sum_tree.rs

   1mod cursor;
   2mod tree_map;
   3
   4use arrayvec::ArrayVec;
   5pub use cursor::{Cursor, FilterCursor, Iter};
   6use rayon::iter::{IndexedParallelIterator, IntoParallelIterator, ParallelIterator as _};
   7use std::marker::PhantomData;
   8use std::mem;
   9use std::{cmp::Ordering, fmt, iter::FromIterator, sync::Arc};
  10pub use tree_map::{MapSeekTarget, TreeMap, TreeSet};
  11use ztracing::instrument;
  12
  13#[cfg(test)]
  14pub const TREE_BASE: usize = 2;
  15#[cfg(not(test))]
  16pub const TREE_BASE: usize = 6;
  17
  18/// An item that can be stored in a [`SumTree`]
  19///
  20/// Must be summarized by a type that implements [`Summary`]
  21pub trait Item: Clone {
  22    type Summary: Summary;
  23
  24    fn summary(&self, cx: <Self::Summary as Summary>::Context<'_>) -> Self::Summary;
  25}
  26
  27/// An [`Item`] whose summary has a specific key that can be used to identify it
  28pub trait KeyedItem: Item {
  29    type Key: for<'a> Dimension<'a, Self::Summary> + Ord;
  30
  31    fn key(&self) -> Self::Key;
  32}
  33
  34/// A type that describes the Sum of all [`Item`]s in a subtree of the [`SumTree`]
  35///
  36/// Each Summary type can have multiple [`Dimension`]s that it measures,
  37/// which can be used to navigate the tree
  38pub trait Summary: Clone {
  39    type Context<'a>: Copy;
  40    fn zero<'a>(cx: Self::Context<'a>) -> Self;
  41    fn add_summary<'a>(&mut self, summary: &Self, cx: Self::Context<'a>);
  42}
  43
  44pub trait ContextLessSummary: Clone {
  45    fn zero() -> Self;
  46    fn add_summary(&mut self, summary: &Self);
  47}
  48
  49impl<T: ContextLessSummary> Summary for T {
  50    type Context<'a> = ();
  51
  52    fn zero<'a>((): ()) -> Self {
  53        T::zero()
  54    }
  55
  56    fn add_summary<'a>(&mut self, summary: &Self, (): ()) {
  57        T::add_summary(self, summary)
  58    }
  59}
  60
  61#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
  62pub struct NoSummary;
  63
  64/// Catch-all implementation for when you need something that implements [`Summary`] without a specific type.
  65/// We implement it on a `NoSummary` instead of re-using `()`, as that avoids blanket impl collisions with `impl<T: Summary> Dimension for T`
  66/// (as we also need unit type to be a fill-in dimension)
  67impl ContextLessSummary for NoSummary {
  68    fn zero() -> Self {
  69        NoSummary
  70    }
  71
  72    fn add_summary(&mut self, _: &Self) {}
  73}
  74
  75/// Each [`Summary`] type can have more than one [`Dimension`] type that it measures.
  76///
  77/// You can use dimensions to seek to a specific location in the [`SumTree`]
  78///
  79/// # Example:
  80/// Zed's rope has a `TextSummary` type that summarizes lines, characters, and bytes.
  81/// Each of these are different dimensions we may want to seek to
  82pub trait Dimension<'a, S: Summary>: Clone {
  83    fn zero(cx: S::Context<'_>) -> Self;
  84
  85    fn add_summary(&mut self, summary: &'a S, cx: S::Context<'_>);
  86    #[must_use]
  87    fn with_added_summary(mut self, summary: &'a S, cx: S::Context<'_>) -> Self {
  88        self.add_summary(summary, cx);
  89        self
  90    }
  91
  92    fn from_summary(summary: &'a S, cx: S::Context<'_>) -> Self {
  93        let mut dimension = Self::zero(cx);
  94        dimension.add_summary(summary, cx);
  95        dimension
  96    }
  97}
  98
  99impl<'a, T: Summary> Dimension<'a, T> for T {
 100    fn zero(cx: T::Context<'_>) -> Self {
 101        Summary::zero(cx)
 102    }
 103
 104    fn add_summary(&mut self, summary: &'a T, cx: T::Context<'_>) {
 105        Summary::add_summary(self, summary, cx);
 106    }
 107}
 108
 109pub trait SeekTarget<'a, S: Summary, D: Dimension<'a, S>> {
 110    fn cmp(&self, cursor_location: &D, cx: S::Context<'_>) -> Ordering;
 111}
 112
 113impl<'a, S: Summary, D: Dimension<'a, S> + Ord> SeekTarget<'a, S, D> for D {
 114    fn cmp(&self, cursor_location: &Self, _: S::Context<'_>) -> Ordering {
 115        Ord::cmp(self, cursor_location)
 116    }
 117}
 118
 119impl<'a, T: Summary> Dimension<'a, T> for () {
 120    fn zero(_: T::Context<'_>) -> Self {}
 121
 122    fn add_summary(&mut self, _: &'a T, _: T::Context<'_>) {}
 123}
 124
 125#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, PartialOrd, Ord)]
 126pub struct Dimensions<D1, D2, D3 = ()>(pub D1, pub D2, pub D3);
 127
 128impl<'a, T: Summary, D1: Dimension<'a, T>, D2: Dimension<'a, T>, D3: Dimension<'a, T>>
 129    Dimension<'a, T> for Dimensions<D1, D2, D3>
 130{
 131    fn zero(cx: T::Context<'_>) -> Self {
 132        Dimensions(D1::zero(cx), D2::zero(cx), D3::zero(cx))
 133    }
 134
 135    fn add_summary(&mut self, summary: &'a T, cx: T::Context<'_>) {
 136        self.0.add_summary(summary, cx);
 137        self.1.add_summary(summary, cx);
 138        self.2.add_summary(summary, cx);
 139    }
 140}
 141
 142impl<'a, S, D1, D2, D3> SeekTarget<'a, S, Dimensions<D1, D2, D3>> for D1
 143where
 144    S: Summary,
 145    D1: SeekTarget<'a, S, D1> + Dimension<'a, S>,
 146    D2: Dimension<'a, S>,
 147    D3: Dimension<'a, S>,
 148{
 149    fn cmp(&self, cursor_location: &Dimensions<D1, D2, D3>, cx: S::Context<'_>) -> Ordering {
 150        self.cmp(&cursor_location.0, cx)
 151    }
 152}
 153
 154/// Bias is used to settle ambiguities when determining positions in an ordered sequence.
 155///
 156/// The primary use case is for text, where Bias influences
 157/// which character an offset or anchor is associated with.
 158///
 159/// # Examples
 160/// Given the buffer `AˇBCD`:
 161/// - The offset of the cursor is 1
 162/// - [Bias::Left] would attach the cursor to the character `A`
 163/// - [Bias::Right] would attach the cursor to the character `B`
 164///
 165/// Given the buffer `A«BCˇ»D`:
 166/// - The offset of the cursor is 3, and the selection is from 1 to 3
 167/// - The left anchor of the selection has [Bias::Right], attaching it to the character `B`
 168/// - The right anchor of the selection has [Bias::Left], attaching it to the character `C`
 169///
 170/// Given the buffer `{ˇ<...>`, where `<...>` is a folded region:
 171/// - The display offset of the cursor is 1, but the offset in the buffer is determined by the bias
 172/// - [Bias::Left] would attach the cursor to the character `{`, with a buffer offset of 1
 173/// - [Bias::Right] would attach the cursor to the first character of the folded region,
 174///   and the buffer offset would be the offset of the first character of the folded region
 175#[derive(Copy, Clone, Eq, PartialEq, PartialOrd, Ord, Debug, Hash, Default)]
 176pub enum Bias {
 177    /// Attach to the character on the left
 178    #[default]
 179    Left,
 180    /// Attach to the character on the right
 181    Right,
 182}
 183
 184impl Bias {
 185    pub fn invert(self) -> Self {
 186        match self {
 187            Self::Left => Self::Right,
 188            Self::Right => Self::Left,
 189        }
 190    }
 191}
 192
 193/// A B+ tree in which each leaf node contains `Item`s of type `T` and a `Summary`s for each `Item`.
 194/// Each internal node contains a `Summary` of the items in its subtree.
 195///
 196/// The maximum number of items per node is `TREE_BASE * 2`.
 197///
 198/// Any [`Dimension`] supported by the [`Summary`] type can be used to seek to a specific location in the tree.
 199#[derive(Clone)]
 200pub struct SumTree<T: Item>(Arc<Node<T>>);
 201
 202impl<T> fmt::Debug for SumTree<T>
 203where
 204    T: fmt::Debug + Item,
 205    T::Summary: fmt::Debug,
 206{
 207    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
 208        f.debug_tuple("SumTree").field(&self.0).finish()
 209    }
 210}
 211
 212impl<T: Item> SumTree<T> {
 213    pub fn new(cx: <T::Summary as Summary>::Context<'_>) -> Self {
 214        SumTree(Arc::new(Node::Leaf {
 215            summary: <T::Summary as Summary>::zero(cx),
 216            items: ArrayVec::new(),
 217            item_summaries: ArrayVec::new(),
 218        }))
 219    }
 220
 221    /// Useful in cases where the item type has a non-trivial context type, but the zero value of the summary type doesn't depend on that context.
 222    pub fn from_summary(summary: T::Summary) -> Self {
 223        SumTree(Arc::new(Node::Leaf {
 224            summary,
 225            items: ArrayVec::new(),
 226            item_summaries: ArrayVec::new(),
 227        }))
 228    }
 229
 230    pub fn from_item(item: T, cx: <T::Summary as Summary>::Context<'_>) -> Self {
 231        let mut tree = Self::new(cx);
 232        tree.push(item, cx);
 233        tree
 234    }
 235
 236    pub fn from_iter<I: IntoIterator<Item = T>>(
 237        iter: I,
 238        cx: <T::Summary as Summary>::Context<'_>,
 239    ) -> Self {
 240        let mut nodes = Vec::new();
 241
 242        let mut iter = iter.into_iter().fuse().peekable();
 243        while iter.peek().is_some() {
 244            let items: ArrayVec<T, { 2 * TREE_BASE }> = iter.by_ref().take(2 * TREE_BASE).collect();
 245            let item_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }> =
 246                items.iter().map(|item| item.summary(cx)).collect();
 247
 248            let mut summary = item_summaries[0].clone();
 249            for item_summary in &item_summaries[1..] {
 250                <T::Summary as Summary>::add_summary(&mut summary, item_summary, cx);
 251            }
 252
 253            nodes.push(SumTree(Arc::new(Node::Leaf {
 254                summary,
 255                items,
 256                item_summaries,
 257            })));
 258        }
 259
 260        let mut parent_nodes = Vec::new();
 261        let mut height = 0;
 262        while nodes.len() > 1 {
 263            height += 1;
 264            let mut current_parent_node = None;
 265            for child_node in nodes.drain(..) {
 266                let parent_node = current_parent_node.get_or_insert_with(|| {
 267                    SumTree(Arc::new(Node::Internal {
 268                        summary: <T::Summary as Summary>::zero(cx),
 269                        height,
 270                        child_summaries: ArrayVec::new(),
 271                        child_trees: ArrayVec::new(),
 272                    }))
 273                });
 274                let Node::Internal {
 275                    summary,
 276                    child_summaries,
 277                    child_trees,
 278                    ..
 279                } = Arc::get_mut(&mut parent_node.0).unwrap()
 280                else {
 281                    unreachable!()
 282                };
 283                let child_summary = child_node.summary();
 284                <T::Summary as Summary>::add_summary(summary, child_summary, cx);
 285                child_summaries.push(child_summary.clone());
 286                child_trees.push(child_node);
 287
 288                if child_trees.len() == 2 * TREE_BASE {
 289                    parent_nodes.extend(current_parent_node.take());
 290                }
 291            }
 292            parent_nodes.extend(current_parent_node.take());
 293            mem::swap(&mut nodes, &mut parent_nodes);
 294        }
 295
 296        if nodes.is_empty() {
 297            Self::new(cx)
 298        } else {
 299            debug_assert_eq!(nodes.len(), 1);
 300            nodes.pop().unwrap()
 301        }
 302    }
 303
 304    pub fn from_par_iter<I, Iter>(iter: I, cx: <T::Summary as Summary>::Context<'_>) -> Self
 305    where
 306        I: IntoParallelIterator<Iter = Iter>,
 307        Iter: IndexedParallelIterator<Item = T>,
 308        T: Send + Sync,
 309        T::Summary: Send + Sync,
 310        for<'a> <T::Summary as Summary>::Context<'a>: Sync,
 311    {
 312        let mut nodes = iter
 313            .into_par_iter()
 314            .chunks(2 * TREE_BASE)
 315            .map(|items| {
 316                let items: ArrayVec<T, { 2 * TREE_BASE }> = items.into_iter().collect();
 317                let item_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }> =
 318                    items.iter().map(|item| item.summary(cx)).collect();
 319                let mut summary = item_summaries[0].clone();
 320                for item_summary in &item_summaries[1..] {
 321                    <T::Summary as Summary>::add_summary(&mut summary, item_summary, cx);
 322                }
 323                SumTree(Arc::new(Node::Leaf {
 324                    summary,
 325                    items,
 326                    item_summaries,
 327                }))
 328            })
 329            .collect::<Vec<_>>();
 330
 331        let mut height = 0;
 332        while nodes.len() > 1 {
 333            height += 1;
 334            nodes = nodes
 335                .into_par_iter()
 336                .chunks(2 * TREE_BASE)
 337                .map(|child_nodes| {
 338                    let child_trees: ArrayVec<SumTree<T>, { 2 * TREE_BASE }> =
 339                        child_nodes.into_iter().collect();
 340                    let child_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }> = child_trees
 341                        .iter()
 342                        .map(|child_tree| child_tree.summary().clone())
 343                        .collect();
 344                    let mut summary = child_summaries[0].clone();
 345                    for child_summary in &child_summaries[1..] {
 346                        <T::Summary as Summary>::add_summary(&mut summary, child_summary, cx);
 347                    }
 348                    SumTree(Arc::new(Node::Internal {
 349                        height,
 350                        summary,
 351                        child_summaries,
 352                        child_trees,
 353                    }))
 354                })
 355                .collect::<Vec<_>>();
 356        }
 357
 358        if nodes.is_empty() {
 359            Self::new(cx)
 360        } else {
 361            debug_assert_eq!(nodes.len(), 1);
 362            nodes.pop().unwrap()
 363        }
 364    }
 365
 366    #[allow(unused)]
 367    pub fn items<'a>(&'a self, cx: <T::Summary as Summary>::Context<'a>) -> Vec<T> {
 368        let mut items = Vec::new();
 369        let mut cursor = self.cursor::<()>(cx);
 370        cursor.next();
 371        while let Some(item) = cursor.item() {
 372            items.push(item.clone());
 373            cursor.next();
 374        }
 375        items
 376    }
 377
 378    pub fn iter(&self) -> Iter<'_, T> {
 379        Iter::new(self)
 380    }
 381
 382    /// A more efficient version of `Cursor::new()` + `Cursor::seek()` + `Cursor::item()`.
 383    ///
 384    /// Only returns the item that exactly has the target match.
 385    #[instrument(skip_all)]
 386    pub fn find_exact<'a, 'slf, D, Target>(
 387        &'slf self,
 388        cx: <T::Summary as Summary>::Context<'a>,
 389        target: &Target,
 390        bias: Bias,
 391    ) -> (D, D, Option<&'slf T>)
 392    where
 393        D: Dimension<'slf, T::Summary>,
 394        Target: SeekTarget<'slf, T::Summary, D>,
 395    {
 396        let tree_end = D::zero(cx).with_added_summary(self.summary(), cx);
 397        let comparison = target.cmp(&tree_end, cx);
 398        if comparison == Ordering::Greater || (comparison == Ordering::Equal && bias == Bias::Right)
 399        {
 400            return (tree_end.clone(), tree_end, None);
 401        }
 402
 403        let mut pos = D::zero(cx);
 404        return match Self::find_recurse::<_, _, true>(cx, target, bias, &mut pos, self) {
 405            Some((item, end)) => (pos, end, Some(item)),
 406            None => (pos.clone(), pos, None),
 407        };
 408    }
 409
 410    /// A more efficient version of `Cursor::new()` + `Cursor::seek()` + `Cursor::item()`
 411    #[instrument(skip_all)]
 412    pub fn find<'a, 'slf, D, Target>(
 413        &'slf self,
 414        cx: <T::Summary as Summary>::Context<'a>,
 415        target: &Target,
 416        bias: Bias,
 417    ) -> (D, D, Option<&'slf T>)
 418    where
 419        D: Dimension<'slf, T::Summary>,
 420        Target: SeekTarget<'slf, T::Summary, D>,
 421    {
 422        let tree_end = D::zero(cx).with_added_summary(self.summary(), cx);
 423        let comparison = target.cmp(&tree_end, cx);
 424        if comparison == Ordering::Greater || (comparison == Ordering::Equal && bias == Bias::Right)
 425        {
 426            return (tree_end.clone(), tree_end, None);
 427        }
 428
 429        let mut pos = D::zero(cx);
 430        return match Self::find_recurse::<_, _, false>(cx, target, bias, &mut pos, self) {
 431            Some((item, end)) => (pos, end, Some(item)),
 432            None => (pos.clone(), pos, None),
 433        };
 434    }
 435
 436    fn find_recurse<'tree, 'a, D, Target, const EXACT: bool>(
 437        cx: <T::Summary as Summary>::Context<'a>,
 438        target: &Target,
 439        bias: Bias,
 440        position: &mut D,
 441        this: &'tree SumTree<T>,
 442    ) -> Option<(&'tree T, D)>
 443    where
 444        D: Dimension<'tree, T::Summary>,
 445        Target: SeekTarget<'tree, T::Summary, D>,
 446    {
 447        match &*this.0 {
 448            Node::Internal {
 449                child_summaries,
 450                child_trees,
 451                ..
 452            } => {
 453                for (child_tree, child_summary) in child_trees.iter().zip(child_summaries) {
 454                    let child_end = position.clone().with_added_summary(child_summary, cx);
 455
 456                    let comparison = target.cmp(&child_end, cx);
 457                    let target_in_child = comparison == Ordering::Less
 458                        || (comparison == Ordering::Equal && bias == Bias::Left);
 459                    if target_in_child {
 460                        return Self::find_recurse::<D, Target, EXACT>(
 461                            cx, target, bias, position, child_tree,
 462                        );
 463                    }
 464                    *position = child_end;
 465                }
 466            }
 467            Node::Leaf {
 468                items,
 469                item_summaries,
 470                ..
 471            } => {
 472                for (item, item_summary) in items.iter().zip(item_summaries) {
 473                    let mut child_end = position.clone();
 474                    child_end.add_summary(item_summary, cx);
 475
 476                    let comparison = target.cmp(&child_end, cx);
 477                    let entry_found = if EXACT {
 478                        comparison == Ordering::Equal
 479                    } else {
 480                        comparison == Ordering::Less
 481                            || (comparison == Ordering::Equal && bias == Bias::Left)
 482                    };
 483                    if entry_found {
 484                        return Some((item, child_end));
 485                    }
 486
 487                    *position = child_end;
 488                }
 489            }
 490        }
 491        None
 492    }
 493
 494    /// A more efficient version of `Cursor::new()` + `Cursor::seek()` + `Cursor::item()`
 495    #[instrument(skip_all)]
 496    pub fn find_with_prev<'a, 'slf, D, Target>(
 497        &'slf self,
 498        cx: <T::Summary as Summary>::Context<'a>,
 499        target: &Target,
 500        bias: Bias,
 501    ) -> (D, D, Option<(Option<&'slf T>, &'slf T)>)
 502    where
 503        D: Dimension<'slf, T::Summary>,
 504        Target: SeekTarget<'slf, T::Summary, D>,
 505    {
 506        let tree_end = D::zero(cx).with_added_summary(self.summary(), cx);
 507        let comparison = target.cmp(&tree_end, cx);
 508        if comparison == Ordering::Greater || (comparison == Ordering::Equal && bias == Bias::Right)
 509        {
 510            return (tree_end.clone(), tree_end, None);
 511        }
 512
 513        let mut pos = D::zero(cx);
 514        return match Self::find_recurse_with_prev::<_, _, false>(
 515            cx, target, bias, &mut pos, self, None,
 516        ) {
 517            Some((prev, item, end)) => (pos, end, Some((prev, item))),
 518            None => (pos.clone(), pos, None),
 519        };
 520    }
 521
 522    fn find_recurse_with_prev<'tree, 'a, D, Target, const EXACT: bool>(
 523        cx: <T::Summary as Summary>::Context<'a>,
 524        target: &Target,
 525        bias: Bias,
 526        position: &mut D,
 527        this: &'tree SumTree<T>,
 528        prev: Option<&'tree T>,
 529    ) -> Option<(Option<&'tree T>, &'tree T, D)>
 530    where
 531        D: Dimension<'tree, T::Summary>,
 532        Target: SeekTarget<'tree, T::Summary, D>,
 533    {
 534        match &*this.0 {
 535            Node::Internal {
 536                child_summaries,
 537                child_trees,
 538                ..
 539            } => {
 540                let mut prev = prev;
 541                for (child_tree, child_summary) in child_trees.iter().zip(child_summaries) {
 542                    let child_end = position.clone().with_added_summary(child_summary, cx);
 543
 544                    let comparison = target.cmp(&child_end, cx);
 545                    let target_in_child = comparison == Ordering::Less
 546                        || (comparison == Ordering::Equal && bias == Bias::Left);
 547                    if target_in_child {
 548                        return Self::find_recurse_with_prev::<D, Target, EXACT>(
 549                            cx, target, bias, position, child_tree, prev,
 550                        );
 551                    }
 552                    prev = child_tree.last();
 553                    *position = child_end;
 554                }
 555            }
 556            Node::Leaf {
 557                items,
 558                item_summaries,
 559                ..
 560            } => {
 561                let mut prev = prev;
 562                for (item, item_summary) in items.iter().zip(item_summaries) {
 563                    let mut child_end = position.clone();
 564                    child_end.add_summary(item_summary, cx);
 565
 566                    let comparison = target.cmp(&child_end, cx);
 567                    let entry_found = if EXACT {
 568                        comparison == Ordering::Equal
 569                    } else {
 570                        comparison == Ordering::Less
 571                            || (comparison == Ordering::Equal && bias == Bias::Left)
 572                    };
 573                    if entry_found {
 574                        return Some((prev, item, child_end));
 575                    }
 576
 577                    prev = Some(item);
 578                    *position = child_end;
 579                }
 580            }
 581        }
 582        None
 583    }
 584
 585    pub fn cursor<'a, 'b, D>(
 586        &'a self,
 587        cx: <T::Summary as Summary>::Context<'b>,
 588    ) -> Cursor<'a, 'b, T, D>
 589    where
 590        D: Dimension<'a, T::Summary>,
 591    {
 592        Cursor::new(self, cx)
 593    }
 594
 595    /// Note: If the summary type requires a non `()` context, then the filter cursor
 596    /// that is returned cannot be used with Rust's iterators.
 597    pub fn filter<'a, 'b, F, U>(
 598        &'a self,
 599        cx: <T::Summary as Summary>::Context<'b>,
 600        filter_node: F,
 601    ) -> FilterCursor<'a, 'b, F, T, U>
 602    where
 603        F: FnMut(&T::Summary) -> bool,
 604        U: Dimension<'a, T::Summary>,
 605    {
 606        FilterCursor::new(self, cx, filter_node)
 607    }
 608
 609    #[allow(dead_code)]
 610    pub fn first(&self) -> Option<&T> {
 611        self.leftmost_leaf().0.items().first()
 612    }
 613
 614    pub fn last(&self) -> Option<&T> {
 615        self.rightmost_leaf().0.items().last()
 616    }
 617
 618    pub fn update_last(
 619        &mut self,
 620        f: impl FnOnce(&mut T),
 621        cx: <T::Summary as Summary>::Context<'_>,
 622    ) {
 623        self.update_last_recursive(f, cx);
 624    }
 625
 626    fn update_last_recursive(
 627        &mut self,
 628        f: impl FnOnce(&mut T),
 629        cx: <T::Summary as Summary>::Context<'_>,
 630    ) -> Option<T::Summary> {
 631        match Arc::make_mut(&mut self.0) {
 632            Node::Internal {
 633                summary,
 634                child_summaries,
 635                child_trees,
 636                ..
 637            } => {
 638                let last_summary = child_summaries.last_mut().unwrap();
 639                let last_child = child_trees.last_mut().unwrap();
 640                *last_summary = last_child.update_last_recursive(f, cx).unwrap();
 641                *summary = sum(child_summaries.iter(), cx);
 642                Some(summary.clone())
 643            }
 644            Node::Leaf {
 645                summary,
 646                items,
 647                item_summaries,
 648            } => {
 649                if let Some((item, item_summary)) = items.last_mut().zip(item_summaries.last_mut())
 650                {
 651                    (f)(item);
 652                    *item_summary = item.summary(cx);
 653                    *summary = sum(item_summaries.iter(), cx);
 654                    Some(summary.clone())
 655                } else {
 656                    None
 657                }
 658            }
 659        }
 660    }
 661
 662    pub fn extent<'a, D: Dimension<'a, T::Summary>>(
 663        &'a self,
 664        cx: <T::Summary as Summary>::Context<'_>,
 665    ) -> D {
 666        let mut extent = D::zero(cx);
 667        match self.0.as_ref() {
 668            Node::Internal { summary, .. } | Node::Leaf { summary, .. } => {
 669                extent.add_summary(summary, cx);
 670            }
 671        }
 672        extent
 673    }
 674
 675    pub fn summary(&self) -> &T::Summary {
 676        match self.0.as_ref() {
 677            Node::Internal { summary, .. } => summary,
 678            Node::Leaf { summary, .. } => summary,
 679        }
 680    }
 681
 682    pub fn is_empty(&self) -> bool {
 683        match self.0.as_ref() {
 684            Node::Internal { .. } => false,
 685            Node::Leaf { items, .. } => items.is_empty(),
 686        }
 687    }
 688
 689    pub fn extend<I>(&mut self, iter: I, cx: <T::Summary as Summary>::Context<'_>)
 690    where
 691        I: IntoIterator<Item = T>,
 692    {
 693        self.append(Self::from_iter(iter, cx), cx);
 694    }
 695
 696    pub fn par_extend<I, Iter>(&mut self, iter: I, cx: <T::Summary as Summary>::Context<'_>)
 697    where
 698        I: IntoParallelIterator<Iter = Iter>,
 699        Iter: IndexedParallelIterator<Item = T>,
 700        T: Send + Sync,
 701        T::Summary: Send + Sync,
 702        for<'a> <T::Summary as Summary>::Context<'a>: Sync,
 703    {
 704        self.append(Self::from_par_iter(iter, cx), cx);
 705    }
 706
 707    pub fn push(&mut self, item: T, cx: <T::Summary as Summary>::Context<'_>) {
 708        let summary = item.summary(cx);
 709        self.append(
 710            SumTree(Arc::new(Node::Leaf {
 711                summary: summary.clone(),
 712                items: ArrayVec::from_iter(Some(item)),
 713                item_summaries: ArrayVec::from_iter(Some(summary)),
 714            })),
 715            cx,
 716        );
 717    }
 718
 719    pub fn append(&mut self, mut other: Self, cx: <T::Summary as Summary>::Context<'_>) {
 720        if self.is_empty() {
 721            *self = other;
 722        } else if !other.0.is_leaf() || !other.0.items().is_empty() {
 723            if self.0.height() < other.0.height() {
 724                if let Some(tree) = Self::append_large(self.clone(), &mut other, cx) {
 725                    *self = Self::from_child_trees(tree, other, cx);
 726                } else {
 727                    *self = other;
 728                }
 729            } else if let Some(split_tree) = self.push_tree_recursive(other, cx) {
 730                *self = Self::from_child_trees(self.clone(), split_tree, cx);
 731            }
 732        }
 733    }
 734
 735    fn push_tree_recursive(
 736        &mut self,
 737        other: SumTree<T>,
 738        cx: <T::Summary as Summary>::Context<'_>,
 739    ) -> Option<SumTree<T>> {
 740        match Arc::make_mut(&mut self.0) {
 741            Node::Internal {
 742                height,
 743                summary,
 744                child_summaries,
 745                child_trees,
 746                ..
 747            } => {
 748                let other_node = other.0.clone();
 749                <T::Summary as Summary>::add_summary(summary, other_node.summary(), cx);
 750
 751                let height_delta = *height - other_node.height();
 752                let mut summaries_to_append = ArrayVec::<T::Summary, { 2 * TREE_BASE }>::new();
 753                let mut trees_to_append = ArrayVec::<SumTree<T>, { 2 * TREE_BASE }>::new();
 754                if height_delta == 0 {
 755                    summaries_to_append.extend(other_node.child_summaries().iter().cloned());
 756                    trees_to_append.extend(other_node.child_trees().iter().cloned());
 757                } else if height_delta == 1 && !other_node.is_underflowing() {
 758                    summaries_to_append.push(other_node.summary().clone());
 759                    trees_to_append.push(other)
 760                } else {
 761                    let tree_to_append = child_trees
 762                        .last_mut()
 763                        .unwrap()
 764                        .push_tree_recursive(other, cx);
 765                    *child_summaries.last_mut().unwrap() =
 766                        child_trees.last().unwrap().0.summary().clone();
 767
 768                    if let Some(split_tree) = tree_to_append {
 769                        summaries_to_append.push(split_tree.0.summary().clone());
 770                        trees_to_append.push(split_tree);
 771                    }
 772                }
 773
 774                let child_count = child_trees.len() + trees_to_append.len();
 775                if child_count > 2 * TREE_BASE {
 776                    let left_summaries: ArrayVec<_, { 2 * TREE_BASE }>;
 777                    let right_summaries: ArrayVec<_, { 2 * TREE_BASE }>;
 778                    let left_trees;
 779                    let right_trees;
 780
 781                    let midpoint = (child_count + child_count % 2) / 2;
 782                    {
 783                        let mut all_summaries = child_summaries
 784                            .iter()
 785                            .chain(summaries_to_append.iter())
 786                            .cloned();
 787                        left_summaries = all_summaries.by_ref().take(midpoint).collect();
 788                        right_summaries = all_summaries.collect();
 789                        let mut all_trees =
 790                            child_trees.iter().chain(trees_to_append.iter()).cloned();
 791                        left_trees = all_trees.by_ref().take(midpoint).collect();
 792                        right_trees = all_trees.collect();
 793                    }
 794                    *summary = sum(left_summaries.iter(), cx);
 795                    *child_summaries = left_summaries;
 796                    *child_trees = left_trees;
 797
 798                    Some(SumTree(Arc::new(Node::Internal {
 799                        height: *height,
 800                        summary: sum(right_summaries.iter(), cx),
 801                        child_summaries: right_summaries,
 802                        child_trees: right_trees,
 803                    })))
 804                } else {
 805                    child_summaries.extend(summaries_to_append);
 806                    child_trees.extend(trees_to_append);
 807                    None
 808                }
 809            }
 810            Node::Leaf {
 811                summary,
 812                items,
 813                item_summaries,
 814            } => {
 815                let other_node = other.0;
 816
 817                let child_count = items.len() + other_node.items().len();
 818                if child_count > 2 * TREE_BASE {
 819                    let left_items;
 820                    let right_items;
 821                    let left_summaries;
 822                    let right_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }>;
 823
 824                    let midpoint = (child_count + child_count % 2) / 2;
 825                    {
 826                        let mut all_items = items.iter().chain(other_node.items().iter()).cloned();
 827                        left_items = all_items.by_ref().take(midpoint).collect();
 828                        right_items = all_items.collect();
 829
 830                        let mut all_summaries = item_summaries
 831                            .iter()
 832                            .chain(other_node.child_summaries())
 833                            .cloned();
 834                        left_summaries = all_summaries.by_ref().take(midpoint).collect();
 835                        right_summaries = all_summaries.collect();
 836                    }
 837                    *items = left_items;
 838                    *item_summaries = left_summaries;
 839                    *summary = sum(item_summaries.iter(), cx);
 840                    Some(SumTree(Arc::new(Node::Leaf {
 841                        items: right_items,
 842                        summary: sum(right_summaries.iter(), cx),
 843                        item_summaries: right_summaries,
 844                    })))
 845                } else {
 846                    <T::Summary as Summary>::add_summary(summary, other_node.summary(), cx);
 847                    items.extend(other_node.items().iter().cloned());
 848                    item_summaries.extend(other_node.child_summaries().iter().cloned());
 849                    None
 850                }
 851            }
 852        }
 853    }
 854
 855    // appends the `large` tree to a `small` tree, assumes small.height() <= large.height()
 856    fn append_large(
 857        small: Self,
 858        large: &mut Self,
 859        cx: <T::Summary as Summary>::Context<'_>,
 860    ) -> Option<Self> {
 861        if small.0.height() == large.0.height() {
 862            if !small.0.is_underflowing() {
 863                Some(small)
 864            } else {
 865                Self::merge_into_right(small, large, cx)
 866            }
 867        } else {
 868            debug_assert!(small.0.height() < large.0.height());
 869            let Node::Internal {
 870                height,
 871                summary,
 872                child_summaries,
 873                child_trees,
 874            } = Arc::make_mut(&mut large.0)
 875            else {
 876                unreachable!();
 877            };
 878            let mut full_summary = small.summary().clone();
 879            Summary::add_summary(&mut full_summary, summary, cx);
 880            *summary = full_summary;
 881
 882            let first = child_trees.first_mut().unwrap();
 883            let res = Self::append_large(small, first, cx);
 884            *child_summaries.first_mut().unwrap() = first.summary().clone();
 885            if let Some(tree) = res {
 886                if child_trees.len() < 2 * TREE_BASE {
 887                    child_summaries.insert(0, tree.summary().clone());
 888                    child_trees.insert(0, tree);
 889                    None
 890                } else {
 891                    let new_child_summaries = {
 892                        let mut res = ArrayVec::from_iter([tree.summary().clone()]);
 893                        res.extend(child_summaries.drain(..TREE_BASE));
 894                        res
 895                    };
 896                    let tree = SumTree(Arc::new(Node::Internal {
 897                        height: *height,
 898                        summary: sum(new_child_summaries.iter(), cx),
 899                        child_summaries: new_child_summaries,
 900                        child_trees: {
 901                            let mut res = ArrayVec::from_iter([tree]);
 902                            res.extend(child_trees.drain(..TREE_BASE));
 903                            res
 904                        },
 905                    }));
 906
 907                    *summary = sum(child_summaries.iter(), cx);
 908                    Some(tree)
 909                }
 910            } else {
 911                None
 912            }
 913        }
 914    }
 915
 916    // Merge two nodes into `large`.
 917    //
 918    // `large` will contain the contents of `small` followed by its own data.
 919    // If the combined data exceed the node capacity, returns a new node that
 920    // holds the first half of the merged items and `large` is left with the
 921    // second half
 922    //
 923    // The nodes must be on the same height
 924    // It only makes sense to call this when `small` is underflowing
 925    fn merge_into_right(
 926        small: Self,
 927        large: &mut Self,
 928        cx: <<T as Item>::Summary as Summary>::Context<'_>,
 929    ) -> Option<SumTree<T>> {
 930        debug_assert_eq!(small.0.height(), large.0.height());
 931        match (small.0.as_ref(), Arc::make_mut(&mut large.0)) {
 932            (
 933                Node::Internal {
 934                    summary: small_summary,
 935                    child_summaries: small_child_summaries,
 936                    child_trees: small_child_trees,
 937                    ..
 938                },
 939                Node::Internal {
 940                    summary,
 941                    child_summaries,
 942                    child_trees,
 943                    height,
 944                },
 945            ) => {
 946                let total_child_count = child_trees.len() + small_child_trees.len();
 947                if total_child_count <= 2 * TREE_BASE {
 948                    let mut all_trees = small_child_trees.clone();
 949                    all_trees.extend(child_trees.drain(..));
 950                    *child_trees = all_trees;
 951
 952                    let mut all_summaries = small_child_summaries.clone();
 953                    all_summaries.extend(child_summaries.drain(..));
 954                    *child_summaries = all_summaries;
 955
 956                    let mut full_summary = small_summary.clone();
 957                    Summary::add_summary(&mut full_summary, summary, cx);
 958                    *summary = full_summary;
 959                    None
 960                } else {
 961                    let midpoint = total_child_count.div_ceil(2);
 962                    let mut all_trees = small_child_trees.iter().chain(child_trees.iter()).cloned();
 963                    let left_trees = all_trees.by_ref().take(midpoint).collect();
 964                    *child_trees = all_trees.collect();
 965
 966                    let mut all_summaries = small_child_summaries
 967                        .iter()
 968                        .chain(child_summaries.iter())
 969                        .cloned();
 970                    let left_summaries: ArrayVec<_, { 2 * TREE_BASE }> =
 971                        all_summaries.by_ref().take(midpoint).collect();
 972                    *child_summaries = all_summaries.collect();
 973
 974                    *summary = sum(child_summaries.iter(), cx);
 975                    Some(SumTree(Arc::new(Node::Internal {
 976                        height: *height,
 977                        summary: sum(left_summaries.iter(), cx),
 978                        child_summaries: left_summaries,
 979                        child_trees: left_trees,
 980                    })))
 981                }
 982            }
 983            (
 984                Node::Leaf {
 985                    summary: small_summary,
 986                    items: small_items,
 987                    item_summaries: small_item_summaries,
 988                },
 989                Node::Leaf {
 990                    summary,
 991                    items,
 992                    item_summaries,
 993                },
 994            ) => {
 995                let total_child_count = small_items.len() + items.len();
 996                if total_child_count <= 2 * TREE_BASE {
 997                    let mut all_items = small_items.clone();
 998                    all_items.extend(items.drain(..));
 999                    *items = all_items;
1000
1001                    let mut all_summaries = small_item_summaries.clone();
1002                    all_summaries.extend(item_summaries.drain(..));
1003                    *item_summaries = all_summaries;
1004
1005                    let mut full_summary = small_summary.clone();
1006                    Summary::add_summary(&mut full_summary, summary, cx);
1007                    *summary = full_summary;
1008                    None
1009                } else {
1010                    let midpoint = total_child_count.div_ceil(2);
1011                    let mut all_items = small_items.iter().chain(items.iter()).cloned();
1012                    let left_items = all_items.by_ref().take(midpoint).collect();
1013                    *items = all_items.collect();
1014
1015                    let mut all_summaries = small_item_summaries
1016                        .iter()
1017                        .chain(item_summaries.iter())
1018                        .cloned();
1019                    let left_summaries: ArrayVec<_, { 2 * TREE_BASE }> =
1020                        all_summaries.by_ref().take(midpoint).collect();
1021                    *item_summaries = all_summaries.collect();
1022
1023                    *summary = sum(item_summaries.iter(), cx);
1024                    Some(SumTree(Arc::new(Node::Leaf {
1025                        items: left_items,
1026                        summary: sum(left_summaries.iter(), cx),
1027                        item_summaries: left_summaries,
1028                    })))
1029                }
1030            }
1031            _ => unreachable!(),
1032        }
1033    }
1034
1035    fn from_child_trees(
1036        left: SumTree<T>,
1037        right: SumTree<T>,
1038        cx: <T::Summary as Summary>::Context<'_>,
1039    ) -> Self {
1040        let height = left.0.height() + 1;
1041        let mut child_summaries = ArrayVec::new();
1042        child_summaries.push(left.0.summary().clone());
1043        child_summaries.push(right.0.summary().clone());
1044        let mut child_trees = ArrayVec::new();
1045        child_trees.push(left);
1046        child_trees.push(right);
1047        SumTree(Arc::new(Node::Internal {
1048            height,
1049            summary: sum(child_summaries.iter(), cx),
1050            child_summaries,
1051            child_trees,
1052        }))
1053    }
1054
1055    fn leftmost_leaf(&self) -> &Self {
1056        match *self.0 {
1057            Node::Leaf { .. } => self,
1058            Node::Internal {
1059                ref child_trees, ..
1060            } => child_trees.first().unwrap().leftmost_leaf(),
1061        }
1062    }
1063
1064    fn rightmost_leaf(&self) -> &Self {
1065        match *self.0 {
1066            Node::Leaf { .. } => self,
1067            Node::Internal {
1068                ref child_trees, ..
1069            } => child_trees.last().unwrap().rightmost_leaf(),
1070        }
1071    }
1072}
1073
1074impl<T: Item + PartialEq> PartialEq for SumTree<T> {
1075    fn eq(&self, other: &Self) -> bool {
1076        self.iter().eq(other.iter())
1077    }
1078}
1079
1080impl<T: Item + Eq> Eq for SumTree<T> {}
1081
1082impl<T: KeyedItem> SumTree<T> {
1083    pub fn insert_or_replace<'a, 'b>(
1084        &'a mut self,
1085        item: T,
1086        cx: <T::Summary as Summary>::Context<'b>,
1087    ) -> Option<T> {
1088        let mut replaced = None;
1089        {
1090            let mut cursor = self.cursor::<T::Key>(cx);
1091            let mut new_tree = cursor.slice(&item.key(), Bias::Left);
1092            if let Some(cursor_item) = cursor.item()
1093                && cursor_item.key() == item.key()
1094            {
1095                replaced = Some(cursor_item.clone());
1096                cursor.next();
1097            }
1098            new_tree.push(item, cx);
1099            new_tree.append(cursor.suffix(), cx);
1100            drop(cursor);
1101            *self = new_tree
1102        };
1103        replaced
1104    }
1105
1106    pub fn remove(&mut self, key: &T::Key, cx: <T::Summary as Summary>::Context<'_>) -> Option<T> {
1107        let mut removed = None;
1108        *self = {
1109            let mut cursor = self.cursor::<T::Key>(cx);
1110            let mut new_tree = cursor.slice(key, Bias::Left);
1111            if let Some(item) = cursor.item()
1112                && item.key() == *key
1113            {
1114                removed = Some(item.clone());
1115                cursor.next();
1116            }
1117            new_tree.append(cursor.suffix(), cx);
1118            new_tree
1119        };
1120        removed
1121    }
1122
1123    pub fn edit(
1124        &mut self,
1125        mut edits: Vec<Edit<T>>,
1126        cx: <T::Summary as Summary>::Context<'_>,
1127    ) -> Vec<T> {
1128        if edits.is_empty() {
1129            return Vec::new();
1130        }
1131
1132        let mut removed = Vec::new();
1133        edits.sort_unstable_by_key(|item| item.key());
1134
1135        *self = {
1136            let mut cursor = self.cursor::<T::Key>(cx);
1137            let mut new_tree = SumTree::new(cx);
1138            let mut buffered_items = Vec::new();
1139
1140            cursor.seek(&T::Key::zero(cx), Bias::Left);
1141            for edit in edits {
1142                let new_key = edit.key();
1143                let mut old_item = cursor.item();
1144
1145                if old_item
1146                    .as_ref()
1147                    .is_some_and(|old_item| old_item.key() < new_key)
1148                {
1149                    new_tree.extend(buffered_items.drain(..), cx);
1150                    let slice = cursor.slice(&new_key, Bias::Left);
1151                    new_tree.append(slice, cx);
1152                    old_item = cursor.item();
1153                }
1154
1155                if let Some(old_item) = old_item
1156                    && old_item.key() == new_key
1157                {
1158                    removed.push(old_item.clone());
1159                    cursor.next();
1160                }
1161
1162                match edit {
1163                    Edit::Insert(item) => {
1164                        buffered_items.push(item);
1165                    }
1166                    Edit::Remove(_) => {}
1167                }
1168            }
1169
1170            new_tree.extend(buffered_items, cx);
1171            new_tree.append(cursor.suffix(), cx);
1172            new_tree
1173        };
1174
1175        removed
1176    }
1177
1178    pub fn get<'a>(
1179        &'a self,
1180        key: &T::Key,
1181        cx: <T::Summary as Summary>::Context<'a>,
1182    ) -> Option<&'a T> {
1183        if let (_, _, Some(item)) = self.find_exact::<T::Key, _>(cx, key, Bias::Left) {
1184            Some(item)
1185        } else {
1186            None
1187        }
1188    }
1189}
1190
1191impl<T, S> Default for SumTree<T>
1192where
1193    T: Item<Summary = S>,
1194    S: for<'a> Summary<Context<'a> = ()>,
1195{
1196    fn default() -> Self {
1197        Self::new(())
1198    }
1199}
1200
1201#[derive(Clone)]
1202pub enum Node<T: Item> {
1203    Internal {
1204        height: u8,
1205        summary: T::Summary,
1206        child_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }>,
1207        child_trees: ArrayVec<SumTree<T>, { 2 * TREE_BASE }>,
1208    },
1209    Leaf {
1210        summary: T::Summary,
1211        items: ArrayVec<T, { 2 * TREE_BASE }>,
1212        item_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }>,
1213    },
1214}
1215
1216impl<T> fmt::Debug for Node<T>
1217where
1218    T: Item + fmt::Debug,
1219    T::Summary: fmt::Debug,
1220{
1221    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1222        match self {
1223            Node::Internal {
1224                height,
1225                summary,
1226                child_summaries,
1227                child_trees,
1228            } => f
1229                .debug_struct("Internal")
1230                .field("height", height)
1231                .field("summary", summary)
1232                .field("child_summaries", child_summaries)
1233                .field("child_trees", child_trees)
1234                .finish(),
1235            Node::Leaf {
1236                summary,
1237                items,
1238                item_summaries,
1239            } => f
1240                .debug_struct("Leaf")
1241                .field("summary", summary)
1242                .field("items", items)
1243                .field("item_summaries", item_summaries)
1244                .finish(),
1245        }
1246    }
1247}
1248
1249impl<T: Item> Node<T> {
1250    fn is_leaf(&self) -> bool {
1251        matches!(self, Node::Leaf { .. })
1252    }
1253
1254    fn height(&self) -> u8 {
1255        match self {
1256            Node::Internal { height, .. } => *height,
1257            Node::Leaf { .. } => 0,
1258        }
1259    }
1260
1261    fn summary(&self) -> &T::Summary {
1262        match self {
1263            Node::Internal { summary, .. } => summary,
1264            Node::Leaf { summary, .. } => summary,
1265        }
1266    }
1267
1268    fn child_summaries(&self) -> &[T::Summary] {
1269        match self {
1270            Node::Internal {
1271                child_summaries, ..
1272            } => child_summaries.as_slice(),
1273            Node::Leaf { item_summaries, .. } => item_summaries.as_slice(),
1274        }
1275    }
1276
1277    fn child_trees(&self) -> &ArrayVec<SumTree<T>, { 2 * TREE_BASE }> {
1278        match self {
1279            Node::Internal { child_trees, .. } => child_trees,
1280            Node::Leaf { .. } => panic!("Leaf nodes have no child trees"),
1281        }
1282    }
1283
1284    fn items(&self) -> &ArrayVec<T, { 2 * TREE_BASE }> {
1285        match self {
1286            Node::Leaf { items, .. } => items,
1287            Node::Internal { .. } => panic!("Internal nodes have no items"),
1288        }
1289    }
1290
1291    fn is_underflowing(&self) -> bool {
1292        match self {
1293            Node::Internal { child_trees, .. } => child_trees.len() < TREE_BASE,
1294            Node::Leaf { items, .. } => items.len() < TREE_BASE,
1295        }
1296    }
1297}
1298
1299#[derive(Debug)]
1300pub enum Edit<T: KeyedItem> {
1301    Insert(T),
1302    Remove(T::Key),
1303}
1304
1305impl<T: KeyedItem> Edit<T> {
1306    fn key(&self) -> T::Key {
1307        match self {
1308            Edit::Insert(item) => item.key(),
1309            Edit::Remove(key) => key.clone(),
1310        }
1311    }
1312}
1313
1314fn sum<'a, T, I>(iter: I, cx: T::Context<'_>) -> T
1315where
1316    T: 'a + Summary,
1317    I: Iterator<Item = &'a T>,
1318{
1319    let mut sum = T::zero(cx);
1320    for value in iter {
1321        sum.add_summary(value, cx);
1322    }
1323    sum
1324}
1325
1326#[cfg(test)]
1327mod tests {
1328    use super::*;
1329    use rand::{distr::StandardUniform, prelude::*};
1330    use std::cmp;
1331
1332    #[ctor::ctor]
1333    fn init_logger() {
1334        zlog::init_test();
1335    }
1336
1337    #[test]
1338    fn test_extend_and_push_tree() {
1339        let mut tree1 = SumTree::default();
1340        tree1.extend(0..20, ());
1341
1342        let mut tree2 = SumTree::default();
1343        tree2.extend(50..100, ());
1344
1345        tree1.append(tree2, ());
1346        assert_eq!(tree1.items(()), (0..20).chain(50..100).collect::<Vec<u8>>());
1347    }
1348
1349    #[test]
1350    fn test_random() {
1351        let mut starting_seed = 0;
1352        if let Ok(value) = std::env::var("SEED") {
1353            starting_seed = value.parse().expect("invalid SEED variable");
1354        }
1355        let mut num_iterations = 100;
1356        if let Ok(value) = std::env::var("ITERATIONS") {
1357            num_iterations = value.parse().expect("invalid ITERATIONS variable");
1358        }
1359        let num_operations = std::env::var("OPERATIONS")
1360            .map_or(5, |o| o.parse().expect("invalid OPERATIONS variable"));
1361
1362        for seed in starting_seed..(starting_seed + num_iterations) {
1363            eprintln!("seed = {}", seed);
1364            let mut rng = StdRng::seed_from_u64(seed);
1365
1366            let rng = &mut rng;
1367            let mut tree = SumTree::<u8>::default();
1368            let count = rng.random_range(0..10);
1369            if rng.random() {
1370                tree.extend(rng.sample_iter(StandardUniform).take(count), ());
1371            } else {
1372                let items = rng
1373                    .sample_iter(StandardUniform)
1374                    .take(count)
1375                    .collect::<Vec<_>>();
1376                tree.par_extend(items, ());
1377            }
1378
1379            for _ in 0..num_operations {
1380                let splice_end = rng.random_range(0..tree.extent::<Count>(()).0 + 1);
1381                let splice_start = rng.random_range(0..splice_end + 1);
1382                let count = rng.random_range(0..10);
1383                let tree_end = tree.extent::<Count>(());
1384                let new_items = rng
1385                    .sample_iter(StandardUniform)
1386                    .take(count)
1387                    .collect::<Vec<u8>>();
1388
1389                let mut reference_items = tree.items(());
1390                reference_items.splice(splice_start..splice_end, new_items.clone());
1391
1392                tree = {
1393                    let mut cursor = tree.cursor::<Count>(());
1394                    let mut new_tree = cursor.slice(&Count(splice_start), Bias::Right);
1395                    if rng.random() {
1396                        new_tree.extend(new_items, ());
1397                    } else {
1398                        new_tree.par_extend(new_items, ());
1399                    }
1400                    cursor.seek(&Count(splice_end), Bias::Right);
1401                    new_tree.append(cursor.slice(&tree_end, Bias::Right), ());
1402                    new_tree
1403                };
1404
1405                assert_eq!(tree.items(()), reference_items);
1406                assert_eq!(
1407                    tree.iter().collect::<Vec<_>>(),
1408                    tree.cursor::<()>(()).collect::<Vec<_>>()
1409                );
1410
1411                log::info!("tree items: {:?}", tree.items(()));
1412
1413                let mut filter_cursor =
1414                    tree.filter::<_, Count>((), |summary| summary.contains_even);
1415                let expected_filtered_items = tree
1416                    .items(())
1417                    .into_iter()
1418                    .enumerate()
1419                    .filter(|(_, item)| (item & 1) == 0)
1420                    .collect::<Vec<_>>();
1421
1422                let mut item_ix = if rng.random() {
1423                    filter_cursor.next();
1424                    0
1425                } else {
1426                    filter_cursor.prev();
1427                    expected_filtered_items.len().saturating_sub(1)
1428                };
1429                while item_ix < expected_filtered_items.len() {
1430                    log::info!("filter_cursor, item_ix: {}", item_ix);
1431                    let actual_item = filter_cursor.item().unwrap();
1432                    let (reference_index, reference_item) = expected_filtered_items[item_ix];
1433                    assert_eq!(actual_item, &reference_item);
1434                    assert_eq!(filter_cursor.start().0, reference_index);
1435                    log::info!("next");
1436                    filter_cursor.next();
1437                    item_ix += 1;
1438
1439                    while item_ix > 0 && rng.random_bool(0.2) {
1440                        log::info!("prev");
1441                        filter_cursor.prev();
1442                        item_ix -= 1;
1443
1444                        if item_ix == 0 && rng.random_bool(0.2) {
1445                            filter_cursor.prev();
1446                            assert_eq!(filter_cursor.item(), None);
1447                            assert_eq!(filter_cursor.start().0, 0);
1448                            filter_cursor.next();
1449                        }
1450                    }
1451                }
1452                assert_eq!(filter_cursor.item(), None);
1453
1454                let mut before_start = false;
1455                let mut cursor = tree.cursor::<Count>(());
1456                let start_pos = rng.random_range(0..=reference_items.len());
1457                cursor.seek(&Count(start_pos), Bias::Right);
1458                let mut pos = rng.random_range(start_pos..=reference_items.len());
1459                cursor.seek_forward(&Count(pos), Bias::Right);
1460
1461                for i in 0..10 {
1462                    assert_eq!(cursor.start().0, pos);
1463
1464                    if pos > 0 {
1465                        assert_eq!(cursor.prev_item().unwrap(), &reference_items[pos - 1]);
1466                    } else {
1467                        assert_eq!(cursor.prev_item(), None);
1468                    }
1469
1470                    if pos < reference_items.len() && !before_start {
1471                        assert_eq!(cursor.item().unwrap(), &reference_items[pos]);
1472                    } else {
1473                        assert_eq!(cursor.item(), None);
1474                    }
1475
1476                    if before_start {
1477                        assert_eq!(cursor.next_item(), reference_items.first());
1478                    } else if pos + 1 < reference_items.len() {
1479                        assert_eq!(cursor.next_item().unwrap(), &reference_items[pos + 1]);
1480                    } else {
1481                        assert_eq!(cursor.next_item(), None);
1482                    }
1483
1484                    if i < 5 {
1485                        cursor.next();
1486                        if pos < reference_items.len() {
1487                            pos += 1;
1488                            before_start = false;
1489                        }
1490                    } else {
1491                        cursor.prev();
1492                        if pos == 0 {
1493                            before_start = true;
1494                        }
1495                        pos = pos.saturating_sub(1);
1496                    }
1497                }
1498            }
1499
1500            for _ in 0..10 {
1501                let end = rng.random_range(0..tree.extent::<Count>(()).0 + 1);
1502                let start = rng.random_range(0..end + 1);
1503                let start_bias = if rng.random() {
1504                    Bias::Left
1505                } else {
1506                    Bias::Right
1507                };
1508                let end_bias = if rng.random() {
1509                    Bias::Left
1510                } else {
1511                    Bias::Right
1512                };
1513
1514                let mut cursor = tree.cursor::<Count>(());
1515                cursor.seek(&Count(start), start_bias);
1516                let slice = cursor.slice(&Count(end), end_bias);
1517
1518                cursor.seek(&Count(start), start_bias);
1519                let summary = cursor.summary::<_, Sum>(&Count(end), end_bias);
1520
1521                assert_eq!(summary.0, slice.summary().sum);
1522            }
1523        }
1524    }
1525
1526    #[test]
1527    fn test_cursor() {
1528        // Empty tree
1529        let tree = SumTree::<u8>::default();
1530        let mut cursor = tree.cursor::<IntegersSummary>(());
1531        assert_eq!(
1532            cursor.slice(&Count(0), Bias::Right).items(()),
1533            Vec::<u8>::new()
1534        );
1535        assert_eq!(cursor.item(), None);
1536        assert_eq!(cursor.prev_item(), None);
1537        assert_eq!(cursor.next_item(), None);
1538        assert_eq!(cursor.start().sum, 0);
1539        cursor.prev();
1540        assert_eq!(cursor.item(), None);
1541        assert_eq!(cursor.prev_item(), None);
1542        assert_eq!(cursor.next_item(), None);
1543        assert_eq!(cursor.start().sum, 0);
1544        cursor.next();
1545        assert_eq!(cursor.item(), None);
1546        assert_eq!(cursor.prev_item(), None);
1547        assert_eq!(cursor.next_item(), None);
1548        assert_eq!(cursor.start().sum, 0);
1549
1550        // Single-element tree
1551        let mut tree = SumTree::<u8>::default();
1552        tree.extend(vec![1], ());
1553        let mut cursor = tree.cursor::<IntegersSummary>(());
1554        assert_eq!(
1555            cursor.slice(&Count(0), Bias::Right).items(()),
1556            Vec::<u8>::new()
1557        );
1558        assert_eq!(cursor.item(), Some(&1));
1559        assert_eq!(cursor.prev_item(), None);
1560        assert_eq!(cursor.next_item(), None);
1561        assert_eq!(cursor.start().sum, 0);
1562
1563        cursor.next();
1564        assert_eq!(cursor.item(), None);
1565        assert_eq!(cursor.prev_item(), Some(&1));
1566        assert_eq!(cursor.next_item(), None);
1567        assert_eq!(cursor.start().sum, 1);
1568
1569        cursor.prev();
1570        assert_eq!(cursor.item(), Some(&1));
1571        assert_eq!(cursor.prev_item(), None);
1572        assert_eq!(cursor.next_item(), None);
1573        assert_eq!(cursor.start().sum, 0);
1574
1575        let mut cursor = tree.cursor::<IntegersSummary>(());
1576        assert_eq!(cursor.slice(&Count(1), Bias::Right).items(()), [1]);
1577        assert_eq!(cursor.item(), None);
1578        assert_eq!(cursor.prev_item(), Some(&1));
1579        assert_eq!(cursor.next_item(), None);
1580        assert_eq!(cursor.start().sum, 1);
1581
1582        cursor.seek(&Count(0), Bias::Right);
1583        assert_eq!(
1584            cursor
1585                .slice(&tree.extent::<Count>(()), Bias::Right)
1586                .items(()),
1587            [1]
1588        );
1589        assert_eq!(cursor.item(), None);
1590        assert_eq!(cursor.prev_item(), Some(&1));
1591        assert_eq!(cursor.next_item(), None);
1592        assert_eq!(cursor.start().sum, 1);
1593
1594        // Multiple-element tree
1595        let mut tree = SumTree::default();
1596        tree.extend(vec![1, 2, 3, 4, 5, 6], ());
1597        let mut cursor = tree.cursor::<IntegersSummary>(());
1598
1599        assert_eq!(cursor.slice(&Count(2), Bias::Right).items(()), [1, 2]);
1600        assert_eq!(cursor.item(), Some(&3));
1601        assert_eq!(cursor.prev_item(), Some(&2));
1602        assert_eq!(cursor.next_item(), Some(&4));
1603        assert_eq!(cursor.start().sum, 3);
1604
1605        cursor.next();
1606        assert_eq!(cursor.item(), Some(&4));
1607        assert_eq!(cursor.prev_item(), Some(&3));
1608        assert_eq!(cursor.next_item(), Some(&5));
1609        assert_eq!(cursor.start().sum, 6);
1610
1611        cursor.next();
1612        assert_eq!(cursor.item(), Some(&5));
1613        assert_eq!(cursor.prev_item(), Some(&4));
1614        assert_eq!(cursor.next_item(), Some(&6));
1615        assert_eq!(cursor.start().sum, 10);
1616
1617        cursor.next();
1618        assert_eq!(cursor.item(), Some(&6));
1619        assert_eq!(cursor.prev_item(), Some(&5));
1620        assert_eq!(cursor.next_item(), None);
1621        assert_eq!(cursor.start().sum, 15);
1622
1623        cursor.next();
1624        cursor.next();
1625        assert_eq!(cursor.item(), None);
1626        assert_eq!(cursor.prev_item(), Some(&6));
1627        assert_eq!(cursor.next_item(), None);
1628        assert_eq!(cursor.start().sum, 21);
1629
1630        cursor.prev();
1631        assert_eq!(cursor.item(), Some(&6));
1632        assert_eq!(cursor.prev_item(), Some(&5));
1633        assert_eq!(cursor.next_item(), None);
1634        assert_eq!(cursor.start().sum, 15);
1635
1636        cursor.prev();
1637        assert_eq!(cursor.item(), Some(&5));
1638        assert_eq!(cursor.prev_item(), Some(&4));
1639        assert_eq!(cursor.next_item(), Some(&6));
1640        assert_eq!(cursor.start().sum, 10);
1641
1642        cursor.prev();
1643        assert_eq!(cursor.item(), Some(&4));
1644        assert_eq!(cursor.prev_item(), Some(&3));
1645        assert_eq!(cursor.next_item(), Some(&5));
1646        assert_eq!(cursor.start().sum, 6);
1647
1648        cursor.prev();
1649        assert_eq!(cursor.item(), Some(&3));
1650        assert_eq!(cursor.prev_item(), Some(&2));
1651        assert_eq!(cursor.next_item(), Some(&4));
1652        assert_eq!(cursor.start().sum, 3);
1653
1654        cursor.prev();
1655        assert_eq!(cursor.item(), Some(&2));
1656        assert_eq!(cursor.prev_item(), Some(&1));
1657        assert_eq!(cursor.next_item(), Some(&3));
1658        assert_eq!(cursor.start().sum, 1);
1659
1660        cursor.prev();
1661        assert_eq!(cursor.item(), Some(&1));
1662        assert_eq!(cursor.prev_item(), None);
1663        assert_eq!(cursor.next_item(), Some(&2));
1664        assert_eq!(cursor.start().sum, 0);
1665
1666        cursor.prev();
1667        assert_eq!(cursor.item(), None);
1668        assert_eq!(cursor.prev_item(), None);
1669        assert_eq!(cursor.next_item(), Some(&1));
1670        assert_eq!(cursor.start().sum, 0);
1671
1672        cursor.next();
1673        assert_eq!(cursor.item(), Some(&1));
1674        assert_eq!(cursor.prev_item(), None);
1675        assert_eq!(cursor.next_item(), Some(&2));
1676        assert_eq!(cursor.start().sum, 0);
1677
1678        let mut cursor = tree.cursor::<IntegersSummary>(());
1679        assert_eq!(
1680            cursor
1681                .slice(&tree.extent::<Count>(()), Bias::Right)
1682                .items(()),
1683            tree.items(())
1684        );
1685        assert_eq!(cursor.item(), None);
1686        assert_eq!(cursor.prev_item(), Some(&6));
1687        assert_eq!(cursor.next_item(), None);
1688        assert_eq!(cursor.start().sum, 21);
1689
1690        cursor.seek(&Count(3), Bias::Right);
1691        assert_eq!(
1692            cursor
1693                .slice(&tree.extent::<Count>(()), Bias::Right)
1694                .items(()),
1695            [4, 5, 6]
1696        );
1697        assert_eq!(cursor.item(), None);
1698        assert_eq!(cursor.prev_item(), Some(&6));
1699        assert_eq!(cursor.next_item(), None);
1700        assert_eq!(cursor.start().sum, 21);
1701
1702        // Seeking can bias left or right
1703        cursor.seek(&Count(1), Bias::Left);
1704        assert_eq!(cursor.item(), Some(&1));
1705        cursor.seek(&Count(1), Bias::Right);
1706        assert_eq!(cursor.item(), Some(&2));
1707
1708        // Slicing without resetting starts from where the cursor is parked at.
1709        cursor.seek(&Count(1), Bias::Right);
1710        assert_eq!(cursor.slice(&Count(3), Bias::Right).items(()), vec![2, 3]);
1711        assert_eq!(cursor.slice(&Count(6), Bias::Left).items(()), vec![4, 5]);
1712        assert_eq!(cursor.slice(&Count(6), Bias::Right).items(()), vec![6]);
1713    }
1714
1715    #[test]
1716    fn test_edit() {
1717        let mut tree = SumTree::<u8>::default();
1718
1719        let removed = tree.edit(vec![Edit::Insert(1), Edit::Insert(2), Edit::Insert(0)], ());
1720        assert_eq!(tree.items(()), vec![0, 1, 2]);
1721        assert_eq!(removed, Vec::<u8>::new());
1722        assert_eq!(tree.get(&0, ()), Some(&0));
1723        assert_eq!(tree.get(&1, ()), Some(&1));
1724        assert_eq!(tree.get(&2, ()), Some(&2));
1725        assert_eq!(tree.get(&4, ()), None);
1726
1727        let removed = tree.edit(vec![Edit::Insert(2), Edit::Insert(4), Edit::Remove(0)], ());
1728        assert_eq!(tree.items(()), vec![1, 2, 4]);
1729        assert_eq!(removed, vec![0, 2]);
1730        assert_eq!(tree.get(&0, ()), None);
1731        assert_eq!(tree.get(&1, ()), Some(&1));
1732        assert_eq!(tree.get(&2, ()), Some(&2));
1733        assert_eq!(tree.get(&4, ()), Some(&4));
1734    }
1735
1736    #[test]
1737    fn test_from_iter() {
1738        assert_eq!(
1739            SumTree::from_iter(0..100, ()).items(()),
1740            (0..100).collect::<Vec<_>>()
1741        );
1742
1743        // Ensure `from_iter` works correctly when the given iterator restarts
1744        // after calling `next` if `None` was already returned.
1745        let mut ix = 0;
1746        let iterator = std::iter::from_fn(|| {
1747            ix = (ix + 1) % 2;
1748            if ix == 1 { Some(1) } else { None }
1749        });
1750        assert_eq!(SumTree::from_iter(iterator, ()).items(()), vec![1]);
1751    }
1752
1753    #[derive(Clone, Default, Debug)]
1754    pub struct IntegersSummary {
1755        count: usize,
1756        sum: usize,
1757        contains_even: bool,
1758        max: u8,
1759    }
1760
1761    #[derive(Ord, PartialOrd, Default, Eq, PartialEq, Clone, Debug)]
1762    struct Count(usize);
1763
1764    #[derive(Ord, PartialOrd, Default, Eq, PartialEq, Clone, Debug)]
1765    struct Sum(usize);
1766
1767    impl Item for u8 {
1768        type Summary = IntegersSummary;
1769
1770        fn summary(&self, _cx: ()) -> Self::Summary {
1771            IntegersSummary {
1772                count: 1,
1773                sum: *self as usize,
1774                contains_even: (*self & 1) == 0,
1775                max: *self,
1776            }
1777        }
1778    }
1779
1780    impl KeyedItem for u8 {
1781        type Key = u8;
1782
1783        fn key(&self) -> Self::Key {
1784            *self
1785        }
1786    }
1787
1788    impl ContextLessSummary for IntegersSummary {
1789        fn zero() -> Self {
1790            Default::default()
1791        }
1792
1793        fn add_summary(&mut self, other: &Self) {
1794            self.count += other.count;
1795            self.sum += other.sum;
1796            self.contains_even |= other.contains_even;
1797            self.max = cmp::max(self.max, other.max);
1798        }
1799    }
1800
1801    impl Dimension<'_, IntegersSummary> for u8 {
1802        fn zero(_cx: ()) -> Self {
1803            Default::default()
1804        }
1805
1806        fn add_summary(&mut self, summary: &IntegersSummary, _: ()) {
1807            *self = summary.max;
1808        }
1809    }
1810
1811    impl Dimension<'_, IntegersSummary> for Count {
1812        fn zero(_cx: ()) -> Self {
1813            Default::default()
1814        }
1815
1816        fn add_summary(&mut self, summary: &IntegersSummary, _: ()) {
1817            self.0 += summary.count;
1818        }
1819    }
1820
1821    impl SeekTarget<'_, IntegersSummary, IntegersSummary> for Count {
1822        fn cmp(&self, cursor_location: &IntegersSummary, _: ()) -> Ordering {
1823            self.0.cmp(&cursor_location.count)
1824        }
1825    }
1826
1827    impl Dimension<'_, IntegersSummary> for Sum {
1828        fn zero(_cx: ()) -> Self {
1829            Default::default()
1830        }
1831
1832        fn add_summary(&mut self, summary: &IntegersSummary, _: ()) {
1833            self.0 += summary.sum;
1834        }
1835    }
1836}