounds {
1941 origin: Point::default(),
1942 size: self.window().viewport_size,
1943 },
1944 };
1945 self.window_mut().next_frame.content_mask_stack.push(mask);
1946 let result = f(self);
1947 self.window_mut().next_frame.content_mask_stack.pop();
1948 result
1949 }
1950
1951 /// Update the global element offset relative to the current offset. This is used to implement
1952 /// scrolling.
1953 fn with_element_offset<R>(
1954 &mut self,
1955 offset: Point<Pixels>,
1956 f: impl FnOnce(&mut Self) -> R,
1957 ) -> R {
1958 if offset.is_zero() {
1959 return f(self);
1960 };
1961
1962 let abs_offset = self.element_offset() + offset;
1963 self.with_absolute_element_offset(abs_offset, f)
1964 }
1965
1966 /// Update the global element offset based on the given offset. This is used to implement
1967 /// drag handles and other manual painting of elements.
1968 fn with_absolute_element_offset<R>(
1969 &mut self,
1970 offset: Point<Pixels>,
1971 f: impl FnOnce(&mut Self) -> R,
1972 ) -> R {
1973 self.window_mut()
1974 .next_frame
1975 .element_offset_stack
1976 .push(offset);
1977 let result = f(self);
1978 self.window_mut().next_frame.element_offset_stack.pop();
1979 result
1980 }
1981
1982 /// Obtain the current element offset.
1983 fn element_offset(&self) -> Point<Pixels> {
1984 self.window()
1985 .next_frame
1986 .element_offset_stack
1987 .last()
1988 .copied()
1989 .unwrap_or_default()
1990 }
1991
1992 /// Update or initialize state for an element with the given id that lives across multiple
1993 /// frames. If an element with this id existed in the rendered frame, its state will be passed
1994 /// to the given closure. The state returned by the closure will be stored so it can be referenced
1995 /// when drawing the next frame.
1996 fn with_element_state<S, R>(
1997 &mut self,
1998 id: ElementId,
1999 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2000 ) -> R
2001 where
2002 S: 'static,
2003 {
2004 self.with_element_id(Some(id), |cx| {
2005 let global_id = cx.window().element_id_stack.clone();
2006
2007 if let Some(any) = cx
2008 .window_mut()
2009 .next_frame
2010 .element_states
2011 .remove(&global_id)
2012 .or_else(|| {
2013 cx.window_mut()
2014 .rendered_frame
2015 .element_states
2016 .remove(&global_id)
2017 })
2018 {
2019 let ElementStateBox {
2020 inner,
2021
2022 #[cfg(debug_assertions)]
2023 type_name
2024 } = any;
2025 // Using the extra inner option to avoid needing to reallocate a new box.
2026 let mut state_box = inner
2027 .downcast::<Option<S>>()
2028 .map_err(|_| {
2029 #[cfg(debug_assertions)]
2030 {
2031 anyhow!(
2032 "invalid element state type for id, requested_type {:?}, actual type: {:?}",
2033 std::any::type_name::<S>(),
2034 type_name
2035 )
2036 }
2037
2038 #[cfg(not(debug_assertions))]
2039 {
2040 anyhow!(
2041 "invalid element state type for id, requested_type {:?}",
2042 std::any::type_name::<S>(),
2043 )
2044 }
2045 })
2046 .unwrap();
2047
2048 // Actual: Option<AnyElement> <- View
2049 // Requested: () <- AnyElemet
2050 let state = state_box
2051 .take()
2052 .expect("element state is already on the stack");
2053 let (result, state) = f(Some(state), cx);
2054 state_box.replace(state);
2055 cx.window_mut()
2056 .next_frame
2057 .element_states
2058 .insert(global_id, ElementStateBox {
2059 inner: state_box,
2060
2061 #[cfg(debug_assertions)]
2062 type_name
2063 });
2064 result
2065 } else {
2066 let (result, state) = f(None, cx);
2067 cx.window_mut()
2068 .next_frame
2069 .element_states
2070 .insert(global_id,
2071 ElementStateBox {
2072 inner: Box::new(Some(state)),
2073
2074 #[cfg(debug_assertions)]
2075 type_name: std::any::type_name::<S>()
2076 }
2077
2078 );
2079 result
2080 }
2081 })
2082 }
2083
2084 /// Obtain the current content mask.
2085 fn content_mask(&self) -> ContentMask<Pixels> {
2086 self.window()
2087 .next_frame
2088 .content_mask_stack
2089 .last()
2090 .cloned()
2091 .unwrap_or_else(|| ContentMask {
2092 bounds: Bounds {
2093 origin: Point::default(),
2094 size: self.window().viewport_size,
2095 },
2096 })
2097 }
2098
2099 /// The size of an em for the base font of the application. Adjusting this value allows the
2100 /// UI to scale, just like zooming a web page.
2101 fn rem_size(&self) -> Pixels {
2102 self.window().rem_size
2103 }
2104}
2105
2106impl Borrow<Window> for WindowContext<'_> {
2107 fn borrow(&self) -> &Window {
2108 &self.window
2109 }
2110}
2111
2112impl BorrowMut<Window> for WindowContext<'_> {
2113 fn borrow_mut(&mut self) -> &mut Window {
2114 &mut self.window
2115 }
2116}
2117
2118impl<T> BorrowWindow for T where T: BorrowMut<AppContext> + BorrowMut<Window> {}
2119
2120pub struct ViewContext<'a, V> {
2121 window_cx: WindowContext<'a>,
2122 view: &'a View<V>,
2123}
2124
2125impl<V> Borrow<AppContext> for ViewContext<'_, V> {
2126 fn borrow(&self) -> &AppContext {
2127 &*self.window_cx.app
2128 }
2129}
2130
2131impl<V> BorrowMut<AppContext> for ViewContext<'_, V> {
2132 fn borrow_mut(&mut self) -> &mut AppContext {
2133 &mut *self.window_cx.app
2134 }
2135}
2136
2137impl<V> Borrow<Window> for ViewContext<'_, V> {
2138 fn borrow(&self) -> &Window {
2139 &*self.window_cx.window
2140 }
2141}
2142
2143impl<V> BorrowMut<Window> for ViewContext<'_, V> {
2144 fn borrow_mut(&mut self) -> &mut Window {
2145 &mut *self.window_cx.window
2146 }
2147}
2148
2149impl<'a, V: 'static> ViewContext<'a, V> {
2150 pub(crate) fn new(app: &'a mut AppContext, window: &'a mut Window, view: &'a View<V>) -> Self {
2151 Self {
2152 window_cx: WindowContext::new(app, window),
2153 view,
2154 }
2155 }
2156
2157 pub fn entity_id(&self) -> EntityId {
2158 self.view.entity_id()
2159 }
2160
2161 pub fn view(&self) -> &View<V> {
2162 self.view
2163 }
2164
2165 pub fn model(&self) -> &Model<V> {
2166 &self.view.model
2167 }
2168
2169 /// Access the underlying window context.
2170 pub fn window_context(&mut self) -> &mut WindowContext<'a> {
2171 &mut self.window_cx
2172 }
2173
2174 pub fn with_z_index<R>(&mut self, z_index: u32, f: impl FnOnce(&mut Self) -> R) -> R {
2175 self.window.next_frame.z_index_stack.push(z_index);
2176 let result = f(self);
2177 self.window.next_frame.z_index_stack.pop();
2178 result
2179 }
2180
2181 pub fn on_next_frame(&mut self, f: impl FnOnce(&mut V, &mut ViewContext<V>) + 'static)
2182 where
2183 V: 'static,
2184 {
2185 let view = self.view().clone();
2186 self.window_cx.on_next_frame(move |cx| view.update(cx, f));
2187 }
2188
2189 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
2190 /// that are currently on the stack to be returned to the app.
2191 pub fn defer(&mut self, f: impl FnOnce(&mut V, &mut ViewContext<V>) + 'static) {
2192 let view = self.view().downgrade();
2193 self.window_cx.defer(move |cx| {
2194 view.update(cx, f).ok();
2195 });
2196 }
2197
2198 pub fn observe<V2, E>(
2199 &mut self,
2200 entity: &E,
2201 mut on_notify: impl FnMut(&mut V, E, &mut ViewContext<'_, V>) + 'static,
2202 ) -> Subscription
2203 where
2204 V2: 'static,
2205 V: 'static,
2206 E: Entity<V2>,
2207 {
2208 let view = self.view().downgrade();
2209 let entity_id = entity.entity_id();
2210 let entity = entity.downgrade();
2211 let window_handle = self.window.handle;
2212 let (subscription, activate) = self.app.observers.insert(
2213 entity_id,
2214 Box::new(move |cx| {
2215 window_handle
2216 .update(cx, |_, cx| {
2217 if let Some(handle) = E::upgrade_from(&entity) {
2218 view.update(cx, |this, cx| on_notify(this, handle, cx))
2219 .is_ok()
2220 } else {
2221 false
2222 }
2223 })
2224 .unwrap_or(false)
2225 }),
2226 );
2227 self.app.defer(move |_| activate());
2228 subscription
2229 }
2230
2231 pub fn subscribe<V2, E, Evt>(
2232 &mut self,
2233 entity: &E,
2234 mut on_event: impl FnMut(&mut V, E, &Evt, &mut ViewContext<'_, V>) + 'static,
2235 ) -> Subscription
2236 where
2237 V2: EventEmitter<Evt>,
2238 E: Entity<V2>,
2239 Evt: 'static,
2240 {
2241 let view = self.view().downgrade();
2242 let entity_id = entity.entity_id();
2243 let handle = entity.downgrade();
2244 let window_handle = self.window.handle;
2245 let (subscription, activate) = self.app.event_listeners.insert(
2246 entity_id,
2247 (
2248 TypeId::of::<Evt>(),
2249 Box::new(move |event, cx| {
2250 window_handle
2251 .update(cx, |_, cx| {
2252 if let Some(handle) = E::upgrade_from(&handle) {
2253 let event = event.downcast_ref().expect("invalid event type");
2254 view.update(cx, |this, cx| on_event(this, handle, event, cx))
2255 .is_ok()
2256 } else {
2257 false
2258 }
2259 })
2260 .unwrap_or(false)
2261 }),
2262 ),
2263 );
2264 self.app.defer(move |_| activate());
2265 subscription
2266 }
2267
2268 pub fn on_release(
2269 &mut self,
2270 on_release: impl FnOnce(&mut V, &mut WindowContext) + 'static,
2271 ) -> Subscription {
2272 let window_handle = self.window.handle;
2273 let (subscription, activate) = self.app.release_listeners.insert(
2274 self.view.model.entity_id,
2275 Box::new(move |this, cx| {
2276 let this = this.downcast_mut().expect("invalid entity type");
2277 let _ = window_handle.update(cx, |_, cx| on_release(this, cx));
2278 }),
2279 );
2280 activate();
2281 subscription
2282 }
2283
2284 pub fn observe_release<V2, E>(
2285 &mut self,
2286 entity: &E,
2287 mut on_release: impl FnMut(&mut V, &mut V2, &mut ViewContext<'_, V>) + 'static,
2288 ) -> Subscription
2289 where
2290 V: 'static,
2291 V2: 'static,
2292 E: Entity<V2>,
2293 {
2294 let view = self.view().downgrade();
2295 let entity_id = entity.entity_id();
2296 let window_handle = self.window.handle;
2297 let (subscription, activate) = self.app.release_listeners.insert(
2298 entity_id,
2299 Box::new(move |entity, cx| {
2300 let entity = entity.downcast_mut().expect("invalid entity type");
2301 let _ = window_handle.update(cx, |_, cx| {
2302 view.update(cx, |this, cx| on_release(this, entity, cx))
2303 });
2304 }),
2305 );
2306 activate();
2307 subscription
2308 }
2309
2310 pub fn notify(&mut self) {
2311 self.window_cx.notify();
2312 self.window_cx.app.push_effect(Effect::Notify {
2313 emitter: self.view.model.entity_id,
2314 });
2315 }
2316
2317 pub fn observe_window_bounds(
2318 &mut self,
2319 mut callback: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2320 ) -> Subscription {
2321 let view = self.view.downgrade();
2322 let (subscription, activate) = self.window.bounds_observers.insert(
2323 (),
2324 Box::new(move |cx| view.update(cx, |view, cx| callback(view, cx)).is_ok()),
2325 );
2326 activate();
2327 subscription
2328 }
2329
2330 pub fn observe_window_activation(
2331 &mut self,
2332 mut callback: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2333 ) -> Subscription {
2334 let view = self.view.downgrade();
2335 let (subscription, activate) = self.window.activation_observers.insert(
2336 (),
2337 Box::new(move |cx| view.update(cx, |view, cx| callback(view, cx)).is_ok()),
2338 );
2339 activate();
2340 subscription
2341 }
2342
2343 /// Register a listener to be called when the given focus handle receives focus.
2344 /// Unlike [on_focus_changed], returns a subscription and persists until the subscription
2345 /// is dropped.
2346 pub fn on_focus(
2347 &mut self,
2348 handle: &FocusHandle,
2349 mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2350 ) -> Subscription {
2351 let view = self.view.downgrade();
2352 let focus_id = handle.id;
2353 let (subscription, activate) = self.window.focus_listeners.insert(
2354 (),
2355 Box::new(move |event, cx| {
2356 view.update(cx, |view, cx| {
2357 if event.focused.as_ref().map(|focused| focused.id) == Some(focus_id) {
2358 listener(view, cx)
2359 }
2360 })
2361 .is_ok()
2362 }),
2363 );
2364 self.app.defer(move |_| activate());
2365 subscription
2366 }
2367
2368 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
2369 /// Unlike [on_focus_changed], returns a subscription and persists until the subscription
2370 /// is dropped.
2371 pub fn on_focus_in(
2372 &mut self,
2373 handle: &FocusHandle,
2374 mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2375 ) -> Subscription {
2376 let view = self.view.downgrade();
2377 let focus_id = handle.id;
2378 let (subscription, activate) = self.window.focus_listeners.insert(
2379 (),
2380 Box::new(move |event, cx| {
2381 view.update(cx, |view, cx| {
2382 if event
2383 .focused
2384 .as_ref()
2385 .map_or(false, |focused| focus_id.contains(focused.id, cx))
2386 {
2387 listener(view, cx)
2388 }
2389 })
2390 .is_ok()
2391 }),
2392 );
2393 self.app.defer(move |_| activate());
2394 subscription
2395 }
2396
2397 /// Register a listener to be called when the given focus handle loses focus.
2398 /// Unlike [on_focus_changed], returns a subscription and persists until the subscription
2399 /// is dropped.
2400 pub fn on_blur(
2401 &mut self,
2402 handle: &FocusHandle,
2403 mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2404 ) -> Subscription {
2405 let view = self.view.downgrade();
2406 let focus_id = handle.id;
2407 let (subscription, activate) = self.window.focus_listeners.insert(
2408 (),
2409 Box::new(move |event, cx| {
2410 view.update(cx, |view, cx| {
2411 if event.blurred.as_ref().map(|blurred| blurred.id) == Some(focus_id) {
2412 listener(view, cx)
2413 }
2414 })
2415 .is_ok()
2416 }),
2417 );
2418 self.app.defer(move |_| activate());
2419 subscription
2420 }
2421
2422 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
2423 /// Unlike [on_focus_changed], returns a subscription and persists until the subscription
2424 /// is dropped.
2425 pub fn on_focus_out(
2426 &mut self,
2427 handle: &FocusHandle,
2428 mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2429 ) -> Subscription {
2430 let view = self.view.downgrade();
2431 let focus_id = handle.id;
2432 let (subscription, activate) = self.window.focus_listeners.insert(
2433 (),
2434 Box::new(move |event, cx| {
2435 view.update(cx, |view, cx| {
2436 if event
2437 .blurred
2438 .as_ref()
2439 .map_or(false, |blurred| focus_id.contains(blurred.id, cx))
2440 {
2441 listener(view, cx)
2442 }
2443 })
2444 .is_ok()
2445 }),
2446 );
2447 self.app.defer(move |_| activate());
2448 subscription
2449 }
2450
2451 pub fn spawn<Fut, R>(
2452 &mut self,
2453 f: impl FnOnce(WeakView<V>, AsyncWindowContext) -> Fut,
2454 ) -> Task<R>
2455 where
2456 R: 'static,
2457 Fut: Future<Output = R> + 'static,
2458 {
2459 let view = self.view().downgrade();
2460 self.window_cx.spawn(|cx| f(view, cx))
2461 }
2462
2463 pub fn update_global<G, R>(&mut self, f: impl FnOnce(&mut G, &mut Self) -> R) -> R
2464 where
2465 G: 'static,
2466 {
2467 let mut global = self.app.lease_global::<G>();
2468 let result = f(&mut global, self);
2469 self.app.end_global_lease(global);
2470 result
2471 }
2472
2473 pub fn observe_global<G: 'static>(
2474 &mut self,
2475 mut f: impl FnMut(&mut V, &mut ViewContext<'_, V>) + 'static,
2476 ) -> Subscription {
2477 let window_handle = self.window.handle;
2478 let view = self.view().downgrade();
2479 let (subscription, activate) = self.global_observers.insert(
2480 TypeId::of::<G>(),
2481 Box::new(move |cx| {
2482 window_handle
2483 .update(cx, |_, cx| view.update(cx, |view, cx| f(view, cx)).is_ok())
2484 .unwrap_or(false)
2485 }),
2486 );
2487 self.app.defer(move |_| activate());
2488 subscription
2489 }
2490
2491 pub fn on_mouse_event<Event: 'static>(
2492 &mut self,
2493 handler: impl Fn(&mut V, &Event, DispatchPhase, &mut ViewContext<V>) + 'static,
2494 ) {
2495 let handle = self.view().clone();
2496 self.window_cx.on_mouse_event(move |event, phase, cx| {
2497 handle.update(cx, |view, cx| {
2498 handler(view, event, phase, cx);
2499 })
2500 });
2501 }
2502
2503 pub fn on_key_event<Event: 'static>(
2504 &mut self,
2505 handler: impl Fn(&mut V, &Event, DispatchPhase, &mut ViewContext<V>) + 'static,
2506 ) {
2507 let handle = self.view().clone();
2508 self.window_cx.on_key_event(move |event, phase, cx| {
2509 handle.update(cx, |view, cx| {
2510 handler(view, event, phase, cx);
2511 })
2512 });
2513 }
2514
2515 pub fn on_action(
2516 &mut self,
2517 action_type: TypeId,
2518 handler: impl Fn(&mut V, &dyn Any, DispatchPhase, &mut ViewContext<V>) + 'static,
2519 ) {
2520 let handle = self.view().clone();
2521 self.window_cx
2522 .on_action(action_type, move |action, phase, cx| {
2523 handle.update(cx, |view, cx| {
2524 handler(view, action, phase, cx);
2525 })
2526 });
2527 }
2528
2529 pub fn emit<Evt>(&mut self, event: Evt)
2530 where
2531 Evt: 'static,
2532 V: EventEmitter<Evt>,
2533 {
2534 let emitter = self.view.model.entity_id;
2535 self.app.push_effect(Effect::Emit {
2536 emitter,
2537 event_type: TypeId::of::<Evt>(),
2538 event: Box::new(event),
2539 });
2540 }
2541
2542 pub fn focus_self(&mut self)
2543 where
2544 V: FocusableView,
2545 {
2546 self.defer(|view, cx| view.focus_handle(cx).focus(cx))
2547 }
2548
2549 pub fn dismiss_self(&mut self)
2550 where
2551 V: ManagedView,
2552 {
2553 self.defer(|_, cx| cx.emit(DismissEvent))
2554 }
2555
2556 pub fn listener<E>(
2557 &self,
2558 f: impl Fn(&mut V, &E, &mut ViewContext<V>) + 'static,
2559 ) -> impl Fn(&E, &mut WindowContext) + 'static {
2560 let view = self.view().downgrade();
2561 move |e: &E, cx: &mut WindowContext| {
2562 view.update(cx, |view, cx| f(view, e, cx)).ok();
2563 }
2564 }
2565}
2566
2567impl<V> Context for ViewContext<'_, V> {
2568 type Result<U> = U;
2569
2570 fn build_model<T: 'static>(
2571 &mut self,
2572 build_model: impl FnOnce(&mut ModelContext<'_, T>) -> T,
2573 ) -> Model<T> {
2574 self.window_cx.build_model(build_model)
2575 }
2576
2577 fn update_model<T: 'static, R>(
2578 &mut self,
2579 model: &Model<T>,
2580 update: impl FnOnce(&mut T, &mut ModelContext<'_, T>) -> R,
2581 ) -> R {
2582 self.window_cx.update_model(model, update)
2583 }
2584
2585 fn update_window<T, F>(&mut self, window: AnyWindowHandle, update: F) -> Result<T>
2586 where
2587 F: FnOnce(AnyView, &mut WindowContext<'_>) -> T,
2588 {
2589 self.window_cx.update_window(window, update)
2590 }
2591
2592 fn read_model<T, R>(
2593 &self,
2594 handle: &Model<T>,
2595 read: impl FnOnce(&T, &AppContext) -> R,
2596 ) -> Self::Result<R>
2597 where
2598 T: 'static,
2599 {
2600 self.window_cx.read_model(handle, read)
2601 }
2602
2603 fn read_window<T, R>(
2604 &self,
2605 window: &WindowHandle<T>,
2606 read: impl FnOnce(View<T>, &AppContext) -> R,
2607 ) -> Result<R>
2608 where
2609 T: 'static,
2610 {
2611 self.window_cx.read_window(window, read)
2612 }
2613}
2614
2615impl<V: 'static> VisualContext for ViewContext<'_, V> {
2616 fn build_view<W: Render + 'static>(
2617 &mut self,
2618 build_view_state: impl FnOnce(&mut ViewContext<'_, W>) -> W,
2619 ) -> Self::Result<View<W>> {
2620 self.window_cx.build_view(build_view_state)
2621 }
2622
2623 fn update_view<V2: 'static, R>(
2624 &mut self,
2625 view: &View<V2>,
2626 update: impl FnOnce(&mut V2, &mut ViewContext<'_, V2>) -> R,
2627 ) -> Self::Result<R> {
2628 self.window_cx.update_view(view, update)
2629 }
2630
2631 fn replace_root_view<W>(
2632 &mut self,
2633 build_view: impl FnOnce(&mut ViewContext<'_, W>) -> W,
2634 ) -> Self::Result<View<W>>
2635 where
2636 W: 'static + Render,
2637 {
2638 self.window_cx.replace_root_view(build_view)
2639 }
2640
2641 fn focus_view<W: FocusableView>(&mut self, view: &View<W>) -> Self::Result<()> {
2642 self.window_cx.focus_view(view)
2643 }
2644
2645 fn dismiss_view<W: ManagedView>(&mut self, view: &View<W>) -> Self::Result<()> {
2646 self.window_cx.dismiss_view(view)
2647 }
2648}
2649
2650impl<'a, V> std::ops::Deref for ViewContext<'a, V> {
2651 type Target = WindowContext<'a>;
2652
2653 fn deref(&self) -> &Self::Target {
2654 &self.window_cx
2655 }
2656}
2657
2658impl<'a, V> std::ops::DerefMut for ViewContext<'a, V> {
2659 fn deref_mut(&mut self) -> &mut Self::Target {
2660 &mut self.window_cx
2661 }
2662}
2663
2664// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
2665slotmap::new_key_type! { pub struct WindowId; }
2666
2667impl WindowId {
2668 pub fn as_u64(&self) -> u64 {
2669 self.0.as_ffi()
2670 }
2671}
2672
2673#[derive(Deref, DerefMut)]
2674pub struct WindowHandle<V> {
2675 #[deref]
2676 #[deref_mut]
2677 pub(crate) any_handle: AnyWindowHandle,
2678 state_type: PhantomData<V>,
2679}
2680
2681impl<V: 'static + Render> WindowHandle<V> {
2682 pub fn new(id: WindowId) -> Self {
2683 WindowHandle {
2684 any_handle: AnyWindowHandle {
2685 id,
2686 state_type: TypeId::of::<V>(),
2687 },
2688 state_type: PhantomData,
2689 }
2690 }
2691
2692 pub fn root<C>(&self, cx: &mut C) -> Result<View<V>>
2693 where
2694 C: Context,
2695 {
2696 Flatten::flatten(cx.update_window(self.any_handle, |root_view, _| {
2697 root_view
2698 .downcast::<V>()
2699 .map_err(|_| anyhow!("the type of the window's root view has changed"))
2700 }))
2701 }
2702
2703 pub fn update<C, R>(
2704 &self,
2705 cx: &mut C,
2706 update: impl FnOnce(&mut V, &mut ViewContext<'_, V>) -> R,
2707 ) -> Result<R>
2708 where
2709 C: Context,
2710 {
2711 cx.update_window(self.any_handle, |root_view, cx| {
2712 let view = root_view
2713 .downcast::<V>()
2714 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
2715 Ok(cx.update_view(&view, update))
2716 })?
2717 }
2718
2719 pub fn read<'a>(&self, cx: &'a AppContext) -> Result<&'a V> {
2720 let x = cx
2721 .windows
2722 .get(self.id)
2723 .and_then(|window| {
2724 window
2725 .as_ref()
2726 .and_then(|window| window.root_view.clone())
2727 .map(|root_view| root_view.downcast::<V>())
2728 })
2729 .ok_or_else(|| anyhow!("window not found"))?
2730 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
2731
2732 Ok(x.read(cx))
2733 }
2734
2735 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &AppContext) -> R) -> Result<R>
2736 where
2737 C: Context,
2738 {
2739 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
2740 }
2741
2742 pub fn root_view<C>(&self, cx: &C) -> Result<View<V>>
2743 where
2744 C: Context,
2745 {
2746 cx.read_window(self, |root_view, _cx| root_view.clone())
2747 }
2748
2749 pub fn is_active(&self, cx: &AppContext) -> Option<bool> {
2750 cx.windows
2751 .get(self.id)
2752 .and_then(|window| window.as_ref().map(|window| window.active))
2753 }
2754}
2755
2756impl<V> Copy for WindowHandle<V> {}
2757
2758impl<V> Clone for WindowHandle<V> {
2759 fn clone(&self) -> Self {
2760 WindowHandle {
2761 any_handle: self.any_handle,
2762 state_type: PhantomData,
2763 }
2764 }
2765}
2766
2767impl<V> PartialEq for WindowHandle<V> {
2768 fn eq(&self, other: &Self) -> bool {
2769 self.any_handle == other.any_handle
2770 }
2771}
2772
2773impl<V> Eq for WindowHandle<V> {}
2774
2775impl<V> Hash for WindowHandle<V> {
2776 fn hash<H: Hasher>(&self, state: &mut H) {
2777 self.any_handle.hash(state);
2778 }
2779}
2780
2781impl<V: 'static> Into<AnyWindowHandle> for WindowHandle<V> {
2782 fn into(self) -> AnyWindowHandle {
2783 self.any_handle
2784 }
2785}
2786
2787#[derive(Copy, Clone, PartialEq, Eq, Hash)]
2788pub struct AnyWindowHandle {
2789 pub(crate) id: WindowId,
2790 state_type: TypeId,
2791}
2792
2793impl AnyWindowHandle {
2794 pub fn window_id(&self) -> WindowId {
2795 self.id
2796 }
2797
2798 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
2799 if TypeId::of::<T>() == self.state_type {
2800 Some(WindowHandle {
2801 any_handle: *self,
2802 state_type: PhantomData,
2803 })
2804 } else {
2805 None
2806 }
2807 }
2808
2809 pub fn update<C, R>(
2810 self,
2811 cx: &mut C,
2812 update: impl FnOnce(AnyView, &mut WindowContext<'_>) -> R,
2813 ) -> Result<R>
2814 where
2815 C: Context,
2816 {
2817 cx.update_window(self, update)
2818 }
2819
2820 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(View<T>, &AppContext) -> R) -> Result<R>
2821 where
2822 C: Context,
2823 T: 'static,
2824 {
2825 let view = self
2826 .downcast::<T>()
2827 .context("the type of the window's root view has changed")?;
2828
2829 cx.read_window(&view, read)
2830 }
2831}
2832
2833#[cfg(any(test, feature = "test-support"))]
2834impl From<SmallVec<[u32; 16]>> for StackingOrder {
2835 fn from(small_vec: SmallVec<[u32; 16]>) -> Self {
2836 StackingOrder(small_vec)
2837 }
2838}
2839
2840#[derive(Clone, Debug, Eq, PartialEq, Hash)]
2841pub enum ElementId {
2842 View(EntityId),
2843 Integer(usize),
2844 Name(SharedString),
2845 FocusHandle(FocusId),
2846 NamedInteger(SharedString, usize),
2847}
2848
2849impl ElementId {
2850 pub(crate) fn from_entity_id(entity_id: EntityId) -> Self {
2851 ElementId::View(entity_id)
2852 }
2853}
2854
2855impl TryInto<SharedString> for ElementId {
2856 type Error = anyhow::Error;
2857
2858 fn try_into(self) -> anyhow::Result<SharedString> {
2859 if let ElementId::Name(name) = self {
2860 Ok(name)
2861 } else {
2862 Err(anyhow!("element id is not string"))
2863 }
2864 }
2865}
2866
2867impl From<usize> for ElementId {
2868 fn from(id: usize) -> Self {
2869 ElementId::Integer(id)
2870 }
2871}
2872
2873impl From<i32> for ElementId {
2874 fn from(id: i32) -> Self {
2875 Self::Integer(id as usize)
2876 }
2877}
2878
2879impl From<SharedString> for ElementId {
2880 fn from(name: SharedString) -> Self {
2881 ElementId::Name(name)
2882 }
2883}
2884
2885impl From<&'static str> for ElementId {
2886 fn from(name: &'static str) -> Self {
2887 ElementId::Name(name.into())
2888 }
2889}
2890
2891impl<'a> From<&'a FocusHandle> for ElementId {
2892 fn from(handle: &'a FocusHandle) -> Self {
2893 ElementId::FocusHandle(handle.id)
2894 }
2895}
2896
2897impl From<(&'static str, EntityId)> for ElementId {
2898 fn from((name, id): (&'static str, EntityId)) -> Self {
2899 ElementId::NamedInteger(name.into(), id.as_u64() as usize)
2900 }
2901}
2902
2903impl From<(&'static str, usize)> for ElementId {
2904 fn from((name, id): (&'static str, usize)) -> Self {
2905 ElementId::NamedInteger(name.into(), id)
2906 }
2907}
2908
2909impl From<(&'static str, u64)> for ElementId {
2910 fn from((name, id): (&'static str, u64)) -> Self {
2911 ElementId::NamedInteger(name.into(), id as usize)
2912 }
2913}