cloud.rs

  1use super::open_ai::count_open_ai_tokens;
  2use crate::{
  3    settings::AllLanguageModelSettings, CloudModel, LanguageModel, LanguageModelId,
  4    LanguageModelName, LanguageModelProviderId, LanguageModelProviderName,
  5    LanguageModelProviderState, LanguageModelRequest, RateLimiter,
  6};
  7use anyhow::{anyhow, Context as _, Result};
  8use client::Client;
  9use collections::BTreeMap;
 10use futures::{future::BoxFuture, stream::BoxStream, FutureExt, StreamExt};
 11use gpui::{AnyView, AppContext, AsyncAppContext, Subscription, Task};
 12use schemars::JsonSchema;
 13use serde::{Deserialize, Serialize};
 14use settings::{Settings, SettingsStore};
 15use std::{future, sync::Arc};
 16use strum::IntoEnumIterator;
 17use ui::prelude::*;
 18
 19use crate::LanguageModelProvider;
 20
 21use super::anthropic::count_anthropic_tokens;
 22
 23pub const PROVIDER_ID: &str = "zed.dev";
 24pub const PROVIDER_NAME: &str = "zed.dev";
 25
 26#[derive(Default, Clone, Debug, PartialEq)]
 27pub struct ZedDotDevSettings {
 28    pub available_models: Vec<AvailableModel>,
 29}
 30
 31#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
 32#[serde(rename_all = "lowercase")]
 33pub enum AvailableProvider {
 34    Anthropic,
 35    OpenAi,
 36    Google,
 37}
 38
 39#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
 40pub struct AvailableModel {
 41    provider: AvailableProvider,
 42    name: String,
 43    max_tokens: usize,
 44    tool_override: Option<String>,
 45}
 46
 47pub struct CloudLanguageModelProvider {
 48    client: Arc<Client>,
 49    state: gpui::Model<State>,
 50    _maintain_client_status: Task<()>,
 51}
 52
 53struct State {
 54    client: Arc<Client>,
 55    status: client::Status,
 56    _subscription: Subscription,
 57}
 58
 59impl State {
 60    fn authenticate(&self, cx: &mut AppContext) -> Task<Result<()>> {
 61        let client = self.client.clone();
 62        cx.spawn(move |cx| async move { client.authenticate_and_connect(true, &cx).await })
 63    }
 64}
 65
 66impl CloudLanguageModelProvider {
 67    pub fn new(client: Arc<Client>, cx: &mut AppContext) -> Self {
 68        let mut status_rx = client.status();
 69        let status = *status_rx.borrow();
 70
 71        let state = cx.new_model(|cx| State {
 72            client: client.clone(),
 73            status,
 74            _subscription: cx.observe_global::<SettingsStore>(|_, cx| {
 75                cx.notify();
 76            }),
 77        });
 78
 79        let state_ref = state.downgrade();
 80        let maintain_client_status = cx.spawn(|mut cx| async move {
 81            while let Some(status) = status_rx.next().await {
 82                if let Some(this) = state_ref.upgrade() {
 83                    _ = this.update(&mut cx, |this, cx| {
 84                        this.status = status;
 85                        cx.notify();
 86                    });
 87                } else {
 88                    break;
 89                }
 90            }
 91        });
 92
 93        Self {
 94            client,
 95            state,
 96            _maintain_client_status: maintain_client_status,
 97        }
 98    }
 99}
100
101impl LanguageModelProviderState for CloudLanguageModelProvider {
102    fn subscribe<T: 'static>(&self, cx: &mut gpui::ModelContext<T>) -> Option<gpui::Subscription> {
103        Some(cx.observe(&self.state, |_, _, cx| {
104            cx.notify();
105        }))
106    }
107}
108
109impl LanguageModelProvider for CloudLanguageModelProvider {
110    fn id(&self) -> LanguageModelProviderId {
111        LanguageModelProviderId(PROVIDER_ID.into())
112    }
113
114    fn name(&self) -> LanguageModelProviderName {
115        LanguageModelProviderName(PROVIDER_NAME.into())
116    }
117
118    fn provided_models(&self, cx: &AppContext) -> Vec<Arc<dyn LanguageModel>> {
119        let mut models = BTreeMap::default();
120
121        for model in anthropic::Model::iter() {
122            if !matches!(model, anthropic::Model::Custom { .. }) {
123                models.insert(model.id().to_string(), CloudModel::Anthropic(model));
124            }
125        }
126        for model in open_ai::Model::iter() {
127            if !matches!(model, open_ai::Model::Custom { .. }) {
128                models.insert(model.id().to_string(), CloudModel::OpenAi(model));
129            }
130        }
131        for model in google_ai::Model::iter() {
132            if !matches!(model, google_ai::Model::Custom { .. }) {
133                models.insert(model.id().to_string(), CloudModel::Google(model));
134            }
135        }
136
137        // Override with available models from settings
138        for model in &AllLanguageModelSettings::get_global(cx)
139            .zed_dot_dev
140            .available_models
141        {
142            let model = match model.provider {
143                AvailableProvider::Anthropic => CloudModel::Anthropic(anthropic::Model::Custom {
144                    name: model.name.clone(),
145                    max_tokens: model.max_tokens,
146                    tool_override: model.tool_override.clone(),
147                }),
148                AvailableProvider::OpenAi => CloudModel::OpenAi(open_ai::Model::Custom {
149                    name: model.name.clone(),
150                    max_tokens: model.max_tokens,
151                }),
152                AvailableProvider::Google => CloudModel::Google(google_ai::Model::Custom {
153                    name: model.name.clone(),
154                    max_tokens: model.max_tokens,
155                }),
156            };
157            models.insert(model.id().to_string(), model.clone());
158        }
159
160        models
161            .into_values()
162            .map(|model| {
163                Arc::new(CloudLanguageModel {
164                    id: LanguageModelId::from(model.id().to_string()),
165                    model,
166                    client: self.client.clone(),
167                    request_limiter: RateLimiter::new(4),
168                }) as Arc<dyn LanguageModel>
169            })
170            .collect()
171    }
172
173    fn is_authenticated(&self, cx: &AppContext) -> bool {
174        self.state.read(cx).status.is_connected()
175    }
176
177    fn authenticate(&self, cx: &mut AppContext) -> Task<Result<()>> {
178        self.state.update(cx, |state, cx| state.authenticate(cx))
179    }
180
181    fn authentication_prompt(&self, cx: &mut WindowContext) -> AnyView {
182        cx.new_view(|_cx| AuthenticationPrompt {
183            state: self.state.clone(),
184        })
185        .into()
186    }
187
188    fn reset_credentials(&self, _cx: &mut AppContext) -> Task<Result<()>> {
189        Task::ready(Ok(()))
190    }
191}
192
193pub struct CloudLanguageModel {
194    id: LanguageModelId,
195    model: CloudModel,
196    client: Arc<Client>,
197    request_limiter: RateLimiter,
198}
199
200impl LanguageModel for CloudLanguageModel {
201    fn id(&self) -> LanguageModelId {
202        self.id.clone()
203    }
204
205    fn name(&self) -> LanguageModelName {
206        LanguageModelName::from(self.model.display_name().to_string())
207    }
208
209    fn provider_id(&self) -> LanguageModelProviderId {
210        LanguageModelProviderId(PROVIDER_ID.into())
211    }
212
213    fn provider_name(&self) -> LanguageModelProviderName {
214        LanguageModelProviderName(PROVIDER_NAME.into())
215    }
216
217    fn telemetry_id(&self) -> String {
218        format!("zed.dev/{}", self.model.id())
219    }
220
221    fn max_token_count(&self) -> usize {
222        self.model.max_token_count()
223    }
224
225    fn count_tokens(
226        &self,
227        request: LanguageModelRequest,
228        cx: &AppContext,
229    ) -> BoxFuture<'static, Result<usize>> {
230        match self.model.clone() {
231            CloudModel::Anthropic(_) => count_anthropic_tokens(request, cx),
232            CloudModel::OpenAi(model) => count_open_ai_tokens(request, model, cx),
233            CloudModel::Google(model) => {
234                let client = self.client.clone();
235                let request = request.into_google(model.id().into());
236                let request = google_ai::CountTokensRequest {
237                    contents: request.contents,
238                };
239                async move {
240                    let request = serde_json::to_string(&request)?;
241                    let response = client
242                        .request(proto::CountLanguageModelTokens {
243                            provider: proto::LanguageModelProvider::Google as i32,
244                            request,
245                        })
246                        .await?;
247                    Ok(response.token_count as usize)
248                }
249                .boxed()
250            }
251        }
252    }
253
254    fn stream_completion(
255        &self,
256        request: LanguageModelRequest,
257        _: &AsyncAppContext,
258    ) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>> {
259        match &self.model {
260            CloudModel::Anthropic(model) => {
261                let client = self.client.clone();
262                let request = request.into_anthropic(model.id().into());
263                let future = self.request_limiter.stream(async move {
264                    let request = serde_json::to_string(&request)?;
265                    let stream = client
266                        .request_stream(proto::StreamCompleteWithLanguageModel {
267                            provider: proto::LanguageModelProvider::Anthropic as i32,
268                            request,
269                        })
270                        .await?;
271                    Ok(anthropic::extract_text_from_events(
272                        stream.map(|item| Ok(serde_json::from_str(&item?.event)?)),
273                    ))
274                });
275                async move { Ok(future.await?.boxed()) }.boxed()
276            }
277            CloudModel::OpenAi(model) => {
278                let client = self.client.clone();
279                let request = request.into_open_ai(model.id().into());
280                let future = self.request_limiter.stream(async move {
281                    let request = serde_json::to_string(&request)?;
282                    let stream = client
283                        .request_stream(proto::StreamCompleteWithLanguageModel {
284                            provider: proto::LanguageModelProvider::OpenAi as i32,
285                            request,
286                        })
287                        .await?;
288                    Ok(open_ai::extract_text_from_events(
289                        stream.map(|item| Ok(serde_json::from_str(&item?.event)?)),
290                    ))
291                });
292                async move { Ok(future.await?.boxed()) }.boxed()
293            }
294            CloudModel::Google(model) => {
295                let client = self.client.clone();
296                let request = request.into_google(model.id().into());
297                let future = self.request_limiter.stream(async move {
298                    let request = serde_json::to_string(&request)?;
299                    let stream = client
300                        .request_stream(proto::StreamCompleteWithLanguageModel {
301                            provider: proto::LanguageModelProvider::Google as i32,
302                            request,
303                        })
304                        .await?;
305                    Ok(google_ai::extract_text_from_events(
306                        stream.map(|item| Ok(serde_json::from_str(&item?.event)?)),
307                    ))
308                });
309                async move { Ok(future.await?.boxed()) }.boxed()
310            }
311        }
312    }
313
314    fn use_any_tool(
315        &self,
316        request: LanguageModelRequest,
317        tool_name: String,
318        tool_description: String,
319        input_schema: serde_json::Value,
320        _cx: &AsyncAppContext,
321    ) -> BoxFuture<'static, Result<serde_json::Value>> {
322        match &self.model {
323            CloudModel::Anthropic(model) => {
324                let client = self.client.clone();
325                let mut request = request.into_anthropic(model.tool_model_id().into());
326                request.tool_choice = Some(anthropic::ToolChoice::Tool {
327                    name: tool_name.clone(),
328                });
329                request.tools = vec![anthropic::Tool {
330                    name: tool_name.clone(),
331                    description: tool_description,
332                    input_schema,
333                }];
334
335                self.request_limiter
336                    .run(async move {
337                        let request = serde_json::to_string(&request)?;
338                        let response = client
339                            .request(proto::CompleteWithLanguageModel {
340                                provider: proto::LanguageModelProvider::Anthropic as i32,
341                                request,
342                            })
343                            .await?;
344                        let response: anthropic::Response =
345                            serde_json::from_str(&response.completion)?;
346                        response
347                            .content
348                            .into_iter()
349                            .find_map(|content| {
350                                if let anthropic::Content::ToolUse { name, input, .. } = content {
351                                    if name == tool_name {
352                                        Some(input)
353                                    } else {
354                                        None
355                                    }
356                                } else {
357                                    None
358                                }
359                            })
360                            .context("tool not used")
361                    })
362                    .boxed()
363            }
364            CloudModel::OpenAi(_) => {
365                future::ready(Err(anyhow!("tool use not implemented for OpenAI"))).boxed()
366            }
367            CloudModel::Google(_) => {
368                future::ready(Err(anyhow!("tool use not implemented for Google AI"))).boxed()
369            }
370        }
371    }
372}
373
374struct AuthenticationPrompt {
375    state: gpui::Model<State>,
376}
377
378impl Render for AuthenticationPrompt {
379    fn render(&mut self, cx: &mut ViewContext<Self>) -> impl IntoElement {
380        const LABEL: &str = "Generate and analyze code with language models. You can dialog with the assistant in this panel or transform code inline.";
381
382        v_flex().gap_6().p_4().child(Label::new(LABEL)).child(
383            v_flex()
384                .gap_2()
385                .child(
386                    Button::new("sign_in", "Sign in")
387                        .icon_color(Color::Muted)
388                        .icon(IconName::Github)
389                        .icon_position(IconPosition::Start)
390                        .style(ButtonStyle::Filled)
391                        .full_width()
392                        .on_click(cx.listener(move |this, _, cx| {
393                            this.state.update(cx, |provider, cx| {
394                                provider.authenticate(cx).detach_and_log_err(cx);
395                                cx.notify();
396                            });
397                        })),
398                )
399                .child(
400                    div().flex().w_full().items_center().child(
401                        Label::new("Sign in to enable collaboration.")
402                            .color(Color::Muted)
403                            .size(LabelSize::Small),
404                    ),
405                ),
406        )
407    }
408}