cloud.rs

   1use ai_onboarding::YoungAccountBanner;
   2use anthropic::AnthropicModelMode;
   3use anyhow::{Context as _, Result, anyhow};
   4use chrono::{DateTime, Utc};
   5use client::{Client, UserStore, zed_urls};
   6use cloud_api_types::Plan;
   7use cloud_llm_client::{
   8    CLIENT_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, CLIENT_SUPPORTS_X_AI_HEADER_NAME, CompletionBody,
   9    CompletionEvent, CountTokensBody, CountTokensResponse, ListModelsResponse,
  10    SERVER_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, ZED_VERSION_HEADER_NAME,
  11};
  12use feature_flags::{CloudThinkingToggleFeatureFlag, FeatureFlagAppExt as _};
  13use futures::{
  14    AsyncBufReadExt, FutureExt, Stream, StreamExt, future::BoxFuture, stream::BoxStream,
  15};
  16use google_ai::GoogleModelMode;
  17use gpui::{AnyElement, AnyView, App, AsyncApp, Context, Entity, Subscription, Task};
  18use http_client::http::{HeaderMap, HeaderValue};
  19use http_client::{AsyncBody, HttpClient, HttpRequestExt, Method, Response, StatusCode};
  20use language_model::{
  21    AuthenticateError, IconOrSvg, LanguageModel, LanguageModelCacheConfiguration,
  22    LanguageModelCompletionError, LanguageModelCompletionEvent, LanguageModelId, LanguageModelName,
  23    LanguageModelProvider, LanguageModelProviderId, LanguageModelProviderName,
  24    LanguageModelProviderState, LanguageModelRequest, LanguageModelToolChoice,
  25    LanguageModelToolSchemaFormat, LlmApiToken, NeedsLlmTokenRefresh, PaymentRequiredError,
  26    RateLimiter, RefreshLlmTokenListener,
  27};
  28use release_channel::AppVersion;
  29use schemars::JsonSchema;
  30use semver::Version;
  31use serde::{Deserialize, Serialize, de::DeserializeOwned};
  32use settings::SettingsStore;
  33pub use settings::ZedDotDevAvailableModel as AvailableModel;
  34pub use settings::ZedDotDevAvailableProvider as AvailableProvider;
  35use smol::io::{AsyncReadExt, BufReader};
  36use std::pin::Pin;
  37use std::sync::Arc;
  38use std::time::Duration;
  39use thiserror::Error;
  40use ui::{TintColor, prelude::*};
  41use util::{ResultExt as _, maybe};
  42
  43use crate::provider::anthropic::{
  44    AnthropicEventMapper, count_anthropic_tokens_with_tiktoken, into_anthropic,
  45};
  46use crate::provider::google::{GoogleEventMapper, into_google};
  47use crate::provider::open_ai::{
  48    OpenAiEventMapper, OpenAiResponseEventMapper, count_open_ai_tokens, into_open_ai,
  49    into_open_ai_response,
  50};
  51use crate::provider::x_ai::count_xai_tokens;
  52
  53const PROVIDER_ID: LanguageModelProviderId = language_model::ZED_CLOUD_PROVIDER_ID;
  54const PROVIDER_NAME: LanguageModelProviderName = language_model::ZED_CLOUD_PROVIDER_NAME;
  55
  56#[derive(Default, Clone, Debug, PartialEq)]
  57pub struct ZedDotDevSettings {
  58    pub available_models: Vec<AvailableModel>,
  59}
  60#[derive(Default, Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
  61#[serde(tag = "type", rename_all = "lowercase")]
  62pub enum ModelMode {
  63    #[default]
  64    Default,
  65    Thinking {
  66        /// The maximum number of tokens to use for reasoning. Must be lower than the model's `max_output_tokens`.
  67        budget_tokens: Option<u32>,
  68    },
  69}
  70
  71impl From<ModelMode> for AnthropicModelMode {
  72    fn from(value: ModelMode) -> Self {
  73        match value {
  74            ModelMode::Default => AnthropicModelMode::Default,
  75            ModelMode::Thinking { budget_tokens } => AnthropicModelMode::Thinking { budget_tokens },
  76        }
  77    }
  78}
  79
  80pub struct CloudLanguageModelProvider {
  81    client: Arc<Client>,
  82    state: Entity<State>,
  83    _maintain_client_status: Task<()>,
  84}
  85
  86pub struct State {
  87    client: Arc<Client>,
  88    llm_api_token: LlmApiToken,
  89    user_store: Entity<UserStore>,
  90    status: client::Status,
  91    models: Vec<Arc<cloud_llm_client::LanguageModel>>,
  92    default_model: Option<Arc<cloud_llm_client::LanguageModel>>,
  93    default_fast_model: Option<Arc<cloud_llm_client::LanguageModel>>,
  94    recommended_models: Vec<Arc<cloud_llm_client::LanguageModel>>,
  95    _fetch_models_task: Task<()>,
  96    _settings_subscription: Subscription,
  97    _llm_token_subscription: Subscription,
  98}
  99
 100impl State {
 101    fn new(
 102        client: Arc<Client>,
 103        user_store: Entity<UserStore>,
 104        status: client::Status,
 105        cx: &mut Context<Self>,
 106    ) -> Self {
 107        let refresh_llm_token_listener = RefreshLlmTokenListener::global(cx);
 108        let mut current_user = user_store.read(cx).watch_current_user();
 109        Self {
 110            client: client.clone(),
 111            llm_api_token: LlmApiToken::default(),
 112            user_store,
 113            status,
 114            models: Vec::new(),
 115            default_model: None,
 116            default_fast_model: None,
 117            recommended_models: Vec::new(),
 118            _fetch_models_task: cx.spawn(async move |this, cx| {
 119                maybe!(async move {
 120                    let (client, llm_api_token) = this
 121                        .read_with(cx, |this, _cx| (client.clone(), this.llm_api_token.clone()))?;
 122
 123                    while current_user.borrow().is_none() {
 124                        current_user.next().await;
 125                    }
 126
 127                    let response =
 128                        Self::fetch_models(client.clone(), llm_api_token.clone()).await?;
 129                    this.update(cx, |this, cx| this.update_models(response, cx))?;
 130                    anyhow::Ok(())
 131                })
 132                .await
 133                .context("failed to fetch Zed models")
 134                .log_err();
 135            }),
 136            _settings_subscription: cx.observe_global::<SettingsStore>(|_, cx| {
 137                cx.notify();
 138            }),
 139            _llm_token_subscription: cx.subscribe(
 140                &refresh_llm_token_listener,
 141                move |this, _listener, _event, cx| {
 142                    let client = this.client.clone();
 143                    let llm_api_token = this.llm_api_token.clone();
 144                    cx.spawn(async move |this, cx| {
 145                        llm_api_token.refresh(&client).await?;
 146                        let response = Self::fetch_models(client, llm_api_token).await?;
 147                        this.update(cx, |this, cx| {
 148                            this.update_models(response, cx);
 149                        })
 150                    })
 151                    .detach_and_log_err(cx);
 152                },
 153            ),
 154        }
 155    }
 156
 157    fn is_signed_out(&self, cx: &App) -> bool {
 158        self.user_store.read(cx).current_user().is_none()
 159    }
 160
 161    fn authenticate(&self, cx: &mut Context<Self>) -> Task<Result<()>> {
 162        let client = self.client.clone();
 163        cx.spawn(async move |state, cx| {
 164            client.sign_in_with_optional_connect(true, cx).await?;
 165            state.update(cx, |_, cx| cx.notify())
 166        })
 167    }
 168
 169    fn update_models(&mut self, response: ListModelsResponse, cx: &mut Context<Self>) {
 170        let is_thinking_toggle_enabled = cx.has_flag::<CloudThinkingToggleFeatureFlag>();
 171
 172        let mut models = Vec::new();
 173
 174        for model in response.models {
 175            models.push(Arc::new(model.clone()));
 176
 177            if !is_thinking_toggle_enabled {
 178                // Right now we represent thinking variants of models as separate models on the client,
 179                // so we need to insert variants for any model that supports thinking.
 180                if model.supports_thinking {
 181                    models.push(Arc::new(cloud_llm_client::LanguageModel {
 182                        id: cloud_llm_client::LanguageModelId(
 183                            format!("{}-thinking", model.id).into(),
 184                        ),
 185                        display_name: format!("{} Thinking", model.display_name),
 186                        ..model
 187                    }));
 188                }
 189            }
 190        }
 191
 192        self.default_model = models
 193            .iter()
 194            .find(|model| {
 195                response
 196                    .default_model
 197                    .as_ref()
 198                    .is_some_and(|default_model_id| &model.id == default_model_id)
 199            })
 200            .cloned();
 201        self.default_fast_model = models
 202            .iter()
 203            .find(|model| {
 204                response
 205                    .default_fast_model
 206                    .as_ref()
 207                    .is_some_and(|default_fast_model_id| &model.id == default_fast_model_id)
 208            })
 209            .cloned();
 210        self.recommended_models = response
 211            .recommended_models
 212            .iter()
 213            .filter_map(|id| models.iter().find(|model| &model.id == id))
 214            .cloned()
 215            .collect();
 216        self.models = models;
 217        cx.notify();
 218    }
 219
 220    async fn fetch_models(
 221        client: Arc<Client>,
 222        llm_api_token: LlmApiToken,
 223    ) -> Result<ListModelsResponse> {
 224        let http_client = &client.http_client();
 225        let token = llm_api_token.acquire(&client).await?;
 226
 227        let request = http_client::Request::builder()
 228            .method(Method::GET)
 229            .header(CLIENT_SUPPORTS_X_AI_HEADER_NAME, "true")
 230            .uri(http_client.build_zed_llm_url("/models", &[])?.as_ref())
 231            .header("Authorization", format!("Bearer {token}"))
 232            .body(AsyncBody::empty())?;
 233        let mut response = http_client
 234            .send(request)
 235            .await
 236            .context("failed to send list models request")?;
 237
 238        if response.status().is_success() {
 239            let mut body = String::new();
 240            response.body_mut().read_to_string(&mut body).await?;
 241            Ok(serde_json::from_str(&body)?)
 242        } else {
 243            let mut body = String::new();
 244            response.body_mut().read_to_string(&mut body).await?;
 245            anyhow::bail!(
 246                "error listing models.\nStatus: {:?}\nBody: {body}",
 247                response.status(),
 248            );
 249        }
 250    }
 251}
 252
 253impl CloudLanguageModelProvider {
 254    pub fn new(user_store: Entity<UserStore>, client: Arc<Client>, cx: &mut App) -> Self {
 255        let mut status_rx = client.status();
 256        let status = *status_rx.borrow();
 257
 258        let state = cx.new(|cx| State::new(client.clone(), user_store.clone(), status, cx));
 259
 260        let state_ref = state.downgrade();
 261        let maintain_client_status = cx.spawn(async move |cx| {
 262            while let Some(status) = status_rx.next().await {
 263                if let Some(this) = state_ref.upgrade() {
 264                    _ = this.update(cx, |this, cx| {
 265                        if this.status != status {
 266                            this.status = status;
 267                            cx.notify();
 268                        }
 269                    });
 270                } else {
 271                    break;
 272                }
 273            }
 274        });
 275
 276        Self {
 277            client,
 278            state,
 279            _maintain_client_status: maintain_client_status,
 280        }
 281    }
 282
 283    fn create_language_model(
 284        &self,
 285        model: Arc<cloud_llm_client::LanguageModel>,
 286        llm_api_token: LlmApiToken,
 287    ) -> Arc<dyn LanguageModel> {
 288        Arc::new(CloudLanguageModel {
 289            id: LanguageModelId(SharedString::from(model.id.0.clone())),
 290            model,
 291            llm_api_token,
 292            client: self.client.clone(),
 293            request_limiter: RateLimiter::new(4),
 294        })
 295    }
 296}
 297
 298impl LanguageModelProviderState for CloudLanguageModelProvider {
 299    type ObservableEntity = State;
 300
 301    fn observable_entity(&self) -> Option<Entity<Self::ObservableEntity>> {
 302        Some(self.state.clone())
 303    }
 304}
 305
 306impl LanguageModelProvider for CloudLanguageModelProvider {
 307    fn id(&self) -> LanguageModelProviderId {
 308        PROVIDER_ID
 309    }
 310
 311    fn name(&self) -> LanguageModelProviderName {
 312        PROVIDER_NAME
 313    }
 314
 315    fn icon(&self) -> IconOrSvg {
 316        IconOrSvg::Icon(IconName::AiZed)
 317    }
 318
 319    fn default_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
 320        let default_model = self.state.read(cx).default_model.clone()?;
 321        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 322        Some(self.create_language_model(default_model, llm_api_token))
 323    }
 324
 325    fn default_fast_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
 326        let default_fast_model = self.state.read(cx).default_fast_model.clone()?;
 327        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 328        Some(self.create_language_model(default_fast_model, llm_api_token))
 329    }
 330
 331    fn recommended_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 332        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 333        self.state
 334            .read(cx)
 335            .recommended_models
 336            .iter()
 337            .cloned()
 338            .map(|model| self.create_language_model(model, llm_api_token.clone()))
 339            .collect()
 340    }
 341
 342    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 343        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 344        self.state
 345            .read(cx)
 346            .models
 347            .iter()
 348            .cloned()
 349            .map(|model| self.create_language_model(model, llm_api_token.clone()))
 350            .collect()
 351    }
 352
 353    fn is_authenticated(&self, cx: &App) -> bool {
 354        let state = self.state.read(cx);
 355        !state.is_signed_out(cx)
 356    }
 357
 358    fn authenticate(&self, _cx: &mut App) -> Task<Result<(), AuthenticateError>> {
 359        Task::ready(Ok(()))
 360    }
 361
 362    fn configuration_view(
 363        &self,
 364        _target_agent: language_model::ConfigurationViewTargetAgent,
 365        _: &mut Window,
 366        cx: &mut App,
 367    ) -> AnyView {
 368        cx.new(|_| ConfigurationView::new(self.state.clone()))
 369            .into()
 370    }
 371
 372    fn reset_credentials(&self, _cx: &mut App) -> Task<Result<()>> {
 373        Task::ready(Ok(()))
 374    }
 375}
 376
 377pub struct CloudLanguageModel {
 378    id: LanguageModelId,
 379    model: Arc<cloud_llm_client::LanguageModel>,
 380    llm_api_token: LlmApiToken,
 381    client: Arc<Client>,
 382    request_limiter: RateLimiter,
 383}
 384
 385struct PerformLlmCompletionResponse {
 386    response: Response<AsyncBody>,
 387    includes_status_messages: bool,
 388}
 389
 390impl CloudLanguageModel {
 391    async fn perform_llm_completion(
 392        client: Arc<Client>,
 393        llm_api_token: LlmApiToken,
 394        app_version: Option<Version>,
 395        body: CompletionBody,
 396    ) -> Result<PerformLlmCompletionResponse> {
 397        let http_client = &client.http_client();
 398
 399        let mut token = llm_api_token.acquire(&client).await?;
 400        let mut refreshed_token = false;
 401
 402        loop {
 403            let request = http_client::Request::builder()
 404                .method(Method::POST)
 405                .uri(http_client.build_zed_llm_url("/completions", &[])?.as_ref())
 406                .when_some(app_version.as_ref(), |builder, app_version| {
 407                    builder.header(ZED_VERSION_HEADER_NAME, app_version.to_string())
 408                })
 409                .header("Content-Type", "application/json")
 410                .header("Authorization", format!("Bearer {token}"))
 411                .header(CLIENT_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, "true")
 412                .body(serde_json::to_string(&body)?.into())?;
 413
 414            let mut response = http_client.send(request).await?;
 415            let status = response.status();
 416            if status.is_success() {
 417                let includes_status_messages = response
 418                    .headers()
 419                    .get(SERVER_SUPPORTS_STATUS_MESSAGES_HEADER_NAME)
 420                    .is_some();
 421
 422                return Ok(PerformLlmCompletionResponse {
 423                    response,
 424                    includes_status_messages,
 425                });
 426            }
 427
 428            if !refreshed_token && response.needs_llm_token_refresh() {
 429                token = llm_api_token.refresh(&client).await?;
 430                refreshed_token = true;
 431                continue;
 432            }
 433
 434            if status == StatusCode::PAYMENT_REQUIRED {
 435                return Err(anyhow!(PaymentRequiredError));
 436            }
 437
 438            let mut body = String::new();
 439            let headers = response.headers().clone();
 440            response.body_mut().read_to_string(&mut body).await?;
 441            return Err(anyhow!(ApiError {
 442                status,
 443                body,
 444                headers
 445            }));
 446        }
 447    }
 448}
 449
 450#[derive(Debug, Error)]
 451#[error("cloud language model request failed with status {status}: {body}")]
 452struct ApiError {
 453    status: StatusCode,
 454    body: String,
 455    headers: HeaderMap<HeaderValue>,
 456}
 457
 458/// Represents error responses from Zed's cloud API.
 459///
 460/// Example JSON for an upstream HTTP error:
 461/// ```json
 462/// {
 463///   "code": "upstream_http_error",
 464///   "message": "Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout",
 465///   "upstream_status": 503
 466/// }
 467/// ```
 468#[derive(Debug, serde::Deserialize)]
 469struct CloudApiError {
 470    code: String,
 471    message: String,
 472    #[serde(default)]
 473    #[serde(deserialize_with = "deserialize_optional_status_code")]
 474    upstream_status: Option<StatusCode>,
 475    #[serde(default)]
 476    retry_after: Option<f64>,
 477}
 478
 479fn deserialize_optional_status_code<'de, D>(deserializer: D) -> Result<Option<StatusCode>, D::Error>
 480where
 481    D: serde::Deserializer<'de>,
 482{
 483    let opt: Option<u16> = Option::deserialize(deserializer)?;
 484    Ok(opt.and_then(|code| StatusCode::from_u16(code).ok()))
 485}
 486
 487impl From<ApiError> for LanguageModelCompletionError {
 488    fn from(error: ApiError) -> Self {
 489        if let Ok(cloud_error) = serde_json::from_str::<CloudApiError>(&error.body) {
 490            if cloud_error.code.starts_with("upstream_http_") {
 491                let status = if let Some(status) = cloud_error.upstream_status {
 492                    status
 493                } else if cloud_error.code.ends_with("_error") {
 494                    error.status
 495                } else {
 496                    // If there's a status code in the code string (e.g. "upstream_http_429")
 497                    // then use that; otherwise, see if the JSON contains a status code.
 498                    cloud_error
 499                        .code
 500                        .strip_prefix("upstream_http_")
 501                        .and_then(|code_str| code_str.parse::<u16>().ok())
 502                        .and_then(|code| StatusCode::from_u16(code).ok())
 503                        .unwrap_or(error.status)
 504                };
 505
 506                return LanguageModelCompletionError::UpstreamProviderError {
 507                    message: cloud_error.message,
 508                    status,
 509                    retry_after: cloud_error.retry_after.map(Duration::from_secs_f64),
 510                };
 511            }
 512
 513            return LanguageModelCompletionError::from_http_status(
 514                PROVIDER_NAME,
 515                error.status,
 516                cloud_error.message,
 517                None,
 518            );
 519        }
 520
 521        let retry_after = None;
 522        LanguageModelCompletionError::from_http_status(
 523            PROVIDER_NAME,
 524            error.status,
 525            error.body,
 526            retry_after,
 527        )
 528    }
 529}
 530
 531impl LanguageModel for CloudLanguageModel {
 532    fn id(&self) -> LanguageModelId {
 533        self.id.clone()
 534    }
 535
 536    fn name(&self) -> LanguageModelName {
 537        LanguageModelName::from(self.model.display_name.clone())
 538    }
 539
 540    fn provider_id(&self) -> LanguageModelProviderId {
 541        PROVIDER_ID
 542    }
 543
 544    fn provider_name(&self) -> LanguageModelProviderName {
 545        PROVIDER_NAME
 546    }
 547
 548    fn upstream_provider_id(&self) -> LanguageModelProviderId {
 549        use cloud_llm_client::LanguageModelProvider::*;
 550        match self.model.provider {
 551            Anthropic => language_model::ANTHROPIC_PROVIDER_ID,
 552            OpenAi => language_model::OPEN_AI_PROVIDER_ID,
 553            Google => language_model::GOOGLE_PROVIDER_ID,
 554            XAi => language_model::X_AI_PROVIDER_ID,
 555        }
 556    }
 557
 558    fn upstream_provider_name(&self) -> LanguageModelProviderName {
 559        use cloud_llm_client::LanguageModelProvider::*;
 560        match self.model.provider {
 561            Anthropic => language_model::ANTHROPIC_PROVIDER_NAME,
 562            OpenAi => language_model::OPEN_AI_PROVIDER_NAME,
 563            Google => language_model::GOOGLE_PROVIDER_NAME,
 564            XAi => language_model::X_AI_PROVIDER_NAME,
 565        }
 566    }
 567
 568    fn supports_tools(&self) -> bool {
 569        self.model.supports_tools
 570    }
 571
 572    fn supports_images(&self) -> bool {
 573        self.model.supports_images
 574    }
 575
 576    fn supports_thinking(&self) -> bool {
 577        self.model.supports_thinking
 578    }
 579
 580    fn supports_streaming_tools(&self) -> bool {
 581        self.model.supports_streaming_tools
 582    }
 583
 584    fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
 585        match choice {
 586            LanguageModelToolChoice::Auto
 587            | LanguageModelToolChoice::Any
 588            | LanguageModelToolChoice::None => true,
 589        }
 590    }
 591
 592    fn supports_split_token_display(&self) -> bool {
 593        use cloud_llm_client::LanguageModelProvider::*;
 594        matches!(self.model.provider, OpenAi)
 595    }
 596
 597    fn telemetry_id(&self) -> String {
 598        format!("zed.dev/{}", self.model.id)
 599    }
 600
 601    fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
 602        match self.model.provider {
 603            cloud_llm_client::LanguageModelProvider::Anthropic
 604            | cloud_llm_client::LanguageModelProvider::OpenAi
 605            | cloud_llm_client::LanguageModelProvider::XAi => {
 606                LanguageModelToolSchemaFormat::JsonSchema
 607            }
 608            cloud_llm_client::LanguageModelProvider::Google => {
 609                LanguageModelToolSchemaFormat::JsonSchemaSubset
 610            }
 611        }
 612    }
 613
 614    fn max_token_count(&self) -> u64 {
 615        self.model.max_token_count as u64
 616    }
 617
 618    fn max_output_tokens(&self) -> Option<u64> {
 619        Some(self.model.max_output_tokens as u64)
 620    }
 621
 622    fn cache_configuration(&self) -> Option<LanguageModelCacheConfiguration> {
 623        match &self.model.provider {
 624            cloud_llm_client::LanguageModelProvider::Anthropic => {
 625                Some(LanguageModelCacheConfiguration {
 626                    min_total_token: 2_048,
 627                    should_speculate: true,
 628                    max_cache_anchors: 4,
 629                })
 630            }
 631            cloud_llm_client::LanguageModelProvider::OpenAi
 632            | cloud_llm_client::LanguageModelProvider::XAi
 633            | cloud_llm_client::LanguageModelProvider::Google => None,
 634        }
 635    }
 636
 637    fn count_tokens(
 638        &self,
 639        request: LanguageModelRequest,
 640        cx: &App,
 641    ) -> BoxFuture<'static, Result<u64>> {
 642        match self.model.provider {
 643            cloud_llm_client::LanguageModelProvider::Anthropic => cx
 644                .background_spawn(async move { count_anthropic_tokens_with_tiktoken(request) })
 645                .boxed(),
 646            cloud_llm_client::LanguageModelProvider::OpenAi => {
 647                let model = match open_ai::Model::from_id(&self.model.id.0) {
 648                    Ok(model) => model,
 649                    Err(err) => return async move { Err(anyhow!(err)) }.boxed(),
 650                };
 651                count_open_ai_tokens(request, model, cx)
 652            }
 653            cloud_llm_client::LanguageModelProvider::XAi => {
 654                let model = match x_ai::Model::from_id(&self.model.id.0) {
 655                    Ok(model) => model,
 656                    Err(err) => return async move { Err(anyhow!(err)) }.boxed(),
 657                };
 658                count_xai_tokens(request, model, cx)
 659            }
 660            cloud_llm_client::LanguageModelProvider::Google => {
 661                let client = self.client.clone();
 662                let llm_api_token = self.llm_api_token.clone();
 663                let model_id = self.model.id.to_string();
 664                let generate_content_request =
 665                    into_google(request, model_id.clone(), GoogleModelMode::Default);
 666                async move {
 667                    let http_client = &client.http_client();
 668                    let token = llm_api_token.acquire(&client).await?;
 669
 670                    let request_body = CountTokensBody {
 671                        provider: cloud_llm_client::LanguageModelProvider::Google,
 672                        model: model_id,
 673                        provider_request: serde_json::to_value(&google_ai::CountTokensRequest {
 674                            generate_content_request,
 675                        })?,
 676                    };
 677                    let request = http_client::Request::builder()
 678                        .method(Method::POST)
 679                        .uri(
 680                            http_client
 681                                .build_zed_llm_url("/count_tokens", &[])?
 682                                .as_ref(),
 683                        )
 684                        .header("Content-Type", "application/json")
 685                        .header("Authorization", format!("Bearer {token}"))
 686                        .body(serde_json::to_string(&request_body)?.into())?;
 687                    let mut response = http_client.send(request).await?;
 688                    let status = response.status();
 689                    let headers = response.headers().clone();
 690                    let mut response_body = String::new();
 691                    response
 692                        .body_mut()
 693                        .read_to_string(&mut response_body)
 694                        .await?;
 695
 696                    if status.is_success() {
 697                        let response_body: CountTokensResponse =
 698                            serde_json::from_str(&response_body)?;
 699
 700                        Ok(response_body.tokens as u64)
 701                    } else {
 702                        Err(anyhow!(ApiError {
 703                            status,
 704                            body: response_body,
 705                            headers
 706                        }))
 707                    }
 708                }
 709                .boxed()
 710            }
 711        }
 712    }
 713
 714    fn stream_completion(
 715        &self,
 716        request: LanguageModelRequest,
 717        cx: &AsyncApp,
 718    ) -> BoxFuture<
 719        'static,
 720        Result<
 721            BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>,
 722            LanguageModelCompletionError,
 723        >,
 724    > {
 725        let thread_id = request.thread_id.clone();
 726        let prompt_id = request.prompt_id.clone();
 727        let intent = request.intent;
 728        let app_version = Some(cx.update(|cx| AppVersion::global(cx)));
 729        let thinking_allowed = request.thinking_allowed;
 730        let is_thinking_toggle_enabled =
 731            cx.update(|cx| cx.has_flag::<CloudThinkingToggleFeatureFlag>());
 732        let enable_thinking = if is_thinking_toggle_enabled {
 733            thinking_allowed && self.model.supports_thinking
 734        } else {
 735            thinking_allowed && self.model.id.0.ends_with("-thinking")
 736        };
 737        let provider_name = provider_name(&self.model.provider);
 738        match self.model.provider {
 739            cloud_llm_client::LanguageModelProvider::Anthropic => {
 740                let request = into_anthropic(
 741                    request,
 742                    self.model.id.to_string(),
 743                    1.0,
 744                    self.model.max_output_tokens as u64,
 745                    if enable_thinking {
 746                        AnthropicModelMode::Thinking {
 747                            budget_tokens: Some(4_096),
 748                        }
 749                    } else {
 750                        AnthropicModelMode::Default
 751                    },
 752                );
 753                let client = self.client.clone();
 754                let llm_api_token = self.llm_api_token.clone();
 755                let future = self.request_limiter.stream(async move {
 756                    let PerformLlmCompletionResponse {
 757                        response,
 758                        includes_status_messages,
 759                    } = Self::perform_llm_completion(
 760                        client.clone(),
 761                        llm_api_token,
 762                        app_version,
 763                        CompletionBody {
 764                            thread_id,
 765                            prompt_id,
 766                            intent,
 767                            provider: cloud_llm_client::LanguageModelProvider::Anthropic,
 768                            model: request.model.clone(),
 769                            provider_request: serde_json::to_value(&request)
 770                                .map_err(|e| anyhow!(e))?,
 771                        },
 772                    )
 773                    .await
 774                    .map_err(|err| match err.downcast::<ApiError>() {
 775                        Ok(api_err) => anyhow!(LanguageModelCompletionError::from(api_err)),
 776                        Err(err) => anyhow!(err),
 777                    })?;
 778
 779                    let mut mapper = AnthropicEventMapper::new();
 780                    Ok(map_cloud_completion_events(
 781                        Box::pin(response_lines(response, includes_status_messages)),
 782                        &provider_name,
 783                        move |event| mapper.map_event(event),
 784                    ))
 785                });
 786                async move { Ok(future.await?.boxed()) }.boxed()
 787            }
 788            cloud_llm_client::LanguageModelProvider::OpenAi => {
 789                let client = self.client.clone();
 790                let llm_api_token = self.llm_api_token.clone();
 791
 792                let request = into_open_ai_response(
 793                    request,
 794                    &self.model.id.0,
 795                    self.model.supports_parallel_tool_calls,
 796                    true,
 797                    None,
 798                    None,
 799                );
 800                let future = self.request_limiter.stream(async move {
 801                    let PerformLlmCompletionResponse {
 802                        response,
 803                        includes_status_messages,
 804                    } = Self::perform_llm_completion(
 805                        client.clone(),
 806                        llm_api_token,
 807                        app_version,
 808                        CompletionBody {
 809                            thread_id,
 810                            prompt_id,
 811                            intent,
 812                            provider: cloud_llm_client::LanguageModelProvider::OpenAi,
 813                            model: request.model.clone(),
 814                            provider_request: serde_json::to_value(&request)
 815                                .map_err(|e| anyhow!(e))?,
 816                        },
 817                    )
 818                    .await?;
 819
 820                    let mut mapper = OpenAiResponseEventMapper::new();
 821                    Ok(map_cloud_completion_events(
 822                        Box::pin(response_lines(response, includes_status_messages)),
 823                        &provider_name,
 824                        move |event| mapper.map_event(event),
 825                    ))
 826                });
 827                async move { Ok(future.await?.boxed()) }.boxed()
 828            }
 829            cloud_llm_client::LanguageModelProvider::XAi => {
 830                let client = self.client.clone();
 831                let request = into_open_ai(
 832                    request,
 833                    &self.model.id.0,
 834                    self.model.supports_parallel_tool_calls,
 835                    false,
 836                    None,
 837                    None,
 838                );
 839                let llm_api_token = self.llm_api_token.clone();
 840                let future = self.request_limiter.stream(async move {
 841                    let PerformLlmCompletionResponse {
 842                        response,
 843                        includes_status_messages,
 844                    } = Self::perform_llm_completion(
 845                        client.clone(),
 846                        llm_api_token,
 847                        app_version,
 848                        CompletionBody {
 849                            thread_id,
 850                            prompt_id,
 851                            intent,
 852                            provider: cloud_llm_client::LanguageModelProvider::XAi,
 853                            model: request.model.clone(),
 854                            provider_request: serde_json::to_value(&request)
 855                                .map_err(|e| anyhow!(e))?,
 856                        },
 857                    )
 858                    .await?;
 859
 860                    let mut mapper = OpenAiEventMapper::new();
 861                    Ok(map_cloud_completion_events(
 862                        Box::pin(response_lines(response, includes_status_messages)),
 863                        &provider_name,
 864                        move |event| mapper.map_event(event),
 865                    ))
 866                });
 867                async move { Ok(future.await?.boxed()) }.boxed()
 868            }
 869            cloud_llm_client::LanguageModelProvider::Google => {
 870                let client = self.client.clone();
 871                let request =
 872                    into_google(request, self.model.id.to_string(), GoogleModelMode::Default);
 873                let llm_api_token = self.llm_api_token.clone();
 874                let future = self.request_limiter.stream(async move {
 875                    let PerformLlmCompletionResponse {
 876                        response,
 877                        includes_status_messages,
 878                    } = Self::perform_llm_completion(
 879                        client.clone(),
 880                        llm_api_token,
 881                        app_version,
 882                        CompletionBody {
 883                            thread_id,
 884                            prompt_id,
 885                            intent,
 886                            provider: cloud_llm_client::LanguageModelProvider::Google,
 887                            model: request.model.model_id.clone(),
 888                            provider_request: serde_json::to_value(&request)
 889                                .map_err(|e| anyhow!(e))?,
 890                        },
 891                    )
 892                    .await?;
 893
 894                    let mut mapper = GoogleEventMapper::new();
 895                    Ok(map_cloud_completion_events(
 896                        Box::pin(response_lines(response, includes_status_messages)),
 897                        &provider_name,
 898                        move |event| mapper.map_event(event),
 899                    ))
 900                });
 901                async move { Ok(future.await?.boxed()) }.boxed()
 902            }
 903        }
 904    }
 905}
 906
 907fn map_cloud_completion_events<T, F>(
 908    stream: Pin<Box<dyn Stream<Item = Result<CompletionEvent<T>>> + Send>>,
 909    provider: &LanguageModelProviderName,
 910    mut map_callback: F,
 911) -> BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 912where
 913    T: DeserializeOwned + 'static,
 914    F: FnMut(T) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 915        + Send
 916        + 'static,
 917{
 918    let provider = provider.clone();
 919    stream
 920        .flat_map(move |event| {
 921            futures::stream::iter(match event {
 922                Err(error) => {
 923                    vec![Err(LanguageModelCompletionError::from(error))]
 924                }
 925                Ok(CompletionEvent::Status(event)) => {
 926                    vec![
 927                        LanguageModelCompletionEvent::from_completion_request_status(
 928                            event,
 929                            provider.clone(),
 930                        ),
 931                    ]
 932                }
 933                Ok(CompletionEvent::Event(event)) => map_callback(event),
 934            })
 935        })
 936        .boxed()
 937}
 938
 939fn provider_name(provider: &cloud_llm_client::LanguageModelProvider) -> LanguageModelProviderName {
 940    match provider {
 941        cloud_llm_client::LanguageModelProvider::Anthropic => {
 942            language_model::ANTHROPIC_PROVIDER_NAME
 943        }
 944        cloud_llm_client::LanguageModelProvider::OpenAi => language_model::OPEN_AI_PROVIDER_NAME,
 945        cloud_llm_client::LanguageModelProvider::Google => language_model::GOOGLE_PROVIDER_NAME,
 946        cloud_llm_client::LanguageModelProvider::XAi => language_model::X_AI_PROVIDER_NAME,
 947    }
 948}
 949
 950fn response_lines<T: DeserializeOwned>(
 951    response: Response<AsyncBody>,
 952    includes_status_messages: bool,
 953) -> impl Stream<Item = Result<CompletionEvent<T>>> {
 954    futures::stream::try_unfold(
 955        (String::new(), BufReader::new(response.into_body())),
 956        move |(mut line, mut body)| async move {
 957            match body.read_line(&mut line).await {
 958                Ok(0) => Ok(None),
 959                Ok(_) => {
 960                    let event = if includes_status_messages {
 961                        serde_json::from_str::<CompletionEvent<T>>(&line)?
 962                    } else {
 963                        CompletionEvent::Event(serde_json::from_str::<T>(&line)?)
 964                    };
 965
 966                    line.clear();
 967                    Ok(Some((event, (line, body))))
 968                }
 969                Err(e) => Err(e.into()),
 970            }
 971        },
 972    )
 973}
 974
 975#[derive(IntoElement, RegisterComponent)]
 976struct ZedAiConfiguration {
 977    is_connected: bool,
 978    plan: Option<Plan>,
 979    subscription_period: Option<(DateTime<Utc>, DateTime<Utc>)>,
 980    eligible_for_trial: bool,
 981    account_too_young: bool,
 982    sign_in_callback: Arc<dyn Fn(&mut Window, &mut App) + Send + Sync>,
 983}
 984
 985impl RenderOnce for ZedAiConfiguration {
 986    fn render(self, _window: &mut Window, _cx: &mut App) -> impl IntoElement {
 987        let is_pro = self.plan.is_some_and(|plan| plan == Plan::ZedPro);
 988        let subscription_text = match (self.plan, self.subscription_period) {
 989            (Some(Plan::ZedPro), Some(_)) => {
 990                "You have access to Zed's hosted models through your Pro subscription."
 991            }
 992            (Some(Plan::ZedProTrial), Some(_)) => {
 993                "You have access to Zed's hosted models through your Pro trial."
 994            }
 995            (Some(Plan::ZedFree), Some(_)) => {
 996                if self.eligible_for_trial {
 997                    "Subscribe for access to Zed's hosted models. Start with a 14 day free trial."
 998                } else {
 999                    "Subscribe for access to Zed's hosted models."
1000                }
1001            }
1002            _ => {
1003                if self.eligible_for_trial {
1004                    "Subscribe for access to Zed's hosted models. Start with a 14 day free trial."
1005                } else {
1006                    "Subscribe for access to Zed's hosted models."
1007                }
1008            }
1009        };
1010
1011        let manage_subscription_buttons = if is_pro {
1012            Button::new("manage_settings", "Manage Subscription")
1013                .full_width()
1014                .style(ButtonStyle::Tinted(TintColor::Accent))
1015                .on_click(|_, _, cx| cx.open_url(&zed_urls::account_url(cx)))
1016                .into_any_element()
1017        } else if self.plan.is_none() || self.eligible_for_trial {
1018            Button::new("start_trial", "Start 14-day Free Pro Trial")
1019                .full_width()
1020                .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1021                .on_click(|_, _, cx| cx.open_url(&zed_urls::start_trial_url(cx)))
1022                .into_any_element()
1023        } else {
1024            Button::new("upgrade", "Upgrade to Pro")
1025                .full_width()
1026                .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1027                .on_click(|_, _, cx| cx.open_url(&zed_urls::upgrade_to_zed_pro_url(cx)))
1028                .into_any_element()
1029        };
1030
1031        if !self.is_connected {
1032            return v_flex()
1033                .gap_2()
1034                .child(Label::new("Sign in to have access to Zed's complete agentic experience with hosted models."))
1035                .child(
1036                    Button::new("sign_in", "Sign In to use Zed AI")
1037                        .icon_color(Color::Muted)
1038                        .icon(IconName::Github)
1039                        .icon_size(IconSize::Small)
1040                        .icon_position(IconPosition::Start)
1041                        .full_width()
1042                        .on_click({
1043                            let callback = self.sign_in_callback.clone();
1044                            move |_, window, cx| (callback)(window, cx)
1045                        }),
1046                );
1047        }
1048
1049        v_flex().gap_2().w_full().map(|this| {
1050            if self.account_too_young {
1051                this.child(YoungAccountBanner).child(
1052                    Button::new("upgrade", "Upgrade to Pro")
1053                        .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1054                        .full_width()
1055                        .on_click(|_, _, cx| cx.open_url(&zed_urls::upgrade_to_zed_pro_url(cx))),
1056                )
1057            } else {
1058                this.text_sm()
1059                    .child(subscription_text)
1060                    .child(manage_subscription_buttons)
1061            }
1062        })
1063    }
1064}
1065
1066struct ConfigurationView {
1067    state: Entity<State>,
1068    sign_in_callback: Arc<dyn Fn(&mut Window, &mut App) + Send + Sync>,
1069}
1070
1071impl ConfigurationView {
1072    fn new(state: Entity<State>) -> Self {
1073        let sign_in_callback = Arc::new({
1074            let state = state.clone();
1075            move |_window: &mut Window, cx: &mut App| {
1076                state.update(cx, |state, cx| {
1077                    state.authenticate(cx).detach_and_log_err(cx);
1078                });
1079            }
1080        });
1081
1082        Self {
1083            state,
1084            sign_in_callback,
1085        }
1086    }
1087}
1088
1089impl Render for ConfigurationView {
1090    fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
1091        let state = self.state.read(cx);
1092        let user_store = state.user_store.read(cx);
1093
1094        ZedAiConfiguration {
1095            is_connected: !state.is_signed_out(cx),
1096            plan: user_store.plan(),
1097            subscription_period: user_store.subscription_period(),
1098            eligible_for_trial: user_store.trial_started_at().is_none(),
1099            account_too_young: user_store.account_too_young(),
1100            sign_in_callback: self.sign_in_callback.clone(),
1101        }
1102    }
1103}
1104
1105impl Component for ZedAiConfiguration {
1106    fn name() -> &'static str {
1107        "AI Configuration Content"
1108    }
1109
1110    fn sort_name() -> &'static str {
1111        "AI Configuration Content"
1112    }
1113
1114    fn scope() -> ComponentScope {
1115        ComponentScope::Onboarding
1116    }
1117
1118    fn preview(_window: &mut Window, _cx: &mut App) -> Option<AnyElement> {
1119        fn configuration(
1120            is_connected: bool,
1121            plan: Option<Plan>,
1122            eligible_for_trial: bool,
1123            account_too_young: bool,
1124        ) -> AnyElement {
1125            ZedAiConfiguration {
1126                is_connected,
1127                plan,
1128                subscription_period: plan
1129                    .is_some()
1130                    .then(|| (Utc::now(), Utc::now() + chrono::Duration::days(7))),
1131                eligible_for_trial,
1132                account_too_young,
1133                sign_in_callback: Arc::new(|_, _| {}),
1134            }
1135            .into_any_element()
1136        }
1137
1138        Some(
1139            v_flex()
1140                .p_4()
1141                .gap_4()
1142                .children(vec![
1143                    single_example("Not connected", configuration(false, None, false, false)),
1144                    single_example(
1145                        "Accept Terms of Service",
1146                        configuration(true, None, true, false),
1147                    ),
1148                    single_example(
1149                        "No Plan - Not eligible for trial",
1150                        configuration(true, None, false, false),
1151                    ),
1152                    single_example(
1153                        "No Plan - Eligible for trial",
1154                        configuration(true, None, true, false),
1155                    ),
1156                    single_example(
1157                        "Free Plan",
1158                        configuration(true, Some(Plan::ZedFree), true, false),
1159                    ),
1160                    single_example(
1161                        "Zed Pro Trial Plan",
1162                        configuration(true, Some(Plan::ZedProTrial), true, false),
1163                    ),
1164                    single_example(
1165                        "Zed Pro Plan",
1166                        configuration(true, Some(Plan::ZedPro), true, false),
1167                    ),
1168                ])
1169                .into_any_element(),
1170        )
1171    }
1172}
1173
1174#[cfg(test)]
1175mod tests {
1176    use super::*;
1177    use http_client::http::{HeaderMap, StatusCode};
1178    use language_model::LanguageModelCompletionError;
1179
1180    #[test]
1181    fn test_api_error_conversion_with_upstream_http_error() {
1182        // upstream_http_error with 503 status should become ServerOverloaded
1183        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout","upstream_status":503}"#;
1184
1185        let api_error = ApiError {
1186            status: StatusCode::INTERNAL_SERVER_ERROR,
1187            body: error_body.to_string(),
1188            headers: HeaderMap::new(),
1189        };
1190
1191        let completion_error: LanguageModelCompletionError = api_error.into();
1192
1193        match completion_error {
1194            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1195                assert_eq!(
1196                    message,
1197                    "Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout"
1198                );
1199            }
1200            _ => panic!(
1201                "Expected UpstreamProviderError for upstream 503, got: {:?}",
1202                completion_error
1203            ),
1204        }
1205
1206        // upstream_http_error with 500 status should become ApiInternalServerError
1207        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the OpenAI API: internal server error","upstream_status":500}"#;
1208
1209        let api_error = ApiError {
1210            status: StatusCode::INTERNAL_SERVER_ERROR,
1211            body: error_body.to_string(),
1212            headers: HeaderMap::new(),
1213        };
1214
1215        let completion_error: LanguageModelCompletionError = api_error.into();
1216
1217        match completion_error {
1218            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1219                assert_eq!(
1220                    message,
1221                    "Received an error from the OpenAI API: internal server error"
1222                );
1223            }
1224            _ => panic!(
1225                "Expected UpstreamProviderError for upstream 500, got: {:?}",
1226                completion_error
1227            ),
1228        }
1229
1230        // upstream_http_error with 429 status should become RateLimitExceeded
1231        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the Google API: rate limit exceeded","upstream_status":429}"#;
1232
1233        let api_error = ApiError {
1234            status: StatusCode::INTERNAL_SERVER_ERROR,
1235            body: error_body.to_string(),
1236            headers: HeaderMap::new(),
1237        };
1238
1239        let completion_error: LanguageModelCompletionError = api_error.into();
1240
1241        match completion_error {
1242            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1243                assert_eq!(
1244                    message,
1245                    "Received an error from the Google API: rate limit exceeded"
1246                );
1247            }
1248            _ => panic!(
1249                "Expected UpstreamProviderError for upstream 429, got: {:?}",
1250                completion_error
1251            ),
1252        }
1253
1254        // Regular 500 error without upstream_http_error should remain ApiInternalServerError for Zed
1255        let error_body = "Regular internal server error";
1256
1257        let api_error = ApiError {
1258            status: StatusCode::INTERNAL_SERVER_ERROR,
1259            body: error_body.to_string(),
1260            headers: HeaderMap::new(),
1261        };
1262
1263        let completion_error: LanguageModelCompletionError = api_error.into();
1264
1265        match completion_error {
1266            LanguageModelCompletionError::ApiInternalServerError { provider, message } => {
1267                assert_eq!(provider, PROVIDER_NAME);
1268                assert_eq!(message, "Regular internal server error");
1269            }
1270            _ => panic!(
1271                "Expected ApiInternalServerError for regular 500, got: {:?}",
1272                completion_error
1273            ),
1274        }
1275
1276        // upstream_http_429 format should be converted to UpstreamProviderError
1277        let error_body = r#"{"code":"upstream_http_429","message":"Upstream Anthropic rate limit exceeded.","retry_after":30.5}"#;
1278
1279        let api_error = ApiError {
1280            status: StatusCode::INTERNAL_SERVER_ERROR,
1281            body: error_body.to_string(),
1282            headers: HeaderMap::new(),
1283        };
1284
1285        let completion_error: LanguageModelCompletionError = api_error.into();
1286
1287        match completion_error {
1288            LanguageModelCompletionError::UpstreamProviderError {
1289                message,
1290                status,
1291                retry_after,
1292            } => {
1293                assert_eq!(message, "Upstream Anthropic rate limit exceeded.");
1294                assert_eq!(status, StatusCode::TOO_MANY_REQUESTS);
1295                assert_eq!(retry_after, Some(Duration::from_secs_f64(30.5)));
1296            }
1297            _ => panic!(
1298                "Expected UpstreamProviderError for upstream_http_429, got: {:?}",
1299                completion_error
1300            ),
1301        }
1302
1303        // Invalid JSON in error body should fall back to regular error handling
1304        let error_body = "Not JSON at all";
1305
1306        let api_error = ApiError {
1307            status: StatusCode::INTERNAL_SERVER_ERROR,
1308            body: error_body.to_string(),
1309            headers: HeaderMap::new(),
1310        };
1311
1312        let completion_error: LanguageModelCompletionError = api_error.into();
1313
1314        match completion_error {
1315            LanguageModelCompletionError::ApiInternalServerError { provider, .. } => {
1316                assert_eq!(provider, PROVIDER_NAME);
1317            }
1318            _ => panic!(
1319                "Expected ApiInternalServerError for invalid JSON, got: {:?}",
1320                completion_error
1321            ),
1322        }
1323    }
1324}