cloud.rs

   1use ai_onboarding::YoungAccountBanner;
   2use anthropic::AnthropicModelMode;
   3use anyhow::{Context as _, Result, anyhow};
   4use chrono::{DateTime, Utc};
   5use client::{Client, ModelRequestUsage, UserStore, zed_urls};
   6use cloud_llm_client::{
   7    CLIENT_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, CURRENT_PLAN_HEADER_NAME, CompletionBody,
   8    CompletionEvent, CompletionRequestStatus, CountTokensBody, CountTokensResponse,
   9    EXPIRED_LLM_TOKEN_HEADER_NAME, ListModelsResponse, MODEL_REQUESTS_RESOURCE_HEADER_VALUE, Plan,
  10    SERVER_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, SUBSCRIPTION_LIMIT_RESOURCE_HEADER_NAME,
  11    TOOL_USE_LIMIT_REACHED_HEADER_NAME, ZED_VERSION_HEADER_NAME,
  12};
  13use futures::{
  14    AsyncBufReadExt, FutureExt, Stream, StreamExt, future::BoxFuture, stream::BoxStream,
  15};
  16use google_ai::GoogleModelMode;
  17use gpui::{
  18    AnyElement, AnyView, App, AsyncApp, Context, Entity, SemanticVersion, Subscription, Task,
  19};
  20use http_client::http::{HeaderMap, HeaderValue};
  21use http_client::{AsyncBody, HttpClient, Method, Response, StatusCode};
  22use language_model::{
  23    AuthenticateError, LanguageModel, LanguageModelCacheConfiguration,
  24    LanguageModelCompletionError, LanguageModelCompletionEvent, LanguageModelId, LanguageModelName,
  25    LanguageModelProvider, LanguageModelProviderId, LanguageModelProviderName,
  26    LanguageModelProviderState, LanguageModelRequest, LanguageModelToolChoice,
  27    LanguageModelToolSchemaFormat, LlmApiToken, ModelRequestLimitReachedError,
  28    PaymentRequiredError, RateLimiter, RefreshLlmTokenListener,
  29};
  30use release_channel::AppVersion;
  31use schemars::JsonSchema;
  32use serde::{Deserialize, Serialize, de::DeserializeOwned};
  33use settings::SettingsStore;
  34use smol::io::{AsyncReadExt, BufReader};
  35use std::pin::Pin;
  36use std::str::FromStr as _;
  37use std::sync::Arc;
  38use std::time::Duration;
  39use thiserror::Error;
  40use ui::{TintColor, prelude::*};
  41use util::{ResultExt as _, maybe};
  42
  43use crate::provider::anthropic::{AnthropicEventMapper, count_anthropic_tokens, into_anthropic};
  44use crate::provider::google::{GoogleEventMapper, into_google};
  45use crate::provider::open_ai::{OpenAiEventMapper, count_open_ai_tokens, into_open_ai};
  46
  47const PROVIDER_ID: LanguageModelProviderId = language_model::ZED_CLOUD_PROVIDER_ID;
  48const PROVIDER_NAME: LanguageModelProviderName = language_model::ZED_CLOUD_PROVIDER_NAME;
  49
  50#[derive(Default, Clone, Debug, PartialEq)]
  51pub struct ZedDotDevSettings {
  52    pub available_models: Vec<AvailableModel>,
  53}
  54
  55#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
  56#[serde(rename_all = "lowercase")]
  57pub enum AvailableProvider {
  58    Anthropic,
  59    OpenAi,
  60    Google,
  61}
  62
  63#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
  64pub struct AvailableModel {
  65    /// The provider of the language model.
  66    pub provider: AvailableProvider,
  67    /// The model's name in the provider's API. e.g. claude-3-5-sonnet-20240620
  68    pub name: String,
  69    /// The name displayed in the UI, such as in the assistant panel model dropdown menu.
  70    pub display_name: Option<String>,
  71    /// The size of the context window, indicating the maximum number of tokens the model can process.
  72    pub max_tokens: usize,
  73    /// The maximum number of output tokens allowed by the model.
  74    pub max_output_tokens: Option<u64>,
  75    /// The maximum number of completion tokens allowed by the model (o1-* only)
  76    pub max_completion_tokens: Option<u64>,
  77    /// Override this model with a different Anthropic model for tool calls.
  78    pub tool_override: Option<String>,
  79    /// Indicates whether this custom model supports caching.
  80    pub cache_configuration: Option<LanguageModelCacheConfiguration>,
  81    /// The default temperature to use for this model.
  82    pub default_temperature: Option<f32>,
  83    /// Any extra beta headers to provide when using the model.
  84    #[serde(default)]
  85    pub extra_beta_headers: Vec<String>,
  86    /// The model's mode (e.g. thinking)
  87    pub mode: Option<ModelMode>,
  88}
  89
  90#[derive(Default, Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
  91#[serde(tag = "type", rename_all = "lowercase")]
  92pub enum ModelMode {
  93    #[default]
  94    Default,
  95    Thinking {
  96        /// The maximum number of tokens to use for reasoning. Must be lower than the model's `max_output_tokens`.
  97        budget_tokens: Option<u32>,
  98    },
  99}
 100
 101impl From<ModelMode> for AnthropicModelMode {
 102    fn from(value: ModelMode) -> Self {
 103        match value {
 104            ModelMode::Default => AnthropicModelMode::Default,
 105            ModelMode::Thinking { budget_tokens } => AnthropicModelMode::Thinking { budget_tokens },
 106        }
 107    }
 108}
 109
 110pub struct CloudLanguageModelProvider {
 111    client: Arc<Client>,
 112    state: gpui::Entity<State>,
 113    _maintain_client_status: Task<()>,
 114}
 115
 116pub struct State {
 117    client: Arc<Client>,
 118    llm_api_token: LlmApiToken,
 119    user_store: Entity<UserStore>,
 120    status: client::Status,
 121    models: Vec<Arc<cloud_llm_client::LanguageModel>>,
 122    default_model: Option<Arc<cloud_llm_client::LanguageModel>>,
 123    default_fast_model: Option<Arc<cloud_llm_client::LanguageModel>>,
 124    recommended_models: Vec<Arc<cloud_llm_client::LanguageModel>>,
 125    _fetch_models_task: Task<()>,
 126    _settings_subscription: Subscription,
 127    _llm_token_subscription: Subscription,
 128}
 129
 130impl State {
 131    fn new(
 132        client: Arc<Client>,
 133        user_store: Entity<UserStore>,
 134        status: client::Status,
 135        cx: &mut Context<Self>,
 136    ) -> Self {
 137        let refresh_llm_token_listener = RefreshLlmTokenListener::global(cx);
 138        let mut current_user = user_store.read(cx).watch_current_user();
 139        Self {
 140            client: client.clone(),
 141            llm_api_token: LlmApiToken::default(),
 142            user_store,
 143            status,
 144            models: Vec::new(),
 145            default_model: None,
 146            default_fast_model: None,
 147            recommended_models: Vec::new(),
 148            _fetch_models_task: cx.spawn(async move |this, cx| {
 149                maybe!(async move {
 150                    let (client, llm_api_token) = this
 151                        .read_with(cx, |this, _cx| (client.clone(), this.llm_api_token.clone()))?;
 152
 153                    while current_user.borrow().is_none() {
 154                        current_user.next().await;
 155                    }
 156
 157                    let response =
 158                        Self::fetch_models(client.clone(), llm_api_token.clone()).await?;
 159                    this.update(cx, |this, cx| this.update_models(response, cx))?;
 160                    anyhow::Ok(())
 161                })
 162                .await
 163                .context("failed to fetch Zed models")
 164                .log_err();
 165            }),
 166            _settings_subscription: cx.observe_global::<SettingsStore>(|_, cx| {
 167                cx.notify();
 168            }),
 169            _llm_token_subscription: cx.subscribe(
 170                &refresh_llm_token_listener,
 171                move |this, _listener, _event, cx| {
 172                    let client = this.client.clone();
 173                    let llm_api_token = this.llm_api_token.clone();
 174                    cx.spawn(async move |this, cx| {
 175                        llm_api_token.refresh(&client).await?;
 176                        let response = Self::fetch_models(client, llm_api_token).await?;
 177                        this.update(cx, |this, cx| {
 178                            this.update_models(response, cx);
 179                        })
 180                    })
 181                    .detach_and_log_err(cx);
 182                },
 183            ),
 184        }
 185    }
 186
 187    fn is_signed_out(&self, cx: &App) -> bool {
 188        self.user_store.read(cx).current_user().is_none()
 189    }
 190
 191    fn authenticate(&self, cx: &mut Context<Self>) -> Task<Result<()>> {
 192        let client = self.client.clone();
 193        cx.spawn(async move |state, cx| {
 194            client.sign_in_with_optional_connect(true, cx).await?;
 195            state.update(cx, |_, cx| cx.notify())
 196        })
 197    }
 198    fn update_models(&mut self, response: ListModelsResponse, cx: &mut Context<Self>) {
 199        let mut models = Vec::new();
 200
 201        for model in response.models {
 202            models.push(Arc::new(model.clone()));
 203
 204            // Right now we represent thinking variants of models as separate models on the client,
 205            // so we need to insert variants for any model that supports thinking.
 206            if model.supports_thinking {
 207                models.push(Arc::new(cloud_llm_client::LanguageModel {
 208                    id: cloud_llm_client::LanguageModelId(format!("{}-thinking", model.id).into()),
 209                    display_name: format!("{} Thinking", model.display_name),
 210                    ..model
 211                }));
 212            }
 213        }
 214
 215        self.default_model = models
 216            .iter()
 217            .find(|model| model.id == response.default_model)
 218            .cloned();
 219        self.default_fast_model = models
 220            .iter()
 221            .find(|model| model.id == response.default_fast_model)
 222            .cloned();
 223        self.recommended_models = response
 224            .recommended_models
 225            .iter()
 226            .filter_map(|id| models.iter().find(|model| &model.id == id))
 227            .cloned()
 228            .collect();
 229        self.models = models;
 230        cx.notify();
 231    }
 232
 233    async fn fetch_models(
 234        client: Arc<Client>,
 235        llm_api_token: LlmApiToken,
 236    ) -> Result<ListModelsResponse> {
 237        let http_client = &client.http_client();
 238        let token = llm_api_token.acquire(&client).await?;
 239
 240        let request = http_client::Request::builder()
 241            .method(Method::GET)
 242            .uri(http_client.build_zed_llm_url("/models", &[])?.as_ref())
 243            .header("Authorization", format!("Bearer {token}"))
 244            .body(AsyncBody::empty())?;
 245        let mut response = http_client
 246            .send(request)
 247            .await
 248            .context("failed to send list models request")?;
 249
 250        if response.status().is_success() {
 251            let mut body = String::new();
 252            response.body_mut().read_to_string(&mut body).await?;
 253            Ok(serde_json::from_str(&body)?)
 254        } else {
 255            let mut body = String::new();
 256            response.body_mut().read_to_string(&mut body).await?;
 257            anyhow::bail!(
 258                "error listing models.\nStatus: {:?}\nBody: {body}",
 259                response.status(),
 260            );
 261        }
 262    }
 263}
 264
 265impl CloudLanguageModelProvider {
 266    pub fn new(user_store: Entity<UserStore>, client: Arc<Client>, cx: &mut App) -> Self {
 267        let mut status_rx = client.status();
 268        let status = *status_rx.borrow();
 269
 270        let state = cx.new(|cx| State::new(client.clone(), user_store.clone(), status, cx));
 271
 272        let state_ref = state.downgrade();
 273        let maintain_client_status = cx.spawn(async move |cx| {
 274            while let Some(status) = status_rx.next().await {
 275                if let Some(this) = state_ref.upgrade() {
 276                    _ = this.update(cx, |this, cx| {
 277                        if this.status != status {
 278                            this.status = status;
 279                            cx.notify();
 280                        }
 281                    });
 282                } else {
 283                    break;
 284                }
 285            }
 286        });
 287
 288        Self {
 289            client,
 290            state,
 291            _maintain_client_status: maintain_client_status,
 292        }
 293    }
 294
 295    fn create_language_model(
 296        &self,
 297        model: Arc<cloud_llm_client::LanguageModel>,
 298        llm_api_token: LlmApiToken,
 299    ) -> Arc<dyn LanguageModel> {
 300        Arc::new(CloudLanguageModel {
 301            id: LanguageModelId(SharedString::from(model.id.0.clone())),
 302            model,
 303            llm_api_token,
 304            client: self.client.clone(),
 305            request_limiter: RateLimiter::new(4),
 306        })
 307    }
 308}
 309
 310impl LanguageModelProviderState for CloudLanguageModelProvider {
 311    type ObservableEntity = State;
 312
 313    fn observable_entity(&self) -> Option<gpui::Entity<Self::ObservableEntity>> {
 314        Some(self.state.clone())
 315    }
 316}
 317
 318impl LanguageModelProvider for CloudLanguageModelProvider {
 319    fn id(&self) -> LanguageModelProviderId {
 320        PROVIDER_ID
 321    }
 322
 323    fn name(&self) -> LanguageModelProviderName {
 324        PROVIDER_NAME
 325    }
 326
 327    fn icon(&self) -> IconName {
 328        IconName::AiZed
 329    }
 330
 331    fn default_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
 332        let default_model = self.state.read(cx).default_model.clone()?;
 333        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 334        Some(self.create_language_model(default_model, llm_api_token))
 335    }
 336
 337    fn default_fast_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
 338        let default_fast_model = self.state.read(cx).default_fast_model.clone()?;
 339        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 340        Some(self.create_language_model(default_fast_model, llm_api_token))
 341    }
 342
 343    fn recommended_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 344        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 345        self.state
 346            .read(cx)
 347            .recommended_models
 348            .iter()
 349            .cloned()
 350            .map(|model| self.create_language_model(model, llm_api_token.clone()))
 351            .collect()
 352    }
 353
 354    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 355        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 356        self.state
 357            .read(cx)
 358            .models
 359            .iter()
 360            .cloned()
 361            .map(|model| self.create_language_model(model, llm_api_token.clone()))
 362            .collect()
 363    }
 364
 365    fn is_authenticated(&self, cx: &App) -> bool {
 366        let state = self.state.read(cx);
 367        !state.is_signed_out(cx)
 368    }
 369
 370    fn authenticate(&self, _cx: &mut App) -> Task<Result<(), AuthenticateError>> {
 371        Task::ready(Ok(()))
 372    }
 373
 374    fn configuration_view(
 375        &self,
 376        _target_agent: language_model::ConfigurationViewTargetAgent,
 377        _: &mut Window,
 378        cx: &mut App,
 379    ) -> AnyView {
 380        cx.new(|_| ConfigurationView::new(self.state.clone()))
 381            .into()
 382    }
 383
 384    fn reset_credentials(&self, _cx: &mut App) -> Task<Result<()>> {
 385        Task::ready(Ok(()))
 386    }
 387}
 388
 389pub struct CloudLanguageModel {
 390    id: LanguageModelId,
 391    model: Arc<cloud_llm_client::LanguageModel>,
 392    llm_api_token: LlmApiToken,
 393    client: Arc<Client>,
 394    request_limiter: RateLimiter,
 395}
 396
 397struct PerformLlmCompletionResponse {
 398    response: Response<AsyncBody>,
 399    usage: Option<ModelRequestUsage>,
 400    tool_use_limit_reached: bool,
 401    includes_status_messages: bool,
 402}
 403
 404impl CloudLanguageModel {
 405    async fn perform_llm_completion(
 406        client: Arc<Client>,
 407        llm_api_token: LlmApiToken,
 408        app_version: Option<SemanticVersion>,
 409        body: CompletionBody,
 410    ) -> Result<PerformLlmCompletionResponse> {
 411        let http_client = &client.http_client();
 412
 413        let mut token = llm_api_token.acquire(&client).await?;
 414        let mut refreshed_token = false;
 415
 416        loop {
 417            let request_builder = http_client::Request::builder()
 418                .method(Method::POST)
 419                .uri(http_client.build_zed_llm_url("/completions", &[])?.as_ref());
 420            let request_builder = if let Some(app_version) = app_version {
 421                request_builder.header(ZED_VERSION_HEADER_NAME, app_version.to_string())
 422            } else {
 423                request_builder
 424            };
 425
 426            let request = request_builder
 427                .header("Content-Type", "application/json")
 428                .header("Authorization", format!("Bearer {token}"))
 429                .header(CLIENT_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, "true")
 430                .body(serde_json::to_string(&body)?.into())?;
 431            let mut response = http_client.send(request).await?;
 432            let status = response.status();
 433            if status.is_success() {
 434                let includes_status_messages = response
 435                    .headers()
 436                    .get(SERVER_SUPPORTS_STATUS_MESSAGES_HEADER_NAME)
 437                    .is_some();
 438
 439                let tool_use_limit_reached = response
 440                    .headers()
 441                    .get(TOOL_USE_LIMIT_REACHED_HEADER_NAME)
 442                    .is_some();
 443
 444                let usage = if includes_status_messages {
 445                    None
 446                } else {
 447                    ModelRequestUsage::from_headers(response.headers()).ok()
 448                };
 449
 450                return Ok(PerformLlmCompletionResponse {
 451                    response,
 452                    usage,
 453                    includes_status_messages,
 454                    tool_use_limit_reached,
 455                });
 456            }
 457
 458            if !refreshed_token
 459                && response
 460                    .headers()
 461                    .get(EXPIRED_LLM_TOKEN_HEADER_NAME)
 462                    .is_some()
 463            {
 464                token = llm_api_token.refresh(&client).await?;
 465                refreshed_token = true;
 466                continue;
 467            }
 468
 469            if status == StatusCode::FORBIDDEN
 470                && response
 471                    .headers()
 472                    .get(SUBSCRIPTION_LIMIT_RESOURCE_HEADER_NAME)
 473                    .is_some()
 474            {
 475                if let Some(MODEL_REQUESTS_RESOURCE_HEADER_VALUE) = response
 476                    .headers()
 477                    .get(SUBSCRIPTION_LIMIT_RESOURCE_HEADER_NAME)
 478                    .and_then(|resource| resource.to_str().ok())
 479                    && let Some(plan) = response
 480                        .headers()
 481                        .get(CURRENT_PLAN_HEADER_NAME)
 482                        .and_then(|plan| plan.to_str().ok())
 483                        .and_then(|plan| cloud_llm_client::Plan::from_str(plan).ok())
 484                {
 485                    return Err(anyhow!(ModelRequestLimitReachedError { plan }));
 486                }
 487            } else if status == StatusCode::PAYMENT_REQUIRED {
 488                return Err(anyhow!(PaymentRequiredError));
 489            }
 490
 491            let mut body = String::new();
 492            let headers = response.headers().clone();
 493            response.body_mut().read_to_string(&mut body).await?;
 494            return Err(anyhow!(ApiError {
 495                status,
 496                body,
 497                headers
 498            }));
 499        }
 500    }
 501}
 502
 503#[derive(Debug, Error)]
 504#[error("cloud language model request failed with status {status}: {body}")]
 505struct ApiError {
 506    status: StatusCode,
 507    body: String,
 508    headers: HeaderMap<HeaderValue>,
 509}
 510
 511/// Represents error responses from Zed's cloud API.
 512///
 513/// Example JSON for an upstream HTTP error:
 514/// ```json
 515/// {
 516///   "code": "upstream_http_error",
 517///   "message": "Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout",
 518///   "upstream_status": 503
 519/// }
 520/// ```
 521#[derive(Debug, serde::Deserialize)]
 522struct CloudApiError {
 523    code: String,
 524    message: String,
 525    #[serde(default)]
 526    #[serde(deserialize_with = "deserialize_optional_status_code")]
 527    upstream_status: Option<StatusCode>,
 528    #[serde(default)]
 529    retry_after: Option<f64>,
 530}
 531
 532fn deserialize_optional_status_code<'de, D>(deserializer: D) -> Result<Option<StatusCode>, D::Error>
 533where
 534    D: serde::Deserializer<'de>,
 535{
 536    let opt: Option<u16> = Option::deserialize(deserializer)?;
 537    Ok(opt.and_then(|code| StatusCode::from_u16(code).ok()))
 538}
 539
 540impl From<ApiError> for LanguageModelCompletionError {
 541    fn from(error: ApiError) -> Self {
 542        if let Ok(cloud_error) = serde_json::from_str::<CloudApiError>(&error.body)
 543            && cloud_error.code.starts_with("upstream_http_")
 544        {
 545            let status = if let Some(status) = cloud_error.upstream_status {
 546                status
 547            } else if cloud_error.code.ends_with("_error") {
 548                error.status
 549            } else {
 550                // If there's a status code in the code string (e.g. "upstream_http_429")
 551                // then use that; otherwise, see if the JSON contains a status code.
 552                cloud_error
 553                    .code
 554                    .strip_prefix("upstream_http_")
 555                    .and_then(|code_str| code_str.parse::<u16>().ok())
 556                    .and_then(|code| StatusCode::from_u16(code).ok())
 557                    .unwrap_or(error.status)
 558            };
 559
 560            return LanguageModelCompletionError::UpstreamProviderError {
 561                message: cloud_error.message,
 562                status,
 563                retry_after: cloud_error.retry_after.map(Duration::from_secs_f64),
 564            };
 565        }
 566
 567        let retry_after = None;
 568        LanguageModelCompletionError::from_http_status(
 569            PROVIDER_NAME,
 570            error.status,
 571            error.body,
 572            retry_after,
 573        )
 574    }
 575}
 576
 577impl LanguageModel for CloudLanguageModel {
 578    fn id(&self) -> LanguageModelId {
 579        self.id.clone()
 580    }
 581
 582    fn name(&self) -> LanguageModelName {
 583        LanguageModelName::from(self.model.display_name.clone())
 584    }
 585
 586    fn provider_id(&self) -> LanguageModelProviderId {
 587        PROVIDER_ID
 588    }
 589
 590    fn provider_name(&self) -> LanguageModelProviderName {
 591        PROVIDER_NAME
 592    }
 593
 594    fn upstream_provider_id(&self) -> LanguageModelProviderId {
 595        use cloud_llm_client::LanguageModelProvider::*;
 596        match self.model.provider {
 597            Anthropic => language_model::ANTHROPIC_PROVIDER_ID,
 598            OpenAi => language_model::OPEN_AI_PROVIDER_ID,
 599            Google => language_model::GOOGLE_PROVIDER_ID,
 600        }
 601    }
 602
 603    fn upstream_provider_name(&self) -> LanguageModelProviderName {
 604        use cloud_llm_client::LanguageModelProvider::*;
 605        match self.model.provider {
 606            Anthropic => language_model::ANTHROPIC_PROVIDER_NAME,
 607            OpenAi => language_model::OPEN_AI_PROVIDER_NAME,
 608            Google => language_model::GOOGLE_PROVIDER_NAME,
 609        }
 610    }
 611
 612    fn supports_tools(&self) -> bool {
 613        self.model.supports_tools
 614    }
 615
 616    fn supports_images(&self) -> bool {
 617        self.model.supports_images
 618    }
 619
 620    fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
 621        match choice {
 622            LanguageModelToolChoice::Auto
 623            | LanguageModelToolChoice::Any
 624            | LanguageModelToolChoice::None => true,
 625        }
 626    }
 627
 628    fn supports_burn_mode(&self) -> bool {
 629        self.model.supports_max_mode
 630    }
 631
 632    fn telemetry_id(&self) -> String {
 633        format!("zed.dev/{}", self.model.id)
 634    }
 635
 636    fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
 637        match self.model.provider {
 638            cloud_llm_client::LanguageModelProvider::Anthropic
 639            | cloud_llm_client::LanguageModelProvider::OpenAi => {
 640                LanguageModelToolSchemaFormat::JsonSchema
 641            }
 642            cloud_llm_client::LanguageModelProvider::Google => {
 643                LanguageModelToolSchemaFormat::JsonSchemaSubset
 644            }
 645        }
 646    }
 647
 648    fn max_token_count(&self) -> u64 {
 649        self.model.max_token_count as u64
 650    }
 651
 652    fn max_token_count_in_burn_mode(&self) -> Option<u64> {
 653        self.model
 654            .max_token_count_in_max_mode
 655            .filter(|_| self.model.supports_max_mode)
 656            .map(|max_token_count| max_token_count as u64)
 657    }
 658
 659    fn cache_configuration(&self) -> Option<LanguageModelCacheConfiguration> {
 660        match &self.model.provider {
 661            cloud_llm_client::LanguageModelProvider::Anthropic => {
 662                Some(LanguageModelCacheConfiguration {
 663                    min_total_token: 2_048,
 664                    should_speculate: true,
 665                    max_cache_anchors: 4,
 666                })
 667            }
 668            cloud_llm_client::LanguageModelProvider::OpenAi
 669            | cloud_llm_client::LanguageModelProvider::Google => None,
 670        }
 671    }
 672
 673    fn count_tokens(
 674        &self,
 675        request: LanguageModelRequest,
 676        cx: &App,
 677    ) -> BoxFuture<'static, Result<u64>> {
 678        match self.model.provider {
 679            cloud_llm_client::LanguageModelProvider::Anthropic => {
 680                count_anthropic_tokens(request, cx)
 681            }
 682            cloud_llm_client::LanguageModelProvider::OpenAi => {
 683                let model = match open_ai::Model::from_id(&self.model.id.0) {
 684                    Ok(model) => model,
 685                    Err(err) => return async move { Err(anyhow!(err)) }.boxed(),
 686                };
 687                count_open_ai_tokens(request, model, cx)
 688            }
 689            cloud_llm_client::LanguageModelProvider::Google => {
 690                let client = self.client.clone();
 691                let llm_api_token = self.llm_api_token.clone();
 692                let model_id = self.model.id.to_string();
 693                let generate_content_request =
 694                    into_google(request, model_id.clone(), GoogleModelMode::Default);
 695                async move {
 696                    let http_client = &client.http_client();
 697                    let token = llm_api_token.acquire(&client).await?;
 698
 699                    let request_body = CountTokensBody {
 700                        provider: cloud_llm_client::LanguageModelProvider::Google,
 701                        model: model_id,
 702                        provider_request: serde_json::to_value(&google_ai::CountTokensRequest {
 703                            generate_content_request,
 704                        })?,
 705                    };
 706                    let request = http_client::Request::builder()
 707                        .method(Method::POST)
 708                        .uri(
 709                            http_client
 710                                .build_zed_llm_url("/count_tokens", &[])?
 711                                .as_ref(),
 712                        )
 713                        .header("Content-Type", "application/json")
 714                        .header("Authorization", format!("Bearer {token}"))
 715                        .body(serde_json::to_string(&request_body)?.into())?;
 716                    let mut response = http_client.send(request).await?;
 717                    let status = response.status();
 718                    let headers = response.headers().clone();
 719                    let mut response_body = String::new();
 720                    response
 721                        .body_mut()
 722                        .read_to_string(&mut response_body)
 723                        .await?;
 724
 725                    if status.is_success() {
 726                        let response_body: CountTokensResponse =
 727                            serde_json::from_str(&response_body)?;
 728
 729                        Ok(response_body.tokens as u64)
 730                    } else {
 731                        Err(anyhow!(ApiError {
 732                            status,
 733                            body: response_body,
 734                            headers
 735                        }))
 736                    }
 737                }
 738                .boxed()
 739            }
 740        }
 741    }
 742
 743    fn stream_completion(
 744        &self,
 745        request: LanguageModelRequest,
 746        cx: &AsyncApp,
 747    ) -> BoxFuture<
 748        'static,
 749        Result<
 750            BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>,
 751            LanguageModelCompletionError,
 752        >,
 753    > {
 754        let thread_id = request.thread_id.clone();
 755        let prompt_id = request.prompt_id.clone();
 756        let intent = request.intent;
 757        let mode = request.mode;
 758        let app_version = cx.update(|cx| AppVersion::global(cx)).ok();
 759        let thinking_allowed = request.thinking_allowed;
 760        match self.model.provider {
 761            cloud_llm_client::LanguageModelProvider::Anthropic => {
 762                let request = into_anthropic(
 763                    request,
 764                    self.model.id.to_string(),
 765                    1.0,
 766                    self.model.max_output_tokens as u64,
 767                    if thinking_allowed && self.model.id.0.ends_with("-thinking") {
 768                        AnthropicModelMode::Thinking {
 769                            budget_tokens: Some(4_096),
 770                        }
 771                    } else {
 772                        AnthropicModelMode::Default
 773                    },
 774                );
 775                let client = self.client.clone();
 776                let llm_api_token = self.llm_api_token.clone();
 777                let future = self.request_limiter.stream(async move {
 778                    let PerformLlmCompletionResponse {
 779                        response,
 780                        usage,
 781                        includes_status_messages,
 782                        tool_use_limit_reached,
 783                    } = Self::perform_llm_completion(
 784                        client.clone(),
 785                        llm_api_token,
 786                        app_version,
 787                        CompletionBody {
 788                            thread_id,
 789                            prompt_id,
 790                            intent,
 791                            mode,
 792                            provider: cloud_llm_client::LanguageModelProvider::Anthropic,
 793                            model: request.model.clone(),
 794                            provider_request: serde_json::to_value(&request)
 795                                .map_err(|e| anyhow!(e))?,
 796                        },
 797                    )
 798                    .await
 799                    .map_err(|err| match err.downcast::<ApiError>() {
 800                        Ok(api_err) => anyhow!(LanguageModelCompletionError::from(api_err)),
 801                        Err(err) => anyhow!(err),
 802                    })?;
 803
 804                    let mut mapper = AnthropicEventMapper::new();
 805                    Ok(map_cloud_completion_events(
 806                        Box::pin(
 807                            response_lines(response, includes_status_messages)
 808                                .chain(usage_updated_event(usage))
 809                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)),
 810                        ),
 811                        move |event| mapper.map_event(event),
 812                    ))
 813                });
 814                async move { Ok(future.await?.boxed()) }.boxed()
 815            }
 816            cloud_llm_client::LanguageModelProvider::OpenAi => {
 817                let client = self.client.clone();
 818                let model = match open_ai::Model::from_id(&self.model.id.0) {
 819                    Ok(model) => model,
 820                    Err(err) => return async move { Err(anyhow!(err).into()) }.boxed(),
 821                };
 822                let request = into_open_ai(
 823                    request,
 824                    model.id(),
 825                    model.supports_parallel_tool_calls(),
 826                    model.supports_prompt_cache_key(),
 827                    None,
 828                    None,
 829                );
 830                let llm_api_token = self.llm_api_token.clone();
 831                let future = self.request_limiter.stream(async move {
 832                    let PerformLlmCompletionResponse {
 833                        response,
 834                        usage,
 835                        includes_status_messages,
 836                        tool_use_limit_reached,
 837                    } = Self::perform_llm_completion(
 838                        client.clone(),
 839                        llm_api_token,
 840                        app_version,
 841                        CompletionBody {
 842                            thread_id,
 843                            prompt_id,
 844                            intent,
 845                            mode,
 846                            provider: cloud_llm_client::LanguageModelProvider::OpenAi,
 847                            model: request.model.clone(),
 848                            provider_request: serde_json::to_value(&request)
 849                                .map_err(|e| anyhow!(e))?,
 850                        },
 851                    )
 852                    .await?;
 853
 854                    let mut mapper = OpenAiEventMapper::new();
 855                    Ok(map_cloud_completion_events(
 856                        Box::pin(
 857                            response_lines(response, includes_status_messages)
 858                                .chain(usage_updated_event(usage))
 859                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)),
 860                        ),
 861                        move |event| mapper.map_event(event),
 862                    ))
 863                });
 864                async move { Ok(future.await?.boxed()) }.boxed()
 865            }
 866            cloud_llm_client::LanguageModelProvider::Google => {
 867                let client = self.client.clone();
 868                let request =
 869                    into_google(request, self.model.id.to_string(), GoogleModelMode::Default);
 870                let llm_api_token = self.llm_api_token.clone();
 871                let future = self.request_limiter.stream(async move {
 872                    let PerformLlmCompletionResponse {
 873                        response,
 874                        usage,
 875                        includes_status_messages,
 876                        tool_use_limit_reached,
 877                    } = Self::perform_llm_completion(
 878                        client.clone(),
 879                        llm_api_token,
 880                        app_version,
 881                        CompletionBody {
 882                            thread_id,
 883                            prompt_id,
 884                            intent,
 885                            mode,
 886                            provider: cloud_llm_client::LanguageModelProvider::Google,
 887                            model: request.model.model_id.clone(),
 888                            provider_request: serde_json::to_value(&request)
 889                                .map_err(|e| anyhow!(e))?,
 890                        },
 891                    )
 892                    .await?;
 893
 894                    let mut mapper = GoogleEventMapper::new();
 895                    Ok(map_cloud_completion_events(
 896                        Box::pin(
 897                            response_lines(response, includes_status_messages)
 898                                .chain(usage_updated_event(usage))
 899                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)),
 900                        ),
 901                        move |event| mapper.map_event(event),
 902                    ))
 903                });
 904                async move { Ok(future.await?.boxed()) }.boxed()
 905            }
 906        }
 907    }
 908}
 909
 910fn map_cloud_completion_events<T, F>(
 911    stream: Pin<Box<dyn Stream<Item = Result<CompletionEvent<T>>> + Send>>,
 912    mut map_callback: F,
 913) -> BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 914where
 915    T: DeserializeOwned + 'static,
 916    F: FnMut(T) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 917        + Send
 918        + 'static,
 919{
 920    stream
 921        .flat_map(move |event| {
 922            futures::stream::iter(match event {
 923                Err(error) => {
 924                    vec![Err(LanguageModelCompletionError::from(error))]
 925                }
 926                Ok(CompletionEvent::Status(event)) => {
 927                    vec![Ok(LanguageModelCompletionEvent::StatusUpdate(event))]
 928                }
 929                Ok(CompletionEvent::Event(event)) => map_callback(event),
 930            })
 931        })
 932        .boxed()
 933}
 934
 935fn usage_updated_event<T>(
 936    usage: Option<ModelRequestUsage>,
 937) -> impl Stream<Item = Result<CompletionEvent<T>>> {
 938    futures::stream::iter(usage.map(|usage| {
 939        Ok(CompletionEvent::Status(
 940            CompletionRequestStatus::UsageUpdated {
 941                amount: usage.amount as usize,
 942                limit: usage.limit,
 943            },
 944        ))
 945    }))
 946}
 947
 948fn tool_use_limit_reached_event<T>(
 949    tool_use_limit_reached: bool,
 950) -> impl Stream<Item = Result<CompletionEvent<T>>> {
 951    futures::stream::iter(tool_use_limit_reached.then(|| {
 952        Ok(CompletionEvent::Status(
 953            CompletionRequestStatus::ToolUseLimitReached,
 954        ))
 955    }))
 956}
 957
 958fn response_lines<T: DeserializeOwned>(
 959    response: Response<AsyncBody>,
 960    includes_status_messages: bool,
 961) -> impl Stream<Item = Result<CompletionEvent<T>>> {
 962    futures::stream::try_unfold(
 963        (String::new(), BufReader::new(response.into_body())),
 964        move |(mut line, mut body)| async move {
 965            match body.read_line(&mut line).await {
 966                Ok(0) => Ok(None),
 967                Ok(_) => {
 968                    let event = if includes_status_messages {
 969                        serde_json::from_str::<CompletionEvent<T>>(&line)?
 970                    } else {
 971                        CompletionEvent::Event(serde_json::from_str::<T>(&line)?)
 972                    };
 973
 974                    line.clear();
 975                    Ok(Some((event, (line, body))))
 976                }
 977                Err(e) => Err(e.into()),
 978            }
 979        },
 980    )
 981}
 982
 983#[derive(IntoElement, RegisterComponent)]
 984struct ZedAiConfiguration {
 985    is_connected: bool,
 986    plan: Option<Plan>,
 987    subscription_period: Option<(DateTime<Utc>, DateTime<Utc>)>,
 988    eligible_for_trial: bool,
 989    account_too_young: bool,
 990    sign_in_callback: Arc<dyn Fn(&mut Window, &mut App) + Send + Sync>,
 991}
 992
 993impl RenderOnce for ZedAiConfiguration {
 994    fn render(self, _window: &mut Window, _cx: &mut App) -> impl IntoElement {
 995        let young_account_banner = YoungAccountBanner;
 996
 997        let is_pro = self.plan == Some(Plan::ZedPro);
 998        let subscription_text = match (self.plan, self.subscription_period) {
 999            (Some(Plan::ZedPro), Some(_)) => {
1000                "You have access to Zed's hosted models through your Pro subscription."
1001            }
1002            (Some(Plan::ZedProTrial), Some(_)) => {
1003                "You have access to Zed's hosted models through your Pro trial."
1004            }
1005            (Some(Plan::ZedFree), Some(_)) => {
1006                "You have basic access to Zed's hosted models through the Free plan."
1007            }
1008            _ => {
1009                if self.eligible_for_trial {
1010                    "Subscribe for access to Zed's hosted models. Start with a 14 day free trial."
1011                } else {
1012                    "Subscribe for access to Zed's hosted models."
1013                }
1014            }
1015        };
1016
1017        let manage_subscription_buttons = if is_pro {
1018            Button::new("manage_settings", "Manage Subscription")
1019                .full_width()
1020                .style(ButtonStyle::Tinted(TintColor::Accent))
1021                .on_click(|_, _, cx| cx.open_url(&zed_urls::account_url(cx)))
1022                .into_any_element()
1023        } else if self.plan.is_none() || self.eligible_for_trial {
1024            Button::new("start_trial", "Start 14-day Free Pro Trial")
1025                .full_width()
1026                .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1027                .on_click(|_, _, cx| cx.open_url(&zed_urls::start_trial_url(cx)))
1028                .into_any_element()
1029        } else {
1030            Button::new("upgrade", "Upgrade to Pro")
1031                .full_width()
1032                .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1033                .on_click(|_, _, cx| cx.open_url(&zed_urls::upgrade_to_zed_pro_url(cx)))
1034                .into_any_element()
1035        };
1036
1037        if !self.is_connected {
1038            return v_flex()
1039                .gap_2()
1040                .child(Label::new("Sign in to have access to Zed's complete agentic experience with hosted models."))
1041                .child(
1042                    Button::new("sign_in", "Sign In to use Zed AI")
1043                        .icon_color(Color::Muted)
1044                        .icon(IconName::Github)
1045                        .icon_size(IconSize::Small)
1046                        .icon_position(IconPosition::Start)
1047                        .full_width()
1048                        .on_click({
1049                            let callback = self.sign_in_callback.clone();
1050                            move |_, window, cx| (callback)(window, cx)
1051                        }),
1052                );
1053        }
1054
1055        v_flex().gap_2().w_full().map(|this| {
1056            if self.account_too_young {
1057                this.child(young_account_banner).child(
1058                    Button::new("upgrade", "Upgrade to Pro")
1059                        .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1060                        .full_width()
1061                        .on_click(|_, _, cx| cx.open_url(&zed_urls::upgrade_to_zed_pro_url(cx))),
1062                )
1063            } else {
1064                this.text_sm()
1065                    .child(subscription_text)
1066                    .child(manage_subscription_buttons)
1067            }
1068        })
1069    }
1070}
1071
1072struct ConfigurationView {
1073    state: Entity<State>,
1074    sign_in_callback: Arc<dyn Fn(&mut Window, &mut App) + Send + Sync>,
1075}
1076
1077impl ConfigurationView {
1078    fn new(state: Entity<State>) -> Self {
1079        let sign_in_callback = Arc::new({
1080            let state = state.clone();
1081            move |_window: &mut Window, cx: &mut App| {
1082                state.update(cx, |state, cx| {
1083                    state.authenticate(cx).detach_and_log_err(cx);
1084                });
1085            }
1086        });
1087
1088        Self {
1089            state,
1090            sign_in_callback,
1091        }
1092    }
1093}
1094
1095impl Render for ConfigurationView {
1096    fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
1097        let state = self.state.read(cx);
1098        let user_store = state.user_store.read(cx);
1099
1100        ZedAiConfiguration {
1101            is_connected: !state.is_signed_out(cx),
1102            plan: user_store.plan(),
1103            subscription_period: user_store.subscription_period(),
1104            eligible_for_trial: user_store.trial_started_at().is_none(),
1105            account_too_young: user_store.account_too_young(),
1106            sign_in_callback: self.sign_in_callback.clone(),
1107        }
1108    }
1109}
1110
1111impl Component for ZedAiConfiguration {
1112    fn name() -> &'static str {
1113        "AI Configuration Content"
1114    }
1115
1116    fn sort_name() -> &'static str {
1117        "AI Configuration Content"
1118    }
1119
1120    fn scope() -> ComponentScope {
1121        ComponentScope::Onboarding
1122    }
1123
1124    fn preview(_window: &mut Window, _cx: &mut App) -> Option<AnyElement> {
1125        fn configuration(
1126            is_connected: bool,
1127            plan: Option<Plan>,
1128            eligible_for_trial: bool,
1129            account_too_young: bool,
1130        ) -> AnyElement {
1131            ZedAiConfiguration {
1132                is_connected,
1133                plan,
1134                subscription_period: plan
1135                    .is_some()
1136                    .then(|| (Utc::now(), Utc::now() + chrono::Duration::days(7))),
1137                eligible_for_trial,
1138                account_too_young,
1139                sign_in_callback: Arc::new(|_, _| {}),
1140            }
1141            .into_any_element()
1142        }
1143
1144        Some(
1145            v_flex()
1146                .p_4()
1147                .gap_4()
1148                .children(vec![
1149                    single_example("Not connected", configuration(false, None, false, false)),
1150                    single_example(
1151                        "Accept Terms of Service",
1152                        configuration(true, None, true, false),
1153                    ),
1154                    single_example(
1155                        "No Plan - Not eligible for trial",
1156                        configuration(true, None, false, false),
1157                    ),
1158                    single_example(
1159                        "No Plan - Eligible for trial",
1160                        configuration(true, None, true, false),
1161                    ),
1162                    single_example(
1163                        "Free Plan",
1164                        configuration(true, Some(Plan::ZedFree), true, false),
1165                    ),
1166                    single_example(
1167                        "Zed Pro Trial Plan",
1168                        configuration(true, Some(Plan::ZedProTrial), true, false),
1169                    ),
1170                    single_example(
1171                        "Zed Pro Plan",
1172                        configuration(true, Some(Plan::ZedPro), true, false),
1173                    ),
1174                ])
1175                .into_any_element(),
1176        )
1177    }
1178}
1179
1180#[cfg(test)]
1181mod tests {
1182    use super::*;
1183    use http_client::http::{HeaderMap, StatusCode};
1184    use language_model::LanguageModelCompletionError;
1185
1186    #[test]
1187    fn test_api_error_conversion_with_upstream_http_error() {
1188        // upstream_http_error with 503 status should become ServerOverloaded
1189        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout","upstream_status":503}"#;
1190
1191        let api_error = ApiError {
1192            status: StatusCode::INTERNAL_SERVER_ERROR,
1193            body: error_body.to_string(),
1194            headers: HeaderMap::new(),
1195        };
1196
1197        let completion_error: LanguageModelCompletionError = api_error.into();
1198
1199        match completion_error {
1200            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1201                assert_eq!(
1202                    message,
1203                    "Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout"
1204                );
1205            }
1206            _ => panic!(
1207                "Expected UpstreamProviderError for upstream 503, got: {:?}",
1208                completion_error
1209            ),
1210        }
1211
1212        // upstream_http_error with 500 status should become ApiInternalServerError
1213        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the OpenAI API: internal server error","upstream_status":500}"#;
1214
1215        let api_error = ApiError {
1216            status: StatusCode::INTERNAL_SERVER_ERROR,
1217            body: error_body.to_string(),
1218            headers: HeaderMap::new(),
1219        };
1220
1221        let completion_error: LanguageModelCompletionError = api_error.into();
1222
1223        match completion_error {
1224            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1225                assert_eq!(
1226                    message,
1227                    "Received an error from the OpenAI API: internal server error"
1228                );
1229            }
1230            _ => panic!(
1231                "Expected UpstreamProviderError for upstream 500, got: {:?}",
1232                completion_error
1233            ),
1234        }
1235
1236        // upstream_http_error with 429 status should become RateLimitExceeded
1237        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the Google API: rate limit exceeded","upstream_status":429}"#;
1238
1239        let api_error = ApiError {
1240            status: StatusCode::INTERNAL_SERVER_ERROR,
1241            body: error_body.to_string(),
1242            headers: HeaderMap::new(),
1243        };
1244
1245        let completion_error: LanguageModelCompletionError = api_error.into();
1246
1247        match completion_error {
1248            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1249                assert_eq!(
1250                    message,
1251                    "Received an error from the Google API: rate limit exceeded"
1252                );
1253            }
1254            _ => panic!(
1255                "Expected UpstreamProviderError for upstream 429, got: {:?}",
1256                completion_error
1257            ),
1258        }
1259
1260        // Regular 500 error without upstream_http_error should remain ApiInternalServerError for Zed
1261        let error_body = "Regular internal server error";
1262
1263        let api_error = ApiError {
1264            status: StatusCode::INTERNAL_SERVER_ERROR,
1265            body: error_body.to_string(),
1266            headers: HeaderMap::new(),
1267        };
1268
1269        let completion_error: LanguageModelCompletionError = api_error.into();
1270
1271        match completion_error {
1272            LanguageModelCompletionError::ApiInternalServerError { provider, message } => {
1273                assert_eq!(provider, PROVIDER_NAME);
1274                assert_eq!(message, "Regular internal server error");
1275            }
1276            _ => panic!(
1277                "Expected ApiInternalServerError for regular 500, got: {:?}",
1278                completion_error
1279            ),
1280        }
1281
1282        // upstream_http_429 format should be converted to UpstreamProviderError
1283        let error_body = r#"{"code":"upstream_http_429","message":"Upstream Anthropic rate limit exceeded.","retry_after":30.5}"#;
1284
1285        let api_error = ApiError {
1286            status: StatusCode::INTERNAL_SERVER_ERROR,
1287            body: error_body.to_string(),
1288            headers: HeaderMap::new(),
1289        };
1290
1291        let completion_error: LanguageModelCompletionError = api_error.into();
1292
1293        match completion_error {
1294            LanguageModelCompletionError::UpstreamProviderError {
1295                message,
1296                status,
1297                retry_after,
1298            } => {
1299                assert_eq!(message, "Upstream Anthropic rate limit exceeded.");
1300                assert_eq!(status, StatusCode::TOO_MANY_REQUESTS);
1301                assert_eq!(retry_after, Some(Duration::from_secs_f64(30.5)));
1302            }
1303            _ => panic!(
1304                "Expected UpstreamProviderError for upstream_http_429, got: {:?}",
1305                completion_error
1306            ),
1307        }
1308
1309        // Invalid JSON in error body should fall back to regular error handling
1310        let error_body = "Not JSON at all";
1311
1312        let api_error = ApiError {
1313            status: StatusCode::INTERNAL_SERVER_ERROR,
1314            body: error_body.to_string(),
1315            headers: HeaderMap::new(),
1316        };
1317
1318        let completion_error: LanguageModelCompletionError = api_error.into();
1319
1320        match completion_error {
1321            LanguageModelCompletionError::ApiInternalServerError { provider, .. } => {
1322                assert_eq!(provider, PROVIDER_NAME);
1323            }
1324            _ => panic!(
1325                "Expected ApiInternalServerError for invalid JSON, got: {:?}",
1326                completion_error
1327            ),
1328        }
1329    }
1330}