window.rs

   1#[cfg(any(feature = "inspector", debug_assertions))]
   2use crate::Inspector;
   3use crate::{
   4    Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
   5    AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Capslock,
   6    Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
   7    DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
   8    FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
   9    KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
  10    LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
  11    MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
  12    PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptButton, PromptLevel, Quad,
  13    Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge,
  14    SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS, ScaledPixels, Scene, Shadow, SharedString, Size,
  15    StrikethroughStyle, Style, SubscriberSet, Subscription, TaffyLayoutEngine, Task, TextStyle,
  16    TextStyleRefinement, TransformationMatrix, Underline, UnderlineStyle, WindowAppearance,
  17    WindowBackgroundAppearance, WindowBounds, WindowControls, WindowDecorations, WindowOptions,
  18    WindowParams, WindowTextSystem, point, prelude::*, px, rems, size, transparent_black,
  19};
  20use anyhow::{Context as _, Result, anyhow};
  21use collections::{FxHashMap, FxHashSet};
  22#[cfg(target_os = "macos")]
  23use core_video::pixel_buffer::CVPixelBuffer;
  24use derive_more::{Deref, DerefMut};
  25use futures::FutureExt;
  26use futures::channel::oneshot;
  27use itertools::FoldWhile::{Continue, Done};
  28use itertools::Itertools;
  29use parking_lot::RwLock;
  30use raw_window_handle::{HandleError, HasDisplayHandle, HasWindowHandle};
  31use refineable::Refineable;
  32use slotmap::SlotMap;
  33use smallvec::SmallVec;
  34use std::{
  35    any::{Any, TypeId},
  36    borrow::Cow,
  37    cell::{Cell, RefCell},
  38    cmp,
  39    fmt::{Debug, Display},
  40    hash::{Hash, Hasher},
  41    marker::PhantomData,
  42    mem,
  43    ops::{DerefMut, Range},
  44    rc::Rc,
  45    sync::{
  46        Arc, Weak,
  47        atomic::{AtomicUsize, Ordering::SeqCst},
  48    },
  49    time::{Duration, Instant},
  50};
  51use util::post_inc;
  52use util::{ResultExt, measure};
  53use uuid::Uuid;
  54
  55mod prompts;
  56
  57use crate::util::atomic_incr_if_not_zero;
  58pub use prompts::*;
  59
  60pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1024.), px(700.));
  61
  62/// Represents the two different phases when dispatching events.
  63#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
  64pub enum DispatchPhase {
  65    /// After the capture phase comes the bubble phase, in which mouse event listeners are
  66    /// invoked front to back and keyboard event listeners are invoked from the focused element
  67    /// to the root of the element tree. This is the phase you'll most commonly want to use when
  68    /// registering event listeners.
  69    #[default]
  70    Bubble,
  71    /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
  72    /// listeners are invoked from the root of the tree downward toward the focused element. This phase
  73    /// is used for special purposes such as clearing the "pressed" state for click events. If
  74    /// you stop event propagation during this phase, you need to know what you're doing. Handlers
  75    /// outside of the immediate region may rely on detecting non-local events during this phase.
  76    Capture,
  77}
  78
  79impl DispatchPhase {
  80    /// Returns true if this represents the "bubble" phase.
  81    pub fn bubble(self) -> bool {
  82        self == DispatchPhase::Bubble
  83    }
  84
  85    /// Returns true if this represents the "capture" phase.
  86    pub fn capture(self) -> bool {
  87        self == DispatchPhase::Capture
  88    }
  89}
  90
  91struct WindowInvalidatorInner {
  92    pub dirty: bool,
  93    pub draw_phase: DrawPhase,
  94    pub dirty_views: FxHashSet<EntityId>,
  95}
  96
  97#[derive(Clone)]
  98pub(crate) struct WindowInvalidator {
  99    inner: Rc<RefCell<WindowInvalidatorInner>>,
 100}
 101
 102impl WindowInvalidator {
 103    pub fn new() -> Self {
 104        WindowInvalidator {
 105            inner: Rc::new(RefCell::new(WindowInvalidatorInner {
 106                dirty: true,
 107                draw_phase: DrawPhase::None,
 108                dirty_views: FxHashSet::default(),
 109            })),
 110        }
 111    }
 112
 113    pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
 114        let mut inner = self.inner.borrow_mut();
 115        inner.dirty_views.insert(entity);
 116        if inner.draw_phase == DrawPhase::None {
 117            inner.dirty = true;
 118            cx.push_effect(Effect::Notify { emitter: entity });
 119            true
 120        } else {
 121            false
 122        }
 123    }
 124
 125    pub fn is_dirty(&self) -> bool {
 126        self.inner.borrow().dirty
 127    }
 128
 129    pub fn set_dirty(&self, dirty: bool) {
 130        self.inner.borrow_mut().dirty = dirty
 131    }
 132
 133    pub fn set_phase(&self, phase: DrawPhase) {
 134        self.inner.borrow_mut().draw_phase = phase
 135    }
 136
 137    pub fn take_views(&self) -> FxHashSet<EntityId> {
 138        mem::take(&mut self.inner.borrow_mut().dirty_views)
 139    }
 140
 141    pub fn replace_views(&self, views: FxHashSet<EntityId>) {
 142        self.inner.borrow_mut().dirty_views = views;
 143    }
 144
 145    pub fn not_drawing(&self) -> bool {
 146        self.inner.borrow().draw_phase == DrawPhase::None
 147    }
 148
 149    #[track_caller]
 150    pub fn debug_assert_paint(&self) {
 151        debug_assert!(
 152            matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
 153            "this method can only be called during paint"
 154        );
 155    }
 156
 157    #[track_caller]
 158    pub fn debug_assert_prepaint(&self) {
 159        debug_assert!(
 160            matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
 161            "this method can only be called during request_layout, or prepaint"
 162        );
 163    }
 164
 165    #[track_caller]
 166    pub fn debug_assert_paint_or_prepaint(&self) {
 167        debug_assert!(
 168            matches!(
 169                self.inner.borrow().draw_phase,
 170                DrawPhase::Paint | DrawPhase::Prepaint
 171            ),
 172            "this method can only be called during request_layout, prepaint, or paint"
 173        );
 174    }
 175}
 176
 177type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
 178
 179pub(crate) type AnyWindowFocusListener =
 180    Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
 181
 182pub(crate) struct WindowFocusEvent {
 183    pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
 184    pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
 185}
 186
 187impl WindowFocusEvent {
 188    pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
 189        !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
 190    }
 191
 192    pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
 193        self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
 194    }
 195}
 196
 197/// This is provided when subscribing for `Context::on_focus_out` events.
 198pub struct FocusOutEvent {
 199    /// A weak focus handle representing what was blurred.
 200    pub blurred: WeakFocusHandle,
 201}
 202
 203slotmap::new_key_type! {
 204    /// A globally unique identifier for a focusable element.
 205    pub struct FocusId;
 206}
 207
 208thread_local! {
 209    pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(1024 * 1024));
 210}
 211
 212/// Returned when the element arena has been used and so must be cleared before the next draw.
 213#[must_use]
 214pub struct ArenaClearNeeded;
 215
 216impl ArenaClearNeeded {
 217    /// Clear the element arena.
 218    pub fn clear(self) {
 219        ELEMENT_ARENA.with_borrow_mut(|element_arena| {
 220            element_arena.clear();
 221        });
 222    }
 223}
 224
 225pub(crate) type FocusMap = RwLock<SlotMap<FocusId, AtomicUsize>>;
 226
 227impl FocusId {
 228    /// Obtains whether the element associated with this handle is currently focused.
 229    pub fn is_focused(&self, window: &Window) -> bool {
 230        window.focus == Some(*self)
 231    }
 232
 233    /// Obtains whether the element associated with this handle contains the focused
 234    /// element or is itself focused.
 235    pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
 236        window
 237            .focused(cx)
 238            .map_or(false, |focused| self.contains(focused.id, window))
 239    }
 240
 241    /// Obtains whether the element associated with this handle is contained within the
 242    /// focused element or is itself focused.
 243    pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
 244        let focused = window.focused(cx);
 245        focused.map_or(false, |focused| focused.id.contains(*self, window))
 246    }
 247
 248    /// Obtains whether this handle contains the given handle in the most recently rendered frame.
 249    pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
 250        window
 251            .rendered_frame
 252            .dispatch_tree
 253            .focus_contains(*self, other)
 254    }
 255}
 256
 257/// A handle which can be used to track and manipulate the focused element in a window.
 258pub struct FocusHandle {
 259    pub(crate) id: FocusId,
 260    handles: Arc<FocusMap>,
 261}
 262
 263impl std::fmt::Debug for FocusHandle {
 264    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 265        f.write_fmt(format_args!("FocusHandle({:?})", self.id))
 266    }
 267}
 268
 269impl FocusHandle {
 270    pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
 271        let id = handles.write().insert(AtomicUsize::new(1));
 272        Self {
 273            id,
 274            handles: handles.clone(),
 275        }
 276    }
 277
 278    pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
 279        let lock = handles.read();
 280        let ref_count = lock.get(id)?;
 281        if atomic_incr_if_not_zero(ref_count) == 0 {
 282            return None;
 283        }
 284        Some(Self {
 285            id,
 286            handles: handles.clone(),
 287        })
 288    }
 289
 290    /// Converts this focus handle into a weak variant, which does not prevent it from being released.
 291    pub fn downgrade(&self) -> WeakFocusHandle {
 292        WeakFocusHandle {
 293            id: self.id,
 294            handles: Arc::downgrade(&self.handles),
 295        }
 296    }
 297
 298    /// Moves the focus to the element associated with this handle.
 299    pub fn focus(&self, window: &mut Window) {
 300        window.focus(self)
 301    }
 302
 303    /// Obtains whether the element associated with this handle is currently focused.
 304    pub fn is_focused(&self, window: &Window) -> bool {
 305        self.id.is_focused(window)
 306    }
 307
 308    /// Obtains whether the element associated with this handle contains the focused
 309    /// element or is itself focused.
 310    pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
 311        self.id.contains_focused(window, cx)
 312    }
 313
 314    /// Obtains whether the element associated with this handle is contained within the
 315    /// focused element or is itself focused.
 316    pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
 317        self.id.within_focused(window, cx)
 318    }
 319
 320    /// Obtains whether this handle contains the given handle in the most recently rendered frame.
 321    pub fn contains(&self, other: &Self, window: &Window) -> bool {
 322        self.id.contains(other.id, window)
 323    }
 324
 325    /// Dispatch an action on the element that rendered this focus handle
 326    pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
 327        if let Some(node_id) = window
 328            .rendered_frame
 329            .dispatch_tree
 330            .focusable_node_id(self.id)
 331        {
 332            window.dispatch_action_on_node(node_id, action, cx)
 333        }
 334    }
 335}
 336
 337impl Clone for FocusHandle {
 338    fn clone(&self) -> Self {
 339        Self::for_id(self.id, &self.handles).unwrap()
 340    }
 341}
 342
 343impl PartialEq for FocusHandle {
 344    fn eq(&self, other: &Self) -> bool {
 345        self.id == other.id
 346    }
 347}
 348
 349impl Eq for FocusHandle {}
 350
 351impl Drop for FocusHandle {
 352    fn drop(&mut self) {
 353        self.handles
 354            .read()
 355            .get(self.id)
 356            .unwrap()
 357            .fetch_sub(1, SeqCst);
 358    }
 359}
 360
 361/// A weak reference to a focus handle.
 362#[derive(Clone, Debug)]
 363pub struct WeakFocusHandle {
 364    pub(crate) id: FocusId,
 365    pub(crate) handles: Weak<FocusMap>,
 366}
 367
 368impl WeakFocusHandle {
 369    /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
 370    pub fn upgrade(&self) -> Option<FocusHandle> {
 371        let handles = self.handles.upgrade()?;
 372        FocusHandle::for_id(self.id, &handles)
 373    }
 374}
 375
 376impl PartialEq for WeakFocusHandle {
 377    fn eq(&self, other: &WeakFocusHandle) -> bool {
 378        self.id == other.id
 379    }
 380}
 381
 382impl Eq for WeakFocusHandle {}
 383
 384impl PartialEq<FocusHandle> for WeakFocusHandle {
 385    fn eq(&self, other: &FocusHandle) -> bool {
 386        self.id == other.id
 387    }
 388}
 389
 390impl PartialEq<WeakFocusHandle> for FocusHandle {
 391    fn eq(&self, other: &WeakFocusHandle) -> bool {
 392        self.id == other.id
 393    }
 394}
 395
 396/// Focusable allows users of your view to easily
 397/// focus it (using window.focus_view(cx, view))
 398pub trait Focusable: 'static {
 399    /// Returns the focus handle associated with this view.
 400    fn focus_handle(&self, cx: &App) -> FocusHandle;
 401}
 402
 403impl<V: Focusable> Focusable for Entity<V> {
 404    fn focus_handle(&self, cx: &App) -> FocusHandle {
 405        self.read(cx).focus_handle(cx)
 406    }
 407}
 408
 409/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
 410/// where the lifecycle of the view is handled by another view.
 411pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
 412
 413impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
 414
 415/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
 416pub struct DismissEvent;
 417
 418type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
 419
 420pub(crate) type AnyMouseListener =
 421    Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
 422
 423#[derive(Clone)]
 424pub(crate) struct CursorStyleRequest {
 425    pub(crate) hitbox_id: Option<HitboxId>,
 426    pub(crate) style: CursorStyle,
 427}
 428
 429#[derive(Default, Eq, PartialEq)]
 430pub(crate) struct HitTest {
 431    pub(crate) ids: SmallVec<[HitboxId; 8]>,
 432    pub(crate) hover_hitbox_count: usize,
 433}
 434
 435/// A type of window control area that corresponds to the platform window.
 436#[derive(Clone, Copy, Debug, Eq, PartialEq)]
 437pub enum WindowControlArea {
 438    /// An area that allows dragging of the platform window.
 439    Drag,
 440    /// An area that allows closing of the platform window.
 441    Close,
 442    /// An area that allows maximizing of the platform window.
 443    Max,
 444    /// An area that allows minimizing of the platform window.
 445    Min,
 446}
 447
 448/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
 449#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
 450pub struct HitboxId(u64);
 451
 452impl HitboxId {
 453    /// Checks if the hitbox with this ID is currently hovered. Except when handling
 454    /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
 455    /// events or paint hover styles.
 456    ///
 457    /// See [`Hitbox::is_hovered`] for details.
 458    pub fn is_hovered(self, window: &Window) -> bool {
 459        let hit_test = &window.mouse_hit_test;
 460        for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
 461            if self == *id {
 462                return true;
 463            }
 464        }
 465        return false;
 466    }
 467
 468    /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
 469    /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
 470    /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
 471    /// this distinction.
 472    pub fn should_handle_scroll(self, window: &Window) -> bool {
 473        window.mouse_hit_test.ids.contains(&self)
 474    }
 475
 476    fn next(mut self) -> HitboxId {
 477        HitboxId(self.0.wrapping_add(1))
 478    }
 479}
 480
 481/// A rectangular region that potentially blocks hitboxes inserted prior.
 482/// See [Window::insert_hitbox] for more details.
 483#[derive(Clone, Debug, Deref)]
 484pub struct Hitbox {
 485    /// A unique identifier for the hitbox.
 486    pub id: HitboxId,
 487    /// The bounds of the hitbox.
 488    #[deref]
 489    pub bounds: Bounds<Pixels>,
 490    /// The content mask when the hitbox was inserted.
 491    pub content_mask: ContentMask<Pixels>,
 492    /// Flags that specify hitbox behavior.
 493    pub behavior: HitboxBehavior,
 494}
 495
 496impl Hitbox {
 497    /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
 498    /// typically what you want when determining whether to handle mouse events or paint hover
 499    /// styles.
 500    ///
 501    /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
 502    /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
 503    /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
 504    ///
 505    /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
 506    /// Concretely, this is due to use-cases like overlays that cause the elements under to be
 507    /// non-interactive while still allowing scrolling. More abstractly, this is because
 508    /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
 509    /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
 510    /// container.
 511    pub fn is_hovered(&self, window: &Window) -> bool {
 512        self.id.is_hovered(window)
 513    }
 514
 515    /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
 516    /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
 517    /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
 518    ///
 519    /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
 520    /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
 521    pub fn should_handle_scroll(&self, window: &Window) -> bool {
 522        self.id.should_handle_scroll(window)
 523    }
 524}
 525
 526/// How the hitbox affects mouse behavior.
 527#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
 528pub enum HitboxBehavior {
 529    /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
 530    #[default]
 531    Normal,
 532
 533    /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
 534    /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
 535    /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
 536    /// [`InteractiveElement::occlude`].
 537    ///
 538    /// For mouse handlers that check those hitboxes, this behaves the same as registering a
 539    /// bubble-phase handler for every mouse event type:
 540    ///
 541    /// ```
 542    /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
 543    ///     if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
 544    ///         cx.stop_propagation();
 545    ///     }
 546    /// }
 547    /// ```
 548    ///
 549    /// This has effects beyond event handling - any use of hitbox checking, such as hover
 550    /// styles and tooltops. These other behaviors are the main point of this mechanism. An
 551    /// alternative might be to not affect mouse event handling - but this would allow
 552    /// inconsistent UI where clicks and moves interact with elements that are not considered to
 553    /// be hovered.
 554    BlockMouse,
 555
 556    /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
 557    /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
 558    /// interaction except scroll events to be ignored - see the documentation of
 559    /// [`Hitbox::is_hovered`] for details. This flag is set by
 560    /// [`InteractiveElement::block_mouse_except_scroll`].
 561    ///
 562    /// For mouse handlers that check those hitboxes, this behaves the same as registering a
 563    /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
 564    ///
 565    /// ```
 566    /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, _cx| {
 567    ///     if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
 568    ///         cx.stop_propagation();
 569    ///     }
 570    /// }
 571    /// ```
 572    ///
 573    /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
 574    /// handled differently than other mouse events. If also blocking these scroll events is
 575    /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
 576    ///
 577    /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
 578    /// hover styles and tooltops. These other behaviors are the main point of this mechanism.
 579    /// An alternative might be to not affect mouse event handling - but this would allow
 580    /// inconsistent UI where clicks and moves interact with elements that are not considered to
 581    /// be hovered.
 582    BlockMouseExceptScroll,
 583}
 584
 585/// An identifier for a tooltip.
 586#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
 587pub struct TooltipId(usize);
 588
 589impl TooltipId {
 590    /// Checks if the tooltip is currently hovered.
 591    pub fn is_hovered(&self, window: &Window) -> bool {
 592        window
 593            .tooltip_bounds
 594            .as_ref()
 595            .map_or(false, |tooltip_bounds| {
 596                tooltip_bounds.id == *self
 597                    && tooltip_bounds.bounds.contains(&window.mouse_position())
 598            })
 599    }
 600}
 601
 602pub(crate) struct TooltipBounds {
 603    id: TooltipId,
 604    bounds: Bounds<Pixels>,
 605}
 606
 607#[derive(Clone)]
 608pub(crate) struct TooltipRequest {
 609    id: TooltipId,
 610    tooltip: AnyTooltip,
 611}
 612
 613pub(crate) struct DeferredDraw {
 614    current_view: EntityId,
 615    priority: usize,
 616    parent_node: DispatchNodeId,
 617    element_id_stack: SmallVec<[ElementId; 32]>,
 618    text_style_stack: Vec<TextStyleRefinement>,
 619    element: Option<AnyElement>,
 620    absolute_offset: Point<Pixels>,
 621    prepaint_range: Range<PrepaintStateIndex>,
 622    paint_range: Range<PaintIndex>,
 623}
 624
 625pub(crate) struct Frame {
 626    pub(crate) focus: Option<FocusId>,
 627    pub(crate) window_active: bool,
 628    pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
 629    accessed_element_states: Vec<(GlobalElementId, TypeId)>,
 630    pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
 631    pub(crate) dispatch_tree: DispatchTree,
 632    pub(crate) scene: Scene,
 633    pub(crate) hitboxes: Vec<Hitbox>,
 634    pub(crate) window_control_hitboxes: Vec<(WindowControlArea, Hitbox)>,
 635    pub(crate) deferred_draws: Vec<DeferredDraw>,
 636    pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
 637    pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
 638    pub(crate) cursor_styles: Vec<CursorStyleRequest>,
 639    #[cfg(any(test, feature = "test-support"))]
 640    pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
 641    #[cfg(any(feature = "inspector", debug_assertions))]
 642    pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
 643    #[cfg(any(feature = "inspector", debug_assertions))]
 644    pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
 645}
 646
 647#[derive(Clone, Default)]
 648pub(crate) struct PrepaintStateIndex {
 649    hitboxes_index: usize,
 650    tooltips_index: usize,
 651    deferred_draws_index: usize,
 652    dispatch_tree_index: usize,
 653    accessed_element_states_index: usize,
 654    line_layout_index: LineLayoutIndex,
 655}
 656
 657#[derive(Clone, Default)]
 658pub(crate) struct PaintIndex {
 659    scene_index: usize,
 660    mouse_listeners_index: usize,
 661    input_handlers_index: usize,
 662    cursor_styles_index: usize,
 663    accessed_element_states_index: usize,
 664    line_layout_index: LineLayoutIndex,
 665}
 666
 667impl Frame {
 668    pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
 669        Frame {
 670            focus: None,
 671            window_active: false,
 672            element_states: FxHashMap::default(),
 673            accessed_element_states: Vec::new(),
 674            mouse_listeners: Vec::new(),
 675            dispatch_tree,
 676            scene: Scene::default(),
 677            hitboxes: Vec::new(),
 678            window_control_hitboxes: Vec::new(),
 679            deferred_draws: Vec::new(),
 680            input_handlers: Vec::new(),
 681            tooltip_requests: Vec::new(),
 682            cursor_styles: Vec::new(),
 683
 684            #[cfg(any(test, feature = "test-support"))]
 685            debug_bounds: FxHashMap::default(),
 686
 687            #[cfg(any(feature = "inspector", debug_assertions))]
 688            next_inspector_instance_ids: FxHashMap::default(),
 689
 690            #[cfg(any(feature = "inspector", debug_assertions))]
 691            inspector_hitboxes: FxHashMap::default(),
 692        }
 693    }
 694
 695    pub(crate) fn clear(&mut self) {
 696        self.element_states.clear();
 697        self.accessed_element_states.clear();
 698        self.mouse_listeners.clear();
 699        self.dispatch_tree.clear();
 700        self.scene.clear();
 701        self.input_handlers.clear();
 702        self.tooltip_requests.clear();
 703        self.cursor_styles.clear();
 704        self.hitboxes.clear();
 705        self.window_control_hitboxes.clear();
 706        self.deferred_draws.clear();
 707        self.focus = None;
 708
 709        #[cfg(any(feature = "inspector", debug_assertions))]
 710        {
 711            self.next_inspector_instance_ids.clear();
 712            self.inspector_hitboxes.clear();
 713        }
 714    }
 715
 716    pub(crate) fn cursor_style(&self, window: &Window) -> Option<CursorStyle> {
 717        self.cursor_styles
 718            .iter()
 719            .rev()
 720            .fold_while(None, |style, request| match request.hitbox_id {
 721                None => Done(Some(request.style)),
 722                Some(hitbox_id) => Continue(
 723                    style.or_else(|| hitbox_id.is_hovered(window).then_some(request.style)),
 724                ),
 725            })
 726            .into_inner()
 727    }
 728
 729    pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
 730        let mut set_hover_hitbox_count = false;
 731        let mut hit_test = HitTest::default();
 732        for hitbox in self.hitboxes.iter().rev() {
 733            let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
 734            if bounds.contains(&position) {
 735                hit_test.ids.push(hitbox.id);
 736                if !set_hover_hitbox_count
 737                    && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
 738                {
 739                    hit_test.hover_hitbox_count = hit_test.ids.len();
 740                    set_hover_hitbox_count = true;
 741                }
 742                if hitbox.behavior == HitboxBehavior::BlockMouse {
 743                    break;
 744                }
 745            }
 746        }
 747        if !set_hover_hitbox_count {
 748            hit_test.hover_hitbox_count = hit_test.ids.len();
 749        }
 750        hit_test
 751    }
 752
 753    pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
 754        self.focus
 755            .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
 756            .unwrap_or_default()
 757    }
 758
 759    pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
 760        for element_state_key in &self.accessed_element_states {
 761            if let Some((element_state_key, element_state)) =
 762                prev_frame.element_states.remove_entry(element_state_key)
 763            {
 764                self.element_states.insert(element_state_key, element_state);
 765            }
 766        }
 767
 768        self.scene.finish();
 769    }
 770}
 771
 772/// Holds the state for a specific window.
 773pub struct Window {
 774    pub(crate) handle: AnyWindowHandle,
 775    pub(crate) invalidator: WindowInvalidator,
 776    pub(crate) removed: bool,
 777    pub(crate) platform_window: Box<dyn PlatformWindow>,
 778    display_id: Option<DisplayId>,
 779    sprite_atlas: Arc<dyn PlatformAtlas>,
 780    text_system: Arc<WindowTextSystem>,
 781    rem_size: Pixels,
 782    /// The stack of override values for the window's rem size.
 783    ///
 784    /// This is used by `with_rem_size` to allow rendering an element tree with
 785    /// a given rem size.
 786    rem_size_override_stack: SmallVec<[Pixels; 8]>,
 787    pub(crate) viewport_size: Size<Pixels>,
 788    layout_engine: Option<TaffyLayoutEngine>,
 789    pub(crate) root: Option<AnyView>,
 790    pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
 791    pub(crate) text_style_stack: Vec<TextStyleRefinement>,
 792    pub(crate) rendered_entity_stack: Vec<EntityId>,
 793    pub(crate) element_offset_stack: Vec<Point<Pixels>>,
 794    pub(crate) element_opacity: Option<f32>,
 795    pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
 796    pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
 797    pub(crate) image_cache_stack: Vec<AnyImageCache>,
 798    pub(crate) rendered_frame: Frame,
 799    pub(crate) next_frame: Frame,
 800    next_hitbox_id: HitboxId,
 801    pub(crate) next_tooltip_id: TooltipId,
 802    pub(crate) tooltip_bounds: Option<TooltipBounds>,
 803    next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
 804    pub(crate) dirty_views: FxHashSet<EntityId>,
 805    focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
 806    pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
 807    default_prevented: bool,
 808    mouse_position: Point<Pixels>,
 809    mouse_hit_test: HitTest,
 810    modifiers: Modifiers,
 811    capslock: Capslock,
 812    scale_factor: f32,
 813    pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
 814    appearance: WindowAppearance,
 815    pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
 816    active: Rc<Cell<bool>>,
 817    hovered: Rc<Cell<bool>>,
 818    pub(crate) needs_present: Rc<Cell<bool>>,
 819    pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
 820    pub(crate) refreshing: bool,
 821    pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
 822    pub(crate) focus: Option<FocusId>,
 823    focus_enabled: bool,
 824    pending_input: Option<PendingInput>,
 825    pending_modifier: ModifierState,
 826    pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
 827    prompt: Option<RenderablePromptHandle>,
 828    pub(crate) client_inset: Option<Pixels>,
 829    #[cfg(any(feature = "inspector", debug_assertions))]
 830    inspector: Option<Entity<Inspector>>,
 831}
 832
 833#[derive(Clone, Debug, Default)]
 834struct ModifierState {
 835    modifiers: Modifiers,
 836    saw_keystroke: bool,
 837}
 838
 839#[derive(Clone, Copy, Debug, Eq, PartialEq)]
 840pub(crate) enum DrawPhase {
 841    None,
 842    Prepaint,
 843    Paint,
 844    Focus,
 845}
 846
 847#[derive(Default, Debug)]
 848struct PendingInput {
 849    keystrokes: SmallVec<[Keystroke; 1]>,
 850    focus: Option<FocusId>,
 851    timer: Option<Task<()>>,
 852}
 853
 854pub(crate) struct ElementStateBox {
 855    pub(crate) inner: Box<dyn Any>,
 856    #[cfg(debug_assertions)]
 857    pub(crate) type_name: &'static str,
 858}
 859
 860fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> Bounds<Pixels> {
 861    const DEFAULT_WINDOW_OFFSET: Point<Pixels> = point(px(0.), px(35.));
 862
 863    // TODO, BUG: if you open a window with the currently active window
 864    // on the stack, this will erroneously select the 'unwrap_or_else'
 865    // code path
 866    cx.active_window()
 867        .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok())
 868        .map(|mut bounds| {
 869            bounds.origin += DEFAULT_WINDOW_OFFSET;
 870            bounds
 871        })
 872        .unwrap_or_else(|| {
 873            let display = display_id
 874                .map(|id| cx.find_display(id))
 875                .unwrap_or_else(|| cx.primary_display());
 876
 877            display
 878                .map(|display| display.default_bounds())
 879                .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE))
 880        })
 881}
 882
 883impl Window {
 884    pub(crate) fn new(
 885        handle: AnyWindowHandle,
 886        options: WindowOptions,
 887        cx: &mut App,
 888    ) -> Result<Self> {
 889        let WindowOptions {
 890            window_bounds,
 891            titlebar,
 892            focus,
 893            show,
 894            kind,
 895            is_movable,
 896            display_id,
 897            window_background,
 898            app_id,
 899            window_min_size,
 900            window_decorations,
 901        } = options;
 902
 903        let bounds = window_bounds
 904            .map(|bounds| bounds.get_bounds())
 905            .unwrap_or_else(|| default_bounds(display_id, cx));
 906        let mut platform_window = cx.platform.open_window(
 907            handle,
 908            WindowParams {
 909                bounds,
 910                titlebar,
 911                kind,
 912                is_movable,
 913                focus,
 914                show,
 915                display_id,
 916                window_min_size,
 917            },
 918        )?;
 919        let display_id = platform_window.display().map(|display| display.id());
 920        let sprite_atlas = platform_window.sprite_atlas();
 921        let mouse_position = platform_window.mouse_position();
 922        let modifiers = platform_window.modifiers();
 923        let capslock = platform_window.capslock();
 924        let content_size = platform_window.content_size();
 925        let scale_factor = platform_window.scale_factor();
 926        let appearance = platform_window.appearance();
 927        let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
 928        let invalidator = WindowInvalidator::new();
 929        let active = Rc::new(Cell::new(platform_window.is_active()));
 930        let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
 931        let needs_present = Rc::new(Cell::new(false));
 932        let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
 933        let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
 934
 935        platform_window
 936            .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
 937        platform_window.set_background_appearance(window_background);
 938
 939        if let Some(ref window_open_state) = window_bounds {
 940            match window_open_state {
 941                WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
 942                WindowBounds::Maximized(_) => platform_window.zoom(),
 943                WindowBounds::Windowed(_) => {}
 944            }
 945        }
 946
 947        platform_window.on_close(Box::new({
 948            let mut cx = cx.to_async();
 949            move || {
 950                let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
 951            }
 952        }));
 953        platform_window.on_request_frame(Box::new({
 954            let mut cx = cx.to_async();
 955            let invalidator = invalidator.clone();
 956            let active = active.clone();
 957            let needs_present = needs_present.clone();
 958            let next_frame_callbacks = next_frame_callbacks.clone();
 959            let last_input_timestamp = last_input_timestamp.clone();
 960            move |request_frame_options| {
 961                let next_frame_callbacks = next_frame_callbacks.take();
 962                if !next_frame_callbacks.is_empty() {
 963                    handle
 964                        .update(&mut cx, |_, window, cx| {
 965                            for callback in next_frame_callbacks {
 966                                callback(window, cx);
 967                            }
 968                        })
 969                        .log_err();
 970                }
 971
 972                // Keep presenting the current scene for 1 extra second since the
 973                // last input to prevent the display from underclocking the refresh rate.
 974                let needs_present = request_frame_options.require_presentation
 975                    || needs_present.get()
 976                    || (active.get()
 977                        && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
 978
 979                if invalidator.is_dirty() {
 980                    measure("frame duration", || {
 981                        handle
 982                            .update(&mut cx, |_, window, cx| {
 983                                let arena_clear_needed = window.draw(cx);
 984                                window.present();
 985                                // drop the arena elements after present to reduce latency
 986                                arena_clear_needed.clear();
 987                            })
 988                            .log_err();
 989                    })
 990                } else if needs_present {
 991                    handle
 992                        .update(&mut cx, |_, window, _| window.present())
 993                        .log_err();
 994                }
 995
 996                handle
 997                    .update(&mut cx, |_, window, _| {
 998                        window.complete_frame();
 999                    })
1000                    .log_err();
1001            }
1002        }));
1003        platform_window.on_resize(Box::new({
1004            let mut cx = cx.to_async();
1005            move |_, _| {
1006                handle
1007                    .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1008                    .log_err();
1009            }
1010        }));
1011        platform_window.on_moved(Box::new({
1012            let mut cx = cx.to_async();
1013            move || {
1014                handle
1015                    .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1016                    .log_err();
1017            }
1018        }));
1019        platform_window.on_appearance_changed(Box::new({
1020            let mut cx = cx.to_async();
1021            move || {
1022                handle
1023                    .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
1024                    .log_err();
1025            }
1026        }));
1027        platform_window.on_active_status_change(Box::new({
1028            let mut cx = cx.to_async();
1029            move |active| {
1030                handle
1031                    .update(&mut cx, |_, window, cx| {
1032                        window.active.set(active);
1033                        window.modifiers = window.platform_window.modifiers();
1034                        window.capslock = window.platform_window.capslock();
1035                        window
1036                            .activation_observers
1037                            .clone()
1038                            .retain(&(), |callback| callback(window, cx));
1039                        window.refresh();
1040                    })
1041                    .log_err();
1042            }
1043        }));
1044        platform_window.on_hover_status_change(Box::new({
1045            let mut cx = cx.to_async();
1046            move |active| {
1047                handle
1048                    .update(&mut cx, |_, window, _| {
1049                        window.hovered.set(active);
1050                        window.refresh();
1051                    })
1052                    .log_err();
1053            }
1054        }));
1055        platform_window.on_input({
1056            let mut cx = cx.to_async();
1057            Box::new(move |event| {
1058                handle
1059                    .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1060                    .log_err()
1061                    .unwrap_or(DispatchEventResult::default())
1062            })
1063        });
1064        platform_window.on_hit_test_window_control({
1065            let mut cx = cx.to_async();
1066            Box::new(move || {
1067                handle
1068                    .update(&mut cx, |_, window, _cx| {
1069                        for (area, hitbox) in &window.rendered_frame.window_control_hitboxes {
1070                            if window.mouse_hit_test.ids.contains(&hitbox.id) {
1071                                return Some(*area);
1072                            }
1073                        }
1074                        None
1075                    })
1076                    .log_err()
1077                    .unwrap_or(None)
1078            })
1079        });
1080
1081        if let Some(app_id) = app_id {
1082            platform_window.set_app_id(&app_id);
1083        }
1084
1085        platform_window.map_window().unwrap();
1086
1087        Ok(Window {
1088            handle,
1089            invalidator,
1090            removed: false,
1091            platform_window,
1092            display_id,
1093            sprite_atlas,
1094            text_system,
1095            rem_size: px(16.),
1096            rem_size_override_stack: SmallVec::new(),
1097            viewport_size: content_size,
1098            layout_engine: Some(TaffyLayoutEngine::new()),
1099            root: None,
1100            element_id_stack: SmallVec::default(),
1101            text_style_stack: Vec::new(),
1102            rendered_entity_stack: Vec::new(),
1103            element_offset_stack: Vec::new(),
1104            content_mask_stack: Vec::new(),
1105            element_opacity: None,
1106            requested_autoscroll: None,
1107            rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1108            next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1109            next_frame_callbacks,
1110            next_hitbox_id: HitboxId(0),
1111            next_tooltip_id: TooltipId::default(),
1112            tooltip_bounds: None,
1113            dirty_views: FxHashSet::default(),
1114            focus_listeners: SubscriberSet::new(),
1115            focus_lost_listeners: SubscriberSet::new(),
1116            default_prevented: true,
1117            mouse_position,
1118            mouse_hit_test: HitTest::default(),
1119            modifiers,
1120            capslock,
1121            scale_factor,
1122            bounds_observers: SubscriberSet::new(),
1123            appearance,
1124            appearance_observers: SubscriberSet::new(),
1125            active,
1126            hovered,
1127            needs_present,
1128            last_input_timestamp,
1129            refreshing: false,
1130            activation_observers: SubscriberSet::new(),
1131            focus: None,
1132            focus_enabled: true,
1133            pending_input: None,
1134            pending_modifier: ModifierState::default(),
1135            pending_input_observers: SubscriberSet::new(),
1136            prompt: None,
1137            client_inset: None,
1138            image_cache_stack: Vec::new(),
1139            #[cfg(any(feature = "inspector", debug_assertions))]
1140            inspector: None,
1141        })
1142    }
1143
1144    pub(crate) fn new_focus_listener(
1145        &self,
1146        value: AnyWindowFocusListener,
1147    ) -> (Subscription, impl FnOnce() + use<>) {
1148        self.focus_listeners.insert((), value)
1149    }
1150}
1151
1152#[derive(Clone, Debug, Default, PartialEq, Eq)]
1153pub(crate) struct DispatchEventResult {
1154    pub propagate: bool,
1155    pub default_prevented: bool,
1156}
1157
1158/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1159/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1160/// to leave room to support more complex shapes in the future.
1161#[derive(Clone, Debug, Default, PartialEq, Eq)]
1162#[repr(C)]
1163pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1164    /// The bounds
1165    pub bounds: Bounds<P>,
1166}
1167
1168impl ContentMask<Pixels> {
1169    /// Scale the content mask's pixel units by the given scaling factor.
1170    pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1171        ContentMask {
1172            bounds: self.bounds.scale(factor),
1173        }
1174    }
1175
1176    /// Intersect the content mask with the given content mask.
1177    pub fn intersect(&self, other: &Self) -> Self {
1178        let bounds = self.bounds.intersect(&other.bounds);
1179        ContentMask { bounds }
1180    }
1181}
1182
1183impl Window {
1184    fn mark_view_dirty(&mut self, view_id: EntityId) {
1185        // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1186        // should already be dirty.
1187        for view_id in self
1188            .rendered_frame
1189            .dispatch_tree
1190            .view_path(view_id)
1191            .into_iter()
1192            .rev()
1193        {
1194            if !self.dirty_views.insert(view_id) {
1195                break;
1196            }
1197        }
1198    }
1199
1200    /// Registers a callback to be invoked when the window appearance changes.
1201    pub fn observe_window_appearance(
1202        &self,
1203        mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1204    ) -> Subscription {
1205        let (subscription, activate) = self.appearance_observers.insert(
1206            (),
1207            Box::new(move |window, cx| {
1208                callback(window, cx);
1209                true
1210            }),
1211        );
1212        activate();
1213        subscription
1214    }
1215
1216    /// Replaces the root entity of the window with a new one.
1217    pub fn replace_root<E>(
1218        &mut self,
1219        cx: &mut App,
1220        build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1221    ) -> Entity<E>
1222    where
1223        E: 'static + Render,
1224    {
1225        let view = cx.new(|cx| build_view(self, cx));
1226        self.root = Some(view.clone().into());
1227        self.refresh();
1228        view
1229    }
1230
1231    /// Returns the root entity of the window, if it has one.
1232    pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1233    where
1234        E: 'static + Render,
1235    {
1236        self.root
1237            .as_ref()
1238            .map(|view| view.clone().downcast::<E>().ok())
1239    }
1240
1241    /// Obtain a handle to the window that belongs to this context.
1242    pub fn window_handle(&self) -> AnyWindowHandle {
1243        self.handle
1244    }
1245
1246    /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1247    pub fn refresh(&mut self) {
1248        if self.invalidator.not_drawing() {
1249            self.refreshing = true;
1250            self.invalidator.set_dirty(true);
1251        }
1252    }
1253
1254    /// Close this window.
1255    pub fn remove_window(&mut self) {
1256        self.removed = true;
1257    }
1258
1259    /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1260    pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1261        self.focus
1262            .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1263    }
1264
1265    /// Move focus to the element associated with the given [`FocusHandle`].
1266    pub fn focus(&mut self, handle: &FocusHandle) {
1267        if !self.focus_enabled || self.focus == Some(handle.id) {
1268            return;
1269        }
1270
1271        self.focus = Some(handle.id);
1272        self.clear_pending_keystrokes();
1273        self.refresh();
1274    }
1275
1276    /// Remove focus from all elements within this context's window.
1277    pub fn blur(&mut self) {
1278        if !self.focus_enabled {
1279            return;
1280        }
1281
1282        self.focus = None;
1283        self.refresh();
1284    }
1285
1286    /// Blur the window and don't allow anything in it to be focused again.
1287    pub fn disable_focus(&mut self) {
1288        self.blur();
1289        self.focus_enabled = false;
1290    }
1291
1292    /// Accessor for the text system.
1293    pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1294        &self.text_system
1295    }
1296
1297    /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1298    pub fn text_style(&self) -> TextStyle {
1299        let mut style = TextStyle::default();
1300        for refinement in &self.text_style_stack {
1301            style.refine(refinement);
1302        }
1303        style
1304    }
1305
1306    /// Check if the platform window is maximized
1307    /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1308    pub fn is_maximized(&self) -> bool {
1309        self.platform_window.is_maximized()
1310    }
1311
1312    /// request a certain window decoration (Wayland)
1313    pub fn request_decorations(&self, decorations: WindowDecorations) {
1314        self.platform_window.request_decorations(decorations);
1315    }
1316
1317    /// Start a window resize operation (Wayland)
1318    pub fn start_window_resize(&self, edge: ResizeEdge) {
1319        self.platform_window.start_window_resize(edge);
1320    }
1321
1322    /// Return the `WindowBounds` to indicate that how a window should be opened
1323    /// after it has been closed
1324    pub fn window_bounds(&self) -> WindowBounds {
1325        self.platform_window.window_bounds()
1326    }
1327
1328    /// Return the `WindowBounds` excluding insets (Wayland and X11)
1329    pub fn inner_window_bounds(&self) -> WindowBounds {
1330        self.platform_window.inner_window_bounds()
1331    }
1332
1333    /// Dispatch the given action on the currently focused element.
1334    pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1335        let focus_id = self.focused(cx).map(|handle| handle.id);
1336
1337        let window = self.handle;
1338        cx.defer(move |cx| {
1339            window
1340                .update(cx, |_, window, cx| {
1341                    let node_id = window.focus_node_id_in_rendered_frame(focus_id);
1342                    window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1343                })
1344                .log_err();
1345        })
1346    }
1347
1348    pub(crate) fn dispatch_keystroke_observers(
1349        &mut self,
1350        event: &dyn Any,
1351        action: Option<Box<dyn Action>>,
1352        context_stack: Vec<KeyContext>,
1353        cx: &mut App,
1354    ) {
1355        let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1356            return;
1357        };
1358
1359        cx.keystroke_observers.clone().retain(&(), move |callback| {
1360            (callback)(
1361                &KeystrokeEvent {
1362                    keystroke: key_down_event.keystroke.clone(),
1363                    action: action.as_ref().map(|action| action.boxed_clone()),
1364                    context_stack: context_stack.clone(),
1365                },
1366                self,
1367                cx,
1368            )
1369        });
1370    }
1371
1372    /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1373    /// that are currently on the stack to be returned to the app.
1374    pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1375        let handle = self.handle;
1376        cx.defer(move |cx| {
1377            handle.update(cx, |_, window, cx| f(window, cx)).ok();
1378        });
1379    }
1380
1381    /// Subscribe to events emitted by a entity.
1382    /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1383    /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1384    pub fn observe<T: 'static>(
1385        &mut self,
1386        observed: &Entity<T>,
1387        cx: &mut App,
1388        mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1389    ) -> Subscription {
1390        let entity_id = observed.entity_id();
1391        let observed = observed.downgrade();
1392        let window_handle = self.handle;
1393        cx.new_observer(
1394            entity_id,
1395            Box::new(move |cx| {
1396                window_handle
1397                    .update(cx, |_, window, cx| {
1398                        if let Some(handle) = observed.upgrade() {
1399                            on_notify(handle, window, cx);
1400                            true
1401                        } else {
1402                            false
1403                        }
1404                    })
1405                    .unwrap_or(false)
1406            }),
1407        )
1408    }
1409
1410    /// Subscribe to events emitted by a entity.
1411    /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1412    /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1413    pub fn subscribe<Emitter, Evt>(
1414        &mut self,
1415        entity: &Entity<Emitter>,
1416        cx: &mut App,
1417        mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1418    ) -> Subscription
1419    where
1420        Emitter: EventEmitter<Evt>,
1421        Evt: 'static,
1422    {
1423        let entity_id = entity.entity_id();
1424        let handle = entity.downgrade();
1425        let window_handle = self.handle;
1426        cx.new_subscription(
1427            entity_id,
1428            (
1429                TypeId::of::<Evt>(),
1430                Box::new(move |event, cx| {
1431                    window_handle
1432                        .update(cx, |_, window, cx| {
1433                            if let Some(entity) = handle.upgrade() {
1434                                let event = event.downcast_ref().expect("invalid event type");
1435                                on_event(entity, event, window, cx);
1436                                true
1437                            } else {
1438                                false
1439                            }
1440                        })
1441                        .unwrap_or(false)
1442                }),
1443            ),
1444        )
1445    }
1446
1447    /// Register a callback to be invoked when the given `Entity` is released.
1448    pub fn observe_release<T>(
1449        &self,
1450        entity: &Entity<T>,
1451        cx: &mut App,
1452        mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1453    ) -> Subscription
1454    where
1455        T: 'static,
1456    {
1457        let entity_id = entity.entity_id();
1458        let window_handle = self.handle;
1459        let (subscription, activate) = cx.release_listeners.insert(
1460            entity_id,
1461            Box::new(move |entity, cx| {
1462                let entity = entity.downcast_mut().expect("invalid entity type");
1463                let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1464            }),
1465        );
1466        activate();
1467        subscription
1468    }
1469
1470    /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1471    /// await points in async code.
1472    pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1473        AsyncWindowContext::new_context(cx.to_async(), self.handle)
1474    }
1475
1476    /// Schedule the given closure to be run directly after the current frame is rendered.
1477    pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1478        RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1479    }
1480
1481    /// Schedule a frame to be drawn on the next animation frame.
1482    ///
1483    /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1484    /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1485    ///
1486    /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1487    pub fn request_animation_frame(&self) {
1488        let entity = self.current_view();
1489        self.on_next_frame(move |_, cx| cx.notify(entity));
1490    }
1491
1492    /// Spawn the future returned by the given closure on the application thread pool.
1493    /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1494    /// use within your future.
1495    #[track_caller]
1496    pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1497    where
1498        R: 'static,
1499        AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1500    {
1501        let handle = self.handle;
1502        cx.spawn(async move |app| {
1503            let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1504            f(&mut async_window_cx).await
1505        })
1506    }
1507
1508    fn bounds_changed(&mut self, cx: &mut App) {
1509        self.scale_factor = self.platform_window.scale_factor();
1510        self.viewport_size = self.platform_window.content_size();
1511        self.display_id = self.platform_window.display().map(|display| display.id());
1512
1513        self.refresh();
1514
1515        self.bounds_observers
1516            .clone()
1517            .retain(&(), |callback| callback(self, cx));
1518    }
1519
1520    /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1521    pub fn bounds(&self) -> Bounds<Pixels> {
1522        self.platform_window.bounds()
1523    }
1524
1525    /// Set the content size of the window.
1526    pub fn resize(&mut self, size: Size<Pixels>) {
1527        self.platform_window.resize(size);
1528    }
1529
1530    /// Returns whether or not the window is currently fullscreen
1531    pub fn is_fullscreen(&self) -> bool {
1532        self.platform_window.is_fullscreen()
1533    }
1534
1535    pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1536        self.appearance = self.platform_window.appearance();
1537
1538        self.appearance_observers
1539            .clone()
1540            .retain(&(), |callback| callback(self, cx));
1541    }
1542
1543    /// Returns the appearance of the current window.
1544    pub fn appearance(&self) -> WindowAppearance {
1545        self.appearance
1546    }
1547
1548    /// Returns the size of the drawable area within the window.
1549    pub fn viewport_size(&self) -> Size<Pixels> {
1550        self.viewport_size
1551    }
1552
1553    /// Returns whether this window is focused by the operating system (receiving key events).
1554    pub fn is_window_active(&self) -> bool {
1555        self.active.get()
1556    }
1557
1558    /// Returns whether this window is considered to be the window
1559    /// that currently owns the mouse cursor.
1560    /// On mac, this is equivalent to `is_window_active`.
1561    pub fn is_window_hovered(&self) -> bool {
1562        if cfg!(any(
1563            target_os = "windows",
1564            target_os = "linux",
1565            target_os = "freebsd"
1566        )) {
1567            self.hovered.get()
1568        } else {
1569            self.is_window_active()
1570        }
1571    }
1572
1573    /// Toggle zoom on the window.
1574    pub fn zoom_window(&self) {
1575        self.platform_window.zoom();
1576    }
1577
1578    /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1579    pub fn show_window_menu(&self, position: Point<Pixels>) {
1580        self.platform_window.show_window_menu(position)
1581    }
1582
1583    /// Tells the compositor to take control of window movement (Wayland and X11)
1584    ///
1585    /// Events may not be received during a move operation.
1586    pub fn start_window_move(&self) {
1587        self.platform_window.start_window_move()
1588    }
1589
1590    /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1591    pub fn set_client_inset(&mut self, inset: Pixels) {
1592        self.client_inset = Some(inset);
1593        self.platform_window.set_client_inset(inset);
1594    }
1595
1596    /// Returns the client_inset value by [`Self::set_client_inset`].
1597    pub fn client_inset(&self) -> Option<Pixels> {
1598        self.client_inset
1599    }
1600
1601    /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1602    pub fn window_decorations(&self) -> Decorations {
1603        self.platform_window.window_decorations()
1604    }
1605
1606    /// Returns which window controls are currently visible (Wayland)
1607    pub fn window_controls(&self) -> WindowControls {
1608        self.platform_window.window_controls()
1609    }
1610
1611    /// Updates the window's title at the platform level.
1612    pub fn set_window_title(&mut self, title: &str) {
1613        self.platform_window.set_title(title);
1614    }
1615
1616    /// Sets the application identifier.
1617    pub fn set_app_id(&mut self, app_id: &str) {
1618        self.platform_window.set_app_id(app_id);
1619    }
1620
1621    /// Sets the window background appearance.
1622    pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1623        self.platform_window
1624            .set_background_appearance(background_appearance);
1625    }
1626
1627    /// Mark the window as dirty at the platform level.
1628    pub fn set_window_edited(&mut self, edited: bool) {
1629        self.platform_window.set_edited(edited);
1630    }
1631
1632    /// Determine the display on which the window is visible.
1633    pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1634        cx.platform
1635            .displays()
1636            .into_iter()
1637            .find(|display| Some(display.id()) == self.display_id)
1638    }
1639
1640    /// Show the platform character palette.
1641    pub fn show_character_palette(&self) {
1642        self.platform_window.show_character_palette();
1643    }
1644
1645    /// The scale factor of the display associated with the window. For example, it could
1646    /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1647    /// be rendered as two pixels on screen.
1648    pub fn scale_factor(&self) -> f32 {
1649        self.scale_factor
1650    }
1651
1652    /// The size of an em for the base font of the application. Adjusting this value allows the
1653    /// UI to scale, just like zooming a web page.
1654    pub fn rem_size(&self) -> Pixels {
1655        self.rem_size_override_stack
1656            .last()
1657            .copied()
1658            .unwrap_or(self.rem_size)
1659    }
1660
1661    /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1662    /// UI to scale, just like zooming a web page.
1663    pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1664        self.rem_size = rem_size.into();
1665    }
1666
1667    /// Acquire a globally unique identifier for the given ElementId.
1668    /// Only valid for the duration of the provided closure.
1669    pub fn with_global_id<R>(
1670        &mut self,
1671        element_id: ElementId,
1672        f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1673    ) -> R {
1674        self.element_id_stack.push(element_id);
1675        let global_id = GlobalElementId(self.element_id_stack.clone());
1676        let result = f(&global_id, self);
1677        self.element_id_stack.pop();
1678        result
1679    }
1680
1681    /// Executes the provided function with the specified rem size.
1682    ///
1683    /// This method must only be called as part of element drawing.
1684    pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1685    where
1686        F: FnOnce(&mut Self) -> R,
1687    {
1688        self.invalidator.debug_assert_paint_or_prepaint();
1689
1690        if let Some(rem_size) = rem_size {
1691            self.rem_size_override_stack.push(rem_size.into());
1692            let result = f(self);
1693            self.rem_size_override_stack.pop();
1694            result
1695        } else {
1696            f(self)
1697        }
1698    }
1699
1700    /// The line height associated with the current text style.
1701    pub fn line_height(&self) -> Pixels {
1702        self.text_style().line_height_in_pixels(self.rem_size())
1703    }
1704
1705    /// Call to prevent the default action of an event. Currently only used to prevent
1706    /// parent elements from becoming focused on mouse down.
1707    pub fn prevent_default(&mut self) {
1708        self.default_prevented = true;
1709    }
1710
1711    /// Obtain whether default has been prevented for the event currently being dispatched.
1712    pub fn default_prevented(&self) -> bool {
1713        self.default_prevented
1714    }
1715
1716    /// Determine whether the given action is available along the dispatch path to the currently focused element.
1717    pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1718        let node_id =
1719            self.focus_node_id_in_rendered_frame(self.focused(cx).map(|handle| handle.id));
1720        self.rendered_frame
1721            .dispatch_tree
1722            .is_action_available(action, node_id)
1723    }
1724
1725    /// The position of the mouse relative to the window.
1726    pub fn mouse_position(&self) -> Point<Pixels> {
1727        self.mouse_position
1728    }
1729
1730    /// The current state of the keyboard's modifiers
1731    pub fn modifiers(&self) -> Modifiers {
1732        self.modifiers
1733    }
1734
1735    /// The current state of the keyboard's capslock
1736    pub fn capslock(&self) -> Capslock {
1737        self.capslock
1738    }
1739
1740    fn complete_frame(&self) {
1741        self.platform_window.completed_frame();
1742    }
1743
1744    /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1745    /// the contents of the new [Scene], use [present].
1746    #[profiling::function]
1747    pub fn draw(&mut self, cx: &mut App) -> ArenaClearNeeded {
1748        self.invalidate_entities();
1749        cx.entities.clear_accessed();
1750        debug_assert!(self.rendered_entity_stack.is_empty());
1751        self.invalidator.set_dirty(false);
1752        self.requested_autoscroll = None;
1753
1754        // Restore the previously-used input handler.
1755        if let Some(input_handler) = self.platform_window.take_input_handler() {
1756            self.rendered_frame.input_handlers.push(Some(input_handler));
1757        }
1758        self.draw_roots(cx);
1759        self.dirty_views.clear();
1760        self.next_frame.window_active = self.active.get();
1761
1762        // Register requested input handler with the platform window.
1763        if let Some(input_handler) = self.next_frame.input_handlers.pop() {
1764            self.platform_window
1765                .set_input_handler(input_handler.unwrap());
1766        }
1767
1768        self.layout_engine.as_mut().unwrap().clear();
1769        self.text_system().finish_frame();
1770        self.next_frame.finish(&mut self.rendered_frame);
1771
1772        self.invalidator.set_phase(DrawPhase::Focus);
1773        let previous_focus_path = self.rendered_frame.focus_path();
1774        let previous_window_active = self.rendered_frame.window_active;
1775        mem::swap(&mut self.rendered_frame, &mut self.next_frame);
1776        self.next_frame.clear();
1777        let current_focus_path = self.rendered_frame.focus_path();
1778        let current_window_active = self.rendered_frame.window_active;
1779
1780        if previous_focus_path != current_focus_path
1781            || previous_window_active != current_window_active
1782        {
1783            if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
1784                self.focus_lost_listeners
1785                    .clone()
1786                    .retain(&(), |listener| listener(self, cx));
1787            }
1788
1789            let event = WindowFocusEvent {
1790                previous_focus_path: if previous_window_active {
1791                    previous_focus_path
1792                } else {
1793                    Default::default()
1794                },
1795                current_focus_path: if current_window_active {
1796                    current_focus_path
1797                } else {
1798                    Default::default()
1799                },
1800            };
1801            self.focus_listeners
1802                .clone()
1803                .retain(&(), |listener| listener(&event, self, cx));
1804        }
1805
1806        debug_assert!(self.rendered_entity_stack.is_empty());
1807        self.record_entities_accessed(cx);
1808        self.reset_cursor_style(cx);
1809        self.refreshing = false;
1810        self.invalidator.set_phase(DrawPhase::None);
1811        self.needs_present.set(true);
1812
1813        ArenaClearNeeded
1814    }
1815
1816    fn record_entities_accessed(&mut self, cx: &mut App) {
1817        let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1818        let mut entities = mem::take(entities_ref.deref_mut());
1819        drop(entities_ref);
1820        let handle = self.handle;
1821        cx.record_entities_accessed(
1822            handle,
1823            // Try moving window invalidator into the Window
1824            self.invalidator.clone(),
1825            &entities,
1826        );
1827        let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1828        mem::swap(&mut entities, entities_ref.deref_mut());
1829    }
1830
1831    fn invalidate_entities(&mut self) {
1832        let mut views = self.invalidator.take_views();
1833        for entity in views.drain() {
1834            self.mark_view_dirty(entity);
1835        }
1836        self.invalidator.replace_views(views);
1837    }
1838
1839    #[profiling::function]
1840    fn present(&self) {
1841        self.platform_window.draw(&self.rendered_frame.scene);
1842        self.needs_present.set(false);
1843        profiling::finish_frame!();
1844    }
1845
1846    fn draw_roots(&mut self, cx: &mut App) {
1847        self.invalidator.set_phase(DrawPhase::Prepaint);
1848        self.tooltip_bounds.take();
1849
1850        let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
1851        let root_size = {
1852            #[cfg(any(feature = "inspector", debug_assertions))]
1853            {
1854                if self.inspector.is_some() {
1855                    let mut size = self.viewport_size;
1856                    size.width = (size.width - _inspector_width).max(px(0.0));
1857                    size
1858                } else {
1859                    self.viewport_size
1860                }
1861            }
1862            #[cfg(not(any(feature = "inspector", debug_assertions)))]
1863            {
1864                self.viewport_size
1865            }
1866        };
1867
1868        // Layout all root elements.
1869        let mut root_element = self.root.as_ref().unwrap().clone().into_any();
1870        root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
1871
1872        #[cfg(any(feature = "inspector", debug_assertions))]
1873        let inspector_element = self.prepaint_inspector(_inspector_width, cx);
1874
1875        let mut sorted_deferred_draws =
1876            (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
1877        sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
1878        self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
1879
1880        let mut prompt_element = None;
1881        let mut active_drag_element = None;
1882        let mut tooltip_element = None;
1883        if let Some(prompt) = self.prompt.take() {
1884            let mut element = prompt.view.any_view().into_any();
1885            element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
1886            prompt_element = Some(element);
1887            self.prompt = Some(prompt);
1888        } else if let Some(active_drag) = cx.active_drag.take() {
1889            let mut element = active_drag.view.clone().into_any();
1890            let offset = self.mouse_position() - active_drag.cursor_offset;
1891            element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
1892            active_drag_element = Some(element);
1893            cx.active_drag = Some(active_drag);
1894        } else {
1895            tooltip_element = self.prepaint_tooltip(cx);
1896        }
1897
1898        self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
1899
1900        // Now actually paint the elements.
1901        self.invalidator.set_phase(DrawPhase::Paint);
1902        root_element.paint(self, cx);
1903
1904        #[cfg(any(feature = "inspector", debug_assertions))]
1905        self.paint_inspector(inspector_element, cx);
1906
1907        self.paint_deferred_draws(&sorted_deferred_draws, cx);
1908
1909        if let Some(mut prompt_element) = prompt_element {
1910            prompt_element.paint(self, cx);
1911        } else if let Some(mut drag_element) = active_drag_element {
1912            drag_element.paint(self, cx);
1913        } else if let Some(mut tooltip_element) = tooltip_element {
1914            tooltip_element.paint(self, cx);
1915        }
1916
1917        #[cfg(any(feature = "inspector", debug_assertions))]
1918        self.paint_inspector_hitbox(cx);
1919    }
1920
1921    fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
1922        // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
1923        for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
1924            let Some(Some(tooltip_request)) = self
1925                .next_frame
1926                .tooltip_requests
1927                .get(tooltip_request_index)
1928                .cloned()
1929            else {
1930                log::error!("Unexpectedly absent TooltipRequest");
1931                continue;
1932            };
1933            let mut element = tooltip_request.tooltip.view.clone().into_any();
1934            let mouse_position = tooltip_request.tooltip.mouse_position;
1935            let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
1936
1937            let mut tooltip_bounds =
1938                Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
1939            let window_bounds = Bounds {
1940                origin: Point::default(),
1941                size: self.viewport_size(),
1942            };
1943
1944            if tooltip_bounds.right() > window_bounds.right() {
1945                let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
1946                if new_x >= Pixels::ZERO {
1947                    tooltip_bounds.origin.x = new_x;
1948                } else {
1949                    tooltip_bounds.origin.x = cmp::max(
1950                        Pixels::ZERO,
1951                        tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
1952                    );
1953                }
1954            }
1955
1956            if tooltip_bounds.bottom() > window_bounds.bottom() {
1957                let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
1958                if new_y >= Pixels::ZERO {
1959                    tooltip_bounds.origin.y = new_y;
1960                } else {
1961                    tooltip_bounds.origin.y = cmp::max(
1962                        Pixels::ZERO,
1963                        tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
1964                    );
1965                }
1966            }
1967
1968            // It's possible for an element to have an active tooltip while not being painted (e.g.
1969            // via the `visible_on_hover` method). Since mouse listeners are not active in this
1970            // case, instead update the tooltip's visibility here.
1971            let is_visible =
1972                (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
1973            if !is_visible {
1974                continue;
1975            }
1976
1977            self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
1978                element.prepaint(window, cx)
1979            });
1980
1981            self.tooltip_bounds = Some(TooltipBounds {
1982                id: tooltip_request.id,
1983                bounds: tooltip_bounds,
1984            });
1985            return Some(element);
1986        }
1987        None
1988    }
1989
1990    fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
1991        assert_eq!(self.element_id_stack.len(), 0);
1992
1993        let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
1994        for deferred_draw_ix in deferred_draw_indices {
1995            let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
1996            self.element_id_stack
1997                .clone_from(&deferred_draw.element_id_stack);
1998            self.text_style_stack
1999                .clone_from(&deferred_draw.text_style_stack);
2000            self.next_frame
2001                .dispatch_tree
2002                .set_active_node(deferred_draw.parent_node);
2003
2004            let prepaint_start = self.prepaint_index();
2005            if let Some(element) = deferred_draw.element.as_mut() {
2006                self.with_rendered_view(deferred_draw.current_view, |window| {
2007                    window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
2008                        element.prepaint(window, cx)
2009                    });
2010                })
2011            } else {
2012                self.reuse_prepaint(deferred_draw.prepaint_range.clone());
2013            }
2014            let prepaint_end = self.prepaint_index();
2015            deferred_draw.prepaint_range = prepaint_start..prepaint_end;
2016        }
2017        assert_eq!(
2018            self.next_frame.deferred_draws.len(),
2019            0,
2020            "cannot call defer_draw during deferred drawing"
2021        );
2022        self.next_frame.deferred_draws = deferred_draws;
2023        self.element_id_stack.clear();
2024        self.text_style_stack.clear();
2025    }
2026
2027    fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2028        assert_eq!(self.element_id_stack.len(), 0);
2029
2030        let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2031        for deferred_draw_ix in deferred_draw_indices {
2032            let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2033            self.element_id_stack
2034                .clone_from(&deferred_draw.element_id_stack);
2035            self.next_frame
2036                .dispatch_tree
2037                .set_active_node(deferred_draw.parent_node);
2038
2039            let paint_start = self.paint_index();
2040            if let Some(element) = deferred_draw.element.as_mut() {
2041                self.with_rendered_view(deferred_draw.current_view, |window| {
2042                    element.paint(window, cx);
2043                })
2044            } else {
2045                self.reuse_paint(deferred_draw.paint_range.clone());
2046            }
2047            let paint_end = self.paint_index();
2048            deferred_draw.paint_range = paint_start..paint_end;
2049        }
2050        self.next_frame.deferred_draws = deferred_draws;
2051        self.element_id_stack.clear();
2052    }
2053
2054    pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2055        PrepaintStateIndex {
2056            hitboxes_index: self.next_frame.hitboxes.len(),
2057            tooltips_index: self.next_frame.tooltip_requests.len(),
2058            deferred_draws_index: self.next_frame.deferred_draws.len(),
2059            dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2060            accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2061            line_layout_index: self.text_system.layout_index(),
2062        }
2063    }
2064
2065    pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2066        self.next_frame.hitboxes.extend(
2067            self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2068                .iter()
2069                .cloned(),
2070        );
2071        self.next_frame.tooltip_requests.extend(
2072            self.rendered_frame.tooltip_requests
2073                [range.start.tooltips_index..range.end.tooltips_index]
2074                .iter_mut()
2075                .map(|request| request.take()),
2076        );
2077        self.next_frame.accessed_element_states.extend(
2078            self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2079                ..range.end.accessed_element_states_index]
2080                .iter()
2081                .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2082        );
2083        self.text_system
2084            .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2085
2086        let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2087            range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2088            &mut self.rendered_frame.dispatch_tree,
2089            self.focus,
2090        );
2091
2092        if reused_subtree.contains_focus() {
2093            self.next_frame.focus = self.focus;
2094        }
2095
2096        self.next_frame.deferred_draws.extend(
2097            self.rendered_frame.deferred_draws
2098                [range.start.deferred_draws_index..range.end.deferred_draws_index]
2099                .iter()
2100                .map(|deferred_draw| DeferredDraw {
2101                    current_view: deferred_draw.current_view,
2102                    parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2103                    element_id_stack: deferred_draw.element_id_stack.clone(),
2104                    text_style_stack: deferred_draw.text_style_stack.clone(),
2105                    priority: deferred_draw.priority,
2106                    element: None,
2107                    absolute_offset: deferred_draw.absolute_offset,
2108                    prepaint_range: deferred_draw.prepaint_range.clone(),
2109                    paint_range: deferred_draw.paint_range.clone(),
2110                }),
2111        );
2112    }
2113
2114    pub(crate) fn paint_index(&self) -> PaintIndex {
2115        PaintIndex {
2116            scene_index: self.next_frame.scene.len(),
2117            mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2118            input_handlers_index: self.next_frame.input_handlers.len(),
2119            cursor_styles_index: self.next_frame.cursor_styles.len(),
2120            accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2121            line_layout_index: self.text_system.layout_index(),
2122        }
2123    }
2124
2125    pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2126        self.next_frame.cursor_styles.extend(
2127            self.rendered_frame.cursor_styles
2128                [range.start.cursor_styles_index..range.end.cursor_styles_index]
2129                .iter()
2130                .cloned(),
2131        );
2132        self.next_frame.input_handlers.extend(
2133            self.rendered_frame.input_handlers
2134                [range.start.input_handlers_index..range.end.input_handlers_index]
2135                .iter_mut()
2136                .map(|handler| handler.take()),
2137        );
2138        self.next_frame.mouse_listeners.extend(
2139            self.rendered_frame.mouse_listeners
2140                [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2141                .iter_mut()
2142                .map(|listener| listener.take()),
2143        );
2144        self.next_frame.accessed_element_states.extend(
2145            self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2146                ..range.end.accessed_element_states_index]
2147                .iter()
2148                .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2149        );
2150
2151        self.text_system
2152            .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2153        self.next_frame.scene.replay(
2154            range.start.scene_index..range.end.scene_index,
2155            &self.rendered_frame.scene,
2156        );
2157    }
2158
2159    /// Push a text style onto the stack, and call a function with that style active.
2160    /// Use [`Window::text_style`] to get the current, combined text style. This method
2161    /// should only be called as part of element drawing.
2162    pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2163    where
2164        F: FnOnce(&mut Self) -> R,
2165    {
2166        self.invalidator.debug_assert_paint_or_prepaint();
2167        if let Some(style) = style {
2168            self.text_style_stack.push(style);
2169            let result = f(self);
2170            self.text_style_stack.pop();
2171            result
2172        } else {
2173            f(self)
2174        }
2175    }
2176
2177    /// Updates the cursor style at the platform level. This method should only be called
2178    /// during the prepaint phase of element drawing.
2179    pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
2180        self.invalidator.debug_assert_paint();
2181        self.next_frame.cursor_styles.push(CursorStyleRequest {
2182            hitbox_id: Some(hitbox.id),
2183            style,
2184        });
2185    }
2186
2187    /// Updates the cursor style for the entire window at the platform level. A cursor
2188    /// style using this method will have precedence over any cursor style set using
2189    /// `set_cursor_style`. This method should only be called during the prepaint
2190    /// phase of element drawing.
2191    pub fn set_window_cursor_style(&mut self, style: CursorStyle) {
2192        self.invalidator.debug_assert_paint();
2193        self.next_frame.cursor_styles.push(CursorStyleRequest {
2194            hitbox_id: None,
2195            style,
2196        })
2197    }
2198
2199    /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2200    /// during the paint phase of element drawing.
2201    pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2202        self.invalidator.debug_assert_prepaint();
2203        let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2204        self.next_frame
2205            .tooltip_requests
2206            .push(Some(TooltipRequest { id, tooltip }));
2207        id
2208    }
2209
2210    /// Invoke the given function with the given content mask after intersecting it
2211    /// with the current mask. This method should only be called during element drawing.
2212    pub fn with_content_mask<R>(
2213        &mut self,
2214        mask: Option<ContentMask<Pixels>>,
2215        f: impl FnOnce(&mut Self) -> R,
2216    ) -> R {
2217        self.invalidator.debug_assert_paint_or_prepaint();
2218        if let Some(mask) = mask {
2219            let mask = mask.intersect(&self.content_mask());
2220            self.content_mask_stack.push(mask);
2221            let result = f(self);
2222            self.content_mask_stack.pop();
2223            result
2224        } else {
2225            f(self)
2226        }
2227    }
2228
2229    /// Updates the global element offset relative to the current offset. This is used to implement
2230    /// scrolling. This method should only be called during the prepaint phase of element drawing.
2231    pub fn with_element_offset<R>(
2232        &mut self,
2233        offset: Point<Pixels>,
2234        f: impl FnOnce(&mut Self) -> R,
2235    ) -> R {
2236        self.invalidator.debug_assert_prepaint();
2237
2238        if offset.is_zero() {
2239            return f(self);
2240        };
2241
2242        let abs_offset = self.element_offset() + offset;
2243        self.with_absolute_element_offset(abs_offset, f)
2244    }
2245
2246    /// Updates the global element offset based on the given offset. This is used to implement
2247    /// drag handles and other manual painting of elements. This method should only be called during
2248    /// the prepaint phase of element drawing.
2249    pub fn with_absolute_element_offset<R>(
2250        &mut self,
2251        offset: Point<Pixels>,
2252        f: impl FnOnce(&mut Self) -> R,
2253    ) -> R {
2254        self.invalidator.debug_assert_prepaint();
2255        self.element_offset_stack.push(offset);
2256        let result = f(self);
2257        self.element_offset_stack.pop();
2258        result
2259    }
2260
2261    pub(crate) fn with_element_opacity<R>(
2262        &mut self,
2263        opacity: Option<f32>,
2264        f: impl FnOnce(&mut Self) -> R,
2265    ) -> R {
2266        if opacity.is_none() {
2267            return f(self);
2268        }
2269
2270        self.invalidator.debug_assert_paint_or_prepaint();
2271        self.element_opacity = opacity;
2272        let result = f(self);
2273        self.element_opacity = None;
2274        result
2275    }
2276
2277    /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2278    /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2279    /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2280    /// element offset and prepaint again. See [`List`] for an example. This method should only be
2281    /// called during the prepaint phase of element drawing.
2282    pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2283        self.invalidator.debug_assert_prepaint();
2284        let index = self.prepaint_index();
2285        let result = f(self);
2286        if result.is_err() {
2287            self.next_frame.hitboxes.truncate(index.hitboxes_index);
2288            self.next_frame
2289                .tooltip_requests
2290                .truncate(index.tooltips_index);
2291            self.next_frame
2292                .deferred_draws
2293                .truncate(index.deferred_draws_index);
2294            self.next_frame
2295                .dispatch_tree
2296                .truncate(index.dispatch_tree_index);
2297            self.next_frame
2298                .accessed_element_states
2299                .truncate(index.accessed_element_states_index);
2300            self.text_system.truncate_layouts(index.line_layout_index);
2301        }
2302        result
2303    }
2304
2305    /// When you call this method during [`prepaint`], containing elements will attempt to
2306    /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2307    /// [`prepaint`] again with a new set of bounds. See [`List`] for an example of an element
2308    /// that supports this method being called on the elements it contains. This method should only be
2309    /// called during the prepaint phase of element drawing.
2310    pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2311        self.invalidator.debug_assert_prepaint();
2312        self.requested_autoscroll = Some(bounds);
2313    }
2314
2315    /// This method can be called from a containing element such as [`List`] to support the autoscroll behavior
2316    /// described in [`request_autoscroll`].
2317    pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2318        self.invalidator.debug_assert_prepaint();
2319        self.requested_autoscroll.take()
2320    }
2321
2322    /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2323    /// Your view will be re-drawn once the asset has finished loading.
2324    ///
2325    /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2326    /// time.
2327    pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2328        let (task, is_first) = cx.fetch_asset::<A>(source);
2329        task.clone().now_or_never().or_else(|| {
2330            if is_first {
2331                let entity_id = self.current_view();
2332                self.spawn(cx, {
2333                    let task = task.clone();
2334                    async move |cx| {
2335                        task.await;
2336
2337                        cx.on_next_frame(move |_, cx| {
2338                            cx.notify(entity_id);
2339                        });
2340                    }
2341                })
2342                .detach();
2343            }
2344
2345            None
2346        })
2347    }
2348
2349    /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2350    /// Your view will not be re-drawn once the asset has finished loading.
2351    ///
2352    /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2353    /// time.
2354    pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2355        let (task, _) = cx.fetch_asset::<A>(source);
2356        task.clone().now_or_never()
2357    }
2358    /// Obtain the current element offset. This method should only be called during the
2359    /// prepaint phase of element drawing.
2360    pub fn element_offset(&self) -> Point<Pixels> {
2361        self.invalidator.debug_assert_prepaint();
2362        self.element_offset_stack
2363            .last()
2364            .copied()
2365            .unwrap_or_default()
2366    }
2367
2368    /// Obtain the current element opacity. This method should only be called during the
2369    /// prepaint phase of element drawing.
2370    pub(crate) fn element_opacity(&self) -> f32 {
2371        self.invalidator.debug_assert_paint_or_prepaint();
2372        self.element_opacity.unwrap_or(1.0)
2373    }
2374
2375    /// Obtain the current content mask. This method should only be called during element drawing.
2376    pub fn content_mask(&self) -> ContentMask<Pixels> {
2377        self.invalidator.debug_assert_paint_or_prepaint();
2378        self.content_mask_stack
2379            .last()
2380            .cloned()
2381            .unwrap_or_else(|| ContentMask {
2382                bounds: Bounds {
2383                    origin: Point::default(),
2384                    size: self.viewport_size,
2385                },
2386            })
2387    }
2388
2389    /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2390    /// This can be used within a custom element to distinguish multiple sets of child elements.
2391    pub fn with_element_namespace<R>(
2392        &mut self,
2393        element_id: impl Into<ElementId>,
2394        f: impl FnOnce(&mut Self) -> R,
2395    ) -> R {
2396        self.element_id_stack.push(element_id.into());
2397        let result = f(self);
2398        self.element_id_stack.pop();
2399        result
2400    }
2401
2402    /// Updates or initializes state for an element with the given id that lives across multiple
2403    /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2404    /// to the given closure. The state returned by the closure will be stored so it can be referenced
2405    /// when drawing the next frame. This method should only be called as part of element drawing.
2406    pub fn with_element_state<S, R>(
2407        &mut self,
2408        global_id: &GlobalElementId,
2409        f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2410    ) -> R
2411    where
2412        S: 'static,
2413    {
2414        self.invalidator.debug_assert_paint_or_prepaint();
2415
2416        let key = (GlobalElementId(global_id.0.clone()), TypeId::of::<S>());
2417        self.next_frame
2418            .accessed_element_states
2419            .push((GlobalElementId(key.0.clone()), TypeId::of::<S>()));
2420
2421        if let Some(any) = self
2422            .next_frame
2423            .element_states
2424            .remove(&key)
2425            .or_else(|| self.rendered_frame.element_states.remove(&key))
2426        {
2427            let ElementStateBox {
2428                inner,
2429                #[cfg(debug_assertions)]
2430                type_name,
2431            } = any;
2432            // Using the extra inner option to avoid needing to reallocate a new box.
2433            let mut state_box = inner
2434                .downcast::<Option<S>>()
2435                .map_err(|_| {
2436                    #[cfg(debug_assertions)]
2437                    {
2438                        anyhow::anyhow!(
2439                            "invalid element state type for id, requested {:?}, actual: {:?}",
2440                            std::any::type_name::<S>(),
2441                            type_name
2442                        )
2443                    }
2444
2445                    #[cfg(not(debug_assertions))]
2446                    {
2447                        anyhow::anyhow!(
2448                            "invalid element state type for id, requested {:?}",
2449                            std::any::type_name::<S>(),
2450                        )
2451                    }
2452                })
2453                .unwrap();
2454
2455            let state = state_box.take().expect(
2456                "reentrant call to with_element_state for the same state type and element id",
2457            );
2458            let (result, state) = f(Some(state), self);
2459            state_box.replace(state);
2460            self.next_frame.element_states.insert(
2461                key,
2462                ElementStateBox {
2463                    inner: state_box,
2464                    #[cfg(debug_assertions)]
2465                    type_name,
2466                },
2467            );
2468            result
2469        } else {
2470            let (result, state) = f(None, self);
2471            self.next_frame.element_states.insert(
2472                key,
2473                ElementStateBox {
2474                    inner: Box::new(Some(state)),
2475                    #[cfg(debug_assertions)]
2476                    type_name: std::any::type_name::<S>(),
2477                },
2478            );
2479            result
2480        }
2481    }
2482
2483    /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2484    /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2485    /// when the element is guaranteed to have an id.
2486    ///
2487    /// The first option means 'no ID provided'
2488    /// The second option means 'not yet initialized'
2489    pub fn with_optional_element_state<S, R>(
2490        &mut self,
2491        global_id: Option<&GlobalElementId>,
2492        f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2493    ) -> R
2494    where
2495        S: 'static,
2496    {
2497        self.invalidator.debug_assert_paint_or_prepaint();
2498
2499        if let Some(global_id) = global_id {
2500            self.with_element_state(global_id, |state, cx| {
2501                let (result, state) = f(Some(state), cx);
2502                let state =
2503                    state.expect("you must return some state when you pass some element id");
2504                (result, state)
2505            })
2506        } else {
2507            let (result, state) = f(None, self);
2508            debug_assert!(
2509                state.is_none(),
2510                "you must not return an element state when passing None for the global id"
2511            );
2512            result
2513        }
2514    }
2515
2516    /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2517    /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2518    /// with higher values being drawn on top.
2519    ///
2520    /// This method should only be called as part of the prepaint phase of element drawing.
2521    pub fn defer_draw(
2522        &mut self,
2523        element: AnyElement,
2524        absolute_offset: Point<Pixels>,
2525        priority: usize,
2526    ) {
2527        self.invalidator.debug_assert_prepaint();
2528        let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2529        self.next_frame.deferred_draws.push(DeferredDraw {
2530            current_view: self.current_view(),
2531            parent_node,
2532            element_id_stack: self.element_id_stack.clone(),
2533            text_style_stack: self.text_style_stack.clone(),
2534            priority,
2535            element: Some(element),
2536            absolute_offset,
2537            prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2538            paint_range: PaintIndex::default()..PaintIndex::default(),
2539        });
2540    }
2541
2542    /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2543    /// of geometry that are non-overlapping and have the same draw order. This is typically used
2544    /// for performance reasons.
2545    ///
2546    /// This method should only be called as part of the paint phase of element drawing.
2547    pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2548        self.invalidator.debug_assert_paint();
2549
2550        let scale_factor = self.scale_factor();
2551        let content_mask = self.content_mask();
2552        let clipped_bounds = bounds.intersect(&content_mask.bounds);
2553        if !clipped_bounds.is_empty() {
2554            self.next_frame
2555                .scene
2556                .push_layer(clipped_bounds.scale(scale_factor));
2557        }
2558
2559        let result = f(self);
2560
2561        if !clipped_bounds.is_empty() {
2562            self.next_frame.scene.pop_layer();
2563        }
2564
2565        result
2566    }
2567
2568    /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2569    ///
2570    /// This method should only be called as part of the paint phase of element drawing.
2571    pub fn paint_shadows(
2572        &mut self,
2573        bounds: Bounds<Pixels>,
2574        corner_radii: Corners<Pixels>,
2575        shadows: &[BoxShadow],
2576    ) {
2577        self.invalidator.debug_assert_paint();
2578
2579        let scale_factor = self.scale_factor();
2580        let content_mask = self.content_mask();
2581        let opacity = self.element_opacity();
2582        for shadow in shadows {
2583            let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2584            self.next_frame.scene.insert_primitive(Shadow {
2585                order: 0,
2586                blur_radius: shadow.blur_radius.scale(scale_factor),
2587                bounds: shadow_bounds.scale(scale_factor),
2588                content_mask: content_mask.scale(scale_factor),
2589                corner_radii: corner_radii.scale(scale_factor),
2590                color: shadow.color.opacity(opacity),
2591            });
2592        }
2593    }
2594
2595    /// Paint one or more quads into the scene for the next frame at the current stacking context.
2596    /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2597    /// see [`fill`](crate::fill), [`outline`](crate::outline), and [`quad`](crate::quad) to construct this type.
2598    ///
2599    /// This method should only be called as part of the paint phase of element drawing.
2600    ///
2601    /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2602    /// where the circular arcs meet. This will not display well when combined with dashed borders.
2603    /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2604    pub fn paint_quad(&mut self, quad: PaintQuad) {
2605        self.invalidator.debug_assert_paint();
2606
2607        let scale_factor = self.scale_factor();
2608        let content_mask = self.content_mask();
2609        let opacity = self.element_opacity();
2610        self.next_frame.scene.insert_primitive(Quad {
2611            order: 0,
2612            bounds: quad.bounds.scale(scale_factor),
2613            content_mask: content_mask.scale(scale_factor),
2614            background: quad.background.opacity(opacity),
2615            border_color: quad.border_color.opacity(opacity),
2616            corner_radii: quad.corner_radii.scale(scale_factor),
2617            border_widths: quad.border_widths.scale(scale_factor),
2618            border_style: quad.border_style,
2619        });
2620    }
2621
2622    /// Paint the given `Path` into the scene for the next frame at the current z-index.
2623    ///
2624    /// This method should only be called as part of the paint phase of element drawing.
2625    pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2626        self.invalidator.debug_assert_paint();
2627
2628        let scale_factor = self.scale_factor();
2629        let content_mask = self.content_mask();
2630        let opacity = self.element_opacity();
2631        path.content_mask = content_mask;
2632        let color: Background = color.into();
2633        path.color = color.opacity(opacity);
2634        self.next_frame
2635            .scene
2636            .insert_primitive(path.scale(scale_factor));
2637    }
2638
2639    /// Paint an underline into the scene for the next frame at the current z-index.
2640    ///
2641    /// This method should only be called as part of the paint phase of element drawing.
2642    pub fn paint_underline(
2643        &mut self,
2644        origin: Point<Pixels>,
2645        width: Pixels,
2646        style: &UnderlineStyle,
2647    ) {
2648        self.invalidator.debug_assert_paint();
2649
2650        let scale_factor = self.scale_factor();
2651        let height = if style.wavy {
2652            style.thickness * 3.
2653        } else {
2654            style.thickness
2655        };
2656        let bounds = Bounds {
2657            origin,
2658            size: size(width, height),
2659        };
2660        let content_mask = self.content_mask();
2661        let element_opacity = self.element_opacity();
2662
2663        self.next_frame.scene.insert_primitive(Underline {
2664            order: 0,
2665            pad: 0,
2666            bounds: bounds.scale(scale_factor),
2667            content_mask: content_mask.scale(scale_factor),
2668            color: style.color.unwrap_or_default().opacity(element_opacity),
2669            thickness: style.thickness.scale(scale_factor),
2670            wavy: style.wavy,
2671        });
2672    }
2673
2674    /// Paint a strikethrough into the scene for the next frame at the current z-index.
2675    ///
2676    /// This method should only be called as part of the paint phase of element drawing.
2677    pub fn paint_strikethrough(
2678        &mut self,
2679        origin: Point<Pixels>,
2680        width: Pixels,
2681        style: &StrikethroughStyle,
2682    ) {
2683        self.invalidator.debug_assert_paint();
2684
2685        let scale_factor = self.scale_factor();
2686        let height = style.thickness;
2687        let bounds = Bounds {
2688            origin,
2689            size: size(width, height),
2690        };
2691        let content_mask = self.content_mask();
2692        let opacity = self.element_opacity();
2693
2694        self.next_frame.scene.insert_primitive(Underline {
2695            order: 0,
2696            pad: 0,
2697            bounds: bounds.scale(scale_factor),
2698            content_mask: content_mask.scale(scale_factor),
2699            thickness: style.thickness.scale(scale_factor),
2700            color: style.color.unwrap_or_default().opacity(opacity),
2701            wavy: false,
2702        });
2703    }
2704
2705    /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
2706    ///
2707    /// The y component of the origin is the baseline of the glyph.
2708    /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2709    /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2710    /// This method is only useful if you need to paint a single glyph that has already been shaped.
2711    ///
2712    /// This method should only be called as part of the paint phase of element drawing.
2713    pub fn paint_glyph(
2714        &mut self,
2715        origin: Point<Pixels>,
2716        font_id: FontId,
2717        glyph_id: GlyphId,
2718        font_size: Pixels,
2719        color: Hsla,
2720    ) -> Result<()> {
2721        self.invalidator.debug_assert_paint();
2722
2723        let element_opacity = self.element_opacity();
2724        let scale_factor = self.scale_factor();
2725        let glyph_origin = origin.scale(scale_factor);
2726        let subpixel_variant = Point {
2727            x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2728            y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2729        };
2730        let params = RenderGlyphParams {
2731            font_id,
2732            glyph_id,
2733            font_size,
2734            subpixel_variant,
2735            scale_factor,
2736            is_emoji: false,
2737        };
2738
2739        let raster_bounds = self.text_system().raster_bounds(&params)?;
2740        if !raster_bounds.is_zero() {
2741            let tile = self
2742                .sprite_atlas
2743                .get_or_insert_with(&params.clone().into(), &mut || {
2744                    let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
2745                    Ok(Some((size, Cow::Owned(bytes))))
2746                })?
2747                .expect("Callback above only errors or returns Some");
2748            let bounds = Bounds {
2749                origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2750                size: tile.bounds.size.map(Into::into),
2751            };
2752            let content_mask = self.content_mask().scale(scale_factor);
2753            self.next_frame.scene.insert_primitive(MonochromeSprite {
2754                order: 0,
2755                pad: 0,
2756                bounds,
2757                content_mask,
2758                color: color.opacity(element_opacity),
2759                tile,
2760                transformation: TransformationMatrix::unit(),
2761            });
2762        }
2763        Ok(())
2764    }
2765
2766    /// Paints an emoji glyph into the scene for the next frame at the current z-index.
2767    ///
2768    /// The y component of the origin is the baseline of the glyph.
2769    /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2770    /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2771    /// This method is only useful if you need to paint a single emoji that has already been shaped.
2772    ///
2773    /// This method should only be called as part of the paint phase of element drawing.
2774    pub fn paint_emoji(
2775        &mut self,
2776        origin: Point<Pixels>,
2777        font_id: FontId,
2778        glyph_id: GlyphId,
2779        font_size: Pixels,
2780    ) -> Result<()> {
2781        self.invalidator.debug_assert_paint();
2782
2783        let scale_factor = self.scale_factor();
2784        let glyph_origin = origin.scale(scale_factor);
2785        let params = RenderGlyphParams {
2786            font_id,
2787            glyph_id,
2788            font_size,
2789            // We don't render emojis with subpixel variants.
2790            subpixel_variant: Default::default(),
2791            scale_factor,
2792            is_emoji: true,
2793        };
2794
2795        let raster_bounds = self.text_system().raster_bounds(&params)?;
2796        if !raster_bounds.is_zero() {
2797            let tile = self
2798                .sprite_atlas
2799                .get_or_insert_with(&params.clone().into(), &mut || {
2800                    let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
2801                    Ok(Some((size, Cow::Owned(bytes))))
2802                })?
2803                .expect("Callback above only errors or returns Some");
2804
2805            let bounds = Bounds {
2806                origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2807                size: tile.bounds.size.map(Into::into),
2808            };
2809            let content_mask = self.content_mask().scale(scale_factor);
2810            let opacity = self.element_opacity();
2811
2812            self.next_frame.scene.insert_primitive(PolychromeSprite {
2813                order: 0,
2814                pad: 0,
2815                grayscale: false,
2816                bounds,
2817                corner_radii: Default::default(),
2818                content_mask,
2819                tile,
2820                opacity,
2821            });
2822        }
2823        Ok(())
2824    }
2825
2826    /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
2827    ///
2828    /// This method should only be called as part of the paint phase of element drawing.
2829    pub fn paint_svg(
2830        &mut self,
2831        bounds: Bounds<Pixels>,
2832        path: SharedString,
2833        transformation: TransformationMatrix,
2834        color: Hsla,
2835        cx: &App,
2836    ) -> Result<()> {
2837        self.invalidator.debug_assert_paint();
2838
2839        let element_opacity = self.element_opacity();
2840        let scale_factor = self.scale_factor();
2841        let bounds = bounds.scale(scale_factor);
2842        let params = RenderSvgParams {
2843            path,
2844            size: bounds.size.map(|pixels| {
2845                DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
2846            }),
2847        };
2848
2849        let Some(tile) =
2850            self.sprite_atlas
2851                .get_or_insert_with(&params.clone().into(), &mut || {
2852                    let Some(bytes) = cx.svg_renderer.render(&params)? else {
2853                        return Ok(None);
2854                    };
2855                    Ok(Some((params.size, Cow::Owned(bytes))))
2856                })?
2857        else {
2858            return Ok(());
2859        };
2860        let content_mask = self.content_mask().scale(scale_factor);
2861
2862        self.next_frame.scene.insert_primitive(MonochromeSprite {
2863            order: 0,
2864            pad: 0,
2865            bounds: bounds
2866                .map_origin(|origin| origin.floor())
2867                .map_size(|size| size.ceil()),
2868            content_mask,
2869            color: color.opacity(element_opacity),
2870            tile,
2871            transformation,
2872        });
2873
2874        Ok(())
2875    }
2876
2877    /// Paint an image into the scene for the next frame at the current z-index.
2878    /// This method will panic if the frame_index is not valid
2879    ///
2880    /// This method should only be called as part of the paint phase of element drawing.
2881    pub fn paint_image(
2882        &mut self,
2883        bounds: Bounds<Pixels>,
2884        corner_radii: Corners<Pixels>,
2885        data: Arc<RenderImage>,
2886        frame_index: usize,
2887        grayscale: bool,
2888    ) -> Result<()> {
2889        self.invalidator.debug_assert_paint();
2890
2891        let scale_factor = self.scale_factor();
2892        let bounds = bounds.scale(scale_factor);
2893        let params = RenderImageParams {
2894            image_id: data.id,
2895            frame_index,
2896        };
2897
2898        let tile = self
2899            .sprite_atlas
2900            .get_or_insert_with(&params.clone().into(), &mut || {
2901                Ok(Some((
2902                    data.size(frame_index),
2903                    Cow::Borrowed(
2904                        data.as_bytes(frame_index)
2905                            .expect("It's the caller's job to pass a valid frame index"),
2906                    ),
2907                )))
2908            })?
2909            .expect("Callback above only returns Some");
2910        let content_mask = self.content_mask().scale(scale_factor);
2911        let corner_radii = corner_radii.scale(scale_factor);
2912        let opacity = self.element_opacity();
2913
2914        self.next_frame.scene.insert_primitive(PolychromeSprite {
2915            order: 0,
2916            pad: 0,
2917            grayscale,
2918            bounds: bounds
2919                .map_origin(|origin| origin.floor())
2920                .map_size(|size| size.ceil()),
2921            content_mask,
2922            corner_radii,
2923            tile,
2924            opacity,
2925        });
2926        Ok(())
2927    }
2928
2929    /// Paint a surface into the scene for the next frame at the current z-index.
2930    ///
2931    /// This method should only be called as part of the paint phase of element drawing.
2932    #[cfg(target_os = "macos")]
2933    pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
2934        use crate::PaintSurface;
2935
2936        self.invalidator.debug_assert_paint();
2937
2938        let scale_factor = self.scale_factor();
2939        let bounds = bounds.scale(scale_factor);
2940        let content_mask = self.content_mask().scale(scale_factor);
2941        self.next_frame.scene.insert_primitive(PaintSurface {
2942            order: 0,
2943            bounds,
2944            content_mask,
2945            image_buffer,
2946        });
2947    }
2948
2949    /// Removes an image from the sprite atlas.
2950    pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
2951        for frame_index in 0..data.frame_count() {
2952            let params = RenderImageParams {
2953                image_id: data.id,
2954                frame_index,
2955            };
2956
2957            self.sprite_atlas.remove(&params.clone().into());
2958        }
2959
2960        Ok(())
2961    }
2962
2963    /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
2964    /// layout is being requested, along with the layout ids of any children. This method is called during
2965    /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
2966    ///
2967    /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
2968    #[must_use]
2969    pub fn request_layout(
2970        &mut self,
2971        style: Style,
2972        children: impl IntoIterator<Item = LayoutId>,
2973        cx: &mut App,
2974    ) -> LayoutId {
2975        self.invalidator.debug_assert_prepaint();
2976
2977        cx.layout_id_buffer.clear();
2978        cx.layout_id_buffer.extend(children);
2979        let rem_size = self.rem_size();
2980
2981        self.layout_engine
2982            .as_mut()
2983            .unwrap()
2984            .request_layout(style, rem_size, &cx.layout_id_buffer)
2985    }
2986
2987    /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
2988    /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
2989    /// determine the element's size. One place this is used internally is when measuring text.
2990    ///
2991    /// The given closure is invoked at layout time with the known dimensions and available space and
2992    /// returns a `Size`.
2993    ///
2994    /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
2995    pub fn request_measured_layout<
2996        F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
2997            + 'static,
2998    >(
2999        &mut self,
3000        style: Style,
3001        measure: F,
3002    ) -> LayoutId {
3003        self.invalidator.debug_assert_prepaint();
3004
3005        let rem_size = self.rem_size();
3006        self.layout_engine
3007            .as_mut()
3008            .unwrap()
3009            .request_measured_layout(style, rem_size, measure)
3010    }
3011
3012    /// Compute the layout for the given id within the given available space.
3013    /// This method is called for its side effect, typically by the framework prior to painting.
3014    /// After calling it, you can request the bounds of the given layout node id or any descendant.
3015    ///
3016    /// This method should only be called as part of the prepaint phase of element drawing.
3017    pub fn compute_layout(
3018        &mut self,
3019        layout_id: LayoutId,
3020        available_space: Size<AvailableSpace>,
3021        cx: &mut App,
3022    ) {
3023        self.invalidator.debug_assert_prepaint();
3024
3025        let mut layout_engine = self.layout_engine.take().unwrap();
3026        layout_engine.compute_layout(layout_id, available_space, self, cx);
3027        self.layout_engine = Some(layout_engine);
3028    }
3029
3030    /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
3031    /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
3032    ///
3033    /// This method should only be called as part of element drawing.
3034    pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
3035        self.invalidator.debug_assert_prepaint();
3036
3037        let mut bounds = self
3038            .layout_engine
3039            .as_mut()
3040            .unwrap()
3041            .layout_bounds(layout_id)
3042            .map(Into::into);
3043        bounds.origin += self.element_offset();
3044        bounds
3045    }
3046
3047    /// This method should be called during `prepaint`. You can use
3048    /// the returned [Hitbox] during `paint` or in an event handler
3049    /// to determine whether the inserted hitbox was the topmost.
3050    ///
3051    /// This method should only be called as part of the prepaint phase of element drawing.
3052    pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
3053        self.invalidator.debug_assert_prepaint();
3054
3055        let content_mask = self.content_mask();
3056        let mut id = self.next_hitbox_id;
3057        self.next_hitbox_id = self.next_hitbox_id.next();
3058        let hitbox = Hitbox {
3059            id,
3060            bounds,
3061            content_mask,
3062            behavior,
3063        };
3064        self.next_frame.hitboxes.push(hitbox.clone());
3065        hitbox
3066    }
3067
3068    /// Set a hitbox which will act as a control area of the platform window.
3069    ///
3070    /// This method should only be called as part of the paint phase of element drawing.
3071    pub fn insert_window_control_hitbox(&mut self, area: WindowControlArea, hitbox: Hitbox) {
3072        self.invalidator.debug_assert_paint();
3073        self.next_frame.window_control_hitboxes.push((area, hitbox));
3074    }
3075
3076    /// Sets the key context for the current element. This context will be used to translate
3077    /// keybindings into actions.
3078    ///
3079    /// This method should only be called as part of the paint phase of element drawing.
3080    pub fn set_key_context(&mut self, context: KeyContext) {
3081        self.invalidator.debug_assert_paint();
3082        self.next_frame.dispatch_tree.set_key_context(context);
3083    }
3084
3085    /// Sets the focus handle for the current element. This handle will be used to manage focus state
3086    /// and keyboard event dispatch for the element.
3087    ///
3088    /// This method should only be called as part of the prepaint phase of element drawing.
3089    pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3090        self.invalidator.debug_assert_prepaint();
3091        if focus_handle.is_focused(self) {
3092            self.next_frame.focus = Some(focus_handle.id);
3093        }
3094        self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3095    }
3096
3097    /// Sets the view id for the current element, which will be used to manage view caching.
3098    ///
3099    /// This method should only be called as part of element prepaint. We plan on removing this
3100    /// method eventually when we solve some issues that require us to construct editor elements
3101    /// directly instead of always using editors via views.
3102    pub fn set_view_id(&mut self, view_id: EntityId) {
3103        self.invalidator.debug_assert_prepaint();
3104        self.next_frame.dispatch_tree.set_view_id(view_id);
3105    }
3106
3107    /// Get the entity ID for the currently rendering view
3108    pub fn current_view(&self) -> EntityId {
3109        self.invalidator.debug_assert_paint_or_prepaint();
3110        self.rendered_entity_stack.last().copied().unwrap()
3111    }
3112
3113    pub(crate) fn with_rendered_view<R>(
3114        &mut self,
3115        id: EntityId,
3116        f: impl FnOnce(&mut Self) -> R,
3117    ) -> R {
3118        self.rendered_entity_stack.push(id);
3119        let result = f(self);
3120        self.rendered_entity_stack.pop();
3121        result
3122    }
3123
3124    /// Executes the provided function with the specified image cache.
3125    pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3126    where
3127        F: FnOnce(&mut Self) -> R,
3128    {
3129        if let Some(image_cache) = image_cache {
3130            self.image_cache_stack.push(image_cache);
3131            let result = f(self);
3132            self.image_cache_stack.pop();
3133            result
3134        } else {
3135            f(self)
3136        }
3137    }
3138
3139    /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3140    /// platform to receive textual input with proper integration with concerns such
3141    /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3142    /// rendered.
3143    ///
3144    /// This method should only be called as part of the paint phase of element drawing.
3145    ///
3146    /// [element_input_handler]: crate::ElementInputHandler
3147    pub fn handle_input(
3148        &mut self,
3149        focus_handle: &FocusHandle,
3150        input_handler: impl InputHandler,
3151        cx: &App,
3152    ) {
3153        self.invalidator.debug_assert_paint();
3154
3155        if focus_handle.is_focused(self) {
3156            let cx = self.to_async(cx);
3157            self.next_frame
3158                .input_handlers
3159                .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3160        }
3161    }
3162
3163    /// Register a mouse event listener on the window for the next frame. The type of event
3164    /// is determined by the first parameter of the given listener. When the next frame is rendered
3165    /// the listener will be cleared.
3166    ///
3167    /// This method should only be called as part of the paint phase of element drawing.
3168    pub fn on_mouse_event<Event: MouseEvent>(
3169        &mut self,
3170        mut handler: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3171    ) {
3172        self.invalidator.debug_assert_paint();
3173
3174        self.next_frame.mouse_listeners.push(Some(Box::new(
3175            move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3176                if let Some(event) = event.downcast_ref() {
3177                    handler(event, phase, window, cx)
3178                }
3179            },
3180        )));
3181    }
3182
3183    /// Register a key event listener on the window for the next frame. The type of event
3184    /// is determined by the first parameter of the given listener. When the next frame is rendered
3185    /// the listener will be cleared.
3186    ///
3187    /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3188    /// a specific need to register a global listener.
3189    ///
3190    /// This method should only be called as part of the paint phase of element drawing.
3191    pub fn on_key_event<Event: KeyEvent>(
3192        &mut self,
3193        listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3194    ) {
3195        self.invalidator.debug_assert_paint();
3196
3197        self.next_frame.dispatch_tree.on_key_event(Rc::new(
3198            move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3199                if let Some(event) = event.downcast_ref::<Event>() {
3200                    listener(event, phase, window, cx)
3201                }
3202            },
3203        ));
3204    }
3205
3206    /// Register a modifiers changed event listener on the window for the next frame.
3207    ///
3208    /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3209    /// a specific need to register a global listener.
3210    ///
3211    /// This method should only be called as part of the paint phase of element drawing.
3212    pub fn on_modifiers_changed(
3213        &mut self,
3214        listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3215    ) {
3216        self.invalidator.debug_assert_paint();
3217
3218        self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3219            move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3220                listener(event, window, cx)
3221            },
3222        ));
3223    }
3224
3225    /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3226    /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3227    /// Returns a subscription and persists until the subscription is dropped.
3228    pub fn on_focus_in(
3229        &mut self,
3230        handle: &FocusHandle,
3231        cx: &mut App,
3232        mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3233    ) -> Subscription {
3234        let focus_id = handle.id;
3235        let (subscription, activate) =
3236            self.new_focus_listener(Box::new(move |event, window, cx| {
3237                if event.is_focus_in(focus_id) {
3238                    listener(window, cx);
3239                }
3240                true
3241            }));
3242        cx.defer(move |_| activate());
3243        subscription
3244    }
3245
3246    /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3247    /// Returns a subscription and persists until the subscription is dropped.
3248    pub fn on_focus_out(
3249        &mut self,
3250        handle: &FocusHandle,
3251        cx: &mut App,
3252        mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3253    ) -> Subscription {
3254        let focus_id = handle.id;
3255        let (subscription, activate) =
3256            self.new_focus_listener(Box::new(move |event, window, cx| {
3257                if let Some(blurred_id) = event.previous_focus_path.last().copied() {
3258                    if event.is_focus_out(focus_id) {
3259                        let event = FocusOutEvent {
3260                            blurred: WeakFocusHandle {
3261                                id: blurred_id,
3262                                handles: Arc::downgrade(&cx.focus_handles),
3263                            },
3264                        };
3265                        listener(event, window, cx)
3266                    }
3267                }
3268                true
3269            }));
3270        cx.defer(move |_| activate());
3271        subscription
3272    }
3273
3274    fn reset_cursor_style(&self, cx: &mut App) {
3275        // Set the cursor only if we're the active window.
3276        if self.is_window_hovered() {
3277            let style = self
3278                .rendered_frame
3279                .cursor_style(self)
3280                .unwrap_or(CursorStyle::Arrow);
3281            cx.platform.set_cursor_style(style);
3282        }
3283    }
3284
3285    /// Dispatch a given keystroke as though the user had typed it.
3286    /// You can create a keystroke with Keystroke::parse("").
3287    pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3288        let keystroke = keystroke.with_simulated_ime();
3289        let result = self.dispatch_event(
3290            PlatformInput::KeyDown(KeyDownEvent {
3291                keystroke: keystroke.clone(),
3292                is_held: false,
3293            }),
3294            cx,
3295        );
3296        if !result.propagate {
3297            return true;
3298        }
3299
3300        if let Some(input) = keystroke.key_char {
3301            if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3302                input_handler.dispatch_input(&input, self, cx);
3303                self.platform_window.set_input_handler(input_handler);
3304                return true;
3305            }
3306        }
3307
3308        false
3309    }
3310
3311    /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3312    /// binding for the action (last binding added to the keymap).
3313    pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3314        self.highest_precedence_binding_for_action(action)
3315            .map(|binding| {
3316                binding
3317                    .keystrokes()
3318                    .iter()
3319                    .map(ToString::to_string)
3320                    .collect::<Vec<_>>()
3321                    .join(" ")
3322            })
3323            .unwrap_or_else(|| action.name().to_string())
3324    }
3325
3326    /// Dispatch a mouse or keyboard event on the window.
3327    #[profiling::function]
3328    pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3329        self.last_input_timestamp.set(Instant::now());
3330        // Handlers may set this to false by calling `stop_propagation`.
3331        cx.propagate_event = true;
3332        // Handlers may set this to true by calling `prevent_default`.
3333        self.default_prevented = false;
3334
3335        let event = match event {
3336            // Track the mouse position with our own state, since accessing the platform
3337            // API for the mouse position can only occur on the main thread.
3338            PlatformInput::MouseMove(mouse_move) => {
3339                self.mouse_position = mouse_move.position;
3340                self.modifiers = mouse_move.modifiers;
3341                PlatformInput::MouseMove(mouse_move)
3342            }
3343            PlatformInput::MouseDown(mouse_down) => {
3344                self.mouse_position = mouse_down.position;
3345                self.modifiers = mouse_down.modifiers;
3346                PlatformInput::MouseDown(mouse_down)
3347            }
3348            PlatformInput::MouseUp(mouse_up) => {
3349                self.mouse_position = mouse_up.position;
3350                self.modifiers = mouse_up.modifiers;
3351                PlatformInput::MouseUp(mouse_up)
3352            }
3353            PlatformInput::MouseExited(mouse_exited) => {
3354                self.modifiers = mouse_exited.modifiers;
3355                PlatformInput::MouseExited(mouse_exited)
3356            }
3357            PlatformInput::ModifiersChanged(modifiers_changed) => {
3358                self.modifiers = modifiers_changed.modifiers;
3359                self.capslock = modifiers_changed.capslock;
3360                PlatformInput::ModifiersChanged(modifiers_changed)
3361            }
3362            PlatformInput::ScrollWheel(scroll_wheel) => {
3363                self.mouse_position = scroll_wheel.position;
3364                self.modifiers = scroll_wheel.modifiers;
3365                PlatformInput::ScrollWheel(scroll_wheel)
3366            }
3367            // Translate dragging and dropping of external files from the operating system
3368            // to internal drag and drop events.
3369            PlatformInput::FileDrop(file_drop) => match file_drop {
3370                FileDropEvent::Entered { position, paths } => {
3371                    self.mouse_position = position;
3372                    if cx.active_drag.is_none() {
3373                        cx.active_drag = Some(AnyDrag {
3374                            value: Arc::new(paths.clone()),
3375                            view: cx.new(|_| paths).into(),
3376                            cursor_offset: position,
3377                            cursor_style: None,
3378                        });
3379                    }
3380                    PlatformInput::MouseMove(MouseMoveEvent {
3381                        position,
3382                        pressed_button: Some(MouseButton::Left),
3383                        modifiers: Modifiers::default(),
3384                    })
3385                }
3386                FileDropEvent::Pending { position } => {
3387                    self.mouse_position = position;
3388                    PlatformInput::MouseMove(MouseMoveEvent {
3389                        position,
3390                        pressed_button: Some(MouseButton::Left),
3391                        modifiers: Modifiers::default(),
3392                    })
3393                }
3394                FileDropEvent::Submit { position } => {
3395                    cx.activate(true);
3396                    self.mouse_position = position;
3397                    PlatformInput::MouseUp(MouseUpEvent {
3398                        button: MouseButton::Left,
3399                        position,
3400                        modifiers: Modifiers::default(),
3401                        click_count: 1,
3402                    })
3403                }
3404                FileDropEvent::Exited => {
3405                    cx.active_drag.take();
3406                    PlatformInput::FileDrop(FileDropEvent::Exited)
3407                }
3408            },
3409            PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3410        };
3411
3412        if let Some(any_mouse_event) = event.mouse_event() {
3413            self.dispatch_mouse_event(any_mouse_event, cx);
3414        } else if let Some(any_key_event) = event.keyboard_event() {
3415            self.dispatch_key_event(any_key_event, cx);
3416        }
3417
3418        DispatchEventResult {
3419            propagate: cx.propagate_event,
3420            default_prevented: self.default_prevented,
3421        }
3422    }
3423
3424    fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3425        let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3426        if hit_test != self.mouse_hit_test {
3427            self.mouse_hit_test = hit_test;
3428            self.reset_cursor_style(cx);
3429        }
3430
3431        #[cfg(any(feature = "inspector", debug_assertions))]
3432        if self.is_inspector_picking(cx) {
3433            self.handle_inspector_mouse_event(event, cx);
3434            // When inspector is picking, all other mouse handling is skipped.
3435            return;
3436        }
3437
3438        let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3439
3440        // Capture phase, events bubble from back to front. Handlers for this phase are used for
3441        // special purposes, such as detecting events outside of a given Bounds.
3442        for listener in &mut mouse_listeners {
3443            let listener = listener.as_mut().unwrap();
3444            listener(event, DispatchPhase::Capture, self, cx);
3445            if !cx.propagate_event {
3446                break;
3447            }
3448        }
3449
3450        // Bubble phase, where most normal handlers do their work.
3451        if cx.propagate_event {
3452            for listener in mouse_listeners.iter_mut().rev() {
3453                let listener = listener.as_mut().unwrap();
3454                listener(event, DispatchPhase::Bubble, self, cx);
3455                if !cx.propagate_event {
3456                    break;
3457                }
3458            }
3459        }
3460
3461        self.rendered_frame.mouse_listeners = mouse_listeners;
3462
3463        if cx.has_active_drag() {
3464            if event.is::<MouseMoveEvent>() {
3465                // If this was a mouse move event, redraw the window so that the
3466                // active drag can follow the mouse cursor.
3467                self.refresh();
3468            } else if event.is::<MouseUpEvent>() {
3469                // If this was a mouse up event, cancel the active drag and redraw
3470                // the window.
3471                cx.active_drag = None;
3472                self.refresh();
3473            }
3474        }
3475    }
3476
3477    fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3478        if self.invalidator.is_dirty() {
3479            self.draw(cx).clear();
3480        }
3481
3482        let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3483        let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3484
3485        let mut keystroke: Option<Keystroke> = None;
3486
3487        if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3488            if event.modifiers.number_of_modifiers() == 0
3489                && self.pending_modifier.modifiers.number_of_modifiers() == 1
3490                && !self.pending_modifier.saw_keystroke
3491            {
3492                let key = match self.pending_modifier.modifiers {
3493                    modifiers if modifiers.shift => Some("shift"),
3494                    modifiers if modifiers.control => Some("control"),
3495                    modifiers if modifiers.alt => Some("alt"),
3496                    modifiers if modifiers.platform => Some("platform"),
3497                    modifiers if modifiers.function => Some("function"),
3498                    _ => None,
3499                };
3500                if let Some(key) = key {
3501                    keystroke = Some(Keystroke {
3502                        key: key.to_string(),
3503                        key_char: None,
3504                        modifiers: Modifiers::default(),
3505                    });
3506                }
3507            }
3508
3509            if self.pending_modifier.modifiers.number_of_modifiers() == 0
3510                && event.modifiers.number_of_modifiers() == 1
3511            {
3512                self.pending_modifier.saw_keystroke = false
3513            }
3514            self.pending_modifier.modifiers = event.modifiers
3515        } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3516            self.pending_modifier.saw_keystroke = true;
3517            keystroke = Some(key_down_event.keystroke.clone());
3518        }
3519
3520        let Some(keystroke) = keystroke else {
3521            self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3522            return;
3523        };
3524
3525        let mut currently_pending = self.pending_input.take().unwrap_or_default();
3526        if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3527            currently_pending = PendingInput::default();
3528        }
3529
3530        let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3531            currently_pending.keystrokes,
3532            keystroke,
3533            &dispatch_path,
3534        );
3535
3536        if !match_result.to_replay.is_empty() {
3537            self.replay_pending_input(match_result.to_replay, cx)
3538        }
3539
3540        if !match_result.pending.is_empty() {
3541            currently_pending.keystrokes = match_result.pending;
3542            currently_pending.focus = self.focus;
3543            currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3544                cx.background_executor.timer(Duration::from_secs(1)).await;
3545                cx.update(move |window, cx| {
3546                    let Some(currently_pending) = window
3547                        .pending_input
3548                        .take()
3549                        .filter(|pending| pending.focus == window.focus)
3550                    else {
3551                        return;
3552                    };
3553
3554                    let node_id = window.focus_node_id_in_rendered_frame(window.focus);
3555                    let dispatch_path = window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3556
3557                    let to_replay = window
3558                        .rendered_frame
3559                        .dispatch_tree
3560                        .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3561
3562                    window.pending_input_changed(cx);
3563                    window.replay_pending_input(to_replay, cx)
3564                })
3565                .log_err();
3566            }));
3567            self.pending_input = Some(currently_pending);
3568            self.pending_input_changed(cx);
3569            cx.propagate_event = false;
3570            return;
3571        }
3572
3573        cx.propagate_event = true;
3574        for binding in match_result.bindings {
3575            self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3576            if !cx.propagate_event {
3577                self.dispatch_keystroke_observers(
3578                    event,
3579                    Some(binding.action),
3580                    match_result.context_stack.clone(),
3581                    cx,
3582                );
3583                self.pending_input_changed(cx);
3584                return;
3585            }
3586        }
3587
3588        self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
3589        self.pending_input_changed(cx);
3590    }
3591
3592    fn finish_dispatch_key_event(
3593        &mut self,
3594        event: &dyn Any,
3595        dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3596        context_stack: Vec<KeyContext>,
3597        cx: &mut App,
3598    ) {
3599        self.dispatch_key_down_up_event(event, &dispatch_path, cx);
3600        if !cx.propagate_event {
3601            return;
3602        }
3603
3604        self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
3605        if !cx.propagate_event {
3606            return;
3607        }
3608
3609        self.dispatch_keystroke_observers(event, None, context_stack, cx);
3610    }
3611
3612    fn pending_input_changed(&mut self, cx: &mut App) {
3613        self.pending_input_observers
3614            .clone()
3615            .retain(&(), |callback| callback(self, cx));
3616    }
3617
3618    fn dispatch_key_down_up_event(
3619        &mut self,
3620        event: &dyn Any,
3621        dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3622        cx: &mut App,
3623    ) {
3624        // Capture phase
3625        for node_id in dispatch_path {
3626            let node = self.rendered_frame.dispatch_tree.node(*node_id);
3627
3628            for key_listener in node.key_listeners.clone() {
3629                key_listener(event, DispatchPhase::Capture, self, cx);
3630                if !cx.propagate_event {
3631                    return;
3632                }
3633            }
3634        }
3635
3636        // Bubble phase
3637        for node_id in dispatch_path.iter().rev() {
3638            // Handle low level key events
3639            let node = self.rendered_frame.dispatch_tree.node(*node_id);
3640            for key_listener in node.key_listeners.clone() {
3641                key_listener(event, DispatchPhase::Bubble, self, cx);
3642                if !cx.propagate_event {
3643                    return;
3644                }
3645            }
3646        }
3647    }
3648
3649    fn dispatch_modifiers_changed_event(
3650        &mut self,
3651        event: &dyn Any,
3652        dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3653        cx: &mut App,
3654    ) {
3655        let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
3656            return;
3657        };
3658        for node_id in dispatch_path.iter().rev() {
3659            let node = self.rendered_frame.dispatch_tree.node(*node_id);
3660            for listener in node.modifiers_changed_listeners.clone() {
3661                listener(event, self, cx);
3662                if !cx.propagate_event {
3663                    return;
3664                }
3665            }
3666        }
3667    }
3668
3669    /// Determine whether a potential multi-stroke key binding is in progress on this window.
3670    pub fn has_pending_keystrokes(&self) -> bool {
3671        self.pending_input.is_some()
3672    }
3673
3674    pub(crate) fn clear_pending_keystrokes(&mut self) {
3675        self.pending_input.take();
3676    }
3677
3678    /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
3679    pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
3680        self.pending_input
3681            .as_ref()
3682            .map(|pending_input| pending_input.keystrokes.as_slice())
3683    }
3684
3685    fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
3686        let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3687        let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3688
3689        'replay: for replay in replays {
3690            let event = KeyDownEvent {
3691                keystroke: replay.keystroke.clone(),
3692                is_held: false,
3693            };
3694
3695            cx.propagate_event = true;
3696            for binding in replay.bindings {
3697                self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3698                if !cx.propagate_event {
3699                    self.dispatch_keystroke_observers(
3700                        &event,
3701                        Some(binding.action),
3702                        Vec::default(),
3703                        cx,
3704                    );
3705                    continue 'replay;
3706                }
3707            }
3708
3709            self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
3710            if !cx.propagate_event {
3711                continue 'replay;
3712            }
3713            if let Some(input) = replay.keystroke.key_char.as_ref().cloned() {
3714                if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3715                    input_handler.dispatch_input(&input, self, cx);
3716                    self.platform_window.set_input_handler(input_handler)
3717                }
3718            }
3719        }
3720    }
3721
3722    fn focus_node_id_in_rendered_frame(&self, focus_id: Option<FocusId>) -> DispatchNodeId {
3723        focus_id
3724            .and_then(|focus_id| {
3725                self.rendered_frame
3726                    .dispatch_tree
3727                    .focusable_node_id(focus_id)
3728            })
3729            .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id())
3730    }
3731
3732    fn dispatch_action_on_node(
3733        &mut self,
3734        node_id: DispatchNodeId,
3735        action: &dyn Action,
3736        cx: &mut App,
3737    ) {
3738        let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3739
3740        // Capture phase for global actions.
3741        cx.propagate_event = true;
3742        if let Some(mut global_listeners) = cx
3743            .global_action_listeners
3744            .remove(&action.as_any().type_id())
3745        {
3746            for listener in &global_listeners {
3747                listener(action.as_any(), DispatchPhase::Capture, cx);
3748                if !cx.propagate_event {
3749                    break;
3750                }
3751            }
3752
3753            global_listeners.extend(
3754                cx.global_action_listeners
3755                    .remove(&action.as_any().type_id())
3756                    .unwrap_or_default(),
3757            );
3758
3759            cx.global_action_listeners
3760                .insert(action.as_any().type_id(), global_listeners);
3761        }
3762
3763        if !cx.propagate_event {
3764            return;
3765        }
3766
3767        // Capture phase for window actions.
3768        for node_id in &dispatch_path {
3769            let node = self.rendered_frame.dispatch_tree.node(*node_id);
3770            for DispatchActionListener {
3771                action_type,
3772                listener,
3773            } in node.action_listeners.clone()
3774            {
3775                let any_action = action.as_any();
3776                if action_type == any_action.type_id() {
3777                    listener(any_action, DispatchPhase::Capture, self, cx);
3778
3779                    if !cx.propagate_event {
3780                        return;
3781                    }
3782                }
3783            }
3784        }
3785
3786        // Bubble phase for window actions.
3787        for node_id in dispatch_path.iter().rev() {
3788            let node = self.rendered_frame.dispatch_tree.node(*node_id);
3789            for DispatchActionListener {
3790                action_type,
3791                listener,
3792            } in node.action_listeners.clone()
3793            {
3794                let any_action = action.as_any();
3795                if action_type == any_action.type_id() {
3796                    cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3797                    listener(any_action, DispatchPhase::Bubble, self, cx);
3798
3799                    if !cx.propagate_event {
3800                        return;
3801                    }
3802                }
3803            }
3804        }
3805
3806        // Bubble phase for global actions.
3807        if let Some(mut global_listeners) = cx
3808            .global_action_listeners
3809            .remove(&action.as_any().type_id())
3810        {
3811            for listener in global_listeners.iter().rev() {
3812                cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3813
3814                listener(action.as_any(), DispatchPhase::Bubble, cx);
3815                if !cx.propagate_event {
3816                    break;
3817                }
3818            }
3819
3820            global_listeners.extend(
3821                cx.global_action_listeners
3822                    .remove(&action.as_any().type_id())
3823                    .unwrap_or_default(),
3824            );
3825
3826            cx.global_action_listeners
3827                .insert(action.as_any().type_id(), global_listeners);
3828        }
3829    }
3830
3831    /// Register the given handler to be invoked whenever the global of the given type
3832    /// is updated.
3833    pub fn observe_global<G: Global>(
3834        &mut self,
3835        cx: &mut App,
3836        f: impl Fn(&mut Window, &mut App) + 'static,
3837    ) -> Subscription {
3838        let window_handle = self.handle;
3839        let (subscription, activate) = cx.global_observers.insert(
3840            TypeId::of::<G>(),
3841            Box::new(move |cx| {
3842                window_handle
3843                    .update(cx, |_, window, cx| f(window, cx))
3844                    .is_ok()
3845            }),
3846        );
3847        cx.defer(move |_| activate());
3848        subscription
3849    }
3850
3851    /// Focus the current window and bring it to the foreground at the platform level.
3852    pub fn activate_window(&self) {
3853        self.platform_window.activate();
3854    }
3855
3856    /// Minimize the current window at the platform level.
3857    pub fn minimize_window(&self) {
3858        self.platform_window.minimize();
3859    }
3860
3861    /// Toggle full screen status on the current window at the platform level.
3862    pub fn toggle_fullscreen(&self) {
3863        self.platform_window.toggle_fullscreen();
3864    }
3865
3866    /// Updates the IME panel position suggestions for languages like japanese, chinese.
3867    pub fn invalidate_character_coordinates(&self) {
3868        self.on_next_frame(|window, cx| {
3869            if let Some(mut input_handler) = window.platform_window.take_input_handler() {
3870                if let Some(bounds) = input_handler.selected_bounds(window, cx) {
3871                    window
3872                        .platform_window
3873                        .update_ime_position(bounds.scale(window.scale_factor()));
3874                }
3875                window.platform_window.set_input_handler(input_handler);
3876            }
3877        });
3878    }
3879
3880    /// Present a platform dialog.
3881    /// The provided message will be presented, along with buttons for each answer.
3882    /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
3883    pub fn prompt<T>(
3884        &mut self,
3885        level: PromptLevel,
3886        message: &str,
3887        detail: Option<&str>,
3888        answers: &[T],
3889        cx: &mut App,
3890    ) -> oneshot::Receiver<usize>
3891    where
3892        T: Clone + Into<PromptButton>,
3893    {
3894        let prompt_builder = cx.prompt_builder.take();
3895        let Some(prompt_builder) = prompt_builder else {
3896            unreachable!("Re-entrant window prompting is not supported by GPUI");
3897        };
3898
3899        let answers = answers
3900            .iter()
3901            .map(|answer| answer.clone().into())
3902            .collect::<Vec<_>>();
3903
3904        let receiver = match &prompt_builder {
3905            PromptBuilder::Default => self
3906                .platform_window
3907                .prompt(level, message, detail, &answers)
3908                .unwrap_or_else(|| {
3909                    self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
3910                }),
3911            PromptBuilder::Custom(_) => {
3912                self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
3913            }
3914        };
3915
3916        cx.prompt_builder = Some(prompt_builder);
3917
3918        receiver
3919    }
3920
3921    fn build_custom_prompt(
3922        &mut self,
3923        prompt_builder: &PromptBuilder,
3924        level: PromptLevel,
3925        message: &str,
3926        detail: Option<&str>,
3927        answers: &[PromptButton],
3928        cx: &mut App,
3929    ) -> oneshot::Receiver<usize> {
3930        let (sender, receiver) = oneshot::channel();
3931        let handle = PromptHandle::new(sender);
3932        let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
3933        self.prompt = Some(handle);
3934        receiver
3935    }
3936
3937    /// Returns the current context stack.
3938    pub fn context_stack(&self) -> Vec<KeyContext> {
3939        let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3940        let dispatch_tree = &self.rendered_frame.dispatch_tree;
3941        dispatch_tree
3942            .dispatch_path(node_id)
3943            .iter()
3944            .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
3945            .collect()
3946    }
3947
3948    /// Returns all available actions for the focused element.
3949    pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
3950        let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3951        let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
3952        for action_type in cx.global_action_listeners.keys() {
3953            if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
3954                let action = cx.actions.build_action_type(action_type).ok();
3955                if let Some(action) = action {
3956                    actions.insert(ix, action);
3957                }
3958            }
3959        }
3960        actions
3961    }
3962
3963    /// Returns key bindings that invoke an action on the currently focused element. Bindings are
3964    /// returned in the order they were added. For display, the last binding should take precedence.
3965    pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
3966        self.rendered_frame
3967            .dispatch_tree
3968            .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
3969    }
3970
3971    /// Returns the highest precedence key binding that invokes an action on the currently focused
3972    /// element. This is more efficient than getting the last result of `bindings_for_action`.
3973    pub fn highest_precedence_binding_for_action(&self, action: &dyn Action) -> Option<KeyBinding> {
3974        self.rendered_frame
3975            .dispatch_tree
3976            .highest_precedence_binding_for_action(
3977                action,
3978                &self.rendered_frame.dispatch_tree.context_stack,
3979            )
3980    }
3981
3982    /// Returns the key bindings for an action in a context.
3983    pub fn bindings_for_action_in_context(
3984        &self,
3985        action: &dyn Action,
3986        context: KeyContext,
3987    ) -> Vec<KeyBinding> {
3988        let dispatch_tree = &self.rendered_frame.dispatch_tree;
3989        dispatch_tree.bindings_for_action(action, &[context])
3990    }
3991
3992    /// Returns the highest precedence key binding for an action in a context. This is more
3993    /// efficient than getting the last result of `bindings_for_action_in_context`.
3994    pub fn highest_precedence_binding_for_action_in_context(
3995        &self,
3996        action: &dyn Action,
3997        context: KeyContext,
3998    ) -> Option<KeyBinding> {
3999        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4000        dispatch_tree.highest_precedence_binding_for_action(action, &[context])
4001    }
4002
4003    /// Returns any bindings that would invoke an action on the given focus handle if it were
4004    /// focused. Bindings are returned in the order they were added. For display, the last binding
4005    /// should take precedence.
4006    pub fn bindings_for_action_in(
4007        &self,
4008        action: &dyn Action,
4009        focus_handle: &FocusHandle,
4010    ) -> Vec<KeyBinding> {
4011        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4012        let Some(context_stack) = self.context_stack_for_focus_handle(focus_handle) else {
4013            return vec![];
4014        };
4015        dispatch_tree.bindings_for_action(action, &context_stack)
4016    }
4017
4018    /// Returns the highest precedence key binding that would invoke an action on the given focus
4019    /// handle if it were focused. This is more efficient than getting the last result of
4020    /// `bindings_for_action_in`.
4021    pub fn highest_precedence_binding_for_action_in(
4022        &self,
4023        action: &dyn Action,
4024        focus_handle: &FocusHandle,
4025    ) -> Option<KeyBinding> {
4026        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4027        let context_stack = self.context_stack_for_focus_handle(focus_handle)?;
4028        dispatch_tree.highest_precedence_binding_for_action(action, &context_stack)
4029    }
4030
4031    fn context_stack_for_focus_handle(
4032        &self,
4033        focus_handle: &FocusHandle,
4034    ) -> Option<Vec<KeyContext>> {
4035        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4036        let node_id = dispatch_tree.focusable_node_id(focus_handle.id)?;
4037        let context_stack: Vec<_> = dispatch_tree
4038            .dispatch_path(node_id)
4039            .into_iter()
4040            .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
4041            .collect();
4042        Some(context_stack)
4043    }
4044
4045    /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
4046    pub fn listener_for<V: Render, E>(
4047        &self,
4048        view: &Entity<V>,
4049        f: impl Fn(&mut V, &E, &mut Window, &mut Context<V>) + 'static,
4050    ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
4051        let view = view.downgrade();
4052        move |e: &E, window: &mut Window, cx: &mut App| {
4053            view.update(cx, |view, cx| f(view, e, window, cx)).ok();
4054        }
4055    }
4056
4057    /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
4058    pub fn handler_for<V: Render, Callback: Fn(&mut V, &mut Window, &mut Context<V>) + 'static>(
4059        &self,
4060        view: &Entity<V>,
4061        f: Callback,
4062    ) -> impl Fn(&mut Window, &mut App) + use<V, Callback> {
4063        let view = view.downgrade();
4064        move |window: &mut Window, cx: &mut App| {
4065            view.update(cx, |view, cx| f(view, window, cx)).ok();
4066        }
4067    }
4068
4069    /// Register a callback that can interrupt the closing of the current window based the returned boolean.
4070    /// If the callback returns false, the window won't be closed.
4071    pub fn on_window_should_close(
4072        &self,
4073        cx: &App,
4074        f: impl Fn(&mut Window, &mut App) -> bool + 'static,
4075    ) {
4076        let mut cx = self.to_async(cx);
4077        self.platform_window.on_should_close(Box::new(move || {
4078            cx.update(|window, cx| f(window, cx)).unwrap_or(true)
4079        }))
4080    }
4081
4082    /// Register an action listener on the window for the next frame. The type of action
4083    /// is determined by the first parameter of the given listener. When the next frame is rendered
4084    /// the listener will be cleared.
4085    ///
4086    /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4087    /// a specific need to register a global listener.
4088    pub fn on_action(
4089        &mut self,
4090        action_type: TypeId,
4091        listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4092    ) {
4093        self.next_frame
4094            .dispatch_tree
4095            .on_action(action_type, Rc::new(listener));
4096    }
4097
4098    /// Read information about the GPU backing this window.
4099    /// Currently returns None on Mac and Windows.
4100    pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4101        self.platform_window.gpu_specs()
4102    }
4103
4104    /// Perform titlebar double-click action.
4105    /// This is MacOS specific.
4106    pub fn titlebar_double_click(&self) {
4107        self.platform_window.titlebar_double_click();
4108    }
4109
4110    /// Toggles the inspector mode on this window.
4111    #[cfg(any(feature = "inspector", debug_assertions))]
4112    pub fn toggle_inspector(&mut self, cx: &mut App) {
4113        self.inspector = match self.inspector {
4114            None => Some(cx.new(|_| Inspector::new())),
4115            Some(_) => None,
4116        };
4117        self.refresh();
4118    }
4119
4120    /// Returns true if the window is in inspector mode.
4121    pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4122        #[cfg(any(feature = "inspector", debug_assertions))]
4123        {
4124            if let Some(inspector) = &self.inspector {
4125                return inspector.read(_cx).is_picking();
4126            }
4127        }
4128        false
4129    }
4130
4131    /// Executes the provided function with mutable access to an inspector state.
4132    #[cfg(any(feature = "inspector", debug_assertions))]
4133    pub fn with_inspector_state<T: 'static, R>(
4134        &mut self,
4135        _inspector_id: Option<&crate::InspectorElementId>,
4136        cx: &mut App,
4137        f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4138    ) -> R {
4139        if let Some(inspector_id) = _inspector_id {
4140            if let Some(inspector) = &self.inspector {
4141                let inspector = inspector.clone();
4142                let active_element_id = inspector.read(cx).active_element_id();
4143                if Some(inspector_id) == active_element_id {
4144                    return inspector.update(cx, |inspector, _cx| {
4145                        inspector.with_active_element_state(self, f)
4146                    });
4147                }
4148            }
4149        }
4150        f(&mut None, self)
4151    }
4152
4153    #[cfg(any(feature = "inspector", debug_assertions))]
4154    pub(crate) fn build_inspector_element_id(
4155        &mut self,
4156        path: crate::InspectorElementPath,
4157    ) -> crate::InspectorElementId {
4158        self.invalidator.debug_assert_paint_or_prepaint();
4159        let path = Rc::new(path);
4160        let next_instance_id = self
4161            .next_frame
4162            .next_inspector_instance_ids
4163            .entry(path.clone())
4164            .or_insert(0);
4165        let instance_id = *next_instance_id;
4166        *next_instance_id += 1;
4167        crate::InspectorElementId { path, instance_id }
4168    }
4169
4170    #[cfg(any(feature = "inspector", debug_assertions))]
4171    fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4172        if let Some(inspector) = self.inspector.take() {
4173            let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4174            inspector_element.prepaint_as_root(
4175                point(self.viewport_size.width - inspector_width, px(0.0)),
4176                size(inspector_width, self.viewport_size.height).into(),
4177                self,
4178                cx,
4179            );
4180            self.inspector = Some(inspector);
4181            Some(inspector_element)
4182        } else {
4183            None
4184        }
4185    }
4186
4187    #[cfg(any(feature = "inspector", debug_assertions))]
4188    fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4189        if let Some(mut inspector_element) = inspector_element {
4190            inspector_element.paint(self, cx);
4191        };
4192    }
4193
4194    /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4195    /// inspect UI elements by clicking on them.
4196    #[cfg(any(feature = "inspector", debug_assertions))]
4197    pub fn insert_inspector_hitbox(
4198        &mut self,
4199        hitbox_id: HitboxId,
4200        inspector_id: Option<&crate::InspectorElementId>,
4201        cx: &App,
4202    ) {
4203        self.invalidator.debug_assert_paint_or_prepaint();
4204        if !self.is_inspector_picking(cx) {
4205            return;
4206        }
4207        if let Some(inspector_id) = inspector_id {
4208            self.next_frame
4209                .inspector_hitboxes
4210                .insert(hitbox_id, inspector_id.clone());
4211        }
4212    }
4213
4214    #[cfg(any(feature = "inspector", debug_assertions))]
4215    fn paint_inspector_hitbox(&mut self, cx: &App) {
4216        if let Some(inspector) = self.inspector.as_ref() {
4217            let inspector = inspector.read(cx);
4218            if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
4219            {
4220                if let Some(hitbox) = self
4221                    .next_frame
4222                    .hitboxes
4223                    .iter()
4224                    .find(|hitbox| hitbox.id == hitbox_id)
4225                {
4226                    self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4227                }
4228            }
4229        }
4230    }
4231
4232    #[cfg(any(feature = "inspector", debug_assertions))]
4233    fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4234        let Some(inspector) = self.inspector.clone() else {
4235            return;
4236        };
4237        if event.downcast_ref::<MouseMoveEvent>().is_some() {
4238            inspector.update(cx, |inspector, _cx| {
4239                if let Some((_, inspector_id)) =
4240                    self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4241                {
4242                    inspector.hover(inspector_id, self);
4243                }
4244            });
4245        } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4246            inspector.update(cx, |inspector, _cx| {
4247                if let Some((_, inspector_id)) =
4248                    self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4249                {
4250                    inspector.select(inspector_id, self);
4251                }
4252            });
4253        } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4254            // This should be kept in sync with SCROLL_LINES in x11 platform.
4255            const SCROLL_LINES: f32 = 3.0;
4256            const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4257            let delta_y = event
4258                .delta
4259                .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4260                .y;
4261            if let Some(inspector) = self.inspector.clone() {
4262                inspector.update(cx, |inspector, _cx| {
4263                    if let Some(depth) = inspector.pick_depth.as_mut() {
4264                        *depth += delta_y.0 / SCROLL_PIXELS_PER_LAYER;
4265                        let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4266                        if *depth < 0.0 {
4267                            *depth = 0.0;
4268                        } else if *depth > max_depth {
4269                            *depth = max_depth;
4270                        }
4271                        if let Some((_, inspector_id)) =
4272                            self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4273                        {
4274                            inspector.set_active_element_id(inspector_id.clone(), self);
4275                        }
4276                    }
4277                });
4278            }
4279        }
4280    }
4281
4282    #[cfg(any(feature = "inspector", debug_assertions))]
4283    fn hovered_inspector_hitbox(
4284        &self,
4285        inspector: &Inspector,
4286        frame: &Frame,
4287    ) -> Option<(HitboxId, crate::InspectorElementId)> {
4288        if let Some(pick_depth) = inspector.pick_depth {
4289            let depth = (pick_depth as i64).try_into().unwrap_or(0);
4290            let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4291            let skip_count = (depth as usize).min(max_skipped);
4292            for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4293                if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4294                    return Some((*hitbox_id, inspector_id.clone()));
4295                }
4296            }
4297        }
4298        return None;
4299    }
4300}
4301
4302// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4303slotmap::new_key_type! {
4304    /// A unique identifier for a window.
4305    pub struct WindowId;
4306}
4307
4308impl WindowId {
4309    /// Converts this window ID to a `u64`.
4310    pub fn as_u64(&self) -> u64 {
4311        self.0.as_ffi()
4312    }
4313}
4314
4315impl From<u64> for WindowId {
4316    fn from(value: u64) -> Self {
4317        WindowId(slotmap::KeyData::from_ffi(value))
4318    }
4319}
4320
4321/// A handle to a window with a specific root view type.
4322/// Note that this does not keep the window alive on its own.
4323#[derive(Deref, DerefMut)]
4324pub struct WindowHandle<V> {
4325    #[deref]
4326    #[deref_mut]
4327    pub(crate) any_handle: AnyWindowHandle,
4328    state_type: PhantomData<V>,
4329}
4330
4331impl<V: 'static + Render> WindowHandle<V> {
4332    /// Creates a new handle from a window ID.
4333    /// This does not check if the root type of the window is `V`.
4334    pub fn new(id: WindowId) -> Self {
4335        WindowHandle {
4336            any_handle: AnyWindowHandle {
4337                id,
4338                state_type: TypeId::of::<V>(),
4339            },
4340            state_type: PhantomData,
4341        }
4342    }
4343
4344    /// Get the root view out of this window.
4345    ///
4346    /// This will fail if the window is closed or if the root view's type does not match `V`.
4347    #[cfg(any(test, feature = "test-support"))]
4348    pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4349    where
4350        C: AppContext,
4351    {
4352        crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4353            root_view
4354                .downcast::<V>()
4355                .map_err(|_| anyhow!("the type of the window's root view has changed"))
4356        }))
4357    }
4358
4359    /// Updates the root view of this window.
4360    ///
4361    /// This will fail if the window has been closed or if the root view's type does not match
4362    pub fn update<C, R>(
4363        &self,
4364        cx: &mut C,
4365        update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4366    ) -> Result<R>
4367    where
4368        C: AppContext,
4369    {
4370        cx.update_window(self.any_handle, |root_view, window, cx| {
4371            let view = root_view
4372                .downcast::<V>()
4373                .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4374
4375            Ok(view.update(cx, |view, cx| update(view, window, cx)))
4376        })?
4377    }
4378
4379    /// Read the root view out of this window.
4380    ///
4381    /// This will fail if the window is closed or if the root view's type does not match `V`.
4382    pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
4383        let x = cx
4384            .windows
4385            .get(self.id)
4386            .and_then(|window| {
4387                window
4388                    .as_ref()
4389                    .and_then(|window| window.root.clone())
4390                    .map(|root_view| root_view.downcast::<V>())
4391            })
4392            .context("window not found")?
4393            .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4394
4395        Ok(x.read(cx))
4396    }
4397
4398    /// Read the root view out of this window, with a callback
4399    ///
4400    /// This will fail if the window is closed or if the root view's type does not match `V`.
4401    pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4402    where
4403        C: AppContext,
4404    {
4405        cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
4406    }
4407
4408    /// Read the root view pointer off of this window.
4409    ///
4410    /// This will fail if the window is closed or if the root view's type does not match `V`.
4411    pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4412    where
4413        C: AppContext,
4414    {
4415        cx.read_window(self, |root_view, _cx| root_view.clone())
4416    }
4417
4418    /// Check if this window is 'active'.
4419    ///
4420    /// Will return `None` if the window is closed or currently
4421    /// borrowed.
4422    pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4423        cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4424            .ok()
4425    }
4426}
4427
4428impl<V> Copy for WindowHandle<V> {}
4429
4430impl<V> Clone for WindowHandle<V> {
4431    fn clone(&self) -> Self {
4432        *self
4433    }
4434}
4435
4436impl<V> PartialEq for WindowHandle<V> {
4437    fn eq(&self, other: &Self) -> bool {
4438        self.any_handle == other.any_handle
4439    }
4440}
4441
4442impl<V> Eq for WindowHandle<V> {}
4443
4444impl<V> Hash for WindowHandle<V> {
4445    fn hash<H: Hasher>(&self, state: &mut H) {
4446        self.any_handle.hash(state);
4447    }
4448}
4449
4450impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
4451    fn from(val: WindowHandle<V>) -> Self {
4452        val.any_handle
4453    }
4454}
4455
4456unsafe impl<V> Send for WindowHandle<V> {}
4457unsafe impl<V> Sync for WindowHandle<V> {}
4458
4459/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
4460#[derive(Copy, Clone, PartialEq, Eq, Hash)]
4461pub struct AnyWindowHandle {
4462    pub(crate) id: WindowId,
4463    state_type: TypeId,
4464}
4465
4466impl AnyWindowHandle {
4467    /// Get the ID of this window.
4468    pub fn window_id(&self) -> WindowId {
4469        self.id
4470    }
4471
4472    /// Attempt to convert this handle to a window handle with a specific root view type.
4473    /// If the types do not match, this will return `None`.
4474    pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
4475        if TypeId::of::<T>() == self.state_type {
4476            Some(WindowHandle {
4477                any_handle: *self,
4478                state_type: PhantomData,
4479            })
4480        } else {
4481            None
4482        }
4483    }
4484
4485    /// Updates the state of the root view of this window.
4486    ///
4487    /// This will fail if the window has been closed.
4488    pub fn update<C, R>(
4489        self,
4490        cx: &mut C,
4491        update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
4492    ) -> Result<R>
4493    where
4494        C: AppContext,
4495    {
4496        cx.update_window(self, update)
4497    }
4498
4499    /// Read the state of the root view of this window.
4500    ///
4501    /// This will fail if the window has been closed.
4502    pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
4503    where
4504        C: AppContext,
4505        T: 'static,
4506    {
4507        let view = self
4508            .downcast::<T>()
4509            .context("the type of the window's root view has changed")?;
4510
4511        cx.read_window(&view, read)
4512    }
4513}
4514
4515impl HasWindowHandle for Window {
4516    fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
4517        self.platform_window.window_handle()
4518    }
4519}
4520
4521impl HasDisplayHandle for Window {
4522    fn display_handle(
4523        &self,
4524    ) -> std::result::Result<raw_window_handle::DisplayHandle<'_>, HandleError> {
4525        self.platform_window.display_handle()
4526    }
4527}
4528
4529/// An identifier for an [`Element`](crate::Element).
4530///
4531/// Can be constructed with a string, a number, or both, as well
4532/// as other internal representations.
4533#[derive(Clone, Debug, Eq, PartialEq, Hash)]
4534pub enum ElementId {
4535    /// The ID of a View element
4536    View(EntityId),
4537    /// An integer ID.
4538    Integer(u64),
4539    /// A string based ID.
4540    Name(SharedString),
4541    /// A UUID.
4542    Uuid(Uuid),
4543    /// An ID that's equated with a focus handle.
4544    FocusHandle(FocusId),
4545    /// A combination of a name and an integer.
4546    NamedInteger(SharedString, u64),
4547    /// A path.
4548    Path(Arc<std::path::Path>),
4549}
4550
4551impl ElementId {
4552    /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
4553    pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
4554        Self::NamedInteger(name.into(), integer as u64)
4555    }
4556}
4557
4558impl Display for ElementId {
4559    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4560        match self {
4561            ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
4562            ElementId::Integer(ix) => write!(f, "{}", ix)?,
4563            ElementId::Name(name) => write!(f, "{}", name)?,
4564            ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
4565            ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
4566            ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
4567            ElementId::Path(path) => write!(f, "{}", path.display())?,
4568        }
4569
4570        Ok(())
4571    }
4572}
4573
4574impl TryInto<SharedString> for ElementId {
4575    type Error = anyhow::Error;
4576
4577    fn try_into(self) -> anyhow::Result<SharedString> {
4578        if let ElementId::Name(name) = self {
4579            Ok(name)
4580        } else {
4581            anyhow::bail!("element id is not string")
4582        }
4583    }
4584}
4585
4586impl From<usize> for ElementId {
4587    fn from(id: usize) -> Self {
4588        ElementId::Integer(id as u64)
4589    }
4590}
4591
4592impl From<i32> for ElementId {
4593    fn from(id: i32) -> Self {
4594        Self::Integer(id as u64)
4595    }
4596}
4597
4598impl From<SharedString> for ElementId {
4599    fn from(name: SharedString) -> Self {
4600        ElementId::Name(name)
4601    }
4602}
4603
4604impl From<Arc<std::path::Path>> for ElementId {
4605    fn from(path: Arc<std::path::Path>) -> Self {
4606        ElementId::Path(path)
4607    }
4608}
4609
4610impl From<&'static str> for ElementId {
4611    fn from(name: &'static str) -> Self {
4612        ElementId::Name(name.into())
4613    }
4614}
4615
4616impl<'a> From<&'a FocusHandle> for ElementId {
4617    fn from(handle: &'a FocusHandle) -> Self {
4618        ElementId::FocusHandle(handle.id)
4619    }
4620}
4621
4622impl From<(&'static str, EntityId)> for ElementId {
4623    fn from((name, id): (&'static str, EntityId)) -> Self {
4624        ElementId::NamedInteger(name.into(), id.as_u64())
4625    }
4626}
4627
4628impl From<(&'static str, usize)> for ElementId {
4629    fn from((name, id): (&'static str, usize)) -> Self {
4630        ElementId::NamedInteger(name.into(), id as u64)
4631    }
4632}
4633
4634impl From<(SharedString, usize)> for ElementId {
4635    fn from((name, id): (SharedString, usize)) -> Self {
4636        ElementId::NamedInteger(name, id as u64)
4637    }
4638}
4639
4640impl From<(&'static str, u64)> for ElementId {
4641    fn from((name, id): (&'static str, u64)) -> Self {
4642        ElementId::NamedInteger(name.into(), id)
4643    }
4644}
4645
4646impl From<Uuid> for ElementId {
4647    fn from(value: Uuid) -> Self {
4648        Self::Uuid(value)
4649    }
4650}
4651
4652impl From<(&'static str, u32)> for ElementId {
4653    fn from((name, id): (&'static str, u32)) -> Self {
4654        ElementId::NamedInteger(name.into(), id.into())
4655    }
4656}
4657
4658/// A rectangle to be rendered in the window at the given position and size.
4659/// Passed as an argument [`Window::paint_quad`].
4660#[derive(Clone)]
4661pub struct PaintQuad {
4662    /// The bounds of the quad within the window.
4663    pub bounds: Bounds<Pixels>,
4664    /// The radii of the quad's corners.
4665    pub corner_radii: Corners<Pixels>,
4666    /// The background color of the quad.
4667    pub background: Background,
4668    /// The widths of the quad's borders.
4669    pub border_widths: Edges<Pixels>,
4670    /// The color of the quad's borders.
4671    pub border_color: Hsla,
4672    /// The style of the quad's borders.
4673    pub border_style: BorderStyle,
4674}
4675
4676impl PaintQuad {
4677    /// Sets the corner radii of the quad.
4678    pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
4679        PaintQuad {
4680            corner_radii: corner_radii.into(),
4681            ..self
4682        }
4683    }
4684
4685    /// Sets the border widths of the quad.
4686    pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
4687        PaintQuad {
4688            border_widths: border_widths.into(),
4689            ..self
4690        }
4691    }
4692
4693    /// Sets the border color of the quad.
4694    pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
4695        PaintQuad {
4696            border_color: border_color.into(),
4697            ..self
4698        }
4699    }
4700
4701    /// Sets the background color of the quad.
4702    pub fn background(self, background: impl Into<Background>) -> Self {
4703        PaintQuad {
4704            background: background.into(),
4705            ..self
4706        }
4707    }
4708}
4709
4710/// Creates a quad with the given parameters.
4711pub fn quad(
4712    bounds: Bounds<Pixels>,
4713    corner_radii: impl Into<Corners<Pixels>>,
4714    background: impl Into<Background>,
4715    border_widths: impl Into<Edges<Pixels>>,
4716    border_color: impl Into<Hsla>,
4717    border_style: BorderStyle,
4718) -> PaintQuad {
4719    PaintQuad {
4720        bounds,
4721        corner_radii: corner_radii.into(),
4722        background: background.into(),
4723        border_widths: border_widths.into(),
4724        border_color: border_color.into(),
4725        border_style,
4726    }
4727}
4728
4729/// Creates a filled quad with the given bounds and background color.
4730pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
4731    PaintQuad {
4732        bounds: bounds.into(),
4733        corner_radii: (0.).into(),
4734        background: background.into(),
4735        border_widths: (0.).into(),
4736        border_color: transparent_black(),
4737        border_style: BorderStyle::default(),
4738    }
4739}
4740
4741/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
4742pub fn outline(
4743    bounds: impl Into<Bounds<Pixels>>,
4744    border_color: impl Into<Hsla>,
4745    border_style: BorderStyle,
4746) -> PaintQuad {
4747    PaintQuad {
4748        bounds: bounds.into(),
4749        corner_radii: (0.).into(),
4750        background: transparent_black().into(),
4751        border_widths: (1.).into(),
4752        border_color: border_color.into(),
4753        border_style,
4754    }
4755}