1#[cfg(any(feature = "inspector", debug_assertions))]
2use crate::Inspector;
3use crate::{
4 Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
5 AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Capslock,
6 Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
7 DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
8 FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
9 KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
10 LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
11 MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
12 PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptButton, PromptLevel, Quad,
13 Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge,
14 SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS_X, SUBPIXEL_VARIANTS_Y, ScaledPixels, Scene, Shadow,
15 SharedString, Size, StrikethroughStyle, Style, SubscriberSet, Subscription, SystemWindowTab,
16 SystemWindowTabController, TabStopMap, TaffyLayoutEngine, Task, TextStyle, TextStyleRefinement,
17 TransformationMatrix, Underline, UnderlineStyle, WindowAppearance, WindowBackgroundAppearance,
18 WindowBounds, WindowControls, WindowDecorations, WindowOptions, WindowParams, WindowTextSystem,
19 point, prelude::*, px, rems, size, transparent_black,
20};
21use anyhow::{Context as _, Result, anyhow};
22use collections::{FxHashMap, FxHashSet};
23#[cfg(target_os = "macos")]
24use core_video::pixel_buffer::CVPixelBuffer;
25use derive_more::{Deref, DerefMut};
26use futures::FutureExt;
27use futures::channel::oneshot;
28use itertools::FoldWhile::{Continue, Done};
29use itertools::Itertools;
30use parking_lot::RwLock;
31use raw_window_handle::{HandleError, HasDisplayHandle, HasWindowHandle};
32use refineable::Refineable;
33use slotmap::SlotMap;
34use smallvec::SmallVec;
35use std::{
36 any::{Any, TypeId},
37 borrow::Cow,
38 cell::{Cell, RefCell},
39 cmp,
40 fmt::{Debug, Display},
41 hash::{Hash, Hasher},
42 marker::PhantomData,
43 mem,
44 ops::{DerefMut, Range},
45 rc::Rc,
46 sync::{
47 Arc, Weak,
48 atomic::{AtomicUsize, Ordering::SeqCst},
49 },
50 time::{Duration, Instant},
51};
52use util::post_inc;
53use util::{ResultExt, measure};
54use uuid::Uuid;
55
56mod prompts;
57
58use crate::util::atomic_incr_if_not_zero;
59pub use prompts::*;
60
61pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1536.), px(864.));
62
63/// A 6:5 aspect ratio minimum window size to be used for functional,
64/// additional-to-main-Zed windows, like the settings and rules library windows.
65pub const DEFAULT_ADDITIONAL_WINDOW_SIZE: Size<Pixels> = Size {
66 width: Pixels(900.),
67 height: Pixels(750.),
68};
69
70/// Represents the two different phases when dispatching events.
71#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
72pub enum DispatchPhase {
73 /// After the capture phase comes the bubble phase, in which mouse event listeners are
74 /// invoked front to back and keyboard event listeners are invoked from the focused element
75 /// to the root of the element tree. This is the phase you'll most commonly want to use when
76 /// registering event listeners.
77 #[default]
78 Bubble,
79 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
80 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
81 /// is used for special purposes such as clearing the "pressed" state for click events. If
82 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
83 /// outside of the immediate region may rely on detecting non-local events during this phase.
84 Capture,
85}
86
87impl DispatchPhase {
88 /// Returns true if this represents the "bubble" phase.
89 #[inline]
90 pub fn bubble(self) -> bool {
91 self == DispatchPhase::Bubble
92 }
93
94 /// Returns true if this represents the "capture" phase.
95 #[inline]
96 pub fn capture(self) -> bool {
97 self == DispatchPhase::Capture
98 }
99}
100
101struct WindowInvalidatorInner {
102 pub dirty: bool,
103 pub draw_phase: DrawPhase,
104 pub dirty_views: FxHashSet<EntityId>,
105}
106
107#[derive(Clone)]
108pub(crate) struct WindowInvalidator {
109 inner: Rc<RefCell<WindowInvalidatorInner>>,
110}
111
112impl WindowInvalidator {
113 pub fn new() -> Self {
114 WindowInvalidator {
115 inner: Rc::new(RefCell::new(WindowInvalidatorInner {
116 dirty: true,
117 draw_phase: DrawPhase::None,
118 dirty_views: FxHashSet::default(),
119 })),
120 }
121 }
122
123 pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
124 let mut inner = self.inner.borrow_mut();
125 inner.dirty_views.insert(entity);
126 if inner.draw_phase == DrawPhase::None {
127 inner.dirty = true;
128 cx.push_effect(Effect::Notify { emitter: entity });
129 true
130 } else {
131 false
132 }
133 }
134
135 pub fn is_dirty(&self) -> bool {
136 self.inner.borrow().dirty
137 }
138
139 pub fn set_dirty(&self, dirty: bool) {
140 self.inner.borrow_mut().dirty = dirty
141 }
142
143 pub fn set_phase(&self, phase: DrawPhase) {
144 self.inner.borrow_mut().draw_phase = phase
145 }
146
147 pub fn take_views(&self) -> FxHashSet<EntityId> {
148 mem::take(&mut self.inner.borrow_mut().dirty_views)
149 }
150
151 pub fn replace_views(&self, views: FxHashSet<EntityId>) {
152 self.inner.borrow_mut().dirty_views = views;
153 }
154
155 pub fn not_drawing(&self) -> bool {
156 self.inner.borrow().draw_phase == DrawPhase::None
157 }
158
159 #[track_caller]
160 pub fn debug_assert_paint(&self) {
161 debug_assert!(
162 matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
163 "this method can only be called during paint"
164 );
165 }
166
167 #[track_caller]
168 pub fn debug_assert_prepaint(&self) {
169 debug_assert!(
170 matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
171 "this method can only be called during request_layout, or prepaint"
172 );
173 }
174
175 #[track_caller]
176 pub fn debug_assert_paint_or_prepaint(&self) {
177 debug_assert!(
178 matches!(
179 self.inner.borrow().draw_phase,
180 DrawPhase::Paint | DrawPhase::Prepaint
181 ),
182 "this method can only be called during request_layout, prepaint, or paint"
183 );
184 }
185}
186
187type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
188
189pub(crate) type AnyWindowFocusListener =
190 Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
191
192pub(crate) struct WindowFocusEvent {
193 pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
194 pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
195}
196
197impl WindowFocusEvent {
198 pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
199 !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
200 }
201
202 pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
203 self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
204 }
205}
206
207/// This is provided when subscribing for `Context::on_focus_out` events.
208pub struct FocusOutEvent {
209 /// A weak focus handle representing what was blurred.
210 pub blurred: WeakFocusHandle,
211}
212
213slotmap::new_key_type! {
214 /// A globally unique identifier for a focusable element.
215 pub struct FocusId;
216}
217
218thread_local! {
219 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(1024 * 1024));
220}
221
222/// Returned when the element arena has been used and so must be cleared before the next draw.
223#[must_use]
224pub struct ArenaClearNeeded;
225
226impl ArenaClearNeeded {
227 /// Clear the element arena.
228 pub fn clear(self) {
229 ELEMENT_ARENA.with_borrow_mut(|element_arena| {
230 element_arena.clear();
231 });
232 }
233}
234
235pub(crate) type FocusMap = RwLock<SlotMap<FocusId, FocusRef>>;
236pub(crate) struct FocusRef {
237 pub(crate) ref_count: AtomicUsize,
238 pub(crate) tab_index: isize,
239 pub(crate) tab_stop: bool,
240}
241
242impl FocusId {
243 /// Obtains whether the element associated with this handle is currently focused.
244 pub fn is_focused(&self, window: &Window) -> bool {
245 window.focus == Some(*self)
246 }
247
248 /// Obtains whether the element associated with this handle contains the focused
249 /// element or is itself focused.
250 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
251 window
252 .focused(cx)
253 .is_some_and(|focused| self.contains(focused.id, window))
254 }
255
256 /// Obtains whether the element associated with this handle is contained within the
257 /// focused element or is itself focused.
258 pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
259 let focused = window.focused(cx);
260 focused.is_some_and(|focused| focused.id.contains(*self, window))
261 }
262
263 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
264 pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
265 window
266 .rendered_frame
267 .dispatch_tree
268 .focus_contains(*self, other)
269 }
270}
271
272/// A handle which can be used to track and manipulate the focused element in a window.
273pub struct FocusHandle {
274 pub(crate) id: FocusId,
275 handles: Arc<FocusMap>,
276 /// The index of this element in the tab order.
277 pub tab_index: isize,
278 /// Whether this element can be focused by tab navigation.
279 pub tab_stop: bool,
280}
281
282impl std::fmt::Debug for FocusHandle {
283 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
284 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
285 }
286}
287
288impl FocusHandle {
289 pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
290 let id = handles.write().insert(FocusRef {
291 ref_count: AtomicUsize::new(1),
292 tab_index: 0,
293 tab_stop: false,
294 });
295
296 Self {
297 id,
298 tab_index: 0,
299 tab_stop: false,
300 handles: handles.clone(),
301 }
302 }
303
304 pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
305 let lock = handles.read();
306 let focus = lock.get(id)?;
307 if atomic_incr_if_not_zero(&focus.ref_count) == 0 {
308 return None;
309 }
310 Some(Self {
311 id,
312 tab_index: focus.tab_index,
313 tab_stop: focus.tab_stop,
314 handles: handles.clone(),
315 })
316 }
317
318 /// Sets the tab index of the element associated with this handle.
319 pub fn tab_index(mut self, index: isize) -> Self {
320 self.tab_index = index;
321 if let Some(focus) = self.handles.write().get_mut(self.id) {
322 focus.tab_index = index;
323 }
324 self
325 }
326
327 /// Sets whether the element associated with this handle is a tab stop.
328 ///
329 /// When `false`, the element will not be included in the tab order.
330 pub fn tab_stop(mut self, tab_stop: bool) -> Self {
331 self.tab_stop = tab_stop;
332 if let Some(focus) = self.handles.write().get_mut(self.id) {
333 focus.tab_stop = tab_stop;
334 }
335 self
336 }
337
338 /// Converts this focus handle into a weak variant, which does not prevent it from being released.
339 pub fn downgrade(&self) -> WeakFocusHandle {
340 WeakFocusHandle {
341 id: self.id,
342 handles: Arc::downgrade(&self.handles),
343 }
344 }
345
346 /// Moves the focus to the element associated with this handle.
347 pub fn focus(&self, window: &mut Window) {
348 window.focus(self)
349 }
350
351 /// Obtains whether the element associated with this handle is currently focused.
352 pub fn is_focused(&self, window: &Window) -> bool {
353 self.id.is_focused(window)
354 }
355
356 /// Obtains whether the element associated with this handle contains the focused
357 /// element or is itself focused.
358 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
359 self.id.contains_focused(window, cx)
360 }
361
362 /// Obtains whether the element associated with this handle is contained within the
363 /// focused element or is itself focused.
364 pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
365 self.id.within_focused(window, cx)
366 }
367
368 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
369 pub fn contains(&self, other: &Self, window: &Window) -> bool {
370 self.id.contains(other.id, window)
371 }
372
373 /// Dispatch an action on the element that rendered this focus handle
374 pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
375 if let Some(node_id) = window
376 .rendered_frame
377 .dispatch_tree
378 .focusable_node_id(self.id)
379 {
380 window.dispatch_action_on_node(node_id, action, cx)
381 }
382 }
383}
384
385impl Clone for FocusHandle {
386 fn clone(&self) -> Self {
387 Self::for_id(self.id, &self.handles).unwrap()
388 }
389}
390
391impl PartialEq for FocusHandle {
392 fn eq(&self, other: &Self) -> bool {
393 self.id == other.id
394 }
395}
396
397impl Eq for FocusHandle {}
398
399impl Drop for FocusHandle {
400 fn drop(&mut self) {
401 self.handles
402 .read()
403 .get(self.id)
404 .unwrap()
405 .ref_count
406 .fetch_sub(1, SeqCst);
407 }
408}
409
410/// A weak reference to a focus handle.
411#[derive(Clone, Debug)]
412pub struct WeakFocusHandle {
413 pub(crate) id: FocusId,
414 pub(crate) handles: Weak<FocusMap>,
415}
416
417impl WeakFocusHandle {
418 /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
419 pub fn upgrade(&self) -> Option<FocusHandle> {
420 let handles = self.handles.upgrade()?;
421 FocusHandle::for_id(self.id, &handles)
422 }
423}
424
425impl PartialEq for WeakFocusHandle {
426 fn eq(&self, other: &WeakFocusHandle) -> bool {
427 self.id == other.id
428 }
429}
430
431impl Eq for WeakFocusHandle {}
432
433impl PartialEq<FocusHandle> for WeakFocusHandle {
434 fn eq(&self, other: &FocusHandle) -> bool {
435 self.id == other.id
436 }
437}
438
439impl PartialEq<WeakFocusHandle> for FocusHandle {
440 fn eq(&self, other: &WeakFocusHandle) -> bool {
441 self.id == other.id
442 }
443}
444
445/// Focusable allows users of your view to easily
446/// focus it (using window.focus_view(cx, view))
447pub trait Focusable: 'static {
448 /// Returns the focus handle associated with this view.
449 fn focus_handle(&self, cx: &App) -> FocusHandle;
450}
451
452impl<V: Focusable> Focusable for Entity<V> {
453 fn focus_handle(&self, cx: &App) -> FocusHandle {
454 self.read(cx).focus_handle(cx)
455 }
456}
457
458/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
459/// where the lifecycle of the view is handled by another view.
460pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
461
462impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
463
464/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
465pub struct DismissEvent;
466
467type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
468
469pub(crate) type AnyMouseListener =
470 Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
471
472#[derive(Clone)]
473pub(crate) struct CursorStyleRequest {
474 pub(crate) hitbox_id: Option<HitboxId>,
475 pub(crate) style: CursorStyle,
476}
477
478#[derive(Default, Eq, PartialEq)]
479pub(crate) struct HitTest {
480 pub(crate) ids: SmallVec<[HitboxId; 8]>,
481 pub(crate) hover_hitbox_count: usize,
482}
483
484/// A type of window control area that corresponds to the platform window.
485#[derive(Clone, Copy, Debug, Eq, PartialEq)]
486pub enum WindowControlArea {
487 /// An area that allows dragging of the platform window.
488 Drag,
489 /// An area that allows closing of the platform window.
490 Close,
491 /// An area that allows maximizing of the platform window.
492 Max,
493 /// An area that allows minimizing of the platform window.
494 Min,
495}
496
497/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
498#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
499pub struct HitboxId(u64);
500
501impl HitboxId {
502 /// Checks if the hitbox with this ID is currently hovered. Except when handling
503 /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
504 /// events or paint hover styles.
505 ///
506 /// See [`Hitbox::is_hovered`] for details.
507 pub fn is_hovered(self, window: &Window) -> bool {
508 let hit_test = &window.mouse_hit_test;
509 for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
510 if self == *id {
511 return true;
512 }
513 }
514 false
515 }
516
517 /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
518 /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
519 /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
520 /// this distinction.
521 pub fn should_handle_scroll(self, window: &Window) -> bool {
522 window.mouse_hit_test.ids.contains(&self)
523 }
524
525 fn next(mut self) -> HitboxId {
526 HitboxId(self.0.wrapping_add(1))
527 }
528}
529
530/// A rectangular region that potentially blocks hitboxes inserted prior.
531/// See [Window::insert_hitbox] for more details.
532#[derive(Clone, Debug, Deref)]
533pub struct Hitbox {
534 /// A unique identifier for the hitbox.
535 pub id: HitboxId,
536 /// The bounds of the hitbox.
537 #[deref]
538 pub bounds: Bounds<Pixels>,
539 /// The content mask when the hitbox was inserted.
540 pub content_mask: ContentMask<Pixels>,
541 /// Flags that specify hitbox behavior.
542 pub behavior: HitboxBehavior,
543}
544
545impl Hitbox {
546 /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
547 /// typically what you want when determining whether to handle mouse events or paint hover
548 /// styles.
549 ///
550 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
551 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
552 /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
553 ///
554 /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
555 /// Concretely, this is due to use-cases like overlays that cause the elements under to be
556 /// non-interactive while still allowing scrolling. More abstractly, this is because
557 /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
558 /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
559 /// container.
560 pub fn is_hovered(&self, window: &Window) -> bool {
561 self.id.is_hovered(window)
562 }
563
564 /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
565 /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
566 /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
567 ///
568 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
569 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
570 pub fn should_handle_scroll(&self, window: &Window) -> bool {
571 self.id.should_handle_scroll(window)
572 }
573}
574
575/// How the hitbox affects mouse behavior.
576#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
577pub enum HitboxBehavior {
578 /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
579 #[default]
580 Normal,
581
582 /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
583 /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
584 /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
585 /// [`InteractiveElement::occlude`].
586 ///
587 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
588 /// bubble-phase handler for every mouse event type:
589 ///
590 /// ```ignore
591 /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
592 /// if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
593 /// cx.stop_propagation();
594 /// }
595 /// })
596 /// ```
597 ///
598 /// This has effects beyond event handling - any use of hitbox checking, such as hover
599 /// styles and tooltops. These other behaviors are the main point of this mechanism. An
600 /// alternative might be to not affect mouse event handling - but this would allow
601 /// inconsistent UI where clicks and moves interact with elements that are not considered to
602 /// be hovered.
603 BlockMouse,
604
605 /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
606 /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
607 /// interaction except scroll events to be ignored - see the documentation of
608 /// [`Hitbox::is_hovered`] for details. This flag is set by
609 /// [`InteractiveElement::block_mouse_except_scroll`].
610 ///
611 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
612 /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
613 ///
614 /// ```ignore
615 /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, cx| {
616 /// if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
617 /// cx.stop_propagation();
618 /// }
619 /// })
620 /// ```
621 ///
622 /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
623 /// handled differently than other mouse events. If also blocking these scroll events is
624 /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
625 ///
626 /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
627 /// hover styles and tooltops. These other behaviors are the main point of this mechanism.
628 /// An alternative might be to not affect mouse event handling - but this would allow
629 /// inconsistent UI where clicks and moves interact with elements that are not considered to
630 /// be hovered.
631 BlockMouseExceptScroll,
632}
633
634/// An identifier for a tooltip.
635#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
636pub struct TooltipId(usize);
637
638impl TooltipId {
639 /// Checks if the tooltip is currently hovered.
640 pub fn is_hovered(&self, window: &Window) -> bool {
641 window
642 .tooltip_bounds
643 .as_ref()
644 .is_some_and(|tooltip_bounds| {
645 tooltip_bounds.id == *self
646 && tooltip_bounds.bounds.contains(&window.mouse_position())
647 })
648 }
649}
650
651pub(crate) struct TooltipBounds {
652 id: TooltipId,
653 bounds: Bounds<Pixels>,
654}
655
656#[derive(Clone)]
657pub(crate) struct TooltipRequest {
658 id: TooltipId,
659 tooltip: AnyTooltip,
660}
661
662pub(crate) struct DeferredDraw {
663 current_view: EntityId,
664 priority: usize,
665 parent_node: DispatchNodeId,
666 element_id_stack: SmallVec<[ElementId; 32]>,
667 text_style_stack: Vec<TextStyleRefinement>,
668 element: Option<AnyElement>,
669 absolute_offset: Point<Pixels>,
670 prepaint_range: Range<PrepaintStateIndex>,
671 paint_range: Range<PaintIndex>,
672}
673
674pub(crate) struct Frame {
675 pub(crate) focus: Option<FocusId>,
676 pub(crate) window_active: bool,
677 pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
678 accessed_element_states: Vec<(GlobalElementId, TypeId)>,
679 pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
680 pub(crate) dispatch_tree: DispatchTree,
681 pub(crate) scene: Scene,
682 pub(crate) hitboxes: Vec<Hitbox>,
683 pub(crate) window_control_hitboxes: Vec<(WindowControlArea, Hitbox)>,
684 pub(crate) deferred_draws: Vec<DeferredDraw>,
685 pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
686 pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
687 pub(crate) cursor_styles: Vec<CursorStyleRequest>,
688 #[cfg(any(test, feature = "test-support"))]
689 pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
690 #[cfg(any(feature = "inspector", debug_assertions))]
691 pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
692 #[cfg(any(feature = "inspector", debug_assertions))]
693 pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
694 pub(crate) tab_stops: TabStopMap,
695}
696
697#[derive(Clone, Default)]
698pub(crate) struct PrepaintStateIndex {
699 hitboxes_index: usize,
700 tooltips_index: usize,
701 deferred_draws_index: usize,
702 dispatch_tree_index: usize,
703 accessed_element_states_index: usize,
704 line_layout_index: LineLayoutIndex,
705}
706
707#[derive(Clone, Default)]
708pub(crate) struct PaintIndex {
709 scene_index: usize,
710 mouse_listeners_index: usize,
711 input_handlers_index: usize,
712 cursor_styles_index: usize,
713 accessed_element_states_index: usize,
714 tab_handle_index: usize,
715 line_layout_index: LineLayoutIndex,
716}
717
718impl Frame {
719 pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
720 Frame {
721 focus: None,
722 window_active: false,
723 element_states: FxHashMap::default(),
724 accessed_element_states: Vec::new(),
725 mouse_listeners: Vec::new(),
726 dispatch_tree,
727 scene: Scene::default(),
728 hitboxes: Vec::new(),
729 window_control_hitboxes: Vec::new(),
730 deferred_draws: Vec::new(),
731 input_handlers: Vec::new(),
732 tooltip_requests: Vec::new(),
733 cursor_styles: Vec::new(),
734
735 #[cfg(any(test, feature = "test-support"))]
736 debug_bounds: FxHashMap::default(),
737
738 #[cfg(any(feature = "inspector", debug_assertions))]
739 next_inspector_instance_ids: FxHashMap::default(),
740
741 #[cfg(any(feature = "inspector", debug_assertions))]
742 inspector_hitboxes: FxHashMap::default(),
743 tab_stops: TabStopMap::default(),
744 }
745 }
746
747 pub(crate) fn clear(&mut self) {
748 self.element_states.clear();
749 self.accessed_element_states.clear();
750 self.mouse_listeners.clear();
751 self.dispatch_tree.clear();
752 self.scene.clear();
753 self.input_handlers.clear();
754 self.tooltip_requests.clear();
755 self.cursor_styles.clear();
756 self.hitboxes.clear();
757 self.window_control_hitboxes.clear();
758 self.deferred_draws.clear();
759 self.tab_stops.clear();
760 self.focus = None;
761
762 #[cfg(any(feature = "inspector", debug_assertions))]
763 {
764 self.next_inspector_instance_ids.clear();
765 self.inspector_hitboxes.clear();
766 }
767 }
768
769 pub(crate) fn cursor_style(&self, window: &Window) -> Option<CursorStyle> {
770 self.cursor_styles
771 .iter()
772 .rev()
773 .fold_while(None, |style, request| match request.hitbox_id {
774 None => Done(Some(request.style)),
775 Some(hitbox_id) => Continue(
776 style.or_else(|| hitbox_id.is_hovered(window).then_some(request.style)),
777 ),
778 })
779 .into_inner()
780 }
781
782 pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
783 let mut set_hover_hitbox_count = false;
784 let mut hit_test = HitTest::default();
785 for hitbox in self.hitboxes.iter().rev() {
786 let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
787 if bounds.contains(&position) {
788 hit_test.ids.push(hitbox.id);
789 if !set_hover_hitbox_count
790 && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
791 {
792 hit_test.hover_hitbox_count = hit_test.ids.len();
793 set_hover_hitbox_count = true;
794 }
795 if hitbox.behavior == HitboxBehavior::BlockMouse {
796 break;
797 }
798 }
799 }
800 if !set_hover_hitbox_count {
801 hit_test.hover_hitbox_count = hit_test.ids.len();
802 }
803 hit_test
804 }
805
806 pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
807 self.focus
808 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
809 .unwrap_or_default()
810 }
811
812 pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
813 for element_state_key in &self.accessed_element_states {
814 if let Some((element_state_key, element_state)) =
815 prev_frame.element_states.remove_entry(element_state_key)
816 {
817 self.element_states.insert(element_state_key, element_state);
818 }
819 }
820
821 self.scene.finish();
822 }
823}
824
825/// Holds the state for a specific window.
826pub struct Window {
827 pub(crate) handle: AnyWindowHandle,
828 pub(crate) invalidator: WindowInvalidator,
829 pub(crate) removed: bool,
830 pub(crate) platform_window: Box<dyn PlatformWindow>,
831 display_id: Option<DisplayId>,
832 sprite_atlas: Arc<dyn PlatformAtlas>,
833 text_system: Arc<WindowTextSystem>,
834 rem_size: Pixels,
835 /// The stack of override values for the window's rem size.
836 ///
837 /// This is used by `with_rem_size` to allow rendering an element tree with
838 /// a given rem size.
839 rem_size_override_stack: SmallVec<[Pixels; 8]>,
840 pub(crate) viewport_size: Size<Pixels>,
841 layout_engine: Option<TaffyLayoutEngine>,
842 pub(crate) root: Option<AnyView>,
843 pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
844 pub(crate) text_style_stack: Vec<TextStyleRefinement>,
845 pub(crate) rendered_entity_stack: Vec<EntityId>,
846 pub(crate) element_offset_stack: Vec<Point<Pixels>>,
847 pub(crate) element_opacity: f32,
848 pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
849 pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
850 pub(crate) image_cache_stack: Vec<AnyImageCache>,
851 pub(crate) rendered_frame: Frame,
852 pub(crate) next_frame: Frame,
853 next_hitbox_id: HitboxId,
854 pub(crate) next_tooltip_id: TooltipId,
855 pub(crate) tooltip_bounds: Option<TooltipBounds>,
856 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
857 pub(crate) dirty_views: FxHashSet<EntityId>,
858 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
859 pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
860 default_prevented: bool,
861 mouse_position: Point<Pixels>,
862 mouse_hit_test: HitTest,
863 modifiers: Modifiers,
864 capslock: Capslock,
865 scale_factor: f32,
866 pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
867 appearance: WindowAppearance,
868 pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
869 active: Rc<Cell<bool>>,
870 hovered: Rc<Cell<bool>>,
871 pub(crate) needs_present: Rc<Cell<bool>>,
872 pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
873 last_input_was_keyboard: bool,
874 pub(crate) refreshing: bool,
875 pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
876 pub(crate) focus: Option<FocusId>,
877 focus_enabled: bool,
878 pending_input: Option<PendingInput>,
879 pending_modifier: ModifierState,
880 pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
881 prompt: Option<RenderablePromptHandle>,
882 pub(crate) client_inset: Option<Pixels>,
883 #[cfg(any(feature = "inspector", debug_assertions))]
884 inspector: Option<Entity<Inspector>>,
885}
886
887#[derive(Clone, Debug, Default)]
888struct ModifierState {
889 modifiers: Modifiers,
890 saw_keystroke: bool,
891}
892
893#[derive(Clone, Copy, Debug, Eq, PartialEq)]
894pub(crate) enum DrawPhase {
895 None,
896 Prepaint,
897 Paint,
898 Focus,
899}
900
901#[derive(Default, Debug)]
902struct PendingInput {
903 keystrokes: SmallVec<[Keystroke; 1]>,
904 focus: Option<FocusId>,
905 timer: Option<Task<()>>,
906}
907
908pub(crate) struct ElementStateBox {
909 pub(crate) inner: Box<dyn Any>,
910 #[cfg(debug_assertions)]
911 pub(crate) type_name: &'static str,
912}
913
914fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> Bounds<Pixels> {
915 const DEFAULT_WINDOW_OFFSET: Point<Pixels> = point(px(0.), px(35.));
916
917 // TODO, BUG: if you open a window with the currently active window
918 // on the stack, this will erroneously select the 'unwrap_or_else'
919 // code path
920 cx.active_window()
921 .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok())
922 .map(|mut bounds| {
923 bounds.origin += DEFAULT_WINDOW_OFFSET;
924 bounds
925 })
926 .unwrap_or_else(|| {
927 let display = display_id
928 .map(|id| cx.find_display(id))
929 .unwrap_or_else(|| cx.primary_display());
930
931 display
932 .map(|display| display.default_bounds())
933 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE))
934 })
935}
936
937impl Window {
938 pub(crate) fn new(
939 handle: AnyWindowHandle,
940 options: WindowOptions,
941 cx: &mut App,
942 ) -> Result<Self> {
943 let WindowOptions {
944 window_bounds,
945 titlebar,
946 focus,
947 show,
948 kind,
949 is_movable,
950 is_resizable,
951 is_minimizable,
952 display_id,
953 window_background,
954 app_id,
955 window_min_size,
956 window_decorations,
957 #[cfg_attr(not(target_os = "macos"), allow(unused_variables))]
958 tabbing_identifier,
959 } = options;
960
961 let bounds = window_bounds
962 .map(|bounds| bounds.get_bounds())
963 .unwrap_or_else(|| default_bounds(display_id, cx));
964 let mut platform_window = cx.platform.open_window(
965 handle,
966 WindowParams {
967 bounds,
968 titlebar,
969 kind,
970 is_movable,
971 is_resizable,
972 is_minimizable,
973 focus,
974 show,
975 display_id,
976 window_min_size,
977 #[cfg(target_os = "macos")]
978 tabbing_identifier,
979 },
980 )?;
981
982 let tab_bar_visible = platform_window.tab_bar_visible();
983 SystemWindowTabController::init_visible(cx, tab_bar_visible);
984 if let Some(tabs) = platform_window.tabbed_windows() {
985 SystemWindowTabController::add_tab(cx, handle.window_id(), tabs);
986 }
987
988 let display_id = platform_window.display().map(|display| display.id());
989 let sprite_atlas = platform_window.sprite_atlas();
990 let mouse_position = platform_window.mouse_position();
991 let modifiers = platform_window.modifiers();
992 let capslock = platform_window.capslock();
993 let content_size = platform_window.content_size();
994 let scale_factor = platform_window.scale_factor();
995 let appearance = platform_window.appearance();
996 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
997 let invalidator = WindowInvalidator::new();
998 let active = Rc::new(Cell::new(platform_window.is_active()));
999 let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
1000 let needs_present = Rc::new(Cell::new(false));
1001 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
1002 let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
1003
1004 platform_window
1005 .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
1006 platform_window.set_background_appearance(window_background);
1007
1008 if let Some(ref window_open_state) = window_bounds {
1009 match window_open_state {
1010 WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
1011 WindowBounds::Maximized(_) => platform_window.zoom(),
1012 WindowBounds::Windowed(_) => {}
1013 }
1014 }
1015
1016 platform_window.on_close(Box::new({
1017 let window_id = handle.window_id();
1018 let mut cx = cx.to_async();
1019 move || {
1020 let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
1021 let _ = cx.update(|cx| {
1022 SystemWindowTabController::remove_tab(cx, window_id);
1023 });
1024 }
1025 }));
1026 platform_window.on_request_frame(Box::new({
1027 let mut cx = cx.to_async();
1028 let invalidator = invalidator.clone();
1029 let active = active.clone();
1030 let needs_present = needs_present.clone();
1031 let next_frame_callbacks = next_frame_callbacks.clone();
1032 let last_input_timestamp = last_input_timestamp.clone();
1033 move |request_frame_options| {
1034 let next_frame_callbacks = next_frame_callbacks.take();
1035 if !next_frame_callbacks.is_empty() {
1036 handle
1037 .update(&mut cx, |_, window, cx| {
1038 for callback in next_frame_callbacks {
1039 callback(window, cx);
1040 }
1041 })
1042 .log_err();
1043 }
1044
1045 // Keep presenting the current scene for 1 extra second since the
1046 // last input to prevent the display from underclocking the refresh rate.
1047 let needs_present = request_frame_options.require_presentation
1048 || needs_present.get()
1049 || (active.get()
1050 && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
1051
1052 if invalidator.is_dirty() || request_frame_options.force_render {
1053 measure("frame duration", || {
1054 handle
1055 .update(&mut cx, |_, window, cx| {
1056 let arena_clear_needed = window.draw(cx);
1057 window.present();
1058 // drop the arena elements after present to reduce latency
1059 arena_clear_needed.clear();
1060 })
1061 .log_err();
1062 })
1063 } else if needs_present {
1064 handle
1065 .update(&mut cx, |_, window, _| window.present())
1066 .log_err();
1067 }
1068
1069 handle
1070 .update(&mut cx, |_, window, _| {
1071 window.complete_frame();
1072 })
1073 .log_err();
1074 }
1075 }));
1076 platform_window.on_resize(Box::new({
1077 let mut cx = cx.to_async();
1078 move |_, _| {
1079 handle
1080 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1081 .log_err();
1082 }
1083 }));
1084 platform_window.on_moved(Box::new({
1085 let mut cx = cx.to_async();
1086 move || {
1087 handle
1088 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1089 .log_err();
1090 }
1091 }));
1092 platform_window.on_appearance_changed(Box::new({
1093 let mut cx = cx.to_async();
1094 move || {
1095 handle
1096 .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
1097 .log_err();
1098 }
1099 }));
1100 platform_window.on_active_status_change(Box::new({
1101 let mut cx = cx.to_async();
1102 move |active| {
1103 handle
1104 .update(&mut cx, |_, window, cx| {
1105 window.active.set(active);
1106 window.modifiers = window.platform_window.modifiers();
1107 window.capslock = window.platform_window.capslock();
1108 window
1109 .activation_observers
1110 .clone()
1111 .retain(&(), |callback| callback(window, cx));
1112
1113 window.bounds_changed(cx);
1114 window.refresh();
1115
1116 SystemWindowTabController::update_last_active(cx, window.handle.id);
1117 })
1118 .log_err();
1119 }
1120 }));
1121 platform_window.on_hover_status_change(Box::new({
1122 let mut cx = cx.to_async();
1123 move |active| {
1124 handle
1125 .update(&mut cx, |_, window, _| {
1126 window.hovered.set(active);
1127 window.refresh();
1128 })
1129 .log_err();
1130 }
1131 }));
1132 platform_window.on_input({
1133 let mut cx = cx.to_async();
1134 Box::new(move |event| {
1135 handle
1136 .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1137 .log_err()
1138 .unwrap_or(DispatchEventResult::default())
1139 })
1140 });
1141 platform_window.on_hit_test_window_control({
1142 let mut cx = cx.to_async();
1143 Box::new(move || {
1144 handle
1145 .update(&mut cx, |_, window, _cx| {
1146 for (area, hitbox) in &window.rendered_frame.window_control_hitboxes {
1147 if window.mouse_hit_test.ids.contains(&hitbox.id) {
1148 return Some(*area);
1149 }
1150 }
1151 None
1152 })
1153 .log_err()
1154 .unwrap_or(None)
1155 })
1156 });
1157 platform_window.on_move_tab_to_new_window({
1158 let mut cx = cx.to_async();
1159 Box::new(move || {
1160 handle
1161 .update(&mut cx, |_, _window, cx| {
1162 SystemWindowTabController::move_tab_to_new_window(cx, handle.window_id());
1163 })
1164 .log_err();
1165 })
1166 });
1167 platform_window.on_merge_all_windows({
1168 let mut cx = cx.to_async();
1169 Box::new(move || {
1170 handle
1171 .update(&mut cx, |_, _window, cx| {
1172 SystemWindowTabController::merge_all_windows(cx, handle.window_id());
1173 })
1174 .log_err();
1175 })
1176 });
1177 platform_window.on_select_next_tab({
1178 let mut cx = cx.to_async();
1179 Box::new(move || {
1180 handle
1181 .update(&mut cx, |_, _window, cx| {
1182 SystemWindowTabController::select_next_tab(cx, handle.window_id());
1183 })
1184 .log_err();
1185 })
1186 });
1187 platform_window.on_select_previous_tab({
1188 let mut cx = cx.to_async();
1189 Box::new(move || {
1190 handle
1191 .update(&mut cx, |_, _window, cx| {
1192 SystemWindowTabController::select_previous_tab(cx, handle.window_id())
1193 })
1194 .log_err();
1195 })
1196 });
1197 platform_window.on_toggle_tab_bar({
1198 let mut cx = cx.to_async();
1199 Box::new(move || {
1200 handle
1201 .update(&mut cx, |_, window, cx| {
1202 let tab_bar_visible = window.platform_window.tab_bar_visible();
1203 SystemWindowTabController::set_visible(cx, tab_bar_visible);
1204 })
1205 .log_err();
1206 })
1207 });
1208
1209 if let Some(app_id) = app_id {
1210 platform_window.set_app_id(&app_id);
1211 }
1212
1213 platform_window.map_window().unwrap();
1214
1215 Ok(Window {
1216 handle,
1217 invalidator,
1218 removed: false,
1219 platform_window,
1220 display_id,
1221 sprite_atlas,
1222 text_system,
1223 rem_size: px(16.),
1224 rem_size_override_stack: SmallVec::new(),
1225 viewport_size: content_size,
1226 layout_engine: Some(TaffyLayoutEngine::new()),
1227 root: None,
1228 element_id_stack: SmallVec::default(),
1229 text_style_stack: Vec::new(),
1230 rendered_entity_stack: Vec::new(),
1231 element_offset_stack: Vec::new(),
1232 content_mask_stack: Vec::new(),
1233 element_opacity: 1.0,
1234 requested_autoscroll: None,
1235 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1236 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1237 next_frame_callbacks,
1238 next_hitbox_id: HitboxId(0),
1239 next_tooltip_id: TooltipId::default(),
1240 tooltip_bounds: None,
1241 dirty_views: FxHashSet::default(),
1242 focus_listeners: SubscriberSet::new(),
1243 focus_lost_listeners: SubscriberSet::new(),
1244 default_prevented: true,
1245 mouse_position,
1246 mouse_hit_test: HitTest::default(),
1247 modifiers,
1248 capslock,
1249 scale_factor,
1250 bounds_observers: SubscriberSet::new(),
1251 appearance,
1252 appearance_observers: SubscriberSet::new(),
1253 active,
1254 hovered,
1255 needs_present,
1256 last_input_timestamp,
1257 last_input_was_keyboard: false,
1258 refreshing: false,
1259 activation_observers: SubscriberSet::new(),
1260 focus: None,
1261 focus_enabled: true,
1262 pending_input: None,
1263 pending_modifier: ModifierState::default(),
1264 pending_input_observers: SubscriberSet::new(),
1265 prompt: None,
1266 client_inset: None,
1267 image_cache_stack: Vec::new(),
1268 #[cfg(any(feature = "inspector", debug_assertions))]
1269 inspector: None,
1270 })
1271 }
1272
1273 pub(crate) fn new_focus_listener(
1274 &self,
1275 value: AnyWindowFocusListener,
1276 ) -> (Subscription, impl FnOnce() + use<>) {
1277 self.focus_listeners.insert((), value)
1278 }
1279}
1280
1281#[derive(Clone, Debug, Default, PartialEq, Eq)]
1282pub(crate) struct DispatchEventResult {
1283 pub propagate: bool,
1284 pub default_prevented: bool,
1285}
1286
1287/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1288/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1289/// to leave room to support more complex shapes in the future.
1290#[derive(Clone, Debug, Default, PartialEq, Eq)]
1291#[repr(C)]
1292pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1293 /// The bounds
1294 pub bounds: Bounds<P>,
1295}
1296
1297impl ContentMask<Pixels> {
1298 /// Scale the content mask's pixel units by the given scaling factor.
1299 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1300 ContentMask {
1301 bounds: self.bounds.scale(factor),
1302 }
1303 }
1304
1305 /// Intersect the content mask with the given content mask.
1306 pub fn intersect(&self, other: &Self) -> Self {
1307 let bounds = self.bounds.intersect(&other.bounds);
1308 ContentMask { bounds }
1309 }
1310}
1311
1312impl Window {
1313 fn mark_view_dirty(&mut self, view_id: EntityId) {
1314 // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1315 // should already be dirty.
1316 for view_id in self
1317 .rendered_frame
1318 .dispatch_tree
1319 .view_path(view_id)
1320 .into_iter()
1321 .rev()
1322 {
1323 if !self.dirty_views.insert(view_id) {
1324 break;
1325 }
1326 }
1327 }
1328
1329 /// Registers a callback to be invoked when the window appearance changes.
1330 pub fn observe_window_appearance(
1331 &self,
1332 mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1333 ) -> Subscription {
1334 let (subscription, activate) = self.appearance_observers.insert(
1335 (),
1336 Box::new(move |window, cx| {
1337 callback(window, cx);
1338 true
1339 }),
1340 );
1341 activate();
1342 subscription
1343 }
1344
1345 /// Replaces the root entity of the window with a new one.
1346 pub fn replace_root<E>(
1347 &mut self,
1348 cx: &mut App,
1349 build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1350 ) -> Entity<E>
1351 where
1352 E: 'static + Render,
1353 {
1354 let view = cx.new(|cx| build_view(self, cx));
1355 self.root = Some(view.clone().into());
1356 self.refresh();
1357 view
1358 }
1359
1360 /// Returns the root entity of the window, if it has one.
1361 pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1362 where
1363 E: 'static + Render,
1364 {
1365 self.root
1366 .as_ref()
1367 .map(|view| view.clone().downcast::<E>().ok())
1368 }
1369
1370 /// Obtain a handle to the window that belongs to this context.
1371 pub fn window_handle(&self) -> AnyWindowHandle {
1372 self.handle
1373 }
1374
1375 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1376 pub fn refresh(&mut self) {
1377 if self.invalidator.not_drawing() {
1378 self.refreshing = true;
1379 self.invalidator.set_dirty(true);
1380 }
1381 }
1382
1383 /// Close this window.
1384 pub fn remove_window(&mut self) {
1385 self.removed = true;
1386 }
1387
1388 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1389 pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1390 self.focus
1391 .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1392 }
1393
1394 /// Move focus to the element associated with the given [`FocusHandle`].
1395 pub fn focus(&mut self, handle: &FocusHandle) {
1396 if !self.focus_enabled || self.focus == Some(handle.id) {
1397 return;
1398 }
1399
1400 self.focus = Some(handle.id);
1401 self.clear_pending_keystrokes();
1402 self.refresh();
1403 }
1404
1405 /// Remove focus from all elements within this context's window.
1406 pub fn blur(&mut self) {
1407 if !self.focus_enabled {
1408 return;
1409 }
1410
1411 self.focus = None;
1412 self.refresh();
1413 }
1414
1415 /// Blur the window and don't allow anything in it to be focused again.
1416 pub fn disable_focus(&mut self) {
1417 self.blur();
1418 self.focus_enabled = false;
1419 }
1420
1421 /// Move focus to next tab stop.
1422 pub fn focus_next(&mut self) {
1423 if !self.focus_enabled {
1424 return;
1425 }
1426
1427 if let Some(handle) = self.rendered_frame.tab_stops.next(self.focus.as_ref()) {
1428 self.focus(&handle)
1429 }
1430 }
1431
1432 /// Move focus to previous tab stop.
1433 pub fn focus_prev(&mut self) {
1434 if !self.focus_enabled {
1435 return;
1436 }
1437
1438 if let Some(handle) = self.rendered_frame.tab_stops.prev(self.focus.as_ref()) {
1439 self.focus(&handle)
1440 }
1441 }
1442
1443 /// Accessor for the text system.
1444 pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1445 &self.text_system
1446 }
1447
1448 /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1449 pub fn text_style(&self) -> TextStyle {
1450 let mut style = TextStyle::default();
1451 for refinement in &self.text_style_stack {
1452 style.refine(refinement);
1453 }
1454 style
1455 }
1456
1457 /// Check if the platform window is maximized
1458 /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1459 pub fn is_maximized(&self) -> bool {
1460 self.platform_window.is_maximized()
1461 }
1462
1463 /// request a certain window decoration (Wayland)
1464 pub fn request_decorations(&self, decorations: WindowDecorations) {
1465 self.platform_window.request_decorations(decorations);
1466 }
1467
1468 /// Start a window resize operation (Wayland)
1469 pub fn start_window_resize(&self, edge: ResizeEdge) {
1470 self.platform_window.start_window_resize(edge);
1471 }
1472
1473 /// Return the `WindowBounds` to indicate that how a window should be opened
1474 /// after it has been closed
1475 pub fn window_bounds(&self) -> WindowBounds {
1476 self.platform_window.window_bounds()
1477 }
1478
1479 /// Return the `WindowBounds` excluding insets (Wayland and X11)
1480 pub fn inner_window_bounds(&self) -> WindowBounds {
1481 self.platform_window.inner_window_bounds()
1482 }
1483
1484 /// Dispatch the given action on the currently focused element.
1485 pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1486 let focus_id = self.focused(cx).map(|handle| handle.id);
1487
1488 let window = self.handle;
1489 cx.defer(move |cx| {
1490 window
1491 .update(cx, |_, window, cx| {
1492 let node_id = window.focus_node_id_in_rendered_frame(focus_id);
1493 window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1494 })
1495 .log_err();
1496 })
1497 }
1498
1499 pub(crate) fn dispatch_keystroke_observers(
1500 &mut self,
1501 event: &dyn Any,
1502 action: Option<Box<dyn Action>>,
1503 context_stack: Vec<KeyContext>,
1504 cx: &mut App,
1505 ) {
1506 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1507 return;
1508 };
1509
1510 cx.keystroke_observers.clone().retain(&(), move |callback| {
1511 (callback)(
1512 &KeystrokeEvent {
1513 keystroke: key_down_event.keystroke.clone(),
1514 action: action.as_ref().map(|action| action.boxed_clone()),
1515 context_stack: context_stack.clone(),
1516 },
1517 self,
1518 cx,
1519 )
1520 });
1521 }
1522
1523 pub(crate) fn dispatch_keystroke_interceptors(
1524 &mut self,
1525 event: &dyn Any,
1526 context_stack: Vec<KeyContext>,
1527 cx: &mut App,
1528 ) {
1529 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1530 return;
1531 };
1532
1533 cx.keystroke_interceptors
1534 .clone()
1535 .retain(&(), move |callback| {
1536 (callback)(
1537 &KeystrokeEvent {
1538 keystroke: key_down_event.keystroke.clone(),
1539 action: None,
1540 context_stack: context_stack.clone(),
1541 },
1542 self,
1543 cx,
1544 )
1545 });
1546 }
1547
1548 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1549 /// that are currently on the stack to be returned to the app.
1550 pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1551 let handle = self.handle;
1552 cx.defer(move |cx| {
1553 handle.update(cx, |_, window, cx| f(window, cx)).ok();
1554 });
1555 }
1556
1557 /// Subscribe to events emitted by a entity.
1558 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1559 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1560 pub fn observe<T: 'static>(
1561 &mut self,
1562 observed: &Entity<T>,
1563 cx: &mut App,
1564 mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1565 ) -> Subscription {
1566 let entity_id = observed.entity_id();
1567 let observed = observed.downgrade();
1568 let window_handle = self.handle;
1569 cx.new_observer(
1570 entity_id,
1571 Box::new(move |cx| {
1572 window_handle
1573 .update(cx, |_, window, cx| {
1574 if let Some(handle) = observed.upgrade() {
1575 on_notify(handle, window, cx);
1576 true
1577 } else {
1578 false
1579 }
1580 })
1581 .unwrap_or(false)
1582 }),
1583 )
1584 }
1585
1586 /// Subscribe to events emitted by a entity.
1587 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1588 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1589 pub fn subscribe<Emitter, Evt>(
1590 &mut self,
1591 entity: &Entity<Emitter>,
1592 cx: &mut App,
1593 mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1594 ) -> Subscription
1595 where
1596 Emitter: EventEmitter<Evt>,
1597 Evt: 'static,
1598 {
1599 let entity_id = entity.entity_id();
1600 let handle = entity.downgrade();
1601 let window_handle = self.handle;
1602 cx.new_subscription(
1603 entity_id,
1604 (
1605 TypeId::of::<Evt>(),
1606 Box::new(move |event, cx| {
1607 window_handle
1608 .update(cx, |_, window, cx| {
1609 if let Some(entity) = handle.upgrade() {
1610 let event = event.downcast_ref().expect("invalid event type");
1611 on_event(entity, event, window, cx);
1612 true
1613 } else {
1614 false
1615 }
1616 })
1617 .unwrap_or(false)
1618 }),
1619 ),
1620 )
1621 }
1622
1623 /// Register a callback to be invoked when the given `Entity` is released.
1624 pub fn observe_release<T>(
1625 &self,
1626 entity: &Entity<T>,
1627 cx: &mut App,
1628 mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1629 ) -> Subscription
1630 where
1631 T: 'static,
1632 {
1633 let entity_id = entity.entity_id();
1634 let window_handle = self.handle;
1635 let (subscription, activate) = cx.release_listeners.insert(
1636 entity_id,
1637 Box::new(move |entity, cx| {
1638 let entity = entity.downcast_mut().expect("invalid entity type");
1639 let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1640 }),
1641 );
1642 activate();
1643 subscription
1644 }
1645
1646 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1647 /// await points in async code.
1648 pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1649 AsyncWindowContext::new_context(cx.to_async(), self.handle)
1650 }
1651
1652 /// Schedule the given closure to be run directly after the current frame is rendered.
1653 pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1654 RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1655 }
1656
1657 /// Schedule a frame to be drawn on the next animation frame.
1658 ///
1659 /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1660 /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1661 ///
1662 /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1663 pub fn request_animation_frame(&self) {
1664 let entity = self.current_view();
1665 self.on_next_frame(move |_, cx| cx.notify(entity));
1666 }
1667
1668 /// Spawn the future returned by the given closure on the application thread pool.
1669 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1670 /// use within your future.
1671 #[track_caller]
1672 pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1673 where
1674 R: 'static,
1675 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1676 {
1677 let handle = self.handle;
1678 cx.spawn(async move |app| {
1679 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1680 f(&mut async_window_cx).await
1681 })
1682 }
1683
1684 fn bounds_changed(&mut self, cx: &mut App) {
1685 self.scale_factor = self.platform_window.scale_factor();
1686 self.viewport_size = self.platform_window.content_size();
1687 self.display_id = self.platform_window.display().map(|display| display.id());
1688
1689 self.refresh();
1690
1691 self.bounds_observers
1692 .clone()
1693 .retain(&(), |callback| callback(self, cx));
1694 }
1695
1696 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1697 pub fn bounds(&self) -> Bounds<Pixels> {
1698 self.platform_window.bounds()
1699 }
1700
1701 /// Set the content size of the window.
1702 pub fn resize(&mut self, size: Size<Pixels>) {
1703 self.platform_window.resize(size);
1704 }
1705
1706 /// Returns whether or not the window is currently fullscreen
1707 pub fn is_fullscreen(&self) -> bool {
1708 self.platform_window.is_fullscreen()
1709 }
1710
1711 pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1712 self.appearance = self.platform_window.appearance();
1713
1714 self.appearance_observers
1715 .clone()
1716 .retain(&(), |callback| callback(self, cx));
1717 }
1718
1719 /// Returns the appearance of the current window.
1720 pub fn appearance(&self) -> WindowAppearance {
1721 self.appearance
1722 }
1723
1724 /// Returns the size of the drawable area within the window.
1725 pub fn viewport_size(&self) -> Size<Pixels> {
1726 self.viewport_size
1727 }
1728
1729 /// Returns whether this window is focused by the operating system (receiving key events).
1730 pub fn is_window_active(&self) -> bool {
1731 self.active.get()
1732 }
1733
1734 /// Returns whether this window is considered to be the window
1735 /// that currently owns the mouse cursor.
1736 /// On mac, this is equivalent to `is_window_active`.
1737 pub fn is_window_hovered(&self) -> bool {
1738 if cfg!(any(
1739 target_os = "windows",
1740 target_os = "linux",
1741 target_os = "freebsd"
1742 )) {
1743 self.hovered.get()
1744 } else {
1745 self.is_window_active()
1746 }
1747 }
1748
1749 /// Toggle zoom on the window.
1750 pub fn zoom_window(&self) {
1751 self.platform_window.zoom();
1752 }
1753
1754 /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1755 pub fn show_window_menu(&self, position: Point<Pixels>) {
1756 self.platform_window.show_window_menu(position)
1757 }
1758
1759 /// Tells the compositor to take control of window movement (Wayland and X11)
1760 ///
1761 /// Events may not be received during a move operation.
1762 pub fn start_window_move(&self) {
1763 self.platform_window.start_window_move()
1764 }
1765
1766 /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1767 pub fn set_client_inset(&mut self, inset: Pixels) {
1768 self.client_inset = Some(inset);
1769 self.platform_window.set_client_inset(inset);
1770 }
1771
1772 /// Returns the client_inset value by [`Self::set_client_inset`].
1773 pub fn client_inset(&self) -> Option<Pixels> {
1774 self.client_inset
1775 }
1776
1777 /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1778 pub fn window_decorations(&self) -> Decorations {
1779 self.platform_window.window_decorations()
1780 }
1781
1782 /// Returns which window controls are currently visible (Wayland)
1783 pub fn window_controls(&self) -> WindowControls {
1784 self.platform_window.window_controls()
1785 }
1786
1787 /// Updates the window's title at the platform level.
1788 pub fn set_window_title(&mut self, title: &str) {
1789 self.platform_window.set_title(title);
1790 }
1791
1792 /// Sets the application identifier.
1793 pub fn set_app_id(&mut self, app_id: &str) {
1794 self.platform_window.set_app_id(app_id);
1795 }
1796
1797 /// Sets the window background appearance.
1798 pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1799 self.platform_window
1800 .set_background_appearance(background_appearance);
1801 }
1802
1803 /// Mark the window as dirty at the platform level.
1804 pub fn set_window_edited(&mut self, edited: bool) {
1805 self.platform_window.set_edited(edited);
1806 }
1807
1808 /// Determine the display on which the window is visible.
1809 pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1810 cx.platform
1811 .displays()
1812 .into_iter()
1813 .find(|display| Some(display.id()) == self.display_id)
1814 }
1815
1816 /// Show the platform character palette.
1817 pub fn show_character_palette(&self) {
1818 self.platform_window.show_character_palette();
1819 }
1820
1821 /// The scale factor of the display associated with the window. For example, it could
1822 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1823 /// be rendered as two pixels on screen.
1824 pub fn scale_factor(&self) -> f32 {
1825 self.scale_factor
1826 }
1827
1828 /// The size of an em for the base font of the application. Adjusting this value allows the
1829 /// UI to scale, just like zooming a web page.
1830 pub fn rem_size(&self) -> Pixels {
1831 self.rem_size_override_stack
1832 .last()
1833 .copied()
1834 .unwrap_or(self.rem_size)
1835 }
1836
1837 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1838 /// UI to scale, just like zooming a web page.
1839 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1840 self.rem_size = rem_size.into();
1841 }
1842
1843 /// Acquire a globally unique identifier for the given ElementId.
1844 /// Only valid for the duration of the provided closure.
1845 pub fn with_global_id<R>(
1846 &mut self,
1847 element_id: ElementId,
1848 f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1849 ) -> R {
1850 self.element_id_stack.push(element_id);
1851 let global_id = GlobalElementId(Arc::from(&*self.element_id_stack));
1852
1853 let result = f(&global_id, self);
1854 self.element_id_stack.pop();
1855 result
1856 }
1857
1858 /// Executes the provided function with the specified rem size.
1859 ///
1860 /// This method must only be called as part of element drawing.
1861 pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1862 where
1863 F: FnOnce(&mut Self) -> R,
1864 {
1865 self.invalidator.debug_assert_paint_or_prepaint();
1866
1867 if let Some(rem_size) = rem_size {
1868 self.rem_size_override_stack.push(rem_size.into());
1869 let result = f(self);
1870 self.rem_size_override_stack.pop();
1871 result
1872 } else {
1873 f(self)
1874 }
1875 }
1876
1877 /// The line height associated with the current text style.
1878 pub fn line_height(&self) -> Pixels {
1879 self.text_style().line_height_in_pixels(self.rem_size())
1880 }
1881
1882 /// Call to prevent the default action of an event. Currently only used to prevent
1883 /// parent elements from becoming focused on mouse down.
1884 pub fn prevent_default(&mut self) {
1885 self.default_prevented = true;
1886 }
1887
1888 /// Obtain whether default has been prevented for the event currently being dispatched.
1889 pub fn default_prevented(&self) -> bool {
1890 self.default_prevented
1891 }
1892
1893 /// Determine whether the given action is available along the dispatch path to the currently focused element.
1894 pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1895 let node_id =
1896 self.focus_node_id_in_rendered_frame(self.focused(cx).map(|handle| handle.id));
1897 self.rendered_frame
1898 .dispatch_tree
1899 .is_action_available(action, node_id)
1900 }
1901
1902 /// The position of the mouse relative to the window.
1903 pub fn mouse_position(&self) -> Point<Pixels> {
1904 self.mouse_position
1905 }
1906
1907 /// The current state of the keyboard's modifiers
1908 pub fn modifiers(&self) -> Modifiers {
1909 self.modifiers
1910 }
1911
1912 /// Returns true if the last input event was keyboard-based (key press, tab navigation, etc.)
1913 /// This is used for focus-visible styling to show focus indicators only for keyboard navigation.
1914 pub fn last_input_was_keyboard(&self) -> bool {
1915 self.last_input_was_keyboard
1916 }
1917
1918 /// The current state of the keyboard's capslock
1919 pub fn capslock(&self) -> Capslock {
1920 self.capslock
1921 }
1922
1923 fn complete_frame(&self) {
1924 self.platform_window.completed_frame();
1925 }
1926
1927 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1928 /// the contents of the new [`Scene`], use [`Self::present`].
1929 #[profiling::function]
1930 pub fn draw(&mut self, cx: &mut App) -> ArenaClearNeeded {
1931 self.invalidate_entities();
1932 cx.entities.clear_accessed();
1933 debug_assert!(self.rendered_entity_stack.is_empty());
1934 self.invalidator.set_dirty(false);
1935 self.requested_autoscroll = None;
1936
1937 // Restore the previously-used input handler.
1938 if let Some(input_handler) = self.platform_window.take_input_handler() {
1939 self.rendered_frame.input_handlers.push(Some(input_handler));
1940 }
1941 self.draw_roots(cx);
1942 self.dirty_views.clear();
1943 self.next_frame.window_active = self.active.get();
1944
1945 // Register requested input handler with the platform window.
1946 if let Some(input_handler) = self.next_frame.input_handlers.pop() {
1947 self.platform_window
1948 .set_input_handler(input_handler.unwrap());
1949 }
1950
1951 self.layout_engine.as_mut().unwrap().clear();
1952 self.text_system().finish_frame();
1953 self.next_frame.finish(&mut self.rendered_frame);
1954
1955 self.invalidator.set_phase(DrawPhase::Focus);
1956 let previous_focus_path = self.rendered_frame.focus_path();
1957 let previous_window_active = self.rendered_frame.window_active;
1958 mem::swap(&mut self.rendered_frame, &mut self.next_frame);
1959 self.next_frame.clear();
1960 let current_focus_path = self.rendered_frame.focus_path();
1961 let current_window_active = self.rendered_frame.window_active;
1962
1963 if previous_focus_path != current_focus_path
1964 || previous_window_active != current_window_active
1965 {
1966 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
1967 self.focus_lost_listeners
1968 .clone()
1969 .retain(&(), |listener| listener(self, cx));
1970 }
1971
1972 let event = WindowFocusEvent {
1973 previous_focus_path: if previous_window_active {
1974 previous_focus_path
1975 } else {
1976 Default::default()
1977 },
1978 current_focus_path: if current_window_active {
1979 current_focus_path
1980 } else {
1981 Default::default()
1982 },
1983 };
1984 self.focus_listeners
1985 .clone()
1986 .retain(&(), |listener| listener(&event, self, cx));
1987 }
1988
1989 debug_assert!(self.rendered_entity_stack.is_empty());
1990 self.record_entities_accessed(cx);
1991 self.reset_cursor_style(cx);
1992 self.refreshing = false;
1993 self.invalidator.set_phase(DrawPhase::None);
1994 self.needs_present.set(true);
1995
1996 ArenaClearNeeded
1997 }
1998
1999 fn record_entities_accessed(&mut self, cx: &mut App) {
2000 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2001 let mut entities = mem::take(entities_ref.deref_mut());
2002 drop(entities_ref);
2003 let handle = self.handle;
2004 cx.record_entities_accessed(
2005 handle,
2006 // Try moving window invalidator into the Window
2007 self.invalidator.clone(),
2008 &entities,
2009 );
2010 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2011 mem::swap(&mut entities, entities_ref.deref_mut());
2012 }
2013
2014 fn invalidate_entities(&mut self) {
2015 let mut views = self.invalidator.take_views();
2016 for entity in views.drain() {
2017 self.mark_view_dirty(entity);
2018 }
2019 self.invalidator.replace_views(views);
2020 }
2021
2022 #[profiling::function]
2023 fn present(&self) {
2024 self.platform_window.draw(&self.rendered_frame.scene);
2025 self.needs_present.set(false);
2026 profiling::finish_frame!();
2027 }
2028
2029 fn draw_roots(&mut self, cx: &mut App) {
2030 self.invalidator.set_phase(DrawPhase::Prepaint);
2031 self.tooltip_bounds.take();
2032
2033 let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
2034 let root_size = {
2035 #[cfg(any(feature = "inspector", debug_assertions))]
2036 {
2037 if self.inspector.is_some() {
2038 let mut size = self.viewport_size;
2039 size.width = (size.width - _inspector_width).max(px(0.0));
2040 size
2041 } else {
2042 self.viewport_size
2043 }
2044 }
2045 #[cfg(not(any(feature = "inspector", debug_assertions)))]
2046 {
2047 self.viewport_size
2048 }
2049 };
2050
2051 // Layout all root elements.
2052 let mut root_element = self.root.as_ref().unwrap().clone().into_any();
2053 root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2054
2055 #[cfg(any(feature = "inspector", debug_assertions))]
2056 let inspector_element = self.prepaint_inspector(_inspector_width, cx);
2057
2058 let mut sorted_deferred_draws =
2059 (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
2060 sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
2061 self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
2062
2063 let mut prompt_element = None;
2064 let mut active_drag_element = None;
2065 let mut tooltip_element = None;
2066 if let Some(prompt) = self.prompt.take() {
2067 let mut element = prompt.view.any_view().into_any();
2068 element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2069 prompt_element = Some(element);
2070 self.prompt = Some(prompt);
2071 } else if let Some(active_drag) = cx.active_drag.take() {
2072 let mut element = active_drag.view.clone().into_any();
2073 let offset = self.mouse_position() - active_drag.cursor_offset;
2074 element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
2075 active_drag_element = Some(element);
2076 cx.active_drag = Some(active_drag);
2077 } else {
2078 tooltip_element = self.prepaint_tooltip(cx);
2079 }
2080
2081 self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
2082
2083 // Now actually paint the elements.
2084 self.invalidator.set_phase(DrawPhase::Paint);
2085 root_element.paint(self, cx);
2086
2087 #[cfg(any(feature = "inspector", debug_assertions))]
2088 self.paint_inspector(inspector_element, cx);
2089
2090 self.paint_deferred_draws(&sorted_deferred_draws, cx);
2091
2092 if let Some(mut prompt_element) = prompt_element {
2093 prompt_element.paint(self, cx);
2094 } else if let Some(mut drag_element) = active_drag_element {
2095 drag_element.paint(self, cx);
2096 } else if let Some(mut tooltip_element) = tooltip_element {
2097 tooltip_element.paint(self, cx);
2098 }
2099
2100 #[cfg(any(feature = "inspector", debug_assertions))]
2101 self.paint_inspector_hitbox(cx);
2102 }
2103
2104 fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
2105 // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
2106 for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
2107 let Some(Some(tooltip_request)) = self
2108 .next_frame
2109 .tooltip_requests
2110 .get(tooltip_request_index)
2111 .cloned()
2112 else {
2113 log::error!("Unexpectedly absent TooltipRequest");
2114 continue;
2115 };
2116 let mut element = tooltip_request.tooltip.view.clone().into_any();
2117 let mouse_position = tooltip_request.tooltip.mouse_position;
2118 let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
2119
2120 let mut tooltip_bounds =
2121 Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
2122 let window_bounds = Bounds {
2123 origin: Point::default(),
2124 size: self.viewport_size(),
2125 };
2126
2127 if tooltip_bounds.right() > window_bounds.right() {
2128 let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
2129 if new_x >= Pixels::ZERO {
2130 tooltip_bounds.origin.x = new_x;
2131 } else {
2132 tooltip_bounds.origin.x = cmp::max(
2133 Pixels::ZERO,
2134 tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
2135 );
2136 }
2137 }
2138
2139 if tooltip_bounds.bottom() > window_bounds.bottom() {
2140 let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
2141 if new_y >= Pixels::ZERO {
2142 tooltip_bounds.origin.y = new_y;
2143 } else {
2144 tooltip_bounds.origin.y = cmp::max(
2145 Pixels::ZERO,
2146 tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
2147 );
2148 }
2149 }
2150
2151 // It's possible for an element to have an active tooltip while not being painted (e.g.
2152 // via the `visible_on_hover` method). Since mouse listeners are not active in this
2153 // case, instead update the tooltip's visibility here.
2154 let is_visible =
2155 (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
2156 if !is_visible {
2157 continue;
2158 }
2159
2160 self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
2161 element.prepaint(window, cx)
2162 });
2163
2164 self.tooltip_bounds = Some(TooltipBounds {
2165 id: tooltip_request.id,
2166 bounds: tooltip_bounds,
2167 });
2168 return Some(element);
2169 }
2170 None
2171 }
2172
2173 fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2174 assert_eq!(self.element_id_stack.len(), 0);
2175
2176 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2177 for deferred_draw_ix in deferred_draw_indices {
2178 let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2179 self.element_id_stack
2180 .clone_from(&deferred_draw.element_id_stack);
2181 self.text_style_stack
2182 .clone_from(&deferred_draw.text_style_stack);
2183 self.next_frame
2184 .dispatch_tree
2185 .set_active_node(deferred_draw.parent_node);
2186
2187 let prepaint_start = self.prepaint_index();
2188 if let Some(element) = deferred_draw.element.as_mut() {
2189 self.with_rendered_view(deferred_draw.current_view, |window| {
2190 window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
2191 element.prepaint(window, cx)
2192 });
2193 })
2194 } else {
2195 self.reuse_prepaint(deferred_draw.prepaint_range.clone());
2196 }
2197 let prepaint_end = self.prepaint_index();
2198 deferred_draw.prepaint_range = prepaint_start..prepaint_end;
2199 }
2200 assert_eq!(
2201 self.next_frame.deferred_draws.len(),
2202 0,
2203 "cannot call defer_draw during deferred drawing"
2204 );
2205 self.next_frame.deferred_draws = deferred_draws;
2206 self.element_id_stack.clear();
2207 self.text_style_stack.clear();
2208 }
2209
2210 fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2211 assert_eq!(self.element_id_stack.len(), 0);
2212
2213 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2214 for deferred_draw_ix in deferred_draw_indices {
2215 let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2216 self.element_id_stack
2217 .clone_from(&deferred_draw.element_id_stack);
2218 self.next_frame
2219 .dispatch_tree
2220 .set_active_node(deferred_draw.parent_node);
2221
2222 let paint_start = self.paint_index();
2223 if let Some(element) = deferred_draw.element.as_mut() {
2224 self.with_rendered_view(deferred_draw.current_view, |window| {
2225 element.paint(window, cx);
2226 })
2227 } else {
2228 self.reuse_paint(deferred_draw.paint_range.clone());
2229 }
2230 let paint_end = self.paint_index();
2231 deferred_draw.paint_range = paint_start..paint_end;
2232 }
2233 self.next_frame.deferred_draws = deferred_draws;
2234 self.element_id_stack.clear();
2235 }
2236
2237 pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2238 PrepaintStateIndex {
2239 hitboxes_index: self.next_frame.hitboxes.len(),
2240 tooltips_index: self.next_frame.tooltip_requests.len(),
2241 deferred_draws_index: self.next_frame.deferred_draws.len(),
2242 dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2243 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2244 line_layout_index: self.text_system.layout_index(),
2245 }
2246 }
2247
2248 pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2249 self.next_frame.hitboxes.extend(
2250 self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2251 .iter()
2252 .cloned(),
2253 );
2254 self.next_frame.tooltip_requests.extend(
2255 self.rendered_frame.tooltip_requests
2256 [range.start.tooltips_index..range.end.tooltips_index]
2257 .iter_mut()
2258 .map(|request| request.take()),
2259 );
2260 self.next_frame.accessed_element_states.extend(
2261 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2262 ..range.end.accessed_element_states_index]
2263 .iter()
2264 .map(|(id, type_id)| (id.clone(), *type_id)),
2265 );
2266 self.text_system
2267 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2268
2269 let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2270 range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2271 &mut self.rendered_frame.dispatch_tree,
2272 self.focus,
2273 );
2274
2275 if reused_subtree.contains_focus() {
2276 self.next_frame.focus = self.focus;
2277 }
2278
2279 self.next_frame.deferred_draws.extend(
2280 self.rendered_frame.deferred_draws
2281 [range.start.deferred_draws_index..range.end.deferred_draws_index]
2282 .iter()
2283 .map(|deferred_draw| DeferredDraw {
2284 current_view: deferred_draw.current_view,
2285 parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2286 element_id_stack: deferred_draw.element_id_stack.clone(),
2287 text_style_stack: deferred_draw.text_style_stack.clone(),
2288 priority: deferred_draw.priority,
2289 element: None,
2290 absolute_offset: deferred_draw.absolute_offset,
2291 prepaint_range: deferred_draw.prepaint_range.clone(),
2292 paint_range: deferred_draw.paint_range.clone(),
2293 }),
2294 );
2295 }
2296
2297 pub(crate) fn paint_index(&self) -> PaintIndex {
2298 PaintIndex {
2299 scene_index: self.next_frame.scene.len(),
2300 mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2301 input_handlers_index: self.next_frame.input_handlers.len(),
2302 cursor_styles_index: self.next_frame.cursor_styles.len(),
2303 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2304 tab_handle_index: self.next_frame.tab_stops.paint_index(),
2305 line_layout_index: self.text_system.layout_index(),
2306 }
2307 }
2308
2309 pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2310 self.next_frame.cursor_styles.extend(
2311 self.rendered_frame.cursor_styles
2312 [range.start.cursor_styles_index..range.end.cursor_styles_index]
2313 .iter()
2314 .cloned(),
2315 );
2316 self.next_frame.input_handlers.extend(
2317 self.rendered_frame.input_handlers
2318 [range.start.input_handlers_index..range.end.input_handlers_index]
2319 .iter_mut()
2320 .map(|handler| handler.take()),
2321 );
2322 self.next_frame.mouse_listeners.extend(
2323 self.rendered_frame.mouse_listeners
2324 [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2325 .iter_mut()
2326 .map(|listener| listener.take()),
2327 );
2328 self.next_frame.accessed_element_states.extend(
2329 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2330 ..range.end.accessed_element_states_index]
2331 .iter()
2332 .map(|(id, type_id)| (id.clone(), *type_id)),
2333 );
2334 self.next_frame.tab_stops.replay(
2335 &self.rendered_frame.tab_stops.insertion_history
2336 [range.start.tab_handle_index..range.end.tab_handle_index],
2337 );
2338
2339 self.text_system
2340 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2341 self.next_frame.scene.replay(
2342 range.start.scene_index..range.end.scene_index,
2343 &self.rendered_frame.scene,
2344 );
2345 }
2346
2347 /// Push a text style onto the stack, and call a function with that style active.
2348 /// Use [`Window::text_style`] to get the current, combined text style. This method
2349 /// should only be called as part of element drawing.
2350 pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2351 where
2352 F: FnOnce(&mut Self) -> R,
2353 {
2354 self.invalidator.debug_assert_paint_or_prepaint();
2355 if let Some(style) = style {
2356 self.text_style_stack.push(style);
2357 let result = f(self);
2358 self.text_style_stack.pop();
2359 result
2360 } else {
2361 f(self)
2362 }
2363 }
2364
2365 /// Updates the cursor style at the platform level. This method should only be called
2366 /// during the prepaint phase of element drawing.
2367 pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
2368 self.invalidator.debug_assert_paint();
2369 self.next_frame.cursor_styles.push(CursorStyleRequest {
2370 hitbox_id: Some(hitbox.id),
2371 style,
2372 });
2373 }
2374
2375 /// Updates the cursor style for the entire window at the platform level. A cursor
2376 /// style using this method will have precedence over any cursor style set using
2377 /// `set_cursor_style`. This method should only be called during the prepaint
2378 /// phase of element drawing.
2379 pub fn set_window_cursor_style(&mut self, style: CursorStyle) {
2380 self.invalidator.debug_assert_paint();
2381 self.next_frame.cursor_styles.push(CursorStyleRequest {
2382 hitbox_id: None,
2383 style,
2384 })
2385 }
2386
2387 /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2388 /// during the paint phase of element drawing.
2389 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2390 self.invalidator.debug_assert_prepaint();
2391 let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2392 self.next_frame
2393 .tooltip_requests
2394 .push(Some(TooltipRequest { id, tooltip }));
2395 id
2396 }
2397
2398 /// Invoke the given function with the given content mask after intersecting it
2399 /// with the current mask. This method should only be called during element drawing.
2400 pub fn with_content_mask<R>(
2401 &mut self,
2402 mask: Option<ContentMask<Pixels>>,
2403 f: impl FnOnce(&mut Self) -> R,
2404 ) -> R {
2405 self.invalidator.debug_assert_paint_or_prepaint();
2406 if let Some(mask) = mask {
2407 let mask = mask.intersect(&self.content_mask());
2408 self.content_mask_stack.push(mask);
2409 let result = f(self);
2410 self.content_mask_stack.pop();
2411 result
2412 } else {
2413 f(self)
2414 }
2415 }
2416
2417 /// Updates the global element offset relative to the current offset. This is used to implement
2418 /// scrolling. This method should only be called during the prepaint phase of element drawing.
2419 pub fn with_element_offset<R>(
2420 &mut self,
2421 offset: Point<Pixels>,
2422 f: impl FnOnce(&mut Self) -> R,
2423 ) -> R {
2424 self.invalidator.debug_assert_prepaint();
2425
2426 if offset.is_zero() {
2427 return f(self);
2428 };
2429
2430 let abs_offset = self.element_offset() + offset;
2431 self.with_absolute_element_offset(abs_offset, f)
2432 }
2433
2434 /// Updates the global element offset based on the given offset. This is used to implement
2435 /// drag handles and other manual painting of elements. This method should only be called during
2436 /// the prepaint phase of element drawing.
2437 pub fn with_absolute_element_offset<R>(
2438 &mut self,
2439 offset: Point<Pixels>,
2440 f: impl FnOnce(&mut Self) -> R,
2441 ) -> R {
2442 self.invalidator.debug_assert_prepaint();
2443 self.element_offset_stack.push(offset);
2444 let result = f(self);
2445 self.element_offset_stack.pop();
2446 result
2447 }
2448
2449 pub(crate) fn with_element_opacity<R>(
2450 &mut self,
2451 opacity: Option<f32>,
2452 f: impl FnOnce(&mut Self) -> R,
2453 ) -> R {
2454 self.invalidator.debug_assert_paint_or_prepaint();
2455
2456 let Some(opacity) = opacity else {
2457 return f(self);
2458 };
2459
2460 let previous_opacity = self.element_opacity;
2461 self.element_opacity = previous_opacity * opacity;
2462 let result = f(self);
2463 self.element_opacity = previous_opacity;
2464 result
2465 }
2466
2467 /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2468 /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2469 /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2470 /// element offset and prepaint again. See [`crate::List`] for an example. This method should only be
2471 /// called during the prepaint phase of element drawing.
2472 pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2473 self.invalidator.debug_assert_prepaint();
2474 let index = self.prepaint_index();
2475 let result = f(self);
2476 if result.is_err() {
2477 self.next_frame.hitboxes.truncate(index.hitboxes_index);
2478 self.next_frame
2479 .tooltip_requests
2480 .truncate(index.tooltips_index);
2481 self.next_frame
2482 .deferred_draws
2483 .truncate(index.deferred_draws_index);
2484 self.next_frame
2485 .dispatch_tree
2486 .truncate(index.dispatch_tree_index);
2487 self.next_frame
2488 .accessed_element_states
2489 .truncate(index.accessed_element_states_index);
2490 self.text_system.truncate_layouts(index.line_layout_index);
2491 }
2492 result
2493 }
2494
2495 /// When you call this method during [`Element::prepaint`], containing elements will attempt to
2496 /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2497 /// [`Element::prepaint`] again with a new set of bounds. See [`crate::List`] for an example of an element
2498 /// that supports this method being called on the elements it contains. This method should only be
2499 /// called during the prepaint phase of element drawing.
2500 pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2501 self.invalidator.debug_assert_prepaint();
2502 self.requested_autoscroll = Some(bounds);
2503 }
2504
2505 /// This method can be called from a containing element such as [`crate::List`] to support the autoscroll behavior
2506 /// described in [`Self::request_autoscroll`].
2507 pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2508 self.invalidator.debug_assert_prepaint();
2509 self.requested_autoscroll.take()
2510 }
2511
2512 /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2513 /// Your view will be re-drawn once the asset has finished loading.
2514 ///
2515 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2516 /// time.
2517 pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2518 let (task, is_first) = cx.fetch_asset::<A>(source);
2519 task.clone().now_or_never().or_else(|| {
2520 if is_first {
2521 let entity_id = self.current_view();
2522 self.spawn(cx, {
2523 let task = task.clone();
2524 async move |cx| {
2525 task.await;
2526
2527 cx.on_next_frame(move |_, cx| {
2528 cx.notify(entity_id);
2529 });
2530 }
2531 })
2532 .detach();
2533 }
2534
2535 None
2536 })
2537 }
2538
2539 /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2540 /// Your view will not be re-drawn once the asset has finished loading.
2541 ///
2542 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2543 /// time.
2544 pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2545 let (task, _) = cx.fetch_asset::<A>(source);
2546 task.now_or_never()
2547 }
2548 /// Obtain the current element offset. This method should only be called during the
2549 /// prepaint phase of element drawing.
2550 pub fn element_offset(&self) -> Point<Pixels> {
2551 self.invalidator.debug_assert_prepaint();
2552 self.element_offset_stack
2553 .last()
2554 .copied()
2555 .unwrap_or_default()
2556 }
2557
2558 /// Obtain the current element opacity. This method should only be called during the
2559 /// prepaint phase of element drawing.
2560 #[inline]
2561 pub(crate) fn element_opacity(&self) -> f32 {
2562 self.invalidator.debug_assert_paint_or_prepaint();
2563 self.element_opacity
2564 }
2565
2566 /// Obtain the current content mask. This method should only be called during element drawing.
2567 pub fn content_mask(&self) -> ContentMask<Pixels> {
2568 self.invalidator.debug_assert_paint_or_prepaint();
2569 self.content_mask_stack
2570 .last()
2571 .cloned()
2572 .unwrap_or_else(|| ContentMask {
2573 bounds: Bounds {
2574 origin: Point::default(),
2575 size: self.viewport_size,
2576 },
2577 })
2578 }
2579
2580 /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2581 /// This can be used within a custom element to distinguish multiple sets of child elements.
2582 pub fn with_element_namespace<R>(
2583 &mut self,
2584 element_id: impl Into<ElementId>,
2585 f: impl FnOnce(&mut Self) -> R,
2586 ) -> R {
2587 self.element_id_stack.push(element_id.into());
2588 let result = f(self);
2589 self.element_id_stack.pop();
2590 result
2591 }
2592
2593 /// Use a piece of state that exists as long this element is being rendered in consecutive frames.
2594 pub fn use_keyed_state<S: 'static>(
2595 &mut self,
2596 key: impl Into<ElementId>,
2597 cx: &mut App,
2598 init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2599 ) -> Entity<S> {
2600 let current_view = self.current_view();
2601 self.with_global_id(key.into(), |global_id, window| {
2602 window.with_element_state(global_id, |state: Option<Entity<S>>, window| {
2603 if let Some(state) = state {
2604 (state.clone(), state)
2605 } else {
2606 let new_state = cx.new(|cx| init(window, cx));
2607 cx.observe(&new_state, move |_, cx| {
2608 cx.notify(current_view);
2609 })
2610 .detach();
2611 (new_state.clone(), new_state)
2612 }
2613 })
2614 })
2615 }
2616
2617 /// Immediately push an element ID onto the stack. Useful for simplifying IDs in lists
2618 pub fn with_id<R>(&mut self, id: impl Into<ElementId>, f: impl FnOnce(&mut Self) -> R) -> R {
2619 self.with_global_id(id.into(), |_, window| f(window))
2620 }
2621
2622 /// Use a piece of state that exists as long this element is being rendered in consecutive frames, without needing to specify a key
2623 ///
2624 /// NOTE: This method uses the location of the caller to generate an ID for this state.
2625 /// If this is not sufficient to identify your state (e.g. you're rendering a list item),
2626 /// you can provide a custom ElementID using the `use_keyed_state` method.
2627 #[track_caller]
2628 pub fn use_state<S: 'static>(
2629 &mut self,
2630 cx: &mut App,
2631 init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2632 ) -> Entity<S> {
2633 self.use_keyed_state(
2634 ElementId::CodeLocation(*core::panic::Location::caller()),
2635 cx,
2636 init,
2637 )
2638 }
2639
2640 /// Updates or initializes state for an element with the given id that lives across multiple
2641 /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2642 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2643 /// when drawing the next frame. This method should only be called as part of element drawing.
2644 pub fn with_element_state<S, R>(
2645 &mut self,
2646 global_id: &GlobalElementId,
2647 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2648 ) -> R
2649 where
2650 S: 'static,
2651 {
2652 self.invalidator.debug_assert_paint_or_prepaint();
2653
2654 let key = (global_id.clone(), TypeId::of::<S>());
2655 self.next_frame.accessed_element_states.push(key.clone());
2656
2657 if let Some(any) = self
2658 .next_frame
2659 .element_states
2660 .remove(&key)
2661 .or_else(|| self.rendered_frame.element_states.remove(&key))
2662 {
2663 let ElementStateBox {
2664 inner,
2665 #[cfg(debug_assertions)]
2666 type_name,
2667 } = any;
2668 // Using the extra inner option to avoid needing to reallocate a new box.
2669 let mut state_box = inner
2670 .downcast::<Option<S>>()
2671 .map_err(|_| {
2672 #[cfg(debug_assertions)]
2673 {
2674 anyhow::anyhow!(
2675 "invalid element state type for id, requested {:?}, actual: {:?}",
2676 std::any::type_name::<S>(),
2677 type_name
2678 )
2679 }
2680
2681 #[cfg(not(debug_assertions))]
2682 {
2683 anyhow::anyhow!(
2684 "invalid element state type for id, requested {:?}",
2685 std::any::type_name::<S>(),
2686 )
2687 }
2688 })
2689 .unwrap();
2690
2691 let state = state_box.take().expect(
2692 "reentrant call to with_element_state for the same state type and element id",
2693 );
2694 let (result, state) = f(Some(state), self);
2695 state_box.replace(state);
2696 self.next_frame.element_states.insert(
2697 key,
2698 ElementStateBox {
2699 inner: state_box,
2700 #[cfg(debug_assertions)]
2701 type_name,
2702 },
2703 );
2704 result
2705 } else {
2706 let (result, state) = f(None, self);
2707 self.next_frame.element_states.insert(
2708 key,
2709 ElementStateBox {
2710 inner: Box::new(Some(state)),
2711 #[cfg(debug_assertions)]
2712 type_name: std::any::type_name::<S>(),
2713 },
2714 );
2715 result
2716 }
2717 }
2718
2719 /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2720 /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2721 /// when the element is guaranteed to have an id.
2722 ///
2723 /// The first option means 'no ID provided'
2724 /// The second option means 'not yet initialized'
2725 pub fn with_optional_element_state<S, R>(
2726 &mut self,
2727 global_id: Option<&GlobalElementId>,
2728 f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2729 ) -> R
2730 where
2731 S: 'static,
2732 {
2733 self.invalidator.debug_assert_paint_or_prepaint();
2734
2735 if let Some(global_id) = global_id {
2736 self.with_element_state(global_id, |state, cx| {
2737 let (result, state) = f(Some(state), cx);
2738 let state =
2739 state.expect("you must return some state when you pass some element id");
2740 (result, state)
2741 })
2742 } else {
2743 let (result, state) = f(None, self);
2744 debug_assert!(
2745 state.is_none(),
2746 "you must not return an element state when passing None for the global id"
2747 );
2748 result
2749 }
2750 }
2751
2752 /// Executes the given closure within the context of a tab group.
2753 #[inline]
2754 pub fn with_tab_group<R>(&mut self, index: Option<isize>, f: impl FnOnce(&mut Self) -> R) -> R {
2755 if let Some(index) = index {
2756 self.next_frame.tab_stops.begin_group(index);
2757 let result = f(self);
2758 self.next_frame.tab_stops.end_group();
2759 result
2760 } else {
2761 f(self)
2762 }
2763 }
2764
2765 /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2766 /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2767 /// with higher values being drawn on top.
2768 ///
2769 /// This method should only be called as part of the prepaint phase of element drawing.
2770 pub fn defer_draw(
2771 &mut self,
2772 element: AnyElement,
2773 absolute_offset: Point<Pixels>,
2774 priority: usize,
2775 ) {
2776 self.invalidator.debug_assert_prepaint();
2777 let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2778 self.next_frame.deferred_draws.push(DeferredDraw {
2779 current_view: self.current_view(),
2780 parent_node,
2781 element_id_stack: self.element_id_stack.clone(),
2782 text_style_stack: self.text_style_stack.clone(),
2783 priority,
2784 element: Some(element),
2785 absolute_offset,
2786 prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2787 paint_range: PaintIndex::default()..PaintIndex::default(),
2788 });
2789 }
2790
2791 /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2792 /// of geometry that are non-overlapping and have the same draw order. This is typically used
2793 /// for performance reasons.
2794 ///
2795 /// This method should only be called as part of the paint phase of element drawing.
2796 pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2797 self.invalidator.debug_assert_paint();
2798
2799 let scale_factor = self.scale_factor();
2800 let content_mask = self.content_mask();
2801 let clipped_bounds = bounds.intersect(&content_mask.bounds);
2802 if !clipped_bounds.is_empty() {
2803 self.next_frame
2804 .scene
2805 .push_layer(clipped_bounds.scale(scale_factor));
2806 }
2807
2808 let result = f(self);
2809
2810 if !clipped_bounds.is_empty() {
2811 self.next_frame.scene.pop_layer();
2812 }
2813
2814 result
2815 }
2816
2817 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2818 ///
2819 /// This method should only be called as part of the paint phase of element drawing.
2820 pub fn paint_shadows(
2821 &mut self,
2822 bounds: Bounds<Pixels>,
2823 corner_radii: Corners<Pixels>,
2824 shadows: &[BoxShadow],
2825 ) {
2826 self.invalidator.debug_assert_paint();
2827
2828 let scale_factor = self.scale_factor();
2829 let content_mask = self.content_mask();
2830 let opacity = self.element_opacity();
2831 for shadow in shadows {
2832 let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2833 self.next_frame.scene.insert_primitive(Shadow {
2834 order: 0,
2835 blur_radius: shadow.blur_radius.scale(scale_factor),
2836 bounds: shadow_bounds.scale(scale_factor),
2837 content_mask: content_mask.scale(scale_factor),
2838 corner_radii: corner_radii.scale(scale_factor),
2839 color: shadow.color.opacity(opacity),
2840 });
2841 }
2842 }
2843
2844 /// Paint one or more quads into the scene for the next frame at the current stacking context.
2845 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2846 /// see [`fill`], [`outline`], and [`quad`] to construct this type.
2847 ///
2848 /// This method should only be called as part of the paint phase of element drawing.
2849 ///
2850 /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2851 /// where the circular arcs meet. This will not display well when combined with dashed borders.
2852 /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2853 pub fn paint_quad(&mut self, quad: PaintQuad) {
2854 self.invalidator.debug_assert_paint();
2855
2856 let scale_factor = self.scale_factor();
2857 let content_mask = self.content_mask();
2858 let opacity = self.element_opacity();
2859 self.next_frame.scene.insert_primitive(Quad {
2860 order: 0,
2861 bounds: quad.bounds.scale(scale_factor),
2862 content_mask: content_mask.scale(scale_factor),
2863 background: quad.background.opacity(opacity),
2864 border_color: quad.border_color.opacity(opacity),
2865 corner_radii: quad.corner_radii.scale(scale_factor),
2866 border_widths: quad.border_widths.scale(scale_factor),
2867 border_style: quad.border_style,
2868 });
2869 }
2870
2871 /// Paint the given `Path` into the scene for the next frame at the current z-index.
2872 ///
2873 /// This method should only be called as part of the paint phase of element drawing.
2874 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2875 self.invalidator.debug_assert_paint();
2876
2877 let scale_factor = self.scale_factor();
2878 let content_mask = self.content_mask();
2879 let opacity = self.element_opacity();
2880 path.content_mask = content_mask;
2881 let color: Background = color.into();
2882 path.color = color.opacity(opacity);
2883 self.next_frame
2884 .scene
2885 .insert_primitive(path.scale(scale_factor));
2886 }
2887
2888 /// Paint an underline into the scene for the next frame at the current z-index.
2889 ///
2890 /// This method should only be called as part of the paint phase of element drawing.
2891 pub fn paint_underline(
2892 &mut self,
2893 origin: Point<Pixels>,
2894 width: Pixels,
2895 style: &UnderlineStyle,
2896 ) {
2897 self.invalidator.debug_assert_paint();
2898
2899 let scale_factor = self.scale_factor();
2900 let height = if style.wavy {
2901 style.thickness * 3.
2902 } else {
2903 style.thickness
2904 };
2905 let bounds = Bounds {
2906 origin,
2907 size: size(width, height),
2908 };
2909 let content_mask = self.content_mask();
2910 let element_opacity = self.element_opacity();
2911
2912 self.next_frame.scene.insert_primitive(Underline {
2913 order: 0,
2914 pad: 0,
2915 bounds: bounds.scale(scale_factor),
2916 content_mask: content_mask.scale(scale_factor),
2917 color: style.color.unwrap_or_default().opacity(element_opacity),
2918 thickness: style.thickness.scale(scale_factor),
2919 wavy: if style.wavy { 1 } else { 0 },
2920 });
2921 }
2922
2923 /// Paint a strikethrough into the scene for the next frame at the current z-index.
2924 ///
2925 /// This method should only be called as part of the paint phase of element drawing.
2926 pub fn paint_strikethrough(
2927 &mut self,
2928 origin: Point<Pixels>,
2929 width: Pixels,
2930 style: &StrikethroughStyle,
2931 ) {
2932 self.invalidator.debug_assert_paint();
2933
2934 let scale_factor = self.scale_factor();
2935 let height = style.thickness;
2936 let bounds = Bounds {
2937 origin,
2938 size: size(width, height),
2939 };
2940 let content_mask = self.content_mask();
2941 let opacity = self.element_opacity();
2942
2943 self.next_frame.scene.insert_primitive(Underline {
2944 order: 0,
2945 pad: 0,
2946 bounds: bounds.scale(scale_factor),
2947 content_mask: content_mask.scale(scale_factor),
2948 thickness: style.thickness.scale(scale_factor),
2949 color: style.color.unwrap_or_default().opacity(opacity),
2950 wavy: 0,
2951 });
2952 }
2953
2954 /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
2955 ///
2956 /// The y component of the origin is the baseline of the glyph.
2957 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2958 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2959 /// This method is only useful if you need to paint a single glyph that has already been shaped.
2960 ///
2961 /// This method should only be called as part of the paint phase of element drawing.
2962 pub fn paint_glyph(
2963 &mut self,
2964 origin: Point<Pixels>,
2965 font_id: FontId,
2966 glyph_id: GlyphId,
2967 font_size: Pixels,
2968 color: Hsla,
2969 ) -> Result<()> {
2970 self.invalidator.debug_assert_paint();
2971
2972 let element_opacity = self.element_opacity();
2973 let scale_factor = self.scale_factor();
2974 let glyph_origin = origin.scale(scale_factor);
2975
2976 let subpixel_variant = Point {
2977 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS_X as f32).floor() as u8,
2978 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS_Y as f32).floor() as u8,
2979 };
2980 let params = RenderGlyphParams {
2981 font_id,
2982 glyph_id,
2983 font_size,
2984 subpixel_variant,
2985 scale_factor,
2986 is_emoji: false,
2987 };
2988
2989 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2990 if !raster_bounds.is_zero() {
2991 let tile = self
2992 .sprite_atlas
2993 .get_or_insert_with(¶ms.clone().into(), &mut || {
2994 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2995 Ok(Some((size, Cow::Owned(bytes))))
2996 })?
2997 .expect("Callback above only errors or returns Some");
2998 let bounds = Bounds {
2999 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3000 size: tile.bounds.size.map(Into::into),
3001 };
3002 let content_mask = self.content_mask().scale(scale_factor);
3003 self.next_frame.scene.insert_primitive(MonochromeSprite {
3004 order: 0,
3005 pad: 0,
3006 bounds,
3007 content_mask,
3008 color: color.opacity(element_opacity),
3009 tile,
3010 transformation: TransformationMatrix::unit(),
3011 });
3012 }
3013 Ok(())
3014 }
3015
3016 /// Paints an emoji glyph into the scene for the next frame at the current z-index.
3017 ///
3018 /// The y component of the origin is the baseline of the glyph.
3019 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3020 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3021 /// This method is only useful if you need to paint a single emoji that has already been shaped.
3022 ///
3023 /// This method should only be called as part of the paint phase of element drawing.
3024 pub fn paint_emoji(
3025 &mut self,
3026 origin: Point<Pixels>,
3027 font_id: FontId,
3028 glyph_id: GlyphId,
3029 font_size: Pixels,
3030 ) -> Result<()> {
3031 self.invalidator.debug_assert_paint();
3032
3033 let scale_factor = self.scale_factor();
3034 let glyph_origin = origin.scale(scale_factor);
3035 let params = RenderGlyphParams {
3036 font_id,
3037 glyph_id,
3038 font_size,
3039 // We don't render emojis with subpixel variants.
3040 subpixel_variant: Default::default(),
3041 scale_factor,
3042 is_emoji: true,
3043 };
3044
3045 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
3046 if !raster_bounds.is_zero() {
3047 let tile = self
3048 .sprite_atlas
3049 .get_or_insert_with(¶ms.clone().into(), &mut || {
3050 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
3051 Ok(Some((size, Cow::Owned(bytes))))
3052 })?
3053 .expect("Callback above only errors or returns Some");
3054
3055 let bounds = Bounds {
3056 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3057 size: tile.bounds.size.map(Into::into),
3058 };
3059 let content_mask = self.content_mask().scale(scale_factor);
3060 let opacity = self.element_opacity();
3061
3062 self.next_frame.scene.insert_primitive(PolychromeSprite {
3063 order: 0,
3064 pad: 0,
3065 grayscale: false,
3066 bounds,
3067 corner_radii: Default::default(),
3068 content_mask,
3069 tile,
3070 opacity,
3071 });
3072 }
3073 Ok(())
3074 }
3075
3076 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
3077 ///
3078 /// This method should only be called as part of the paint phase of element drawing.
3079 pub fn paint_svg(
3080 &mut self,
3081 bounds: Bounds<Pixels>,
3082 path: SharedString,
3083 transformation: TransformationMatrix,
3084 color: Hsla,
3085 cx: &App,
3086 ) -> Result<()> {
3087 self.invalidator.debug_assert_paint();
3088
3089 let element_opacity = self.element_opacity();
3090 let scale_factor = self.scale_factor();
3091
3092 let bounds = bounds.scale(scale_factor);
3093 let params = RenderSvgParams {
3094 path,
3095 size: bounds.size.map(|pixels| {
3096 DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
3097 }),
3098 };
3099
3100 let Some(tile) =
3101 self.sprite_atlas
3102 .get_or_insert_with(¶ms.clone().into(), &mut || {
3103 let Some((size, bytes)) = cx.svg_renderer.render(¶ms)? else {
3104 return Ok(None);
3105 };
3106 Ok(Some((size, Cow::Owned(bytes))))
3107 })?
3108 else {
3109 return Ok(());
3110 };
3111 let content_mask = self.content_mask().scale(scale_factor);
3112 let svg_bounds = Bounds {
3113 origin: bounds.center()
3114 - Point::new(
3115 ScaledPixels(tile.bounds.size.width.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3116 ScaledPixels(tile.bounds.size.height.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3117 ),
3118 size: tile
3119 .bounds
3120 .size
3121 .map(|value| ScaledPixels(value.0 as f32 / SMOOTH_SVG_SCALE_FACTOR)),
3122 };
3123
3124 self.next_frame.scene.insert_primitive(MonochromeSprite {
3125 order: 0,
3126 pad: 0,
3127 bounds: svg_bounds
3128 .map_origin(|origin| origin.round())
3129 .map_size(|size| size.ceil()),
3130 content_mask,
3131 color: color.opacity(element_opacity),
3132 tile,
3133 transformation,
3134 });
3135
3136 Ok(())
3137 }
3138
3139 /// Paint an image into the scene for the next frame at the current z-index.
3140 /// This method will panic if the frame_index is not valid
3141 ///
3142 /// This method should only be called as part of the paint phase of element drawing.
3143 pub fn paint_image(
3144 &mut self,
3145 bounds: Bounds<Pixels>,
3146 corner_radii: Corners<Pixels>,
3147 data: Arc<RenderImage>,
3148 frame_index: usize,
3149 grayscale: bool,
3150 ) -> Result<()> {
3151 self.invalidator.debug_assert_paint();
3152
3153 let scale_factor = self.scale_factor();
3154 let bounds = bounds.scale(scale_factor);
3155 let params = RenderImageParams {
3156 image_id: data.id,
3157 frame_index,
3158 };
3159
3160 let tile = self
3161 .sprite_atlas
3162 .get_or_insert_with(¶ms.into(), &mut || {
3163 Ok(Some((
3164 data.size(frame_index),
3165 Cow::Borrowed(
3166 data.as_bytes(frame_index)
3167 .expect("It's the caller's job to pass a valid frame index"),
3168 ),
3169 )))
3170 })?
3171 .expect("Callback above only returns Some");
3172 let content_mask = self.content_mask().scale(scale_factor);
3173 let corner_radii = corner_radii.scale(scale_factor);
3174 let opacity = self.element_opacity();
3175
3176 self.next_frame.scene.insert_primitive(PolychromeSprite {
3177 order: 0,
3178 pad: 0,
3179 grayscale,
3180 bounds: bounds
3181 .map_origin(|origin| origin.floor())
3182 .map_size(|size| size.ceil()),
3183 content_mask,
3184 corner_radii,
3185 tile,
3186 opacity,
3187 });
3188 Ok(())
3189 }
3190
3191 /// Paint a surface into the scene for the next frame at the current z-index.
3192 ///
3193 /// This method should only be called as part of the paint phase of element drawing.
3194 #[cfg(target_os = "macos")]
3195 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
3196 use crate::PaintSurface;
3197
3198 self.invalidator.debug_assert_paint();
3199
3200 let scale_factor = self.scale_factor();
3201 let bounds = bounds.scale(scale_factor);
3202 let content_mask = self.content_mask().scale(scale_factor);
3203 self.next_frame.scene.insert_primitive(PaintSurface {
3204 order: 0,
3205 bounds,
3206 content_mask,
3207 image_buffer,
3208 });
3209 }
3210
3211 /// Removes an image from the sprite atlas.
3212 pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
3213 for frame_index in 0..data.frame_count() {
3214 let params = RenderImageParams {
3215 image_id: data.id,
3216 frame_index,
3217 };
3218
3219 self.sprite_atlas.remove(¶ms.clone().into());
3220 }
3221
3222 Ok(())
3223 }
3224
3225 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
3226 /// layout is being requested, along with the layout ids of any children. This method is called during
3227 /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
3228 ///
3229 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3230 #[must_use]
3231 pub fn request_layout(
3232 &mut self,
3233 style: Style,
3234 children: impl IntoIterator<Item = LayoutId>,
3235 cx: &mut App,
3236 ) -> LayoutId {
3237 self.invalidator.debug_assert_prepaint();
3238
3239 cx.layout_id_buffer.clear();
3240 cx.layout_id_buffer.extend(children);
3241 let rem_size = self.rem_size();
3242 let scale_factor = self.scale_factor();
3243
3244 self.layout_engine.as_mut().unwrap().request_layout(
3245 style,
3246 rem_size,
3247 scale_factor,
3248 &cx.layout_id_buffer,
3249 )
3250 }
3251
3252 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
3253 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
3254 /// determine the element's size. One place this is used internally is when measuring text.
3255 ///
3256 /// The given closure is invoked at layout time with the known dimensions and available space and
3257 /// returns a `Size`.
3258 ///
3259 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3260 pub fn request_measured_layout<
3261 F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
3262 + 'static,
3263 >(
3264 &mut self,
3265 style: Style,
3266 measure: F,
3267 ) -> LayoutId {
3268 self.invalidator.debug_assert_prepaint();
3269
3270 let rem_size = self.rem_size();
3271 let scale_factor = self.scale_factor();
3272 self.layout_engine
3273 .as_mut()
3274 .unwrap()
3275 .request_measured_layout(style, rem_size, scale_factor, measure)
3276 }
3277
3278 /// Compute the layout for the given id within the given available space.
3279 /// This method is called for its side effect, typically by the framework prior to painting.
3280 /// After calling it, you can request the bounds of the given layout node id or any descendant.
3281 ///
3282 /// This method should only be called as part of the prepaint phase of element drawing.
3283 pub fn compute_layout(
3284 &mut self,
3285 layout_id: LayoutId,
3286 available_space: Size<AvailableSpace>,
3287 cx: &mut App,
3288 ) {
3289 self.invalidator.debug_assert_prepaint();
3290
3291 let mut layout_engine = self.layout_engine.take().unwrap();
3292 layout_engine.compute_layout(layout_id, available_space, self, cx);
3293 self.layout_engine = Some(layout_engine);
3294 }
3295
3296 /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
3297 /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
3298 ///
3299 /// This method should only be called as part of element drawing.
3300 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
3301 self.invalidator.debug_assert_prepaint();
3302
3303 let scale_factor = self.scale_factor();
3304 let mut bounds = self
3305 .layout_engine
3306 .as_mut()
3307 .unwrap()
3308 .layout_bounds(layout_id, scale_factor)
3309 .map(Into::into);
3310 bounds.origin += self.element_offset();
3311 bounds
3312 }
3313
3314 /// This method should be called during `prepaint`. You can use
3315 /// the returned [Hitbox] during `paint` or in an event handler
3316 /// to determine whether the inserted hitbox was the topmost.
3317 ///
3318 /// This method should only be called as part of the prepaint phase of element drawing.
3319 pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
3320 self.invalidator.debug_assert_prepaint();
3321
3322 let content_mask = self.content_mask();
3323 let mut id = self.next_hitbox_id;
3324 self.next_hitbox_id = self.next_hitbox_id.next();
3325 let hitbox = Hitbox {
3326 id,
3327 bounds,
3328 content_mask,
3329 behavior,
3330 };
3331 self.next_frame.hitboxes.push(hitbox.clone());
3332 hitbox
3333 }
3334
3335 /// Set a hitbox which will act as a control area of the platform window.
3336 ///
3337 /// This method should only be called as part of the paint phase of element drawing.
3338 pub fn insert_window_control_hitbox(&mut self, area: WindowControlArea, hitbox: Hitbox) {
3339 self.invalidator.debug_assert_paint();
3340 self.next_frame.window_control_hitboxes.push((area, hitbox));
3341 }
3342
3343 /// Sets the key context for the current element. This context will be used to translate
3344 /// keybindings into actions.
3345 ///
3346 /// This method should only be called as part of the paint phase of element drawing.
3347 pub fn set_key_context(&mut self, context: KeyContext) {
3348 self.invalidator.debug_assert_paint();
3349 self.next_frame.dispatch_tree.set_key_context(context);
3350 }
3351
3352 /// Sets the focus handle for the current element. This handle will be used to manage focus state
3353 /// and keyboard event dispatch for the element.
3354 ///
3355 /// This method should only be called as part of the prepaint phase of element drawing.
3356 pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3357 self.invalidator.debug_assert_prepaint();
3358 if focus_handle.is_focused(self) {
3359 self.next_frame.focus = Some(focus_handle.id);
3360 }
3361 self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3362 }
3363
3364 /// Sets the view id for the current element, which will be used to manage view caching.
3365 ///
3366 /// This method should only be called as part of element prepaint. We plan on removing this
3367 /// method eventually when we solve some issues that require us to construct editor elements
3368 /// directly instead of always using editors via views.
3369 pub fn set_view_id(&mut self, view_id: EntityId) {
3370 self.invalidator.debug_assert_prepaint();
3371 self.next_frame.dispatch_tree.set_view_id(view_id);
3372 }
3373
3374 /// Get the entity ID for the currently rendering view
3375 pub fn current_view(&self) -> EntityId {
3376 self.invalidator.debug_assert_paint_or_prepaint();
3377 self.rendered_entity_stack.last().copied().unwrap()
3378 }
3379
3380 pub(crate) fn with_rendered_view<R>(
3381 &mut self,
3382 id: EntityId,
3383 f: impl FnOnce(&mut Self) -> R,
3384 ) -> R {
3385 self.rendered_entity_stack.push(id);
3386 let result = f(self);
3387 self.rendered_entity_stack.pop();
3388 result
3389 }
3390
3391 /// Executes the provided function with the specified image cache.
3392 pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3393 where
3394 F: FnOnce(&mut Self) -> R,
3395 {
3396 if let Some(image_cache) = image_cache {
3397 self.image_cache_stack.push(image_cache);
3398 let result = f(self);
3399 self.image_cache_stack.pop();
3400 result
3401 } else {
3402 f(self)
3403 }
3404 }
3405
3406 /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3407 /// platform to receive textual input with proper integration with concerns such
3408 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3409 /// rendered.
3410 ///
3411 /// This method should only be called as part of the paint phase of element drawing.
3412 ///
3413 /// [element_input_handler]: crate::ElementInputHandler
3414 pub fn handle_input(
3415 &mut self,
3416 focus_handle: &FocusHandle,
3417 input_handler: impl InputHandler,
3418 cx: &App,
3419 ) {
3420 self.invalidator.debug_assert_paint();
3421
3422 if focus_handle.is_focused(self) {
3423 let cx = self.to_async(cx);
3424 self.next_frame
3425 .input_handlers
3426 .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3427 }
3428 }
3429
3430 /// Register a mouse event listener on the window for the next frame. The type of event
3431 /// is determined by the first parameter of the given listener. When the next frame is rendered
3432 /// the listener will be cleared.
3433 ///
3434 /// This method should only be called as part of the paint phase of element drawing.
3435 pub fn on_mouse_event<Event: MouseEvent>(
3436 &mut self,
3437 mut handler: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3438 ) {
3439 self.invalidator.debug_assert_paint();
3440
3441 self.next_frame.mouse_listeners.push(Some(Box::new(
3442 move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3443 if let Some(event) = event.downcast_ref() {
3444 handler(event, phase, window, cx)
3445 }
3446 },
3447 )));
3448 }
3449
3450 /// Register a key event listener on the window for the next frame. The type of event
3451 /// is determined by the first parameter of the given listener. When the next frame is rendered
3452 /// the listener will be cleared.
3453 ///
3454 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3455 /// a specific need to register a global listener.
3456 ///
3457 /// This method should only be called as part of the paint phase of element drawing.
3458 pub fn on_key_event<Event: KeyEvent>(
3459 &mut self,
3460 listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3461 ) {
3462 self.invalidator.debug_assert_paint();
3463
3464 self.next_frame.dispatch_tree.on_key_event(Rc::new(
3465 move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3466 if let Some(event) = event.downcast_ref::<Event>() {
3467 listener(event, phase, window, cx)
3468 }
3469 },
3470 ));
3471 }
3472
3473 /// Register a modifiers changed event listener on the window for the next frame.
3474 ///
3475 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3476 /// a specific need to register a global listener.
3477 ///
3478 /// This method should only be called as part of the paint phase of element drawing.
3479 pub fn on_modifiers_changed(
3480 &mut self,
3481 listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3482 ) {
3483 self.invalidator.debug_assert_paint();
3484
3485 self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3486 move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3487 listener(event, window, cx)
3488 },
3489 ));
3490 }
3491
3492 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3493 /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3494 /// Returns a subscription and persists until the subscription is dropped.
3495 pub fn on_focus_in(
3496 &mut self,
3497 handle: &FocusHandle,
3498 cx: &mut App,
3499 mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3500 ) -> Subscription {
3501 let focus_id = handle.id;
3502 let (subscription, activate) =
3503 self.new_focus_listener(Box::new(move |event, window, cx| {
3504 if event.is_focus_in(focus_id) {
3505 listener(window, cx);
3506 }
3507 true
3508 }));
3509 cx.defer(move |_| activate());
3510 subscription
3511 }
3512
3513 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3514 /// Returns a subscription and persists until the subscription is dropped.
3515 pub fn on_focus_out(
3516 &mut self,
3517 handle: &FocusHandle,
3518 cx: &mut App,
3519 mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3520 ) -> Subscription {
3521 let focus_id = handle.id;
3522 let (subscription, activate) =
3523 self.new_focus_listener(Box::new(move |event, window, cx| {
3524 if let Some(blurred_id) = event.previous_focus_path.last().copied()
3525 && event.is_focus_out(focus_id)
3526 {
3527 let event = FocusOutEvent {
3528 blurred: WeakFocusHandle {
3529 id: blurred_id,
3530 handles: Arc::downgrade(&cx.focus_handles),
3531 },
3532 };
3533 listener(event, window, cx)
3534 }
3535 true
3536 }));
3537 cx.defer(move |_| activate());
3538 subscription
3539 }
3540
3541 fn reset_cursor_style(&self, cx: &mut App) {
3542 // Set the cursor only if we're the active window.
3543 if self.is_window_hovered() {
3544 let style = self
3545 .rendered_frame
3546 .cursor_style(self)
3547 .unwrap_or(CursorStyle::Arrow);
3548 cx.platform.set_cursor_style(style);
3549 }
3550 }
3551
3552 /// Dispatch a given keystroke as though the user had typed it.
3553 /// You can create a keystroke with Keystroke::parse("").
3554 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3555 let keystroke = keystroke.with_simulated_ime();
3556 let result = self.dispatch_event(
3557 PlatformInput::KeyDown(KeyDownEvent {
3558 keystroke: keystroke.clone(),
3559 is_held: false,
3560 }),
3561 cx,
3562 );
3563 if !result.propagate {
3564 return true;
3565 }
3566
3567 if let Some(input) = keystroke.key_char
3568 && let Some(mut input_handler) = self.platform_window.take_input_handler()
3569 {
3570 input_handler.dispatch_input(&input, self, cx);
3571 self.platform_window.set_input_handler(input_handler);
3572 return true;
3573 }
3574
3575 false
3576 }
3577
3578 /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3579 /// binding for the action (last binding added to the keymap).
3580 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3581 self.highest_precedence_binding_for_action(action)
3582 .map(|binding| {
3583 binding
3584 .keystrokes()
3585 .iter()
3586 .map(ToString::to_string)
3587 .collect::<Vec<_>>()
3588 .join(" ")
3589 })
3590 .unwrap_or_else(|| action.name().to_string())
3591 }
3592
3593 /// Dispatch a mouse or keyboard event on the window.
3594 #[profiling::function]
3595 pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3596 self.last_input_timestamp.set(Instant::now());
3597
3598 // Track whether this input was keyboard-based for focus-visible styling
3599 self.last_input_was_keyboard = matches!(
3600 event,
3601 PlatformInput::KeyDown(_)
3602 | PlatformInput::KeyUp(_)
3603 | PlatformInput::ModifiersChanged(_)
3604 );
3605
3606 // Handlers may set this to false by calling `stop_propagation`.
3607 cx.propagate_event = true;
3608 // Handlers may set this to true by calling `prevent_default`.
3609 self.default_prevented = false;
3610
3611 let event = match event {
3612 // Track the mouse position with our own state, since accessing the platform
3613 // API for the mouse position can only occur on the main thread.
3614 PlatformInput::MouseMove(mouse_move) => {
3615 self.mouse_position = mouse_move.position;
3616 self.modifiers = mouse_move.modifiers;
3617 PlatformInput::MouseMove(mouse_move)
3618 }
3619 PlatformInput::MouseDown(mouse_down) => {
3620 self.mouse_position = mouse_down.position;
3621 self.modifiers = mouse_down.modifiers;
3622 PlatformInput::MouseDown(mouse_down)
3623 }
3624 PlatformInput::MouseUp(mouse_up) => {
3625 self.mouse_position = mouse_up.position;
3626 self.modifiers = mouse_up.modifiers;
3627 PlatformInput::MouseUp(mouse_up)
3628 }
3629 PlatformInput::MouseExited(mouse_exited) => {
3630 self.modifiers = mouse_exited.modifiers;
3631 PlatformInput::MouseExited(mouse_exited)
3632 }
3633 PlatformInput::ModifiersChanged(modifiers_changed) => {
3634 self.modifiers = modifiers_changed.modifiers;
3635 self.capslock = modifiers_changed.capslock;
3636 PlatformInput::ModifiersChanged(modifiers_changed)
3637 }
3638 PlatformInput::ScrollWheel(scroll_wheel) => {
3639 self.mouse_position = scroll_wheel.position;
3640 self.modifiers = scroll_wheel.modifiers;
3641 PlatformInput::ScrollWheel(scroll_wheel)
3642 }
3643 // Translate dragging and dropping of external files from the operating system
3644 // to internal drag and drop events.
3645 PlatformInput::FileDrop(file_drop) => match file_drop {
3646 FileDropEvent::Entered { position, paths } => {
3647 self.mouse_position = position;
3648 if cx.active_drag.is_none() {
3649 cx.active_drag = Some(AnyDrag {
3650 value: Arc::new(paths.clone()),
3651 view: cx.new(|_| paths).into(),
3652 cursor_offset: position,
3653 cursor_style: None,
3654 });
3655 }
3656 PlatformInput::MouseMove(MouseMoveEvent {
3657 position,
3658 pressed_button: Some(MouseButton::Left),
3659 modifiers: Modifiers::default(),
3660 })
3661 }
3662 FileDropEvent::Pending { position } => {
3663 self.mouse_position = position;
3664 PlatformInput::MouseMove(MouseMoveEvent {
3665 position,
3666 pressed_button: Some(MouseButton::Left),
3667 modifiers: Modifiers::default(),
3668 })
3669 }
3670 FileDropEvent::Submit { position } => {
3671 cx.activate(true);
3672 self.mouse_position = position;
3673 PlatformInput::MouseUp(MouseUpEvent {
3674 button: MouseButton::Left,
3675 position,
3676 modifiers: Modifiers::default(),
3677 click_count: 1,
3678 })
3679 }
3680 FileDropEvent::Exited => {
3681 cx.active_drag.take();
3682 PlatformInput::FileDrop(FileDropEvent::Exited)
3683 }
3684 },
3685 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3686 };
3687
3688 if let Some(any_mouse_event) = event.mouse_event() {
3689 self.dispatch_mouse_event(any_mouse_event, cx);
3690 } else if let Some(any_key_event) = event.keyboard_event() {
3691 self.dispatch_key_event(any_key_event, cx);
3692 }
3693
3694 DispatchEventResult {
3695 propagate: cx.propagate_event,
3696 default_prevented: self.default_prevented,
3697 }
3698 }
3699
3700 fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3701 let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3702 if hit_test != self.mouse_hit_test {
3703 self.mouse_hit_test = hit_test;
3704 self.reset_cursor_style(cx);
3705 }
3706
3707 #[cfg(any(feature = "inspector", debug_assertions))]
3708 if self.is_inspector_picking(cx) {
3709 self.handle_inspector_mouse_event(event, cx);
3710 // When inspector is picking, all other mouse handling is skipped.
3711 return;
3712 }
3713
3714 let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3715
3716 // Capture phase, events bubble from back to front. Handlers for this phase are used for
3717 // special purposes, such as detecting events outside of a given Bounds.
3718 for listener in &mut mouse_listeners {
3719 let listener = listener.as_mut().unwrap();
3720 listener(event, DispatchPhase::Capture, self, cx);
3721 if !cx.propagate_event {
3722 break;
3723 }
3724 }
3725
3726 // Bubble phase, where most normal handlers do their work.
3727 if cx.propagate_event {
3728 for listener in mouse_listeners.iter_mut().rev() {
3729 let listener = listener.as_mut().unwrap();
3730 listener(event, DispatchPhase::Bubble, self, cx);
3731 if !cx.propagate_event {
3732 break;
3733 }
3734 }
3735 }
3736
3737 self.rendered_frame.mouse_listeners = mouse_listeners;
3738
3739 if cx.has_active_drag() {
3740 if event.is::<MouseMoveEvent>() {
3741 // If this was a mouse move event, redraw the window so that the
3742 // active drag can follow the mouse cursor.
3743 self.refresh();
3744 } else if event.is::<MouseUpEvent>() {
3745 // If this was a mouse up event, cancel the active drag and redraw
3746 // the window.
3747 cx.active_drag = None;
3748 self.refresh();
3749 }
3750 }
3751 }
3752
3753 fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3754 if self.invalidator.is_dirty() {
3755 self.draw(cx).clear();
3756 }
3757
3758 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3759 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3760
3761 let mut keystroke: Option<Keystroke> = None;
3762
3763 if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3764 if event.modifiers.number_of_modifiers() == 0
3765 && self.pending_modifier.modifiers.number_of_modifiers() == 1
3766 && !self.pending_modifier.saw_keystroke
3767 {
3768 let key = match self.pending_modifier.modifiers {
3769 modifiers if modifiers.shift => Some("shift"),
3770 modifiers if modifiers.control => Some("control"),
3771 modifiers if modifiers.alt => Some("alt"),
3772 modifiers if modifiers.platform => Some("platform"),
3773 modifiers if modifiers.function => Some("function"),
3774 _ => None,
3775 };
3776 if let Some(key) = key {
3777 keystroke = Some(Keystroke {
3778 key: key.to_string(),
3779 key_char: None,
3780 modifiers: Modifiers::default(),
3781 });
3782 }
3783 }
3784
3785 if self.pending_modifier.modifiers.number_of_modifiers() == 0
3786 && event.modifiers.number_of_modifiers() == 1
3787 {
3788 self.pending_modifier.saw_keystroke = false
3789 }
3790 self.pending_modifier.modifiers = event.modifiers
3791 } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3792 self.pending_modifier.saw_keystroke = true;
3793 keystroke = Some(key_down_event.keystroke.clone());
3794 }
3795
3796 let Some(keystroke) = keystroke else {
3797 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3798 return;
3799 };
3800
3801 cx.propagate_event = true;
3802 self.dispatch_keystroke_interceptors(event, self.context_stack(), cx);
3803 if !cx.propagate_event {
3804 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3805 return;
3806 }
3807
3808 let mut currently_pending = self.pending_input.take().unwrap_or_default();
3809 if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3810 currently_pending = PendingInput::default();
3811 }
3812
3813 let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3814 currently_pending.keystrokes,
3815 keystroke,
3816 &dispatch_path,
3817 );
3818
3819 if !match_result.to_replay.is_empty() {
3820 self.replay_pending_input(match_result.to_replay, cx);
3821 cx.propagate_event = true;
3822 }
3823
3824 if !match_result.pending.is_empty() {
3825 currently_pending.keystrokes = match_result.pending;
3826 currently_pending.focus = self.focus;
3827 currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3828 cx.background_executor.timer(Duration::from_secs(1)).await;
3829 cx.update(move |window, cx| {
3830 let Some(currently_pending) = window
3831 .pending_input
3832 .take()
3833 .filter(|pending| pending.focus == window.focus)
3834 else {
3835 return;
3836 };
3837
3838 let node_id = window.focus_node_id_in_rendered_frame(window.focus);
3839 let dispatch_path = window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3840
3841 let to_replay = window
3842 .rendered_frame
3843 .dispatch_tree
3844 .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3845
3846 window.pending_input_changed(cx);
3847 window.replay_pending_input(to_replay, cx)
3848 })
3849 .log_err();
3850 }));
3851 self.pending_input = Some(currently_pending);
3852 self.pending_input_changed(cx);
3853 cx.propagate_event = false;
3854 return;
3855 }
3856
3857 for binding in match_result.bindings {
3858 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3859 if !cx.propagate_event {
3860 self.dispatch_keystroke_observers(
3861 event,
3862 Some(binding.action),
3863 match_result.context_stack,
3864 cx,
3865 );
3866 self.pending_input_changed(cx);
3867 return;
3868 }
3869 }
3870
3871 self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
3872 self.pending_input_changed(cx);
3873 }
3874
3875 fn finish_dispatch_key_event(
3876 &mut self,
3877 event: &dyn Any,
3878 dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3879 context_stack: Vec<KeyContext>,
3880 cx: &mut App,
3881 ) {
3882 self.dispatch_key_down_up_event(event, &dispatch_path, cx);
3883 if !cx.propagate_event {
3884 return;
3885 }
3886
3887 self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
3888 if !cx.propagate_event {
3889 return;
3890 }
3891
3892 self.dispatch_keystroke_observers(event, None, context_stack, cx);
3893 }
3894
3895 fn pending_input_changed(&mut self, cx: &mut App) {
3896 self.pending_input_observers
3897 .clone()
3898 .retain(&(), |callback| callback(self, cx));
3899 }
3900
3901 fn dispatch_key_down_up_event(
3902 &mut self,
3903 event: &dyn Any,
3904 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3905 cx: &mut App,
3906 ) {
3907 // Capture phase
3908 for node_id in dispatch_path {
3909 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3910
3911 for key_listener in node.key_listeners.clone() {
3912 key_listener(event, DispatchPhase::Capture, self, cx);
3913 if !cx.propagate_event {
3914 return;
3915 }
3916 }
3917 }
3918
3919 // Bubble phase
3920 for node_id in dispatch_path.iter().rev() {
3921 // Handle low level key events
3922 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3923 for key_listener in node.key_listeners.clone() {
3924 key_listener(event, DispatchPhase::Bubble, self, cx);
3925 if !cx.propagate_event {
3926 return;
3927 }
3928 }
3929 }
3930 }
3931
3932 fn dispatch_modifiers_changed_event(
3933 &mut self,
3934 event: &dyn Any,
3935 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3936 cx: &mut App,
3937 ) {
3938 let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
3939 return;
3940 };
3941 for node_id in dispatch_path.iter().rev() {
3942 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3943 for listener in node.modifiers_changed_listeners.clone() {
3944 listener(event, self, cx);
3945 if !cx.propagate_event {
3946 return;
3947 }
3948 }
3949 }
3950 }
3951
3952 /// Determine whether a potential multi-stroke key binding is in progress on this window.
3953 pub fn has_pending_keystrokes(&self) -> bool {
3954 self.pending_input.is_some()
3955 }
3956
3957 pub(crate) fn clear_pending_keystrokes(&mut self) {
3958 self.pending_input.take();
3959 }
3960
3961 /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
3962 pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
3963 self.pending_input
3964 .as_ref()
3965 .map(|pending_input| pending_input.keystrokes.as_slice())
3966 }
3967
3968 fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
3969 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3970 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3971
3972 'replay: for replay in replays {
3973 let event = KeyDownEvent {
3974 keystroke: replay.keystroke.clone(),
3975 is_held: false,
3976 };
3977
3978 cx.propagate_event = true;
3979 for binding in replay.bindings {
3980 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3981 if !cx.propagate_event {
3982 self.dispatch_keystroke_observers(
3983 &event,
3984 Some(binding.action),
3985 Vec::default(),
3986 cx,
3987 );
3988 continue 'replay;
3989 }
3990 }
3991
3992 self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
3993 if !cx.propagate_event {
3994 continue 'replay;
3995 }
3996 if let Some(input) = replay.keystroke.key_char.as_ref().cloned()
3997 && let Some(mut input_handler) = self.platform_window.take_input_handler()
3998 {
3999 input_handler.dispatch_input(&input, self, cx);
4000 self.platform_window.set_input_handler(input_handler)
4001 }
4002 }
4003 }
4004
4005 fn focus_node_id_in_rendered_frame(&self, focus_id: Option<FocusId>) -> DispatchNodeId {
4006 focus_id
4007 .and_then(|focus_id| {
4008 self.rendered_frame
4009 .dispatch_tree
4010 .focusable_node_id(focus_id)
4011 })
4012 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id())
4013 }
4014
4015 fn dispatch_action_on_node(
4016 &mut self,
4017 node_id: DispatchNodeId,
4018 action: &dyn Action,
4019 cx: &mut App,
4020 ) {
4021 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
4022
4023 // Capture phase for global actions.
4024 cx.propagate_event = true;
4025 if let Some(mut global_listeners) = cx
4026 .global_action_listeners
4027 .remove(&action.as_any().type_id())
4028 {
4029 for listener in &global_listeners {
4030 listener(action.as_any(), DispatchPhase::Capture, cx);
4031 if !cx.propagate_event {
4032 break;
4033 }
4034 }
4035
4036 global_listeners.extend(
4037 cx.global_action_listeners
4038 .remove(&action.as_any().type_id())
4039 .unwrap_or_default(),
4040 );
4041
4042 cx.global_action_listeners
4043 .insert(action.as_any().type_id(), global_listeners);
4044 }
4045
4046 if !cx.propagate_event {
4047 return;
4048 }
4049
4050 // Capture phase for window actions.
4051 for node_id in &dispatch_path {
4052 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4053 for DispatchActionListener {
4054 action_type,
4055 listener,
4056 } in node.action_listeners.clone()
4057 {
4058 let any_action = action.as_any();
4059 if action_type == any_action.type_id() {
4060 listener(any_action, DispatchPhase::Capture, self, cx);
4061
4062 if !cx.propagate_event {
4063 return;
4064 }
4065 }
4066 }
4067 }
4068
4069 // Bubble phase for window actions.
4070 for node_id in dispatch_path.iter().rev() {
4071 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4072 for DispatchActionListener {
4073 action_type,
4074 listener,
4075 } in node.action_listeners.clone()
4076 {
4077 let any_action = action.as_any();
4078 if action_type == any_action.type_id() {
4079 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4080 listener(any_action, DispatchPhase::Bubble, self, cx);
4081
4082 if !cx.propagate_event {
4083 return;
4084 }
4085 }
4086 }
4087 }
4088
4089 // Bubble phase for global actions.
4090 if let Some(mut global_listeners) = cx
4091 .global_action_listeners
4092 .remove(&action.as_any().type_id())
4093 {
4094 for listener in global_listeners.iter().rev() {
4095 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4096
4097 listener(action.as_any(), DispatchPhase::Bubble, cx);
4098 if !cx.propagate_event {
4099 break;
4100 }
4101 }
4102
4103 global_listeners.extend(
4104 cx.global_action_listeners
4105 .remove(&action.as_any().type_id())
4106 .unwrap_or_default(),
4107 );
4108
4109 cx.global_action_listeners
4110 .insert(action.as_any().type_id(), global_listeners);
4111 }
4112 }
4113
4114 /// Register the given handler to be invoked whenever the global of the given type
4115 /// is updated.
4116 pub fn observe_global<G: Global>(
4117 &mut self,
4118 cx: &mut App,
4119 f: impl Fn(&mut Window, &mut App) + 'static,
4120 ) -> Subscription {
4121 let window_handle = self.handle;
4122 let (subscription, activate) = cx.global_observers.insert(
4123 TypeId::of::<G>(),
4124 Box::new(move |cx| {
4125 window_handle
4126 .update(cx, |_, window, cx| f(window, cx))
4127 .is_ok()
4128 }),
4129 );
4130 cx.defer(move |_| activate());
4131 subscription
4132 }
4133
4134 /// Focus the current window and bring it to the foreground at the platform level.
4135 pub fn activate_window(&self) {
4136 self.platform_window.activate();
4137 }
4138
4139 /// Minimize the current window at the platform level.
4140 pub fn minimize_window(&self) {
4141 self.platform_window.minimize();
4142 }
4143
4144 /// Toggle full screen status on the current window at the platform level.
4145 pub fn toggle_fullscreen(&self) {
4146 self.platform_window.toggle_fullscreen();
4147 }
4148
4149 /// Updates the IME panel position suggestions for languages like japanese, chinese.
4150 pub fn invalidate_character_coordinates(&self) {
4151 self.on_next_frame(|window, cx| {
4152 if let Some(mut input_handler) = window.platform_window.take_input_handler() {
4153 if let Some(bounds) = input_handler.selected_bounds(window, cx) {
4154 window.platform_window.update_ime_position(bounds);
4155 }
4156 window.platform_window.set_input_handler(input_handler);
4157 }
4158 });
4159 }
4160
4161 /// Present a platform dialog.
4162 /// The provided message will be presented, along with buttons for each answer.
4163 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
4164 pub fn prompt<T>(
4165 &mut self,
4166 level: PromptLevel,
4167 message: &str,
4168 detail: Option<&str>,
4169 answers: &[T],
4170 cx: &mut App,
4171 ) -> oneshot::Receiver<usize>
4172 where
4173 T: Clone + Into<PromptButton>,
4174 {
4175 let prompt_builder = cx.prompt_builder.take();
4176 let Some(prompt_builder) = prompt_builder else {
4177 unreachable!("Re-entrant window prompting is not supported by GPUI");
4178 };
4179
4180 let answers = answers
4181 .iter()
4182 .map(|answer| answer.clone().into())
4183 .collect::<Vec<_>>();
4184
4185 let receiver = match &prompt_builder {
4186 PromptBuilder::Default => self
4187 .platform_window
4188 .prompt(level, message, detail, &answers)
4189 .unwrap_or_else(|| {
4190 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4191 }),
4192 PromptBuilder::Custom(_) => {
4193 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4194 }
4195 };
4196
4197 cx.prompt_builder = Some(prompt_builder);
4198
4199 receiver
4200 }
4201
4202 fn build_custom_prompt(
4203 &mut self,
4204 prompt_builder: &PromptBuilder,
4205 level: PromptLevel,
4206 message: &str,
4207 detail: Option<&str>,
4208 answers: &[PromptButton],
4209 cx: &mut App,
4210 ) -> oneshot::Receiver<usize> {
4211 let (sender, receiver) = oneshot::channel();
4212 let handle = PromptHandle::new(sender);
4213 let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
4214 self.prompt = Some(handle);
4215 receiver
4216 }
4217
4218 /// Returns the current context stack.
4219 pub fn context_stack(&self) -> Vec<KeyContext> {
4220 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4221 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4222 dispatch_tree
4223 .dispatch_path(node_id)
4224 .iter()
4225 .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
4226 .collect()
4227 }
4228
4229 /// Returns all available actions for the focused element.
4230 pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
4231 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4232 let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
4233 for action_type in cx.global_action_listeners.keys() {
4234 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
4235 let action = cx.actions.build_action_type(action_type).ok();
4236 if let Some(action) = action {
4237 actions.insert(ix, action);
4238 }
4239 }
4240 }
4241 actions
4242 }
4243
4244 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
4245 /// returned in the order they were added. For display, the last binding should take precedence.
4246 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
4247 self.rendered_frame
4248 .dispatch_tree
4249 .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
4250 }
4251
4252 /// Returns the highest precedence key binding that invokes an action on the currently focused
4253 /// element. This is more efficient than getting the last result of `bindings_for_action`.
4254 pub fn highest_precedence_binding_for_action(&self, action: &dyn Action) -> Option<KeyBinding> {
4255 self.rendered_frame
4256 .dispatch_tree
4257 .highest_precedence_binding_for_action(
4258 action,
4259 &self.rendered_frame.dispatch_tree.context_stack,
4260 )
4261 }
4262
4263 /// Returns the key bindings for an action in a context.
4264 pub fn bindings_for_action_in_context(
4265 &self,
4266 action: &dyn Action,
4267 context: KeyContext,
4268 ) -> Vec<KeyBinding> {
4269 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4270 dispatch_tree.bindings_for_action(action, &[context])
4271 }
4272
4273 /// Returns the highest precedence key binding for an action in a context. This is more
4274 /// efficient than getting the last result of `bindings_for_action_in_context`.
4275 pub fn highest_precedence_binding_for_action_in_context(
4276 &self,
4277 action: &dyn Action,
4278 context: KeyContext,
4279 ) -> Option<KeyBinding> {
4280 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4281 dispatch_tree.highest_precedence_binding_for_action(action, &[context])
4282 }
4283
4284 /// Returns any bindings that would invoke an action on the given focus handle if it were
4285 /// focused. Bindings are returned in the order they were added. For display, the last binding
4286 /// should take precedence.
4287 pub fn bindings_for_action_in(
4288 &self,
4289 action: &dyn Action,
4290 focus_handle: &FocusHandle,
4291 ) -> Vec<KeyBinding> {
4292 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4293 let Some(context_stack) = self.context_stack_for_focus_handle(focus_handle) else {
4294 return vec![];
4295 };
4296 dispatch_tree.bindings_for_action(action, &context_stack)
4297 }
4298
4299 /// Returns the highest precedence key binding that would invoke an action on the given focus
4300 /// handle if it were focused. This is more efficient than getting the last result of
4301 /// `bindings_for_action_in`.
4302 pub fn highest_precedence_binding_for_action_in(
4303 &self,
4304 action: &dyn Action,
4305 focus_handle: &FocusHandle,
4306 ) -> Option<KeyBinding> {
4307 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4308 let context_stack = self.context_stack_for_focus_handle(focus_handle)?;
4309 dispatch_tree.highest_precedence_binding_for_action(action, &context_stack)
4310 }
4311
4312 fn context_stack_for_focus_handle(
4313 &self,
4314 focus_handle: &FocusHandle,
4315 ) -> Option<Vec<KeyContext>> {
4316 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4317 let node_id = dispatch_tree.focusable_node_id(focus_handle.id)?;
4318 let context_stack: Vec<_> = dispatch_tree
4319 .dispatch_path(node_id)
4320 .into_iter()
4321 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
4322 .collect();
4323 Some(context_stack)
4324 }
4325
4326 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
4327 pub fn listener_for<V: Render, E>(
4328 &self,
4329 view: &Entity<V>,
4330 f: impl Fn(&mut V, &E, &mut Window, &mut Context<V>) + 'static,
4331 ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
4332 let view = view.downgrade();
4333 move |e: &E, window: &mut Window, cx: &mut App| {
4334 view.update(cx, |view, cx| f(view, e, window, cx)).ok();
4335 }
4336 }
4337
4338 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
4339 pub fn handler_for<E: 'static, Callback: Fn(&mut E, &mut Window, &mut Context<E>) + 'static>(
4340 &self,
4341 entity: &Entity<E>,
4342 f: Callback,
4343 ) -> impl Fn(&mut Window, &mut App) + 'static {
4344 let entity = entity.downgrade();
4345 move |window: &mut Window, cx: &mut App| {
4346 entity.update(cx, |entity, cx| f(entity, window, cx)).ok();
4347 }
4348 }
4349
4350 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
4351 /// If the callback returns false, the window won't be closed.
4352 pub fn on_window_should_close(
4353 &self,
4354 cx: &App,
4355 f: impl Fn(&mut Window, &mut App) -> bool + 'static,
4356 ) {
4357 let mut cx = self.to_async(cx);
4358 self.platform_window.on_should_close(Box::new(move || {
4359 cx.update(|window, cx| f(window, cx)).unwrap_or(true)
4360 }))
4361 }
4362
4363 /// Register an action listener on the window for the next frame. The type of action
4364 /// is determined by the first parameter of the given listener. When the next frame is rendered
4365 /// the listener will be cleared.
4366 ///
4367 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4368 /// a specific need to register a global listener.
4369 pub fn on_action(
4370 &mut self,
4371 action_type: TypeId,
4372 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4373 ) {
4374 self.next_frame
4375 .dispatch_tree
4376 .on_action(action_type, Rc::new(listener));
4377 }
4378
4379 /// Register an action listener on the window for the next frame if the condition is true.
4380 /// The type of action is determined by the first parameter of the given listener.
4381 /// When the next frame is rendered the listener will be cleared.
4382 ///
4383 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4384 /// a specific need to register a global listener.
4385 pub fn on_action_when(
4386 &mut self,
4387 condition: bool,
4388 action_type: TypeId,
4389 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4390 ) {
4391 if condition {
4392 self.next_frame
4393 .dispatch_tree
4394 .on_action(action_type, Rc::new(listener));
4395 }
4396 }
4397
4398 /// Read information about the GPU backing this window.
4399 /// Currently returns None on Mac and Windows.
4400 pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4401 self.platform_window.gpu_specs()
4402 }
4403
4404 /// Perform titlebar double-click action.
4405 /// This is macOS specific.
4406 pub fn titlebar_double_click(&self) {
4407 self.platform_window.titlebar_double_click();
4408 }
4409
4410 /// Gets the window's title at the platform level.
4411 /// This is macOS specific.
4412 pub fn window_title(&self) -> String {
4413 self.platform_window.get_title()
4414 }
4415
4416 /// Returns a list of all tabbed windows and their titles.
4417 /// This is macOS specific.
4418 pub fn tabbed_windows(&self) -> Option<Vec<SystemWindowTab>> {
4419 self.platform_window.tabbed_windows()
4420 }
4421
4422 /// Returns the tab bar visibility.
4423 /// This is macOS specific.
4424 pub fn tab_bar_visible(&self) -> bool {
4425 self.platform_window.tab_bar_visible()
4426 }
4427
4428 /// Merges all open windows into a single tabbed window.
4429 /// This is macOS specific.
4430 pub fn merge_all_windows(&self) {
4431 self.platform_window.merge_all_windows()
4432 }
4433
4434 /// Moves the tab to a new containing window.
4435 /// This is macOS specific.
4436 pub fn move_tab_to_new_window(&self) {
4437 self.platform_window.move_tab_to_new_window()
4438 }
4439
4440 /// Shows or hides the window tab overview.
4441 /// This is macOS specific.
4442 pub fn toggle_window_tab_overview(&self) {
4443 self.platform_window.toggle_window_tab_overview()
4444 }
4445
4446 /// Sets the tabbing identifier for the window.
4447 /// This is macOS specific.
4448 pub fn set_tabbing_identifier(&self, tabbing_identifier: Option<String>) {
4449 self.platform_window
4450 .set_tabbing_identifier(tabbing_identifier)
4451 }
4452
4453 /// Toggles the inspector mode on this window.
4454 #[cfg(any(feature = "inspector", debug_assertions))]
4455 pub fn toggle_inspector(&mut self, cx: &mut App) {
4456 self.inspector = match self.inspector {
4457 None => Some(cx.new(|_| Inspector::new())),
4458 Some(_) => None,
4459 };
4460 self.refresh();
4461 }
4462
4463 /// Returns true if the window is in inspector mode.
4464 pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4465 #[cfg(any(feature = "inspector", debug_assertions))]
4466 {
4467 if let Some(inspector) = &self.inspector {
4468 return inspector.read(_cx).is_picking();
4469 }
4470 }
4471 false
4472 }
4473
4474 /// Executes the provided function with mutable access to an inspector state.
4475 #[cfg(any(feature = "inspector", debug_assertions))]
4476 pub fn with_inspector_state<T: 'static, R>(
4477 &mut self,
4478 _inspector_id: Option<&crate::InspectorElementId>,
4479 cx: &mut App,
4480 f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4481 ) -> R {
4482 if let Some(inspector_id) = _inspector_id
4483 && let Some(inspector) = &self.inspector
4484 {
4485 let inspector = inspector.clone();
4486 let active_element_id = inspector.read(cx).active_element_id();
4487 if Some(inspector_id) == active_element_id {
4488 return inspector.update(cx, |inspector, _cx| {
4489 inspector.with_active_element_state(self, f)
4490 });
4491 }
4492 }
4493 f(&mut None, self)
4494 }
4495
4496 #[cfg(any(feature = "inspector", debug_assertions))]
4497 pub(crate) fn build_inspector_element_id(
4498 &mut self,
4499 path: crate::InspectorElementPath,
4500 ) -> crate::InspectorElementId {
4501 self.invalidator.debug_assert_paint_or_prepaint();
4502 let path = Rc::new(path);
4503 let next_instance_id = self
4504 .next_frame
4505 .next_inspector_instance_ids
4506 .entry(path.clone())
4507 .or_insert(0);
4508 let instance_id = *next_instance_id;
4509 *next_instance_id += 1;
4510 crate::InspectorElementId { path, instance_id }
4511 }
4512
4513 #[cfg(any(feature = "inspector", debug_assertions))]
4514 fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4515 if let Some(inspector) = self.inspector.take() {
4516 let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4517 inspector_element.prepaint_as_root(
4518 point(self.viewport_size.width - inspector_width, px(0.0)),
4519 size(inspector_width, self.viewport_size.height).into(),
4520 self,
4521 cx,
4522 );
4523 self.inspector = Some(inspector);
4524 Some(inspector_element)
4525 } else {
4526 None
4527 }
4528 }
4529
4530 #[cfg(any(feature = "inspector", debug_assertions))]
4531 fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4532 if let Some(mut inspector_element) = inspector_element {
4533 inspector_element.paint(self, cx);
4534 };
4535 }
4536
4537 /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4538 /// inspect UI elements by clicking on them.
4539 #[cfg(any(feature = "inspector", debug_assertions))]
4540 pub fn insert_inspector_hitbox(
4541 &mut self,
4542 hitbox_id: HitboxId,
4543 inspector_id: Option<&crate::InspectorElementId>,
4544 cx: &App,
4545 ) {
4546 self.invalidator.debug_assert_paint_or_prepaint();
4547 if !self.is_inspector_picking(cx) {
4548 return;
4549 }
4550 if let Some(inspector_id) = inspector_id {
4551 self.next_frame
4552 .inspector_hitboxes
4553 .insert(hitbox_id, inspector_id.clone());
4554 }
4555 }
4556
4557 #[cfg(any(feature = "inspector", debug_assertions))]
4558 fn paint_inspector_hitbox(&mut self, cx: &App) {
4559 if let Some(inspector) = self.inspector.as_ref() {
4560 let inspector = inspector.read(cx);
4561 if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
4562 && let Some(hitbox) = self
4563 .next_frame
4564 .hitboxes
4565 .iter()
4566 .find(|hitbox| hitbox.id == hitbox_id)
4567 {
4568 self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4569 }
4570 }
4571 }
4572
4573 #[cfg(any(feature = "inspector", debug_assertions))]
4574 fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4575 let Some(inspector) = self.inspector.clone() else {
4576 return;
4577 };
4578 if event.downcast_ref::<MouseMoveEvent>().is_some() {
4579 inspector.update(cx, |inspector, _cx| {
4580 if let Some((_, inspector_id)) =
4581 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4582 {
4583 inspector.hover(inspector_id, self);
4584 }
4585 });
4586 } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4587 inspector.update(cx, |inspector, _cx| {
4588 if let Some((_, inspector_id)) =
4589 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4590 {
4591 inspector.select(inspector_id, self);
4592 }
4593 });
4594 } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4595 // This should be kept in sync with SCROLL_LINES in x11 platform.
4596 const SCROLL_LINES: f32 = 3.0;
4597 const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4598 let delta_y = event
4599 .delta
4600 .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4601 .y;
4602 if let Some(inspector) = self.inspector.clone() {
4603 inspector.update(cx, |inspector, _cx| {
4604 if let Some(depth) = inspector.pick_depth.as_mut() {
4605 *depth += f32::from(delta_y) / SCROLL_PIXELS_PER_LAYER;
4606 let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4607 if *depth < 0.0 {
4608 *depth = 0.0;
4609 } else if *depth > max_depth {
4610 *depth = max_depth;
4611 }
4612 if let Some((_, inspector_id)) =
4613 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4614 {
4615 inspector.set_active_element_id(inspector_id, self);
4616 }
4617 }
4618 });
4619 }
4620 }
4621 }
4622
4623 #[cfg(any(feature = "inspector", debug_assertions))]
4624 fn hovered_inspector_hitbox(
4625 &self,
4626 inspector: &Inspector,
4627 frame: &Frame,
4628 ) -> Option<(HitboxId, crate::InspectorElementId)> {
4629 if let Some(pick_depth) = inspector.pick_depth {
4630 let depth = (pick_depth as i64).try_into().unwrap_or(0);
4631 let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4632 let skip_count = (depth as usize).min(max_skipped);
4633 for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4634 if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4635 return Some((*hitbox_id, inspector_id.clone()));
4636 }
4637 }
4638 }
4639 None
4640 }
4641
4642 /// For testing: set the current modifier keys state.
4643 /// This does not generate any events.
4644 #[cfg(any(test, feature = "test-support"))]
4645 pub fn set_modifiers(&mut self, modifiers: Modifiers) {
4646 self.modifiers = modifiers;
4647 }
4648}
4649
4650// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4651slotmap::new_key_type! {
4652 /// A unique identifier for a window.
4653 pub struct WindowId;
4654}
4655
4656impl WindowId {
4657 /// Converts this window ID to a `u64`.
4658 pub fn as_u64(&self) -> u64 {
4659 self.0.as_ffi()
4660 }
4661}
4662
4663impl From<u64> for WindowId {
4664 fn from(value: u64) -> Self {
4665 WindowId(slotmap::KeyData::from_ffi(value))
4666 }
4667}
4668
4669/// A handle to a window with a specific root view type.
4670/// Note that this does not keep the window alive on its own.
4671#[derive(Deref, DerefMut)]
4672pub struct WindowHandle<V> {
4673 #[deref]
4674 #[deref_mut]
4675 pub(crate) any_handle: AnyWindowHandle,
4676 state_type: PhantomData<fn(V) -> V>,
4677}
4678
4679impl<V> Debug for WindowHandle<V> {
4680 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4681 f.debug_struct("WindowHandle")
4682 .field("any_handle", &self.any_handle.id.as_u64())
4683 .finish()
4684 }
4685}
4686
4687impl<V: 'static + Render> WindowHandle<V> {
4688 /// Creates a new handle from a window ID.
4689 /// This does not check if the root type of the window is `V`.
4690 pub fn new(id: WindowId) -> Self {
4691 WindowHandle {
4692 any_handle: AnyWindowHandle {
4693 id,
4694 state_type: TypeId::of::<V>(),
4695 },
4696 state_type: PhantomData,
4697 }
4698 }
4699
4700 /// Get the root view out of this window.
4701 ///
4702 /// This will fail if the window is closed or if the root view's type does not match `V`.
4703 #[cfg(any(test, feature = "test-support"))]
4704 pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4705 where
4706 C: AppContext,
4707 {
4708 crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4709 root_view
4710 .downcast::<V>()
4711 .map_err(|_| anyhow!("the type of the window's root view has changed"))
4712 }))
4713 }
4714
4715 /// Updates the root view of this window.
4716 ///
4717 /// This will fail if the window has been closed or if the root view's type does not match
4718 pub fn update<C, R>(
4719 &self,
4720 cx: &mut C,
4721 update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4722 ) -> Result<R>
4723 where
4724 C: AppContext,
4725 {
4726 cx.update_window(self.any_handle, |root_view, window, cx| {
4727 let view = root_view
4728 .downcast::<V>()
4729 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4730
4731 Ok(view.update(cx, |view, cx| update(view, window, cx)))
4732 })?
4733 }
4734
4735 /// Read the root view out of this window.
4736 ///
4737 /// This will fail if the window is closed or if the root view's type does not match `V`.
4738 pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
4739 let x = cx
4740 .windows
4741 .get(self.id)
4742 .and_then(|window| {
4743 window
4744 .as_deref()
4745 .and_then(|window| window.root.clone())
4746 .map(|root_view| root_view.downcast::<V>())
4747 })
4748 .context("window not found")?
4749 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4750
4751 Ok(x.read(cx))
4752 }
4753
4754 /// Read the root view out of this window, with a callback
4755 ///
4756 /// This will fail if the window is closed or if the root view's type does not match `V`.
4757 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4758 where
4759 C: AppContext,
4760 {
4761 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
4762 }
4763
4764 /// Read the root view pointer off of this window.
4765 ///
4766 /// This will fail if the window is closed or if the root view's type does not match `V`.
4767 pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4768 where
4769 C: AppContext,
4770 {
4771 cx.read_window(self, |root_view, _cx| root_view)
4772 }
4773
4774 /// Check if this window is 'active'.
4775 ///
4776 /// Will return `None` if the window is closed or currently
4777 /// borrowed.
4778 pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4779 cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4780 .ok()
4781 }
4782}
4783
4784impl<V> Copy for WindowHandle<V> {}
4785
4786impl<V> Clone for WindowHandle<V> {
4787 fn clone(&self) -> Self {
4788 *self
4789 }
4790}
4791
4792impl<V> PartialEq for WindowHandle<V> {
4793 fn eq(&self, other: &Self) -> bool {
4794 self.any_handle == other.any_handle
4795 }
4796}
4797
4798impl<V> Eq for WindowHandle<V> {}
4799
4800impl<V> Hash for WindowHandle<V> {
4801 fn hash<H: Hasher>(&self, state: &mut H) {
4802 self.any_handle.hash(state);
4803 }
4804}
4805
4806impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
4807 fn from(val: WindowHandle<V>) -> Self {
4808 val.any_handle
4809 }
4810}
4811
4812/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
4813#[derive(Copy, Clone, PartialEq, Eq, Hash)]
4814pub struct AnyWindowHandle {
4815 pub(crate) id: WindowId,
4816 state_type: TypeId,
4817}
4818
4819impl AnyWindowHandle {
4820 /// Get the ID of this window.
4821 pub fn window_id(&self) -> WindowId {
4822 self.id
4823 }
4824
4825 /// Attempt to convert this handle to a window handle with a specific root view type.
4826 /// If the types do not match, this will return `None`.
4827 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
4828 if TypeId::of::<T>() == self.state_type {
4829 Some(WindowHandle {
4830 any_handle: *self,
4831 state_type: PhantomData,
4832 })
4833 } else {
4834 None
4835 }
4836 }
4837
4838 /// Updates the state of the root view of this window.
4839 ///
4840 /// This will fail if the window has been closed.
4841 pub fn update<C, R>(
4842 self,
4843 cx: &mut C,
4844 update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
4845 ) -> Result<R>
4846 where
4847 C: AppContext,
4848 {
4849 cx.update_window(self, update)
4850 }
4851
4852 /// Read the state of the root view of this window.
4853 ///
4854 /// This will fail if the window has been closed.
4855 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
4856 where
4857 C: AppContext,
4858 T: 'static,
4859 {
4860 let view = self
4861 .downcast::<T>()
4862 .context("the type of the window's root view has changed")?;
4863
4864 cx.read_window(&view, read)
4865 }
4866}
4867
4868impl HasWindowHandle for Window {
4869 fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
4870 self.platform_window.window_handle()
4871 }
4872}
4873
4874impl HasDisplayHandle for Window {
4875 fn display_handle(
4876 &self,
4877 ) -> std::result::Result<raw_window_handle::DisplayHandle<'_>, HandleError> {
4878 self.platform_window.display_handle()
4879 }
4880}
4881
4882/// An identifier for an [`Element`].
4883///
4884/// Can be constructed with a string, a number, or both, as well
4885/// as other internal representations.
4886#[derive(Clone, Debug, Eq, PartialEq, Hash)]
4887pub enum ElementId {
4888 /// The ID of a View element
4889 View(EntityId),
4890 /// An integer ID.
4891 Integer(u64),
4892 /// A string based ID.
4893 Name(SharedString),
4894 /// A UUID.
4895 Uuid(Uuid),
4896 /// An ID that's equated with a focus handle.
4897 FocusHandle(FocusId),
4898 /// A combination of a name and an integer.
4899 NamedInteger(SharedString, u64),
4900 /// A path.
4901 Path(Arc<std::path::Path>),
4902 /// A code location.
4903 CodeLocation(core::panic::Location<'static>),
4904 /// A labeled child of an element.
4905 NamedChild(Box<ElementId>, SharedString),
4906}
4907
4908impl ElementId {
4909 /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
4910 pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
4911 Self::NamedInteger(name.into(), integer as u64)
4912 }
4913}
4914
4915impl Display for ElementId {
4916 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4917 match self {
4918 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
4919 ElementId::Integer(ix) => write!(f, "{}", ix)?,
4920 ElementId::Name(name) => write!(f, "{}", name)?,
4921 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
4922 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
4923 ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
4924 ElementId::Path(path) => write!(f, "{}", path.display())?,
4925 ElementId::CodeLocation(location) => write!(f, "{}", location)?,
4926 ElementId::NamedChild(id, name) => write!(f, "{}-{}", id, name)?,
4927 }
4928
4929 Ok(())
4930 }
4931}
4932
4933impl TryInto<SharedString> for ElementId {
4934 type Error = anyhow::Error;
4935
4936 fn try_into(self) -> anyhow::Result<SharedString> {
4937 if let ElementId::Name(name) = self {
4938 Ok(name)
4939 } else {
4940 anyhow::bail!("element id is not string")
4941 }
4942 }
4943}
4944
4945impl From<usize> for ElementId {
4946 fn from(id: usize) -> Self {
4947 ElementId::Integer(id as u64)
4948 }
4949}
4950
4951impl From<i32> for ElementId {
4952 fn from(id: i32) -> Self {
4953 Self::Integer(id as u64)
4954 }
4955}
4956
4957impl From<SharedString> for ElementId {
4958 fn from(name: SharedString) -> Self {
4959 ElementId::Name(name)
4960 }
4961}
4962
4963impl From<Arc<std::path::Path>> for ElementId {
4964 fn from(path: Arc<std::path::Path>) -> Self {
4965 ElementId::Path(path)
4966 }
4967}
4968
4969impl From<&'static str> for ElementId {
4970 fn from(name: &'static str) -> Self {
4971 ElementId::Name(name.into())
4972 }
4973}
4974
4975impl<'a> From<&'a FocusHandle> for ElementId {
4976 fn from(handle: &'a FocusHandle) -> Self {
4977 ElementId::FocusHandle(handle.id)
4978 }
4979}
4980
4981impl From<(&'static str, EntityId)> for ElementId {
4982 fn from((name, id): (&'static str, EntityId)) -> Self {
4983 ElementId::NamedInteger(name.into(), id.as_u64())
4984 }
4985}
4986
4987impl From<(&'static str, usize)> for ElementId {
4988 fn from((name, id): (&'static str, usize)) -> Self {
4989 ElementId::NamedInteger(name.into(), id as u64)
4990 }
4991}
4992
4993impl From<(SharedString, usize)> for ElementId {
4994 fn from((name, id): (SharedString, usize)) -> Self {
4995 ElementId::NamedInteger(name, id as u64)
4996 }
4997}
4998
4999impl From<(&'static str, u64)> for ElementId {
5000 fn from((name, id): (&'static str, u64)) -> Self {
5001 ElementId::NamedInteger(name.into(), id)
5002 }
5003}
5004
5005impl From<Uuid> for ElementId {
5006 fn from(value: Uuid) -> Self {
5007 Self::Uuid(value)
5008 }
5009}
5010
5011impl From<(&'static str, u32)> for ElementId {
5012 fn from((name, id): (&'static str, u32)) -> Self {
5013 ElementId::NamedInteger(name.into(), id.into())
5014 }
5015}
5016
5017impl<T: Into<SharedString>> From<(ElementId, T)> for ElementId {
5018 fn from((id, name): (ElementId, T)) -> Self {
5019 ElementId::NamedChild(Box::new(id), name.into())
5020 }
5021}
5022
5023impl From<&'static core::panic::Location<'static>> for ElementId {
5024 fn from(location: &'static core::panic::Location<'static>) -> Self {
5025 ElementId::CodeLocation(*location)
5026 }
5027}
5028
5029/// A rectangle to be rendered in the window at the given position and size.
5030/// Passed as an argument [`Window::paint_quad`].
5031#[derive(Clone)]
5032pub struct PaintQuad {
5033 /// The bounds of the quad within the window.
5034 pub bounds: Bounds<Pixels>,
5035 /// The radii of the quad's corners.
5036 pub corner_radii: Corners<Pixels>,
5037 /// The background color of the quad.
5038 pub background: Background,
5039 /// The widths of the quad's borders.
5040 pub border_widths: Edges<Pixels>,
5041 /// The color of the quad's borders.
5042 pub border_color: Hsla,
5043 /// The style of the quad's borders.
5044 pub border_style: BorderStyle,
5045}
5046
5047impl PaintQuad {
5048 /// Sets the corner radii of the quad.
5049 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
5050 PaintQuad {
5051 corner_radii: corner_radii.into(),
5052 ..self
5053 }
5054 }
5055
5056 /// Sets the border widths of the quad.
5057 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
5058 PaintQuad {
5059 border_widths: border_widths.into(),
5060 ..self
5061 }
5062 }
5063
5064 /// Sets the border color of the quad.
5065 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
5066 PaintQuad {
5067 border_color: border_color.into(),
5068 ..self
5069 }
5070 }
5071
5072 /// Sets the background color of the quad.
5073 pub fn background(self, background: impl Into<Background>) -> Self {
5074 PaintQuad {
5075 background: background.into(),
5076 ..self
5077 }
5078 }
5079}
5080
5081/// Creates a quad with the given parameters.
5082pub fn quad(
5083 bounds: Bounds<Pixels>,
5084 corner_radii: impl Into<Corners<Pixels>>,
5085 background: impl Into<Background>,
5086 border_widths: impl Into<Edges<Pixels>>,
5087 border_color: impl Into<Hsla>,
5088 border_style: BorderStyle,
5089) -> PaintQuad {
5090 PaintQuad {
5091 bounds,
5092 corner_radii: corner_radii.into(),
5093 background: background.into(),
5094 border_widths: border_widths.into(),
5095 border_color: border_color.into(),
5096 border_style,
5097 }
5098}
5099
5100/// Creates a filled quad with the given bounds and background color.
5101pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
5102 PaintQuad {
5103 bounds: bounds.into(),
5104 corner_radii: (0.).into(),
5105 background: background.into(),
5106 border_widths: (0.).into(),
5107 border_color: transparent_black(),
5108 border_style: BorderStyle::default(),
5109 }
5110}
5111
5112/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
5113pub fn outline(
5114 bounds: impl Into<Bounds<Pixels>>,
5115 border_color: impl Into<Hsla>,
5116 border_style: BorderStyle,
5117) -> PaintQuad {
5118 PaintQuad {
5119 bounds: bounds.into(),
5120 corner_radii: (0.).into(),
5121 background: transparent_black().into(),
5122 border_widths: (1.).into(),
5123 border_color: border_color.into(),
5124 border_style,
5125 }
5126}