open_ai.rs

   1use anyhow::{Result, anyhow};
   2use collections::{BTreeMap, HashMap};
   3use futures::Stream;
   4use futures::{FutureExt, StreamExt, future::BoxFuture};
   5use gpui::{AnyView, App, AsyncApp, Context, Entity, SharedString, Task, Window};
   6use http_client::HttpClient;
   7use language_model::{
   8    ApiKeyState, AuthenticateError, EnvVar, IconOrSvg, LanguageModel, LanguageModelCompletionError,
   9    LanguageModelCompletionEvent, LanguageModelId, LanguageModelImage, LanguageModelName,
  10    LanguageModelProvider, LanguageModelProviderId, LanguageModelProviderName,
  11    LanguageModelProviderState, LanguageModelRequest, LanguageModelRequestMessage,
  12    LanguageModelToolChoice, LanguageModelToolResult, LanguageModelToolResultContent,
  13    LanguageModelToolUse, LanguageModelToolUseId, MessageContent, RateLimiter, Role, StopReason,
  14    TokenUsage, env_var,
  15};
  16use menu;
  17use open_ai::responses::{
  18    ResponseFunctionCallItem, ResponseFunctionCallOutputItem, ResponseInputContent,
  19    ResponseInputItem, ResponseMessageItem,
  20};
  21use open_ai::{
  22    ImageUrl, Model, OPEN_AI_API_URL, ReasoningEffort, ResponseStreamEvent,
  23    responses::{
  24        Request as ResponseRequest, ResponseOutputItem, ResponseSummary as ResponsesSummary,
  25        ResponseUsage as ResponsesUsage, StreamEvent as ResponsesStreamEvent, stream_response,
  26    },
  27    stream_completion,
  28};
  29use settings::{OpenAiAvailableModel as AvailableModel, Settings, SettingsStore};
  30use std::pin::Pin;
  31use std::str::FromStr as _;
  32use std::sync::{Arc, LazyLock};
  33use strum::IntoEnumIterator;
  34use ui::{ButtonLink, ConfiguredApiCard, List, ListBulletItem, prelude::*};
  35use ui_input::InputField;
  36use util::ResultExt;
  37
  38const PROVIDER_ID: LanguageModelProviderId = language_model::OPEN_AI_PROVIDER_ID;
  39const PROVIDER_NAME: LanguageModelProviderName = language_model::OPEN_AI_PROVIDER_NAME;
  40
  41const API_KEY_ENV_VAR_NAME: &str = "OPENAI_API_KEY";
  42static API_KEY_ENV_VAR: LazyLock<EnvVar> = env_var!(API_KEY_ENV_VAR_NAME);
  43
  44#[derive(Default, Clone, Debug, PartialEq)]
  45pub struct OpenAiSettings {
  46    pub api_url: String,
  47    pub available_models: Vec<AvailableModel>,
  48}
  49
  50pub struct OpenAiLanguageModelProvider {
  51    http_client: Arc<dyn HttpClient>,
  52    state: Entity<State>,
  53}
  54
  55pub struct State {
  56    api_key_state: ApiKeyState,
  57}
  58
  59impl State {
  60    fn is_authenticated(&self) -> bool {
  61        self.api_key_state.has_key()
  62    }
  63
  64    fn set_api_key(&mut self, api_key: Option<String>, cx: &mut Context<Self>) -> Task<Result<()>> {
  65        let api_url = OpenAiLanguageModelProvider::api_url(cx);
  66        self.api_key_state
  67            .store(api_url, api_key, |this| &mut this.api_key_state, cx)
  68    }
  69
  70    fn authenticate(&mut self, cx: &mut Context<Self>) -> Task<Result<(), AuthenticateError>> {
  71        let api_url = OpenAiLanguageModelProvider::api_url(cx);
  72        self.api_key_state
  73            .load_if_needed(api_url, |this| &mut this.api_key_state, cx)
  74    }
  75}
  76
  77impl OpenAiLanguageModelProvider {
  78    pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut App) -> Self {
  79        let state = cx.new(|cx| {
  80            cx.observe_global::<SettingsStore>(|this: &mut State, cx| {
  81                let api_url = Self::api_url(cx);
  82                this.api_key_state
  83                    .handle_url_change(api_url, |this| &mut this.api_key_state, cx);
  84                cx.notify();
  85            })
  86            .detach();
  87            State {
  88                api_key_state: ApiKeyState::new(Self::api_url(cx), (*API_KEY_ENV_VAR).clone()),
  89            }
  90        });
  91
  92        Self { http_client, state }
  93    }
  94
  95    fn create_language_model(&self, model: open_ai::Model) -> Arc<dyn LanguageModel> {
  96        Arc::new(OpenAiLanguageModel {
  97            id: LanguageModelId::from(model.id().to_string()),
  98            model,
  99            state: self.state.clone(),
 100            http_client: self.http_client.clone(),
 101            request_limiter: RateLimiter::new(4),
 102        })
 103    }
 104
 105    fn settings(cx: &App) -> &OpenAiSettings {
 106        &crate::AllLanguageModelSettings::get_global(cx).openai
 107    }
 108
 109    fn api_url(cx: &App) -> SharedString {
 110        let api_url = &Self::settings(cx).api_url;
 111        if api_url.is_empty() {
 112            open_ai::OPEN_AI_API_URL.into()
 113        } else {
 114            SharedString::new(api_url.as_str())
 115        }
 116    }
 117}
 118
 119impl LanguageModelProviderState for OpenAiLanguageModelProvider {
 120    type ObservableEntity = State;
 121
 122    fn observable_entity(&self) -> Option<Entity<Self::ObservableEntity>> {
 123        Some(self.state.clone())
 124    }
 125}
 126
 127impl LanguageModelProvider for OpenAiLanguageModelProvider {
 128    fn id(&self) -> LanguageModelProviderId {
 129        PROVIDER_ID
 130    }
 131
 132    fn name(&self) -> LanguageModelProviderName {
 133        PROVIDER_NAME
 134    }
 135
 136    fn icon(&self) -> IconOrSvg {
 137        IconOrSvg::Icon(IconName::AiOpenAi)
 138    }
 139
 140    fn default_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
 141        Some(self.create_language_model(open_ai::Model::default()))
 142    }
 143
 144    fn default_fast_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
 145        Some(self.create_language_model(open_ai::Model::default_fast()))
 146    }
 147
 148    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 149        let mut models = BTreeMap::default();
 150
 151        // Add base models from open_ai::Model::iter()
 152        for model in open_ai::Model::iter() {
 153            if !matches!(model, open_ai::Model::Custom { .. }) {
 154                models.insert(model.id().to_string(), model);
 155            }
 156        }
 157
 158        // Override with available models from settings
 159        for model in &OpenAiLanguageModelProvider::settings(cx).available_models {
 160            models.insert(
 161                model.name.clone(),
 162                open_ai::Model::Custom {
 163                    name: model.name.clone(),
 164                    display_name: model.display_name.clone(),
 165                    max_tokens: model.max_tokens,
 166                    max_output_tokens: model.max_output_tokens,
 167                    max_completion_tokens: model.max_completion_tokens,
 168                    reasoning_effort: model.reasoning_effort.clone(),
 169                    supports_chat_completions: model.capabilities.chat_completions,
 170                },
 171            );
 172        }
 173
 174        models
 175            .into_values()
 176            .map(|model| self.create_language_model(model))
 177            .collect()
 178    }
 179
 180    fn is_authenticated(&self, cx: &App) -> bool {
 181        self.state.read(cx).is_authenticated()
 182    }
 183
 184    fn authenticate(&self, cx: &mut App) -> Task<Result<(), AuthenticateError>> {
 185        self.state.update(cx, |state, cx| state.authenticate(cx))
 186    }
 187
 188    fn configuration_view(
 189        &self,
 190        _target_agent: language_model::ConfigurationViewTargetAgent,
 191        window: &mut Window,
 192        cx: &mut App,
 193    ) -> AnyView {
 194        cx.new(|cx| ConfigurationView::new(self.state.clone(), window, cx))
 195            .into()
 196    }
 197
 198    fn reset_credentials(&self, cx: &mut App) -> Task<Result<()>> {
 199        self.state
 200            .update(cx, |state, cx| state.set_api_key(None, cx))
 201    }
 202}
 203
 204pub struct OpenAiLanguageModel {
 205    id: LanguageModelId,
 206    model: open_ai::Model,
 207    state: Entity<State>,
 208    http_client: Arc<dyn HttpClient>,
 209    request_limiter: RateLimiter,
 210}
 211
 212impl OpenAiLanguageModel {
 213    fn stream_completion(
 214        &self,
 215        request: open_ai::Request,
 216        cx: &AsyncApp,
 217    ) -> BoxFuture<'static, Result<futures::stream::BoxStream<'static, Result<ResponseStreamEvent>>>>
 218    {
 219        let http_client = self.http_client.clone();
 220
 221        let (api_key, api_url) = self.state.read_with(cx, |state, cx| {
 222            let api_url = OpenAiLanguageModelProvider::api_url(cx);
 223            (state.api_key_state.key(&api_url), api_url)
 224        });
 225
 226        let future = self.request_limiter.stream(async move {
 227            let provider = PROVIDER_NAME;
 228            let Some(api_key) = api_key else {
 229                return Err(LanguageModelCompletionError::NoApiKey { provider });
 230            };
 231            let request = stream_completion(
 232                http_client.as_ref(),
 233                provider.0.as_str(),
 234                &api_url,
 235                &api_key,
 236                request,
 237            );
 238            let response = request.await?;
 239            Ok(response)
 240        });
 241
 242        async move { Ok(future.await?.boxed()) }.boxed()
 243    }
 244
 245    fn stream_response(
 246        &self,
 247        request: ResponseRequest,
 248        cx: &AsyncApp,
 249    ) -> BoxFuture<'static, Result<futures::stream::BoxStream<'static, Result<ResponsesStreamEvent>>>>
 250    {
 251        let http_client = self.http_client.clone();
 252
 253        let (api_key, api_url) = self.state.read_with(cx, |state, cx| {
 254            let api_url = OpenAiLanguageModelProvider::api_url(cx);
 255            (state.api_key_state.key(&api_url), api_url)
 256        });
 257
 258        let provider = PROVIDER_NAME;
 259        let future = self.request_limiter.stream(async move {
 260            let Some(api_key) = api_key else {
 261                return Err(LanguageModelCompletionError::NoApiKey { provider });
 262            };
 263            let request = stream_response(
 264                http_client.as_ref(),
 265                provider.0.as_str(),
 266                &api_url,
 267                &api_key,
 268                request,
 269            );
 270            let response = request.await?;
 271            Ok(response)
 272        });
 273
 274        async move { Ok(future.await?.boxed()) }.boxed()
 275    }
 276}
 277
 278impl LanguageModel for OpenAiLanguageModel {
 279    fn id(&self) -> LanguageModelId {
 280        self.id.clone()
 281    }
 282
 283    fn name(&self) -> LanguageModelName {
 284        LanguageModelName::from(self.model.display_name().to_string())
 285    }
 286
 287    fn provider_id(&self) -> LanguageModelProviderId {
 288        PROVIDER_ID
 289    }
 290
 291    fn provider_name(&self) -> LanguageModelProviderName {
 292        PROVIDER_NAME
 293    }
 294
 295    fn supports_tools(&self) -> bool {
 296        true
 297    }
 298
 299    fn supports_images(&self) -> bool {
 300        use open_ai::Model;
 301        match &self.model {
 302            Model::FourOmni
 303            | Model::FourOmniMini
 304            | Model::FourPointOne
 305            | Model::FourPointOneMini
 306            | Model::FourPointOneNano
 307            | Model::Five
 308            | Model::FiveCodex
 309            | Model::FiveMini
 310            | Model::FiveNano
 311            | Model::FivePointOne
 312            | Model::FivePointTwo
 313            | Model::O1
 314            | Model::O3
 315            | Model::O4Mini => true,
 316            Model::ThreePointFiveTurbo
 317            | Model::Four
 318            | Model::FourTurbo
 319            | Model::O3Mini
 320            | Model::Custom { .. } => false,
 321        }
 322    }
 323
 324    fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
 325        match choice {
 326            LanguageModelToolChoice::Auto => true,
 327            LanguageModelToolChoice::Any => true,
 328            LanguageModelToolChoice::None => true,
 329        }
 330    }
 331
 332    fn supports_split_token_display(&self) -> bool {
 333        true
 334    }
 335
 336    fn telemetry_id(&self) -> String {
 337        format!("openai/{}", self.model.id())
 338    }
 339
 340    fn max_token_count(&self) -> u64 {
 341        self.model.max_token_count()
 342    }
 343
 344    fn max_output_tokens(&self) -> Option<u64> {
 345        self.model.max_output_tokens()
 346    }
 347
 348    fn count_tokens(
 349        &self,
 350        request: LanguageModelRequest,
 351        cx: &App,
 352    ) -> BoxFuture<'static, Result<u64>> {
 353        count_open_ai_tokens(request, self.model.clone(), cx)
 354    }
 355
 356    fn stream_completion(
 357        &self,
 358        request: LanguageModelRequest,
 359        cx: &AsyncApp,
 360    ) -> BoxFuture<
 361        'static,
 362        Result<
 363            futures::stream::BoxStream<
 364                'static,
 365                Result<LanguageModelCompletionEvent, LanguageModelCompletionError>,
 366            >,
 367            LanguageModelCompletionError,
 368        >,
 369    > {
 370        if self.model.supports_chat_completions() {
 371            let request = into_open_ai(
 372                request,
 373                self.model.id(),
 374                self.model.supports_parallel_tool_calls(),
 375                self.model.supports_prompt_cache_key(),
 376                self.max_output_tokens(),
 377                self.model.reasoning_effort(),
 378            );
 379            let completions = self.stream_completion(request, cx);
 380            async move {
 381                let mapper = OpenAiEventMapper::new();
 382                Ok(mapper.map_stream(completions.await?).boxed())
 383            }
 384            .boxed()
 385        } else {
 386            let request = into_open_ai_response(
 387                request,
 388                self.model.id(),
 389                self.model.supports_parallel_tool_calls(),
 390                self.model.supports_prompt_cache_key(),
 391                self.max_output_tokens(),
 392                self.model.reasoning_effort(),
 393            );
 394            let completions = self.stream_response(request, cx);
 395            async move {
 396                let mapper = OpenAiResponseEventMapper::new();
 397                Ok(mapper.map_stream(completions.await?).boxed())
 398            }
 399            .boxed()
 400        }
 401    }
 402}
 403
 404pub fn into_open_ai(
 405    request: LanguageModelRequest,
 406    model_id: &str,
 407    supports_parallel_tool_calls: bool,
 408    supports_prompt_cache_key: bool,
 409    max_output_tokens: Option<u64>,
 410    reasoning_effort: Option<ReasoningEffort>,
 411) -> open_ai::Request {
 412    let stream = !model_id.starts_with("o1-");
 413
 414    let mut messages = Vec::new();
 415    for message in request.messages {
 416        for content in message.content {
 417            match content {
 418                MessageContent::Text(text) | MessageContent::Thinking { text, .. } => {
 419                    if !text.trim().is_empty() {
 420                        add_message_content_part(
 421                            open_ai::MessagePart::Text { text },
 422                            message.role,
 423                            &mut messages,
 424                        );
 425                    }
 426                }
 427                MessageContent::RedactedThinking(_) => {}
 428                MessageContent::Image(image) => {
 429                    add_message_content_part(
 430                        open_ai::MessagePart::Image {
 431                            image_url: ImageUrl {
 432                                url: image.to_base64_url(),
 433                                detail: None,
 434                            },
 435                        },
 436                        message.role,
 437                        &mut messages,
 438                    );
 439                }
 440                MessageContent::ToolUse(tool_use) => {
 441                    let tool_call = open_ai::ToolCall {
 442                        id: tool_use.id.to_string(),
 443                        content: open_ai::ToolCallContent::Function {
 444                            function: open_ai::FunctionContent {
 445                                name: tool_use.name.to_string(),
 446                                arguments: serde_json::to_string(&tool_use.input)
 447                                    .unwrap_or_default(),
 448                            },
 449                        },
 450                    };
 451
 452                    if let Some(open_ai::RequestMessage::Assistant { tool_calls, .. }) =
 453                        messages.last_mut()
 454                    {
 455                        tool_calls.push(tool_call);
 456                    } else {
 457                        messages.push(open_ai::RequestMessage::Assistant {
 458                            content: None,
 459                            tool_calls: vec![tool_call],
 460                        });
 461                    }
 462                }
 463                MessageContent::ToolResult(tool_result) => {
 464                    let content = match &tool_result.content {
 465                        LanguageModelToolResultContent::Text(text) => {
 466                            vec![open_ai::MessagePart::Text {
 467                                text: text.to_string(),
 468                            }]
 469                        }
 470                        LanguageModelToolResultContent::Image(image) => {
 471                            vec![open_ai::MessagePart::Image {
 472                                image_url: ImageUrl {
 473                                    url: image.to_base64_url(),
 474                                    detail: None,
 475                                },
 476                            }]
 477                        }
 478                    };
 479
 480                    messages.push(open_ai::RequestMessage::Tool {
 481                        content: content.into(),
 482                        tool_call_id: tool_result.tool_use_id.to_string(),
 483                    });
 484                }
 485            }
 486        }
 487    }
 488
 489    open_ai::Request {
 490        model: model_id.into(),
 491        messages,
 492        stream,
 493        stop: request.stop,
 494        temperature: request.temperature.or(Some(1.0)),
 495        max_completion_tokens: max_output_tokens,
 496        parallel_tool_calls: if supports_parallel_tool_calls && !request.tools.is_empty() {
 497            // Disable parallel tool calls, as the Agent currently expects a maximum of one per turn.
 498            Some(false)
 499        } else {
 500            None
 501        },
 502        prompt_cache_key: if supports_prompt_cache_key {
 503            request.thread_id
 504        } else {
 505            None
 506        },
 507        tools: request
 508            .tools
 509            .into_iter()
 510            .map(|tool| open_ai::ToolDefinition::Function {
 511                function: open_ai::FunctionDefinition {
 512                    name: tool.name,
 513                    description: Some(tool.description),
 514                    parameters: Some(tool.input_schema),
 515                },
 516            })
 517            .collect(),
 518        tool_choice: request.tool_choice.map(|choice| match choice {
 519            LanguageModelToolChoice::Auto => open_ai::ToolChoice::Auto,
 520            LanguageModelToolChoice::Any => open_ai::ToolChoice::Required,
 521            LanguageModelToolChoice::None => open_ai::ToolChoice::None,
 522        }),
 523        reasoning_effort,
 524    }
 525}
 526
 527pub fn into_open_ai_response(
 528    request: LanguageModelRequest,
 529    model_id: &str,
 530    supports_parallel_tool_calls: bool,
 531    supports_prompt_cache_key: bool,
 532    max_output_tokens: Option<u64>,
 533    reasoning_effort: Option<ReasoningEffort>,
 534) -> ResponseRequest {
 535    let stream = !model_id.starts_with("o1-");
 536
 537    let LanguageModelRequest {
 538        thread_id,
 539        prompt_id: _,
 540        intent: _,
 541        messages,
 542        tools,
 543        tool_choice,
 544        stop: _,
 545        temperature,
 546        thinking_allowed: _,
 547    } = request;
 548
 549    let mut input_items = Vec::new();
 550    for (index, message) in messages.into_iter().enumerate() {
 551        append_message_to_response_items(message, index, &mut input_items);
 552    }
 553
 554    let tools: Vec<_> = tools
 555        .into_iter()
 556        .map(|tool| open_ai::responses::ToolDefinition::Function {
 557            name: tool.name,
 558            description: Some(tool.description),
 559            parameters: Some(tool.input_schema),
 560            strict: None,
 561        })
 562        .collect();
 563
 564    ResponseRequest {
 565        model: model_id.into(),
 566        input: input_items,
 567        stream,
 568        temperature,
 569        top_p: None,
 570        max_output_tokens,
 571        parallel_tool_calls: if tools.is_empty() {
 572            None
 573        } else {
 574            Some(supports_parallel_tool_calls)
 575        },
 576        tool_choice: tool_choice.map(|choice| match choice {
 577            LanguageModelToolChoice::Auto => open_ai::ToolChoice::Auto,
 578            LanguageModelToolChoice::Any => open_ai::ToolChoice::Required,
 579            LanguageModelToolChoice::None => open_ai::ToolChoice::None,
 580        }),
 581        tools,
 582        prompt_cache_key: if supports_prompt_cache_key {
 583            thread_id
 584        } else {
 585            None
 586        },
 587        reasoning: reasoning_effort.map(|effort| open_ai::responses::ReasoningConfig { effort }),
 588    }
 589}
 590
 591fn append_message_to_response_items(
 592    message: LanguageModelRequestMessage,
 593    index: usize,
 594    input_items: &mut Vec<ResponseInputItem>,
 595) {
 596    let mut content_parts: Vec<ResponseInputContent> = Vec::new();
 597
 598    for content in message.content {
 599        match content {
 600            MessageContent::Text(text) => {
 601                push_response_text_part(&message.role, text, &mut content_parts);
 602            }
 603            MessageContent::Thinking { text, .. } => {
 604                push_response_text_part(&message.role, text, &mut content_parts);
 605            }
 606            MessageContent::RedactedThinking(_) => {}
 607            MessageContent::Image(image) => {
 608                push_response_image_part(&message.role, image, &mut content_parts);
 609            }
 610            MessageContent::ToolUse(tool_use) => {
 611                flush_response_parts(&message.role, index, &mut content_parts, input_items);
 612                let call_id = tool_use.id.to_string();
 613                input_items.push(ResponseInputItem::FunctionCall(ResponseFunctionCallItem {
 614                    call_id,
 615                    name: tool_use.name.to_string(),
 616                    arguments: tool_use.raw_input,
 617                }));
 618            }
 619            MessageContent::ToolResult(tool_result) => {
 620                flush_response_parts(&message.role, index, &mut content_parts, input_items);
 621                input_items.push(ResponseInputItem::FunctionCallOutput(
 622                    ResponseFunctionCallOutputItem {
 623                        call_id: tool_result.tool_use_id.to_string(),
 624                        output: tool_result_output(&tool_result),
 625                    },
 626                ));
 627            }
 628        }
 629    }
 630
 631    flush_response_parts(&message.role, index, &mut content_parts, input_items);
 632}
 633
 634fn push_response_text_part(
 635    role: &Role,
 636    text: impl Into<String>,
 637    parts: &mut Vec<ResponseInputContent>,
 638) {
 639    let text = text.into();
 640    if text.trim().is_empty() {
 641        return;
 642    }
 643
 644    match role {
 645        Role::Assistant => parts.push(ResponseInputContent::OutputText {
 646            text,
 647            annotations: Vec::new(),
 648        }),
 649        _ => parts.push(ResponseInputContent::Text { text }),
 650    }
 651}
 652
 653fn push_response_image_part(
 654    role: &Role,
 655    image: LanguageModelImage,
 656    parts: &mut Vec<ResponseInputContent>,
 657) {
 658    match role {
 659        Role::Assistant => parts.push(ResponseInputContent::OutputText {
 660            text: "[image omitted]".to_string(),
 661            annotations: Vec::new(),
 662        }),
 663        _ => parts.push(ResponseInputContent::Image {
 664            image_url: image.to_base64_url(),
 665        }),
 666    }
 667}
 668
 669fn flush_response_parts(
 670    role: &Role,
 671    _index: usize,
 672    parts: &mut Vec<ResponseInputContent>,
 673    input_items: &mut Vec<ResponseInputItem>,
 674) {
 675    if parts.is_empty() {
 676        return;
 677    }
 678
 679    let item = ResponseInputItem::Message(ResponseMessageItem {
 680        role: match role {
 681            Role::User => open_ai::Role::User,
 682            Role::Assistant => open_ai::Role::Assistant,
 683            Role::System => open_ai::Role::System,
 684        },
 685        content: parts.clone(),
 686    });
 687
 688    input_items.push(item);
 689    parts.clear();
 690}
 691
 692fn tool_result_output(result: &LanguageModelToolResult) -> String {
 693    if let Some(output) = &result.output {
 694        match output {
 695            serde_json::Value::String(text) => text.clone(),
 696            serde_json::Value::Null => String::new(),
 697            _ => output.to_string(),
 698        }
 699    } else {
 700        match &result.content {
 701            LanguageModelToolResultContent::Text(text) => text.to_string(),
 702            LanguageModelToolResultContent::Image(image) => image.to_base64_url(),
 703        }
 704    }
 705}
 706
 707fn add_message_content_part(
 708    new_part: open_ai::MessagePart,
 709    role: Role,
 710    messages: &mut Vec<open_ai::RequestMessage>,
 711) {
 712    match (role, messages.last_mut()) {
 713        (Role::User, Some(open_ai::RequestMessage::User { content }))
 714        | (
 715            Role::Assistant,
 716            Some(open_ai::RequestMessage::Assistant {
 717                content: Some(content),
 718                ..
 719            }),
 720        )
 721        | (Role::System, Some(open_ai::RequestMessage::System { content, .. })) => {
 722            content.push_part(new_part);
 723        }
 724        _ => {
 725            messages.push(match role {
 726                Role::User => open_ai::RequestMessage::User {
 727                    content: open_ai::MessageContent::from(vec![new_part]),
 728                },
 729                Role::Assistant => open_ai::RequestMessage::Assistant {
 730                    content: Some(open_ai::MessageContent::from(vec![new_part])),
 731                    tool_calls: Vec::new(),
 732                },
 733                Role::System => open_ai::RequestMessage::System {
 734                    content: open_ai::MessageContent::from(vec![new_part]),
 735                },
 736            });
 737        }
 738    }
 739}
 740
 741pub struct OpenAiEventMapper {
 742    tool_calls_by_index: HashMap<usize, RawToolCall>,
 743}
 744
 745impl OpenAiEventMapper {
 746    pub fn new() -> Self {
 747        Self {
 748            tool_calls_by_index: HashMap::default(),
 749        }
 750    }
 751
 752    pub fn map_stream(
 753        mut self,
 754        events: Pin<Box<dyn Send + Stream<Item = Result<ResponseStreamEvent>>>>,
 755    ) -> impl Stream<Item = Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 756    {
 757        events.flat_map(move |event| {
 758            futures::stream::iter(match event {
 759                Ok(event) => self.map_event(event),
 760                Err(error) => vec![Err(LanguageModelCompletionError::from(anyhow!(error)))],
 761            })
 762        })
 763    }
 764
 765    pub fn map_event(
 766        &mut self,
 767        event: ResponseStreamEvent,
 768    ) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
 769        let mut events = Vec::new();
 770        if let Some(usage) = event.usage {
 771            events.push(Ok(LanguageModelCompletionEvent::UsageUpdate(TokenUsage {
 772                input_tokens: usage.prompt_tokens,
 773                output_tokens: usage.completion_tokens,
 774                cache_creation_input_tokens: 0,
 775                cache_read_input_tokens: 0,
 776            })));
 777        }
 778
 779        let Some(choice) = event.choices.first() else {
 780            return events;
 781        };
 782
 783        if let Some(delta) = choice.delta.as_ref() {
 784            if let Some(content) = delta.content.clone() {
 785                events.push(Ok(LanguageModelCompletionEvent::Text(content)));
 786            }
 787
 788            if let Some(tool_calls) = delta.tool_calls.as_ref() {
 789                for tool_call in tool_calls {
 790                    let entry = self.tool_calls_by_index.entry(tool_call.index).or_default();
 791
 792                    if let Some(tool_id) = tool_call.id.clone() {
 793                        entry.id = tool_id;
 794                    }
 795
 796                    if let Some(function) = tool_call.function.as_ref() {
 797                        if let Some(name) = function.name.clone() {
 798                            entry.name = name;
 799                        }
 800
 801                        if let Some(arguments) = function.arguments.clone() {
 802                            entry.arguments.push_str(&arguments);
 803                        }
 804                    }
 805                }
 806            }
 807        }
 808
 809        match choice.finish_reason.as_deref() {
 810            Some("stop") => {
 811                events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::EndTurn)));
 812            }
 813            Some("tool_calls") => {
 814                events.extend(self.tool_calls_by_index.drain().map(|(_, tool_call)| {
 815                    match serde_json::Value::from_str(&tool_call.arguments) {
 816                        Ok(input) => Ok(LanguageModelCompletionEvent::ToolUse(
 817                            LanguageModelToolUse {
 818                                id: tool_call.id.clone().into(),
 819                                name: tool_call.name.as_str().into(),
 820                                is_input_complete: true,
 821                                input,
 822                                raw_input: tool_call.arguments.clone(),
 823                                thought_signature: None,
 824                            },
 825                        )),
 826                        Err(error) => Ok(LanguageModelCompletionEvent::ToolUseJsonParseError {
 827                            id: tool_call.id.into(),
 828                            tool_name: tool_call.name.into(),
 829                            raw_input: tool_call.arguments.clone().into(),
 830                            json_parse_error: error.to_string(),
 831                        }),
 832                    }
 833                }));
 834
 835                events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::ToolUse)));
 836            }
 837            Some(stop_reason) => {
 838                log::error!("Unexpected OpenAI stop_reason: {stop_reason:?}",);
 839                events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::EndTurn)));
 840            }
 841            None => {}
 842        }
 843
 844        events
 845    }
 846}
 847
 848#[derive(Default)]
 849struct RawToolCall {
 850    id: String,
 851    name: String,
 852    arguments: String,
 853}
 854
 855pub struct OpenAiResponseEventMapper {
 856    function_calls_by_item: HashMap<String, PendingResponseFunctionCall>,
 857    pending_stop_reason: Option<StopReason>,
 858}
 859
 860#[derive(Default)]
 861struct PendingResponseFunctionCall {
 862    call_id: String,
 863    name: Arc<str>,
 864    arguments: String,
 865}
 866
 867impl OpenAiResponseEventMapper {
 868    pub fn new() -> Self {
 869        Self {
 870            function_calls_by_item: HashMap::default(),
 871            pending_stop_reason: None,
 872        }
 873    }
 874
 875    pub fn map_stream(
 876        mut self,
 877        events: Pin<Box<dyn Send + Stream<Item = Result<ResponsesStreamEvent>>>>,
 878    ) -> impl Stream<Item = Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 879    {
 880        events.flat_map(move |event| {
 881            futures::stream::iter(match event {
 882                Ok(event) => self.map_event(event),
 883                Err(error) => vec![Err(LanguageModelCompletionError::from(anyhow!(error)))],
 884            })
 885        })
 886    }
 887
 888    pub fn map_event(
 889        &mut self,
 890        event: ResponsesStreamEvent,
 891    ) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
 892        match event {
 893            ResponsesStreamEvent::OutputItemAdded { item, .. } => {
 894                let mut events = Vec::new();
 895
 896                match &item {
 897                    ResponseOutputItem::Message(message) => {
 898                        if let Some(id) = &message.id {
 899                            events.push(Ok(LanguageModelCompletionEvent::StartMessage {
 900                                message_id: id.clone(),
 901                            }));
 902                        }
 903                    }
 904                    ResponseOutputItem::FunctionCall(function_call) => {
 905                        if let Some(item_id) = function_call.id.clone() {
 906                            let call_id = function_call
 907                                .call_id
 908                                .clone()
 909                                .or_else(|| function_call.id.clone())
 910                                .unwrap_or_else(|| item_id.clone());
 911                            let entry = PendingResponseFunctionCall {
 912                                call_id,
 913                                name: Arc::<str>::from(
 914                                    function_call.name.clone().unwrap_or_default(),
 915                                ),
 916                                arguments: function_call.arguments.clone(),
 917                            };
 918                            self.function_calls_by_item.insert(item_id, entry);
 919                        }
 920                    }
 921                    ResponseOutputItem::Unknown => {}
 922                }
 923                events
 924            }
 925            ResponsesStreamEvent::OutputTextDelta { delta, .. } => {
 926                if delta.is_empty() {
 927                    Vec::new()
 928                } else {
 929                    vec![Ok(LanguageModelCompletionEvent::Text(delta))]
 930                }
 931            }
 932            ResponsesStreamEvent::FunctionCallArgumentsDelta { item_id, delta, .. } => {
 933                if let Some(entry) = self.function_calls_by_item.get_mut(&item_id) {
 934                    entry.arguments.push_str(&delta);
 935                }
 936                Vec::new()
 937            }
 938            ResponsesStreamEvent::FunctionCallArgumentsDone {
 939                item_id, arguments, ..
 940            } => {
 941                if let Some(mut entry) = self.function_calls_by_item.remove(&item_id) {
 942                    if !arguments.is_empty() {
 943                        entry.arguments = arguments;
 944                    }
 945                    let raw_input = entry.arguments.clone();
 946                    self.pending_stop_reason = Some(StopReason::ToolUse);
 947                    match serde_json::from_str::<serde_json::Value>(&entry.arguments) {
 948                        Ok(input) => {
 949                            vec![Ok(LanguageModelCompletionEvent::ToolUse(
 950                                LanguageModelToolUse {
 951                                    id: LanguageModelToolUseId::from(entry.call_id.clone()),
 952                                    name: entry.name.clone(),
 953                                    is_input_complete: true,
 954                                    input,
 955                                    raw_input,
 956                                    thought_signature: None,
 957                                },
 958                            ))]
 959                        }
 960                        Err(error) => {
 961                            vec![Ok(LanguageModelCompletionEvent::ToolUseJsonParseError {
 962                                id: LanguageModelToolUseId::from(entry.call_id.clone()),
 963                                tool_name: entry.name.clone(),
 964                                raw_input: Arc::<str>::from(raw_input),
 965                                json_parse_error: error.to_string(),
 966                            })]
 967                        }
 968                    }
 969                } else {
 970                    Vec::new()
 971                }
 972            }
 973            ResponsesStreamEvent::Completed { response } => {
 974                self.handle_completion(response, StopReason::EndTurn)
 975            }
 976            ResponsesStreamEvent::Incomplete { response } => {
 977                let reason = response
 978                    .status_details
 979                    .as_ref()
 980                    .and_then(|details| details.reason.as_deref());
 981                let stop_reason = match reason {
 982                    Some("max_output_tokens") => StopReason::MaxTokens,
 983                    Some("content_filter") => {
 984                        self.pending_stop_reason = Some(StopReason::Refusal);
 985                        StopReason::Refusal
 986                    }
 987                    _ => self
 988                        .pending_stop_reason
 989                        .take()
 990                        .unwrap_or(StopReason::EndTurn),
 991                };
 992
 993                let mut events = Vec::new();
 994                if self.pending_stop_reason.is_none() {
 995                    events.extend(self.emit_tool_calls_from_output(&response.output));
 996                }
 997                if let Some(usage) = response.usage.as_ref() {
 998                    events.push(Ok(LanguageModelCompletionEvent::UsageUpdate(
 999                        token_usage_from_response_usage(usage),
1000                    )));
1001                }
1002                events.push(Ok(LanguageModelCompletionEvent::Stop(stop_reason)));
1003                events
1004            }
1005            ResponsesStreamEvent::Failed { response } => {
1006                let message = response
1007                    .status_details
1008                    .and_then(|details| details.error)
1009                    .map(|error| error.to_string())
1010                    .unwrap_or_else(|| "response failed".to_string());
1011                vec![Err(LanguageModelCompletionError::Other(anyhow!(message)))]
1012            }
1013            ResponsesStreamEvent::Error { error }
1014            | ResponsesStreamEvent::GenericError { error } => {
1015                vec![Err(LanguageModelCompletionError::Other(anyhow!(format!(
1016                    "{error:?}"
1017                ))))]
1018            }
1019            ResponsesStreamEvent::OutputTextDone { .. } => Vec::new(),
1020            ResponsesStreamEvent::OutputItemDone { .. }
1021            | ResponsesStreamEvent::ContentPartAdded { .. }
1022            | ResponsesStreamEvent::ContentPartDone { .. }
1023            | ResponsesStreamEvent::Created { .. }
1024            | ResponsesStreamEvent::InProgress { .. }
1025            | ResponsesStreamEvent::Unknown => Vec::new(),
1026        }
1027    }
1028
1029    fn handle_completion(
1030        &mut self,
1031        response: ResponsesSummary,
1032        default_reason: StopReason,
1033    ) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
1034        let mut events = Vec::new();
1035
1036        if self.pending_stop_reason.is_none() {
1037            events.extend(self.emit_tool_calls_from_output(&response.output));
1038        }
1039
1040        if let Some(usage) = response.usage.as_ref() {
1041            events.push(Ok(LanguageModelCompletionEvent::UsageUpdate(
1042                token_usage_from_response_usage(usage),
1043            )));
1044        }
1045
1046        let stop_reason = self.pending_stop_reason.take().unwrap_or(default_reason);
1047        events.push(Ok(LanguageModelCompletionEvent::Stop(stop_reason)));
1048        events
1049    }
1050
1051    fn emit_tool_calls_from_output(
1052        &mut self,
1053        output: &[ResponseOutputItem],
1054    ) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
1055        let mut events = Vec::new();
1056        for item in output {
1057            if let ResponseOutputItem::FunctionCall(function_call) = item {
1058                let Some(call_id) = function_call
1059                    .call_id
1060                    .clone()
1061                    .or_else(|| function_call.id.clone())
1062                else {
1063                    log::error!(
1064                        "Function call item missing both call_id and id: {:?}",
1065                        function_call
1066                    );
1067                    continue;
1068                };
1069                let name: Arc<str> = Arc::from(function_call.name.clone().unwrap_or_default());
1070                let arguments = &function_call.arguments;
1071                if !arguments.is_empty() {
1072                    self.pending_stop_reason = Some(StopReason::ToolUse);
1073                    match serde_json::from_str::<serde_json::Value>(arguments) {
1074                        Ok(input) => {
1075                            events.push(Ok(LanguageModelCompletionEvent::ToolUse(
1076                                LanguageModelToolUse {
1077                                    id: LanguageModelToolUseId::from(call_id.clone()),
1078                                    name: name.clone(),
1079                                    is_input_complete: true,
1080                                    input,
1081                                    raw_input: arguments.clone(),
1082                                    thought_signature: None,
1083                                },
1084                            )));
1085                        }
1086                        Err(error) => {
1087                            events.push(Ok(LanguageModelCompletionEvent::ToolUseJsonParseError {
1088                                id: LanguageModelToolUseId::from(call_id.clone()),
1089                                tool_name: name.clone(),
1090                                raw_input: Arc::<str>::from(arguments.clone()),
1091                                json_parse_error: error.to_string(),
1092                            }));
1093                        }
1094                    }
1095                }
1096            }
1097        }
1098        events
1099    }
1100}
1101
1102fn token_usage_from_response_usage(usage: &ResponsesUsage) -> TokenUsage {
1103    TokenUsage {
1104        input_tokens: usage.input_tokens.unwrap_or_default(),
1105        output_tokens: usage.output_tokens.unwrap_or_default(),
1106        cache_creation_input_tokens: 0,
1107        cache_read_input_tokens: 0,
1108    }
1109}
1110
1111pub(crate) fn collect_tiktoken_messages(
1112    request: LanguageModelRequest,
1113) -> Vec<tiktoken_rs::ChatCompletionRequestMessage> {
1114    request
1115        .messages
1116        .into_iter()
1117        .map(|message| tiktoken_rs::ChatCompletionRequestMessage {
1118            role: match message.role {
1119                Role::User => "user".into(),
1120                Role::Assistant => "assistant".into(),
1121                Role::System => "system".into(),
1122            },
1123            content: Some(message.string_contents()),
1124            name: None,
1125            function_call: None,
1126        })
1127        .collect::<Vec<_>>()
1128}
1129
1130pub fn count_open_ai_tokens(
1131    request: LanguageModelRequest,
1132    model: Model,
1133    cx: &App,
1134) -> BoxFuture<'static, Result<u64>> {
1135    cx.background_spawn(async move {
1136        let messages = collect_tiktoken_messages(request);
1137        match model {
1138            Model::Custom { max_tokens, .. } => {
1139                let model = if max_tokens >= 100_000 {
1140                    // If the max tokens is 100k or more, it is likely the o200k_base tokenizer from gpt4o
1141                    "gpt-4o"
1142                } else {
1143                    // Otherwise fallback to gpt-4, since only cl100k_base and o200k_base are
1144                    // supported with this tiktoken method
1145                    "gpt-4"
1146                };
1147                tiktoken_rs::num_tokens_from_messages(model, &messages)
1148            }
1149            // Currently supported by tiktoken_rs
1150            // Sometimes tiktoken-rs is behind on model support. If that is the case, make a new branch
1151            // arm with an override. We enumerate all supported models here so that we can check if new
1152            // models are supported yet or not.
1153            Model::ThreePointFiveTurbo
1154            | Model::Four
1155            | Model::FourTurbo
1156            | Model::FourOmni
1157            | Model::FourOmniMini
1158            | Model::FourPointOne
1159            | Model::FourPointOneMini
1160            | Model::FourPointOneNano
1161            | Model::O1
1162            | Model::O3
1163            | Model::O3Mini
1164            | Model::O4Mini
1165            | Model::Five
1166            | Model::FiveCodex
1167            | Model::FiveMini
1168            | Model::FiveNano => tiktoken_rs::num_tokens_from_messages(model.id(), &messages),
1169            // GPT-5.1 and 5.2 don't have dedicated tiktoken support; use gpt-5 tokenizer
1170            Model::FivePointOne | Model::FivePointTwo => {
1171                tiktoken_rs::num_tokens_from_messages("gpt-5", &messages)
1172            }
1173        }
1174        .map(|tokens| tokens as u64)
1175    })
1176    .boxed()
1177}
1178
1179struct ConfigurationView {
1180    api_key_editor: Entity<InputField>,
1181    state: Entity<State>,
1182    load_credentials_task: Option<Task<()>>,
1183}
1184
1185impl ConfigurationView {
1186    fn new(state: Entity<State>, window: &mut Window, cx: &mut Context<Self>) -> Self {
1187        let api_key_editor = cx.new(|cx| {
1188            InputField::new(
1189                window,
1190                cx,
1191                "sk-000000000000000000000000000000000000000000000000",
1192            )
1193        });
1194
1195        cx.observe(&state, |_, _, cx| {
1196            cx.notify();
1197        })
1198        .detach();
1199
1200        let load_credentials_task = Some(cx.spawn_in(window, {
1201            let state = state.clone();
1202            async move |this, cx| {
1203                if let Some(task) = Some(state.update(cx, |state, cx| state.authenticate(cx))) {
1204                    // We don't log an error, because "not signed in" is also an error.
1205                    let _ = task.await;
1206                }
1207                this.update(cx, |this, cx| {
1208                    this.load_credentials_task = None;
1209                    cx.notify();
1210                })
1211                .log_err();
1212            }
1213        }));
1214
1215        Self {
1216            api_key_editor,
1217            state,
1218            load_credentials_task,
1219        }
1220    }
1221
1222    fn save_api_key(&mut self, _: &menu::Confirm, window: &mut Window, cx: &mut Context<Self>) {
1223        let api_key = self.api_key_editor.read(cx).text(cx).trim().to_string();
1224        if api_key.is_empty() {
1225            return;
1226        }
1227
1228        // url changes can cause the editor to be displayed again
1229        self.api_key_editor
1230            .update(cx, |editor, cx| editor.set_text("", window, cx));
1231
1232        let state = self.state.clone();
1233        cx.spawn_in(window, async move |_, cx| {
1234            state
1235                .update(cx, |state, cx| state.set_api_key(Some(api_key), cx))
1236                .await
1237        })
1238        .detach_and_log_err(cx);
1239    }
1240
1241    fn reset_api_key(&mut self, window: &mut Window, cx: &mut Context<Self>) {
1242        self.api_key_editor
1243            .update(cx, |input, cx| input.set_text("", window, cx));
1244
1245        let state = self.state.clone();
1246        cx.spawn_in(window, async move |_, cx| {
1247            state
1248                .update(cx, |state, cx| state.set_api_key(None, cx))
1249                .await
1250        })
1251        .detach_and_log_err(cx);
1252    }
1253
1254    fn should_render_editor(&self, cx: &mut Context<Self>) -> bool {
1255        !self.state.read(cx).is_authenticated()
1256    }
1257}
1258
1259impl Render for ConfigurationView {
1260    fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
1261        let env_var_set = self.state.read(cx).api_key_state.is_from_env_var();
1262        let configured_card_label = if env_var_set {
1263            format!("API key set in {API_KEY_ENV_VAR_NAME} environment variable")
1264        } else {
1265            let api_url = OpenAiLanguageModelProvider::api_url(cx);
1266            if api_url == OPEN_AI_API_URL {
1267                "API key configured".to_string()
1268            } else {
1269                format!("API key configured for {}", api_url)
1270            }
1271        };
1272
1273        let api_key_section = if self.should_render_editor(cx) {
1274            v_flex()
1275                .on_action(cx.listener(Self::save_api_key))
1276                .child(Label::new("To use Zed's agent with OpenAI, you need to add an API key. Follow these steps:"))
1277                .child(
1278                    List::new()
1279                        .child(
1280                            ListBulletItem::new("")
1281                                .child(Label::new("Create one by visiting"))
1282                                .child(ButtonLink::new("OpenAI's console", "https://platform.openai.com/api-keys"))
1283                        )
1284                        .child(
1285                            ListBulletItem::new("Ensure your OpenAI account has credits")
1286                        )
1287                        .child(
1288                            ListBulletItem::new("Paste your API key below and hit enter to start using the agent")
1289                        ),
1290                )
1291                .child(self.api_key_editor.clone())
1292                .child(
1293                    Label::new(format!(
1294                        "You can also set the {API_KEY_ENV_VAR_NAME} environment variable and restart Zed."
1295                    ))
1296                    .size(LabelSize::Small)
1297                    .color(Color::Muted),
1298                )
1299                .child(
1300                    Label::new(
1301                        "Note that having a subscription for another service like GitHub Copilot won't work.",
1302                    )
1303                    .size(LabelSize::Small).color(Color::Muted),
1304                )
1305                .into_any_element()
1306        } else {
1307            ConfiguredApiCard::new(configured_card_label)
1308                .disabled(env_var_set)
1309                .on_click(cx.listener(|this, _, window, cx| this.reset_api_key(window, cx)))
1310                .when(env_var_set, |this| {
1311                    this.tooltip_label(format!("To reset your API key, unset the {API_KEY_ENV_VAR_NAME} environment variable."))
1312                })
1313                .into_any_element()
1314        };
1315
1316        let compatible_api_section = h_flex()
1317            .mt_1p5()
1318            .gap_0p5()
1319            .flex_wrap()
1320            .when(self.should_render_editor(cx), |this| {
1321                this.pt_1p5()
1322                    .border_t_1()
1323                    .border_color(cx.theme().colors().border_variant)
1324            })
1325            .child(
1326                h_flex()
1327                    .gap_2()
1328                    .child(
1329                        Icon::new(IconName::Info)
1330                            .size(IconSize::XSmall)
1331                            .color(Color::Muted),
1332                    )
1333                    .child(Label::new("Zed also supports OpenAI-compatible models.")),
1334            )
1335            .child(
1336                Button::new("docs", "Learn More")
1337                    .icon(IconName::ArrowUpRight)
1338                    .icon_size(IconSize::Small)
1339                    .icon_color(Color::Muted)
1340                    .on_click(move |_, _window, cx| {
1341                        cx.open_url("https://zed.dev/docs/ai/llm-providers#openai-api-compatible")
1342                    }),
1343            );
1344
1345        if self.load_credentials_task.is_some() {
1346            div().child(Label::new("Loading credentials…")).into_any()
1347        } else {
1348            v_flex()
1349                .size_full()
1350                .child(api_key_section)
1351                .child(compatible_api_section)
1352                .into_any()
1353        }
1354    }
1355}
1356
1357#[cfg(test)]
1358mod tests {
1359    use futures::{StreamExt, executor::block_on};
1360    use gpui::TestAppContext;
1361    use language_model::{LanguageModelRequestMessage, LanguageModelRequestTool};
1362    use open_ai::responses::{
1363        ResponseFunctionToolCall, ResponseOutputItem, ResponseOutputMessage, ResponseStatusDetails,
1364        ResponseSummary, ResponseUsage, StreamEvent as ResponsesStreamEvent,
1365    };
1366    use pretty_assertions::assert_eq;
1367    use serde_json::json;
1368
1369    use super::*;
1370
1371    fn map_response_events(events: Vec<ResponsesStreamEvent>) -> Vec<LanguageModelCompletionEvent> {
1372        block_on(async {
1373            OpenAiResponseEventMapper::new()
1374                .map_stream(Box::pin(futures::stream::iter(events.into_iter().map(Ok))))
1375                .collect::<Vec<_>>()
1376                .await
1377                .into_iter()
1378                .map(Result::unwrap)
1379                .collect()
1380        })
1381    }
1382
1383    fn response_item_message(id: &str) -> ResponseOutputItem {
1384        ResponseOutputItem::Message(ResponseOutputMessage {
1385            id: Some(id.to_string()),
1386            role: Some("assistant".to_string()),
1387            status: Some("in_progress".to_string()),
1388            content: vec![],
1389        })
1390    }
1391
1392    fn response_item_function_call(id: &str, args: Option<&str>) -> ResponseOutputItem {
1393        ResponseOutputItem::FunctionCall(ResponseFunctionToolCall {
1394            id: Some(id.to_string()),
1395            status: Some("in_progress".to_string()),
1396            name: Some("get_weather".to_string()),
1397            call_id: Some("call_123".to_string()),
1398            arguments: args.map(|s| s.to_string()).unwrap_or_default(),
1399        })
1400    }
1401
1402    #[gpui::test]
1403    fn tiktoken_rs_support(cx: &TestAppContext) {
1404        let request = LanguageModelRequest {
1405            thread_id: None,
1406            prompt_id: None,
1407            intent: None,
1408            messages: vec![LanguageModelRequestMessage {
1409                role: Role::User,
1410                content: vec![MessageContent::Text("message".into())],
1411                cache: false,
1412                reasoning_details: None,
1413            }],
1414            tools: vec![],
1415            tool_choice: None,
1416            stop: vec![],
1417            temperature: None,
1418            thinking_allowed: true,
1419        };
1420
1421        // Validate that all models are supported by tiktoken-rs
1422        for model in Model::iter() {
1423            let count = cx
1424                .foreground_executor()
1425                .block_on(count_open_ai_tokens(
1426                    request.clone(),
1427                    model,
1428                    &cx.app.borrow(),
1429                ))
1430                .unwrap();
1431            assert!(count > 0);
1432        }
1433    }
1434
1435    #[test]
1436    fn responses_stream_maps_text_and_usage() {
1437        let events = vec![
1438            ResponsesStreamEvent::OutputItemAdded {
1439                output_index: 0,
1440                sequence_number: None,
1441                item: response_item_message("msg_123"),
1442            },
1443            ResponsesStreamEvent::OutputTextDelta {
1444                item_id: "msg_123".into(),
1445                output_index: 0,
1446                content_index: Some(0),
1447                delta: "Hello".into(),
1448            },
1449            ResponsesStreamEvent::Completed {
1450                response: ResponseSummary {
1451                    usage: Some(ResponseUsage {
1452                        input_tokens: Some(5),
1453                        output_tokens: Some(3),
1454                        total_tokens: Some(8),
1455                    }),
1456                    ..Default::default()
1457                },
1458            },
1459        ];
1460
1461        let mapped = map_response_events(events);
1462        assert!(matches!(
1463            mapped[0],
1464            LanguageModelCompletionEvent::StartMessage { ref message_id } if message_id == "msg_123"
1465        ));
1466        assert!(matches!(
1467            mapped[1],
1468            LanguageModelCompletionEvent::Text(ref text) if text == "Hello"
1469        ));
1470        assert!(matches!(
1471            mapped[2],
1472            LanguageModelCompletionEvent::UsageUpdate(TokenUsage {
1473                input_tokens: 5,
1474                output_tokens: 3,
1475                ..
1476            })
1477        ));
1478        assert!(matches!(
1479            mapped[3],
1480            LanguageModelCompletionEvent::Stop(StopReason::EndTurn)
1481        ));
1482    }
1483
1484    #[test]
1485    fn into_open_ai_response_builds_complete_payload() {
1486        let tool_call_id = LanguageModelToolUseId::from("call-42");
1487        let tool_input = json!({ "city": "Boston" });
1488        let tool_arguments = serde_json::to_string(&tool_input).unwrap();
1489        let tool_use = LanguageModelToolUse {
1490            id: tool_call_id.clone(),
1491            name: Arc::from("get_weather"),
1492            raw_input: tool_arguments.clone(),
1493            input: tool_input,
1494            is_input_complete: true,
1495            thought_signature: None,
1496        };
1497        let tool_result = LanguageModelToolResult {
1498            tool_use_id: tool_call_id,
1499            tool_name: Arc::from("get_weather"),
1500            is_error: false,
1501            content: LanguageModelToolResultContent::Text(Arc::from("Sunny")),
1502            output: Some(json!({ "forecast": "Sunny" })),
1503        };
1504        let user_image = LanguageModelImage {
1505            source: SharedString::from("aGVsbG8="),
1506            size: None,
1507        };
1508        let expected_image_url = user_image.to_base64_url();
1509
1510        let request = LanguageModelRequest {
1511            thread_id: Some("thread-123".into()),
1512            prompt_id: None,
1513            intent: None,
1514            messages: vec![
1515                LanguageModelRequestMessage {
1516                    role: Role::System,
1517                    content: vec![MessageContent::Text("System context".into())],
1518                    cache: false,
1519                    reasoning_details: None,
1520                },
1521                LanguageModelRequestMessage {
1522                    role: Role::User,
1523                    content: vec![
1524                        MessageContent::Text("Please check the weather.".into()),
1525                        MessageContent::Image(user_image),
1526                    ],
1527                    cache: false,
1528                    reasoning_details: None,
1529                },
1530                LanguageModelRequestMessage {
1531                    role: Role::Assistant,
1532                    content: vec![
1533                        MessageContent::Text("Looking that up.".into()),
1534                        MessageContent::ToolUse(tool_use),
1535                    ],
1536                    cache: false,
1537                    reasoning_details: None,
1538                },
1539                LanguageModelRequestMessage {
1540                    role: Role::Assistant,
1541                    content: vec![MessageContent::ToolResult(tool_result)],
1542                    cache: false,
1543                    reasoning_details: None,
1544                },
1545            ],
1546            tools: vec![LanguageModelRequestTool {
1547                name: "get_weather".into(),
1548                description: "Fetches the weather".into(),
1549                input_schema: json!({ "type": "object" }),
1550            }],
1551            tool_choice: Some(LanguageModelToolChoice::Any),
1552            stop: vec!["<STOP>".into()],
1553            temperature: None,
1554            thinking_allowed: false,
1555        };
1556
1557        let response = into_open_ai_response(
1558            request,
1559            "custom-model",
1560            true,
1561            true,
1562            Some(2048),
1563            Some(ReasoningEffort::Low),
1564        );
1565
1566        let serialized = serde_json::to_value(&response).unwrap();
1567        let expected = json!({
1568            "model": "custom-model",
1569            "input": [
1570                {
1571                    "type": "message",
1572                    "role": "system",
1573                    "content": [
1574                        { "type": "input_text", "text": "System context" }
1575                    ]
1576                },
1577                {
1578                    "type": "message",
1579                    "role": "user",
1580                    "content": [
1581                        { "type": "input_text", "text": "Please check the weather." },
1582                        { "type": "input_image", "image_url": expected_image_url }
1583                    ]
1584                },
1585                {
1586                    "type": "message",
1587                    "role": "assistant",
1588                    "content": [
1589                        { "type": "output_text", "text": "Looking that up.", "annotations": [] }
1590                    ]
1591                },
1592                {
1593                    "type": "function_call",
1594                    "call_id": "call-42",
1595                    "name": "get_weather",
1596                    "arguments": tool_arguments
1597                },
1598                {
1599                    "type": "function_call_output",
1600                    "call_id": "call-42",
1601                    "output": "{\"forecast\":\"Sunny\"}"
1602                }
1603            ],
1604            "stream": true,
1605            "max_output_tokens": 2048,
1606            "parallel_tool_calls": true,
1607            "tool_choice": "required",
1608            "tools": [
1609                {
1610                    "type": "function",
1611                    "name": "get_weather",
1612                    "description": "Fetches the weather",
1613                    "parameters": { "type": "object" }
1614                }
1615            ],
1616            "prompt_cache_key": "thread-123",
1617            "reasoning": { "effort": "low" }
1618        });
1619
1620        assert_eq!(serialized, expected);
1621    }
1622
1623    #[test]
1624    fn responses_stream_maps_tool_calls() {
1625        let events = vec![
1626            ResponsesStreamEvent::OutputItemAdded {
1627                output_index: 0,
1628                sequence_number: None,
1629                item: response_item_function_call("item_fn", Some("{\"city\":\"Bos")),
1630            },
1631            ResponsesStreamEvent::FunctionCallArgumentsDelta {
1632                item_id: "item_fn".into(),
1633                output_index: 0,
1634                delta: "ton\"}".into(),
1635                sequence_number: None,
1636            },
1637            ResponsesStreamEvent::FunctionCallArgumentsDone {
1638                item_id: "item_fn".into(),
1639                output_index: 0,
1640                arguments: "{\"city\":\"Boston\"}".into(),
1641                sequence_number: None,
1642            },
1643            ResponsesStreamEvent::Completed {
1644                response: ResponseSummary::default(),
1645            },
1646        ];
1647
1648        let mapped = map_response_events(events);
1649        assert!(matches!(
1650            mapped[0],
1651            LanguageModelCompletionEvent::ToolUse(LanguageModelToolUse {
1652                ref id,
1653                ref name,
1654                ref raw_input,
1655                ..
1656            }) if id.to_string() == "call_123"
1657                && name.as_ref() == "get_weather"
1658                && raw_input == "{\"city\":\"Boston\"}"
1659        ));
1660        assert!(matches!(
1661            mapped[1],
1662            LanguageModelCompletionEvent::Stop(StopReason::ToolUse)
1663        ));
1664    }
1665
1666    #[test]
1667    fn responses_stream_uses_max_tokens_stop_reason() {
1668        let events = vec![ResponsesStreamEvent::Incomplete {
1669            response: ResponseSummary {
1670                status_details: Some(ResponseStatusDetails {
1671                    reason: Some("max_output_tokens".into()),
1672                    r#type: Some("incomplete".into()),
1673                    error: None,
1674                }),
1675                usage: Some(ResponseUsage {
1676                    input_tokens: Some(10),
1677                    output_tokens: Some(20),
1678                    total_tokens: Some(30),
1679                }),
1680                ..Default::default()
1681            },
1682        }];
1683
1684        let mapped = map_response_events(events);
1685        assert!(matches!(
1686            mapped[0],
1687            LanguageModelCompletionEvent::UsageUpdate(TokenUsage {
1688                input_tokens: 10,
1689                output_tokens: 20,
1690                ..
1691            })
1692        ));
1693        assert!(matches!(
1694            mapped[1],
1695            LanguageModelCompletionEvent::Stop(StopReason::MaxTokens)
1696        ));
1697    }
1698
1699    #[test]
1700    fn responses_stream_handles_multiple_tool_calls() {
1701        let events = vec![
1702            ResponsesStreamEvent::OutputItemAdded {
1703                output_index: 0,
1704                sequence_number: None,
1705                item: response_item_function_call("item_fn1", Some("{\"city\":\"NYC\"}")),
1706            },
1707            ResponsesStreamEvent::FunctionCallArgumentsDone {
1708                item_id: "item_fn1".into(),
1709                output_index: 0,
1710                arguments: "{\"city\":\"NYC\"}".into(),
1711                sequence_number: None,
1712            },
1713            ResponsesStreamEvent::OutputItemAdded {
1714                output_index: 1,
1715                sequence_number: None,
1716                item: response_item_function_call("item_fn2", Some("{\"city\":\"LA\"}")),
1717            },
1718            ResponsesStreamEvent::FunctionCallArgumentsDone {
1719                item_id: "item_fn2".into(),
1720                output_index: 1,
1721                arguments: "{\"city\":\"LA\"}".into(),
1722                sequence_number: None,
1723            },
1724            ResponsesStreamEvent::Completed {
1725                response: ResponseSummary::default(),
1726            },
1727        ];
1728
1729        let mapped = map_response_events(events);
1730        assert_eq!(mapped.len(), 3);
1731        assert!(matches!(
1732            mapped[0],
1733            LanguageModelCompletionEvent::ToolUse(LanguageModelToolUse { ref raw_input, .. })
1734            if raw_input == "{\"city\":\"NYC\"}"
1735        ));
1736        assert!(matches!(
1737            mapped[1],
1738            LanguageModelCompletionEvent::ToolUse(LanguageModelToolUse { ref raw_input, .. })
1739            if raw_input == "{\"city\":\"LA\"}"
1740        ));
1741        assert!(matches!(
1742            mapped[2],
1743            LanguageModelCompletionEvent::Stop(StopReason::ToolUse)
1744        ));
1745    }
1746
1747    #[test]
1748    fn responses_stream_handles_mixed_text_and_tool_calls() {
1749        let events = vec![
1750            ResponsesStreamEvent::OutputItemAdded {
1751                output_index: 0,
1752                sequence_number: None,
1753                item: response_item_message("msg_123"),
1754            },
1755            ResponsesStreamEvent::OutputTextDelta {
1756                item_id: "msg_123".into(),
1757                output_index: 0,
1758                content_index: Some(0),
1759                delta: "Let me check that".into(),
1760            },
1761            ResponsesStreamEvent::OutputItemAdded {
1762                output_index: 1,
1763                sequence_number: None,
1764                item: response_item_function_call("item_fn", Some("{\"query\":\"test\"}")),
1765            },
1766            ResponsesStreamEvent::FunctionCallArgumentsDone {
1767                item_id: "item_fn".into(),
1768                output_index: 1,
1769                arguments: "{\"query\":\"test\"}".into(),
1770                sequence_number: None,
1771            },
1772            ResponsesStreamEvent::Completed {
1773                response: ResponseSummary::default(),
1774            },
1775        ];
1776
1777        let mapped = map_response_events(events);
1778        assert!(matches!(
1779            mapped[0],
1780            LanguageModelCompletionEvent::StartMessage { .. }
1781        ));
1782        assert!(matches!(
1783            mapped[1],
1784            LanguageModelCompletionEvent::Text(ref text) if text == "Let me check that"
1785        ));
1786        assert!(matches!(
1787            mapped[2],
1788            LanguageModelCompletionEvent::ToolUse(LanguageModelToolUse { ref raw_input, .. })
1789            if raw_input == "{\"query\":\"test\"}"
1790        ));
1791        assert!(matches!(
1792            mapped[3],
1793            LanguageModelCompletionEvent::Stop(StopReason::ToolUse)
1794        ));
1795    }
1796
1797    #[test]
1798    fn responses_stream_handles_json_parse_error() {
1799        let events = vec![
1800            ResponsesStreamEvent::OutputItemAdded {
1801                output_index: 0,
1802                sequence_number: None,
1803                item: response_item_function_call("item_fn", Some("{invalid json")),
1804            },
1805            ResponsesStreamEvent::FunctionCallArgumentsDone {
1806                item_id: "item_fn".into(),
1807                output_index: 0,
1808                arguments: "{invalid json".into(),
1809                sequence_number: None,
1810            },
1811            ResponsesStreamEvent::Completed {
1812                response: ResponseSummary::default(),
1813            },
1814        ];
1815
1816        let mapped = map_response_events(events);
1817        assert!(matches!(
1818            mapped[0],
1819            LanguageModelCompletionEvent::ToolUseJsonParseError {
1820                ref raw_input,
1821                ..
1822            } if raw_input.as_ref() == "{invalid json"
1823        ));
1824    }
1825
1826    #[test]
1827    fn responses_stream_handles_incomplete_function_call() {
1828        let events = vec![
1829            ResponsesStreamEvent::OutputItemAdded {
1830                output_index: 0,
1831                sequence_number: None,
1832                item: response_item_function_call("item_fn", Some("{\"city\":")),
1833            },
1834            ResponsesStreamEvent::FunctionCallArgumentsDelta {
1835                item_id: "item_fn".into(),
1836                output_index: 0,
1837                delta: "\"Boston\"".into(),
1838                sequence_number: None,
1839            },
1840            ResponsesStreamEvent::Incomplete {
1841                response: ResponseSummary {
1842                    status_details: Some(ResponseStatusDetails {
1843                        reason: Some("max_output_tokens".into()),
1844                        r#type: Some("incomplete".into()),
1845                        error: None,
1846                    }),
1847                    output: vec![response_item_function_call(
1848                        "item_fn",
1849                        Some("{\"city\":\"Boston\"}"),
1850                    )],
1851                    ..Default::default()
1852                },
1853            },
1854        ];
1855
1856        let mapped = map_response_events(events);
1857        assert!(matches!(
1858            mapped[0],
1859            LanguageModelCompletionEvent::ToolUse(LanguageModelToolUse { ref raw_input, .. })
1860            if raw_input == "{\"city\":\"Boston\"}"
1861        ));
1862        assert!(matches!(
1863            mapped[1],
1864            LanguageModelCompletionEvent::Stop(StopReason::MaxTokens)
1865        ));
1866    }
1867
1868    #[test]
1869    fn responses_stream_incomplete_does_not_duplicate_tool_calls() {
1870        let events = vec![
1871            ResponsesStreamEvent::OutputItemAdded {
1872                output_index: 0,
1873                sequence_number: None,
1874                item: response_item_function_call("item_fn", Some("{\"city\":\"Boston\"}")),
1875            },
1876            ResponsesStreamEvent::FunctionCallArgumentsDone {
1877                item_id: "item_fn".into(),
1878                output_index: 0,
1879                arguments: "{\"city\":\"Boston\"}".into(),
1880                sequence_number: None,
1881            },
1882            ResponsesStreamEvent::Incomplete {
1883                response: ResponseSummary {
1884                    status_details: Some(ResponseStatusDetails {
1885                        reason: Some("max_output_tokens".into()),
1886                        r#type: Some("incomplete".into()),
1887                        error: None,
1888                    }),
1889                    output: vec![response_item_function_call(
1890                        "item_fn",
1891                        Some("{\"city\":\"Boston\"}"),
1892                    )],
1893                    ..Default::default()
1894                },
1895            },
1896        ];
1897
1898        let mapped = map_response_events(events);
1899        assert_eq!(mapped.len(), 2);
1900        assert!(matches!(
1901            mapped[0],
1902            LanguageModelCompletionEvent::ToolUse(LanguageModelToolUse { ref raw_input, .. })
1903            if raw_input == "{\"city\":\"Boston\"}"
1904        ));
1905        assert!(matches!(
1906            mapped[1],
1907            LanguageModelCompletionEvent::Stop(StopReason::MaxTokens)
1908        ));
1909    }
1910}