1use crate::{
2 point, prelude::*, px, size, transparent_black, Action, AnyDrag, AnyElement, AnyTooltip,
3 AnyView, App, AppContext, Arena, Asset, AsyncWindowContext, AvailableSpace, Background, Bounds,
4 BoxShadow, Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
5 DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
6 FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
7 KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
8 LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
9 MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
10 PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptLevel, Quad, Render,
11 RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge,
12 ScaledPixels, Scene, Shadow, SharedString, Size, StrikethroughStyle, Style, SubscriberSet,
13 Subscription, TaffyLayoutEngine, Task, TextStyle, TextStyleRefinement, TransformationMatrix,
14 Underline, UnderlineStyle, WindowAppearance, WindowBackgroundAppearance, WindowBounds,
15 WindowControls, WindowDecorations, WindowOptions, WindowParams, WindowTextSystem,
16 SUBPIXEL_VARIANTS,
17};
18use anyhow::{anyhow, Context as _, Result};
19use collections::{FxHashMap, FxHashSet};
20use derive_more::{Deref, DerefMut};
21use futures::channel::oneshot;
22use futures::FutureExt;
23#[cfg(target_os = "macos")]
24use media::core_video::CVImageBuffer;
25use parking_lot::RwLock;
26use refineable::Refineable;
27use slotmap::SlotMap;
28use smallvec::SmallVec;
29use std::{
30 any::{Any, TypeId},
31 borrow::Cow,
32 cell::{Cell, RefCell},
33 cmp,
34 fmt::{Debug, Display},
35 future::Future,
36 hash::{Hash, Hasher},
37 marker::PhantomData,
38 mem,
39 ops::{DerefMut, Range},
40 rc::Rc,
41 sync::{
42 atomic::{AtomicUsize, Ordering::SeqCst},
43 Arc, Weak,
44 },
45 time::{Duration, Instant},
46};
47use util::post_inc;
48use util::{measure, ResultExt};
49use uuid::Uuid;
50
51mod prompts;
52
53pub use prompts::*;
54
55pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1024.), px(700.));
56
57/// Represents the two different phases when dispatching events.
58#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
59pub enum DispatchPhase {
60 /// After the capture phase comes the bubble phase, in which mouse event listeners are
61 /// invoked front to back and keyboard event listeners are invoked from the focused element
62 /// to the root of the element tree. This is the phase you'll most commonly want to use when
63 /// registering event listeners.
64 #[default]
65 Bubble,
66 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
67 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
68 /// is used for special purposes such as clearing the "pressed" state for click events. If
69 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
70 /// outside of the immediate region may rely on detecting non-local events during this phase.
71 Capture,
72}
73
74impl DispatchPhase {
75 /// Returns true if this represents the "bubble" phase.
76 pub fn bubble(self) -> bool {
77 self == DispatchPhase::Bubble
78 }
79
80 /// Returns true if this represents the "capture" phase.
81 pub fn capture(self) -> bool {
82 self == DispatchPhase::Capture
83 }
84}
85
86struct WindowInvalidatorInner {
87 pub dirty: bool,
88 pub draw_phase: DrawPhase,
89 pub dirty_views: FxHashSet<EntityId>,
90}
91
92#[derive(Clone)]
93pub(crate) struct WindowInvalidator {
94 inner: Rc<RefCell<WindowInvalidatorInner>>,
95}
96
97impl WindowInvalidator {
98 pub fn new() -> Self {
99 WindowInvalidator {
100 inner: Rc::new(RefCell::new(WindowInvalidatorInner {
101 dirty: true,
102 draw_phase: DrawPhase::None,
103 dirty_views: FxHashSet::default(),
104 })),
105 }
106 }
107
108 pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
109 let mut inner = self.inner.borrow_mut();
110 if inner.draw_phase == DrawPhase::None {
111 inner.dirty = true;
112 inner.dirty_views.insert(entity);
113 cx.push_effect(Effect::Notify { emitter: entity });
114 true
115 } else {
116 false
117 }
118 }
119
120 pub fn is_dirty(&self) -> bool {
121 self.inner.borrow().dirty
122 }
123
124 pub fn set_dirty(&self, dirty: bool) {
125 self.inner.borrow_mut().dirty = dirty
126 }
127
128 pub fn set_phase(&self, phase: DrawPhase) {
129 self.inner.borrow_mut().draw_phase = phase
130 }
131
132 pub fn take_views(&self) -> FxHashSet<EntityId> {
133 mem::take(&mut self.inner.borrow_mut().dirty_views)
134 }
135
136 pub fn replace_views(&self, views: FxHashSet<EntityId>) {
137 self.inner.borrow_mut().dirty_views = views;
138 }
139
140 pub fn not_painting(&self) -> bool {
141 self.inner.borrow().draw_phase == DrawPhase::None
142 }
143
144 #[track_caller]
145 pub fn debug_assert_paint(&self) {
146 debug_assert!(
147 matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
148 "this method can only be called during paint"
149 );
150 }
151
152 #[track_caller]
153 pub fn debug_assert_prepaint(&self) {
154 debug_assert!(
155 matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
156 "this method can only be called during request_layout, or prepaint"
157 );
158 }
159
160 #[track_caller]
161 pub fn debug_assert_paint_or_prepaint(&self) {
162 debug_assert!(
163 matches!(
164 self.inner.borrow().draw_phase,
165 DrawPhase::Paint | DrawPhase::Prepaint
166 ),
167 "this method can only be called during request_layout, prepaint, or paint"
168 );
169 }
170}
171
172type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
173
174pub(crate) type AnyWindowFocusListener =
175 Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
176
177pub(crate) struct WindowFocusEvent {
178 pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
179 pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
180}
181
182impl WindowFocusEvent {
183 pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
184 !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
185 }
186
187 pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
188 self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
189 }
190}
191
192/// This is provided when subscribing for `Context::on_focus_out` events.
193pub struct FocusOutEvent {
194 /// A weak focus handle representing what was blurred.
195 pub blurred: WeakFocusHandle,
196}
197
198slotmap::new_key_type! {
199 /// A globally unique identifier for a focusable element.
200 pub struct FocusId;
201}
202
203thread_local! {
204 /// 8MB wasn't quite enough...
205 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(32 * 1024 * 1024));
206}
207
208pub(crate) type FocusMap = RwLock<SlotMap<FocusId, AtomicUsize>>;
209
210impl FocusId {
211 /// Obtains whether the element associated with this handle is currently focused.
212 pub fn is_focused(&self, window: &Window) -> bool {
213 window.focus == Some(*self)
214 }
215
216 /// Obtains whether the element associated with this handle contains the focused
217 /// element or is itself focused.
218 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
219 window
220 .focused(cx)
221 .map_or(false, |focused| self.contains(focused.id, window))
222 }
223
224 /// Obtains whether the element associated with this handle is contained within the
225 /// focused element or is itself focused.
226 pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
227 let focused = window.focused(cx);
228 focused.map_or(false, |focused| focused.id.contains(*self, window))
229 }
230
231 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
232 pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
233 window
234 .rendered_frame
235 .dispatch_tree
236 .focus_contains(*self, other)
237 }
238}
239
240/// A handle which can be used to track and manipulate the focused element in a window.
241pub struct FocusHandle {
242 pub(crate) id: FocusId,
243 handles: Arc<FocusMap>,
244}
245
246impl std::fmt::Debug for FocusHandle {
247 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
248 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
249 }
250}
251
252impl FocusHandle {
253 pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
254 let id = handles.write().insert(AtomicUsize::new(1));
255 Self {
256 id,
257 handles: handles.clone(),
258 }
259 }
260
261 pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
262 let lock = handles.read();
263 let ref_count = lock.get(id)?;
264 if ref_count.load(SeqCst) == 0 {
265 None
266 } else {
267 ref_count.fetch_add(1, SeqCst);
268 Some(Self {
269 id,
270 handles: handles.clone(),
271 })
272 }
273 }
274
275 /// Converts this focus handle into a weak variant, which does not prevent it from being released.
276 pub fn downgrade(&self) -> WeakFocusHandle {
277 WeakFocusHandle {
278 id: self.id,
279 handles: Arc::downgrade(&self.handles),
280 }
281 }
282
283 /// Moves the focus to the element associated with this handle.
284 pub fn focus(&self, window: &mut Window) {
285 window.focus(self)
286 }
287
288 /// Obtains whether the element associated with this handle is currently focused.
289 pub fn is_focused(&self, window: &Window) -> bool {
290 self.id.is_focused(window)
291 }
292
293 /// Obtains whether the element associated with this handle contains the focused
294 /// element or is itself focused.
295 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
296 self.id.contains_focused(window, cx)
297 }
298
299 /// Obtains whether the element associated with this handle is contained within the
300 /// focused element or is itself focused.
301 pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
302 self.id.within_focused(window, cx)
303 }
304
305 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
306 pub fn contains(&self, other: &Self, window: &Window) -> bool {
307 self.id.contains(other.id, window)
308 }
309
310 /// Dispatch an action on the element that rendered this focus handle
311 pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
312 if let Some(node_id) = window
313 .rendered_frame
314 .dispatch_tree
315 .focusable_node_id(self.id)
316 {
317 window.dispatch_action_on_node(node_id, action, cx)
318 }
319 }
320}
321
322impl Clone for FocusHandle {
323 fn clone(&self) -> Self {
324 Self::for_id(self.id, &self.handles).unwrap()
325 }
326}
327
328impl PartialEq for FocusHandle {
329 fn eq(&self, other: &Self) -> bool {
330 self.id == other.id
331 }
332}
333
334impl Eq for FocusHandle {}
335
336impl Drop for FocusHandle {
337 fn drop(&mut self) {
338 self.handles
339 .read()
340 .get(self.id)
341 .unwrap()
342 .fetch_sub(1, SeqCst);
343 }
344}
345
346/// A weak reference to a focus handle.
347#[derive(Clone, Debug)]
348pub struct WeakFocusHandle {
349 pub(crate) id: FocusId,
350 pub(crate) handles: Weak<FocusMap>,
351}
352
353impl WeakFocusHandle {
354 /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
355 pub fn upgrade(&self) -> Option<FocusHandle> {
356 let handles = self.handles.upgrade()?;
357 FocusHandle::for_id(self.id, &handles)
358 }
359}
360
361impl PartialEq for WeakFocusHandle {
362 fn eq(&self, other: &WeakFocusHandle) -> bool {
363 self.id == other.id
364 }
365}
366
367impl Eq for WeakFocusHandle {}
368
369impl PartialEq<FocusHandle> for WeakFocusHandle {
370 fn eq(&self, other: &FocusHandle) -> bool {
371 self.id == other.id
372 }
373}
374
375impl PartialEq<WeakFocusHandle> for FocusHandle {
376 fn eq(&self, other: &WeakFocusHandle) -> bool {
377 self.id == other.id
378 }
379}
380
381/// Focusable allows users of your view to easily
382/// focus it (using window.focus_view(cx, view))
383pub trait Focusable: 'static {
384 /// Returns the focus handle associated with this view.
385 fn focus_handle(&self, cx: &App) -> FocusHandle;
386}
387
388impl<V: Focusable> Focusable for Entity<V> {
389 fn focus_handle(&self, cx: &App) -> FocusHandle {
390 self.read(cx).focus_handle(cx)
391 }
392}
393
394/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
395/// where the lifecycle of the view is handled by another view.
396pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
397
398impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
399
400/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
401pub struct DismissEvent;
402
403type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
404
405pub(crate) type AnyMouseListener =
406 Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
407
408#[derive(Clone)]
409pub(crate) struct CursorStyleRequest {
410 pub(crate) hitbox_id: HitboxId,
411 pub(crate) style: CursorStyle,
412}
413
414/// An identifier for a [Hitbox].
415#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
416pub struct HitboxId(usize);
417
418impl HitboxId {
419 /// Checks if the hitbox with this id is currently hovered.
420 pub fn is_hovered(&self, window: &Window) -> bool {
421 window.mouse_hit_test.0.contains(self)
422 }
423}
424
425/// A rectangular region that potentially blocks hitboxes inserted prior.
426/// See [Window::insert_hitbox] for more details.
427#[derive(Clone, Debug, Deref)]
428pub struct Hitbox {
429 /// A unique identifier for the hitbox.
430 pub id: HitboxId,
431 /// The bounds of the hitbox.
432 #[deref]
433 pub bounds: Bounds<Pixels>,
434 /// The content mask when the hitbox was inserted.
435 pub content_mask: ContentMask<Pixels>,
436 /// Whether the hitbox occludes other hitboxes inserted prior.
437 pub opaque: bool,
438}
439
440impl Hitbox {
441 /// Checks if the hitbox is currently hovered.
442 pub fn is_hovered(&self, window: &Window) -> bool {
443 self.id.is_hovered(window)
444 }
445}
446
447#[derive(Default, Eq, PartialEq)]
448pub(crate) struct HitTest(SmallVec<[HitboxId; 8]>);
449
450/// An identifier for a tooltip.
451#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
452pub struct TooltipId(usize);
453
454impl TooltipId {
455 /// Checks if the tooltip is currently hovered.
456 pub fn is_hovered(&self, window: &Window) -> bool {
457 window
458 .tooltip_bounds
459 .as_ref()
460 .map_or(false, |tooltip_bounds| {
461 tooltip_bounds.id == *self
462 && tooltip_bounds.bounds.contains(&window.mouse_position())
463 })
464 }
465}
466
467pub(crate) struct TooltipBounds {
468 id: TooltipId,
469 bounds: Bounds<Pixels>,
470}
471
472#[derive(Clone)]
473pub(crate) struct TooltipRequest {
474 id: TooltipId,
475 tooltip: AnyTooltip,
476}
477
478pub(crate) struct DeferredDraw {
479 priority: usize,
480 parent_node: DispatchNodeId,
481 element_id_stack: SmallVec<[ElementId; 32]>,
482 text_style_stack: Vec<TextStyleRefinement>,
483 element: Option<AnyElement>,
484 absolute_offset: Point<Pixels>,
485 prepaint_range: Range<PrepaintStateIndex>,
486 paint_range: Range<PaintIndex>,
487}
488
489pub(crate) struct Frame {
490 pub(crate) focus: Option<FocusId>,
491 pub(crate) window_active: bool,
492 pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
493 accessed_element_states: Vec<(GlobalElementId, TypeId)>,
494 pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
495 pub(crate) dispatch_tree: DispatchTree,
496 pub(crate) scene: Scene,
497 pub(crate) hitboxes: Vec<Hitbox>,
498 pub(crate) deferred_draws: Vec<DeferredDraw>,
499 pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
500 pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
501 pub(crate) cursor_styles: Vec<CursorStyleRequest>,
502 #[cfg(any(test, feature = "test-support"))]
503 pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
504}
505
506#[derive(Clone, Default)]
507pub(crate) struct PrepaintStateIndex {
508 hitboxes_index: usize,
509 tooltips_index: usize,
510 deferred_draws_index: usize,
511 dispatch_tree_index: usize,
512 accessed_element_states_index: usize,
513 line_layout_index: LineLayoutIndex,
514}
515
516#[derive(Clone, Default)]
517pub(crate) struct PaintIndex {
518 scene_index: usize,
519 mouse_listeners_index: usize,
520 input_handlers_index: usize,
521 cursor_styles_index: usize,
522 accessed_element_states_index: usize,
523 line_layout_index: LineLayoutIndex,
524}
525
526impl Frame {
527 pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
528 Frame {
529 focus: None,
530 window_active: false,
531 element_states: FxHashMap::default(),
532 accessed_element_states: Vec::new(),
533 mouse_listeners: Vec::new(),
534 dispatch_tree,
535 scene: Scene::default(),
536 hitboxes: Vec::new(),
537 deferred_draws: Vec::new(),
538 input_handlers: Vec::new(),
539 tooltip_requests: Vec::new(),
540 cursor_styles: Vec::new(),
541
542 #[cfg(any(test, feature = "test-support"))]
543 debug_bounds: FxHashMap::default(),
544 }
545 }
546
547 pub(crate) fn clear(&mut self) {
548 self.element_states.clear();
549 self.accessed_element_states.clear();
550 self.mouse_listeners.clear();
551 self.dispatch_tree.clear();
552 self.scene.clear();
553 self.input_handlers.clear();
554 self.tooltip_requests.clear();
555 self.cursor_styles.clear();
556 self.hitboxes.clear();
557 self.deferred_draws.clear();
558 self.focus = None;
559 }
560
561 pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
562 let mut hit_test = HitTest::default();
563 for hitbox in self.hitboxes.iter().rev() {
564 let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
565 if bounds.contains(&position) {
566 hit_test.0.push(hitbox.id);
567 if hitbox.opaque {
568 break;
569 }
570 }
571 }
572 hit_test
573 }
574
575 pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
576 self.focus
577 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
578 .unwrap_or_default()
579 }
580
581 pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
582 for element_state_key in &self.accessed_element_states {
583 if let Some((element_state_key, element_state)) =
584 prev_frame.element_states.remove_entry(element_state_key)
585 {
586 self.element_states.insert(element_state_key, element_state);
587 }
588 }
589
590 self.scene.finish();
591 }
592}
593
594// Holds the state for a specific window.
595#[doc(hidden)]
596pub struct Window {
597 pub(crate) handle: AnyWindowHandle,
598 pub(crate) invalidator: WindowInvalidator,
599 pub(crate) removed: bool,
600 pub(crate) platform_window: Box<dyn PlatformWindow>,
601 display_id: Option<DisplayId>,
602 sprite_atlas: Arc<dyn PlatformAtlas>,
603 text_system: Arc<WindowTextSystem>,
604 rem_size: Pixels,
605 /// The stack of override values for the window's rem size.
606 ///
607 /// This is used by `with_rem_size` to allow rendering an element tree with
608 /// a given rem size.
609 rem_size_override_stack: SmallVec<[Pixels; 8]>,
610 pub(crate) viewport_size: Size<Pixels>,
611 layout_engine: Option<TaffyLayoutEngine>,
612 pub(crate) root: Option<AnyView>,
613 pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
614 pub(crate) text_style_stack: Vec<TextStyleRefinement>,
615 pub(crate) element_offset_stack: Vec<Point<Pixels>>,
616 pub(crate) element_opacity: Option<f32>,
617 pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
618 pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
619 pub(crate) rendered_frame: Frame,
620 pub(crate) next_frame: Frame,
621 pub(crate) next_hitbox_id: HitboxId,
622 pub(crate) next_tooltip_id: TooltipId,
623 pub(crate) tooltip_bounds: Option<TooltipBounds>,
624 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
625 pub(crate) dirty_views: FxHashSet<EntityId>,
626 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
627 pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
628 default_prevented: bool,
629 mouse_position: Point<Pixels>,
630 mouse_hit_test: HitTest,
631 modifiers: Modifiers,
632 scale_factor: f32,
633 pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
634 appearance: WindowAppearance,
635 pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
636 active: Rc<Cell<bool>>,
637 hovered: Rc<Cell<bool>>,
638 pub(crate) needs_present: Rc<Cell<bool>>,
639 pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
640 pub(crate) refreshing: bool,
641 pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
642 pub(crate) focus: Option<FocusId>,
643 focus_enabled: bool,
644 pending_input: Option<PendingInput>,
645 pending_modifier: ModifierState,
646 pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
647 prompt: Option<RenderablePromptHandle>,
648}
649
650#[derive(Clone, Debug, Default)]
651struct ModifierState {
652 modifiers: Modifiers,
653 saw_keystroke: bool,
654}
655
656#[derive(Clone, Copy, Debug, Eq, PartialEq)]
657pub(crate) enum DrawPhase {
658 None,
659 Prepaint,
660 Paint,
661 Focus,
662}
663
664#[derive(Default, Debug)]
665struct PendingInput {
666 keystrokes: SmallVec<[Keystroke; 1]>,
667 focus: Option<FocusId>,
668 timer: Option<Task<()>>,
669}
670
671pub(crate) struct ElementStateBox {
672 pub(crate) inner: Box<dyn Any>,
673 #[cfg(debug_assertions)]
674 pub(crate) type_name: &'static str,
675}
676
677fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> Bounds<Pixels> {
678 const DEFAULT_WINDOW_OFFSET: Point<Pixels> = point(px(0.), px(35.));
679
680 // TODO, BUG: if you open a window with the currently active window
681 // on the stack, this will erroneously select the 'unwrap_or_else'
682 // code path
683 cx.active_window()
684 .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok())
685 .map(|mut bounds| {
686 bounds.origin += DEFAULT_WINDOW_OFFSET;
687 bounds
688 })
689 .unwrap_or_else(|| {
690 let display = display_id
691 .map(|id| cx.find_display(id))
692 .unwrap_or_else(|| cx.primary_display());
693
694 display
695 .map(|display| display.default_bounds())
696 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE))
697 })
698}
699
700impl Window {
701 pub(crate) fn new(
702 handle: AnyWindowHandle,
703 options: WindowOptions,
704 cx: &mut App,
705 ) -> Result<Self> {
706 let WindowOptions {
707 window_bounds,
708 titlebar,
709 focus,
710 show,
711 kind,
712 is_movable,
713 display_id,
714 window_background,
715 app_id,
716 window_min_size,
717 window_decorations,
718 } = options;
719
720 let bounds = window_bounds
721 .map(|bounds| bounds.get_bounds())
722 .unwrap_or_else(|| default_bounds(display_id, cx));
723 let mut platform_window = cx.platform.open_window(
724 handle,
725 WindowParams {
726 bounds,
727 titlebar,
728 kind,
729 is_movable,
730 focus,
731 show,
732 display_id,
733 window_min_size,
734 },
735 )?;
736 let display_id = platform_window.display().map(|display| display.id());
737 let sprite_atlas = platform_window.sprite_atlas();
738 let mouse_position = platform_window.mouse_position();
739 let modifiers = platform_window.modifiers();
740 let content_size = platform_window.content_size();
741 let scale_factor = platform_window.scale_factor();
742 let appearance = platform_window.appearance();
743 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
744 let invalidator = WindowInvalidator::new();
745 let active = Rc::new(Cell::new(platform_window.is_active()));
746 let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
747 let needs_present = Rc::new(Cell::new(false));
748 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
749 let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
750
751 platform_window
752 .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
753 platform_window.set_background_appearance(window_background);
754
755 if let Some(ref window_open_state) = window_bounds {
756 match window_open_state {
757 WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
758 WindowBounds::Maximized(_) => platform_window.zoom(),
759 WindowBounds::Windowed(_) => {}
760 }
761 }
762
763 platform_window.on_close(Box::new({
764 let mut cx = cx.to_async();
765 move || {
766 let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
767 }
768 }));
769 platform_window.on_request_frame(Box::new({
770 let mut cx = cx.to_async();
771 let invalidator = invalidator.clone();
772 let active = active.clone();
773 let needs_present = needs_present.clone();
774 let next_frame_callbacks = next_frame_callbacks.clone();
775 let last_input_timestamp = last_input_timestamp.clone();
776 move |request_frame_options| {
777 let next_frame_callbacks = next_frame_callbacks.take();
778 if !next_frame_callbacks.is_empty() {
779 handle
780 .update(&mut cx, |_, window, cx| {
781 for callback in next_frame_callbacks {
782 callback(window, cx);
783 }
784 })
785 .log_err();
786 }
787
788 // Keep presenting the current scene for 1 extra second since the
789 // last input to prevent the display from underclocking the refresh rate.
790 let needs_present = request_frame_options.require_presentation
791 || needs_present.get()
792 || (active.get()
793 && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
794
795 if invalidator.is_dirty() {
796 measure("frame duration", || {
797 handle
798 .update(&mut cx, |_, window, cx| {
799 window.draw(cx);
800 window.present();
801 })
802 .log_err();
803 })
804 } else if needs_present {
805 handle
806 .update(&mut cx, |_, window, _| window.present())
807 .log_err();
808 }
809
810 handle
811 .update(&mut cx, |_, window, _| {
812 window.complete_frame();
813 })
814 .log_err();
815 }
816 }));
817 platform_window.on_resize(Box::new({
818 let mut cx = cx.to_async();
819 move |_, _| {
820 handle
821 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
822 .log_err();
823 }
824 }));
825 platform_window.on_moved(Box::new({
826 let mut cx = cx.to_async();
827 move || {
828 handle
829 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
830 .log_err();
831 }
832 }));
833 platform_window.on_appearance_changed(Box::new({
834 let mut cx = cx.to_async();
835 move || {
836 handle
837 .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
838 .log_err();
839 }
840 }));
841 platform_window.on_active_status_change(Box::new({
842 let mut cx = cx.to_async();
843 move |active| {
844 handle
845 .update(&mut cx, |_, window, cx| {
846 window.active.set(active);
847 window
848 .activation_observers
849 .clone()
850 .retain(&(), |callback| callback(window, cx));
851 window.refresh();
852 })
853 .log_err();
854 }
855 }));
856 platform_window.on_hover_status_change(Box::new({
857 let mut cx = cx.to_async();
858 move |active| {
859 handle
860 .update(&mut cx, |_, window, _| {
861 window.hovered.set(active);
862 window.refresh();
863 })
864 .log_err();
865 }
866 }));
867 platform_window.on_input({
868 let mut cx = cx.to_async();
869 Box::new(move |event| {
870 handle
871 .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
872 .log_err()
873 .unwrap_or(DispatchEventResult::default())
874 })
875 });
876
877 if let Some(app_id) = app_id {
878 platform_window.set_app_id(&app_id);
879 }
880
881 platform_window.map_window().unwrap();
882
883 Ok(Window {
884 handle,
885 invalidator,
886 removed: false,
887 platform_window,
888 display_id,
889 sprite_atlas,
890 text_system,
891 rem_size: px(16.),
892 rem_size_override_stack: SmallVec::new(),
893 viewport_size: content_size,
894 layout_engine: Some(TaffyLayoutEngine::new()),
895 root: None,
896 element_id_stack: SmallVec::default(),
897 text_style_stack: Vec::new(),
898 element_offset_stack: Vec::new(),
899 content_mask_stack: Vec::new(),
900 element_opacity: None,
901 requested_autoscroll: None,
902 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
903 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
904 next_frame_callbacks,
905 next_hitbox_id: HitboxId::default(),
906 next_tooltip_id: TooltipId::default(),
907 tooltip_bounds: None,
908 dirty_views: FxHashSet::default(),
909 focus_listeners: SubscriberSet::new(),
910 focus_lost_listeners: SubscriberSet::new(),
911 default_prevented: true,
912 mouse_position,
913 mouse_hit_test: HitTest::default(),
914 modifiers,
915 scale_factor,
916 bounds_observers: SubscriberSet::new(),
917 appearance,
918 appearance_observers: SubscriberSet::new(),
919 active,
920 hovered,
921 needs_present,
922 last_input_timestamp,
923 refreshing: false,
924 activation_observers: SubscriberSet::new(),
925 focus: None,
926 focus_enabled: true,
927 pending_input: None,
928 pending_modifier: ModifierState::default(),
929 pending_input_observers: SubscriberSet::new(),
930 prompt: None,
931 })
932 }
933
934 pub(crate) fn new_focus_listener(
935 &self,
936 value: AnyWindowFocusListener,
937 ) -> (Subscription, impl FnOnce()) {
938 self.focus_listeners.insert((), value)
939 }
940}
941
942#[derive(Clone, Debug, Default, PartialEq, Eq)]
943pub(crate) struct DispatchEventResult {
944 pub propagate: bool,
945 pub default_prevented: bool,
946}
947
948/// Indicates which region of the window is visible. Content falling outside of this mask will not be
949/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
950/// to leave room to support more complex shapes in the future.
951#[derive(Clone, Debug, Default, PartialEq, Eq)]
952#[repr(C)]
953pub struct ContentMask<P: Clone + Default + Debug> {
954 /// The bounds
955 pub bounds: Bounds<P>,
956}
957
958impl ContentMask<Pixels> {
959 /// Scale the content mask's pixel units by the given scaling factor.
960 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
961 ContentMask {
962 bounds: self.bounds.scale(factor),
963 }
964 }
965
966 /// Intersect the content mask with the given content mask.
967 pub fn intersect(&self, other: &Self) -> Self {
968 let bounds = self.bounds.intersect(&other.bounds);
969 ContentMask { bounds }
970 }
971}
972
973impl Window {
974 /// Indicate that a view has changed, which will invoke any observers and also mark the window as dirty.
975 /// If this view or any of its ancestors are *cached*, notifying it will cause it or its ancestors to be redrawn.
976 /// Note that this method will always cause a redraw, the entire window is refreshed if view_id is None.
977 pub(crate) fn notify(
978 &mut self,
979 notify_effect: bool,
980 entity_id: Option<EntityId>,
981 cx: &mut App,
982 ) {
983 let Some(view_id) = entity_id else {
984 self.refresh();
985 return;
986 };
987
988 self.mark_view_dirty(view_id);
989
990 if notify_effect {
991 self.invalidator.invalidate_view(view_id, cx);
992 }
993 }
994
995 fn mark_view_dirty(&mut self, view_id: EntityId) {
996 // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
997 // should already be dirty.
998 for view_id in self
999 .rendered_frame
1000 .dispatch_tree
1001 .view_path(view_id)
1002 .into_iter()
1003 .rev()
1004 {
1005 if !self.dirty_views.insert(view_id) {
1006 break;
1007 }
1008 }
1009 }
1010
1011 /// Registers a callback to be invoked when the window appearance changes.
1012 pub fn observe_window_appearance(
1013 &self,
1014 mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1015 ) -> Subscription {
1016 let (subscription, activate) = self.appearance_observers.insert(
1017 (),
1018 Box::new(move |window, cx| {
1019 callback(window, cx);
1020 true
1021 }),
1022 );
1023 activate();
1024 subscription
1025 }
1026
1027 pub fn replace_root<E>(
1028 &mut self,
1029 cx: &mut App,
1030 build_view: impl FnOnce(&mut Window, &mut Context<'_, E>) -> E,
1031 ) -> Entity<E>
1032 where
1033 E: 'static + Render,
1034 {
1035 let view = cx.new(|cx| build_view(self, cx));
1036 self.root = Some(view.clone().into());
1037 self.refresh();
1038 view
1039 }
1040
1041 pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1042 where
1043 E: 'static + Render,
1044 {
1045 self.root
1046 .as_ref()
1047 .map(|view| view.clone().downcast::<E>().ok())
1048 }
1049
1050 /// Obtain a handle to the window that belongs to this context.
1051 pub fn window_handle(&self) -> AnyWindowHandle {
1052 self.handle
1053 }
1054
1055 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1056 pub fn refresh(&mut self) {
1057 if self.invalidator.not_painting() {
1058 self.refreshing = true;
1059 self.invalidator.set_dirty(true);
1060 }
1061 }
1062
1063 /// Close this window.
1064 pub fn remove_window(&mut self) {
1065 self.removed = true;
1066 }
1067
1068 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1069 pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1070 self.focus
1071 .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1072 }
1073
1074 /// Move focus to the element associated with the given [`FocusHandle`].
1075 pub fn focus(&mut self, handle: &FocusHandle) {
1076 if !self.focus_enabled || self.focus == Some(handle.id) {
1077 return;
1078 }
1079
1080 self.focus = Some(handle.id);
1081 self.clear_pending_keystrokes();
1082 self.refresh();
1083 }
1084
1085 /// Remove focus from all elements within this context's window.
1086 pub fn blur(&mut self) {
1087 if !self.focus_enabled {
1088 return;
1089 }
1090
1091 self.focus = None;
1092 self.refresh();
1093 }
1094
1095 /// Blur the window and don't allow anything in it to be focused again.
1096 pub fn disable_focus(&mut self) {
1097 self.blur();
1098 self.focus_enabled = false;
1099 }
1100
1101 /// Accessor for the text system.
1102 pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1103 &self.text_system
1104 }
1105
1106 /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1107 pub fn text_style(&self) -> TextStyle {
1108 let mut style = TextStyle::default();
1109 for refinement in &self.text_style_stack {
1110 style.refine(refinement);
1111 }
1112 style
1113 }
1114
1115 /// Check if the platform window is maximized
1116 /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1117 pub fn is_maximized(&self) -> bool {
1118 self.platform_window.is_maximized()
1119 }
1120
1121 /// request a certain window decoration (Wayland)
1122 pub fn request_decorations(&self, decorations: WindowDecorations) {
1123 self.platform_window.request_decorations(decorations);
1124 }
1125
1126 /// Start a window resize operation (Wayland)
1127 pub fn start_window_resize(&self, edge: ResizeEdge) {
1128 self.platform_window.start_window_resize(edge);
1129 }
1130
1131 /// Return the `WindowBounds` to indicate that how a window should be opened
1132 /// after it has been closed
1133 pub fn window_bounds(&self) -> WindowBounds {
1134 self.platform_window.window_bounds()
1135 }
1136
1137 /// Return the `WindowBounds` excluding insets (Wayland and X11)
1138 pub fn inner_window_bounds(&self) -> WindowBounds {
1139 self.platform_window.inner_window_bounds()
1140 }
1141
1142 /// Dispatch the given action on the currently focused element.
1143 pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1144 let focus_handle = self.focused(cx);
1145
1146 let window = self.handle;
1147 cx.defer(move |cx| {
1148 window
1149 .update(cx, |_, window, cx| {
1150 let node_id = focus_handle
1151 .and_then(|handle| {
1152 window
1153 .rendered_frame
1154 .dispatch_tree
1155 .focusable_node_id(handle.id)
1156 })
1157 .unwrap_or_else(|| window.rendered_frame.dispatch_tree.root_node_id());
1158
1159 window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1160 })
1161 .log_err();
1162 })
1163 }
1164
1165 pub(crate) fn dispatch_keystroke_observers(
1166 &mut self,
1167 event: &dyn Any,
1168 action: Option<Box<dyn Action>>,
1169 cx: &mut App,
1170 ) {
1171 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1172 return;
1173 };
1174
1175 cx.keystroke_observers.clone().retain(&(), move |callback| {
1176 (callback)(
1177 &KeystrokeEvent {
1178 keystroke: key_down_event.keystroke.clone(),
1179 action: action.as_ref().map(|action| action.boxed_clone()),
1180 },
1181 self,
1182 cx,
1183 )
1184 });
1185 }
1186
1187 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1188 /// that are currently on the stack to be returned to the app.
1189 pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1190 let handle = self.handle;
1191 cx.defer(move |cx| {
1192 handle.update(cx, |_, window, cx| f(window, cx)).ok();
1193 });
1194 }
1195
1196 /// Subscribe to events emitted by a entity.
1197 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1198 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1199 pub fn observe<T: 'static>(
1200 &mut self,
1201 observed: &Entity<T>,
1202 cx: &mut App,
1203 mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1204 ) -> Subscription {
1205 let entity_id = observed.entity_id();
1206 let observed = observed.downgrade();
1207 let window_handle = self.handle;
1208 cx.new_observer(
1209 entity_id,
1210 Box::new(move |cx| {
1211 window_handle
1212 .update(cx, |_, window, cx| {
1213 if let Some(handle) = observed.upgrade() {
1214 on_notify(handle, window, cx);
1215 true
1216 } else {
1217 false
1218 }
1219 })
1220 .unwrap_or(false)
1221 }),
1222 )
1223 }
1224
1225 /// Subscribe to events emitted by a entity.
1226 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1227 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1228 pub fn subscribe<Emitter, Evt>(
1229 &mut self,
1230 entity: &Entity<Emitter>,
1231 cx: &mut App,
1232 mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1233 ) -> Subscription
1234 where
1235 Emitter: EventEmitter<Evt>,
1236 Evt: 'static,
1237 {
1238 let entity_id = entity.entity_id();
1239 let entity = entity.downgrade();
1240 let window_handle = self.handle;
1241 cx.new_subscription(
1242 entity_id,
1243 (
1244 TypeId::of::<Evt>(),
1245 Box::new(move |event, cx| {
1246 window_handle
1247 .update(cx, |_, window, cx| {
1248 if let Some(handle) = Entity::<Emitter>::upgrade_from(&entity) {
1249 let event = event.downcast_ref().expect("invalid event type");
1250 on_event(handle, event, window, cx);
1251 true
1252 } else {
1253 false
1254 }
1255 })
1256 .unwrap_or(false)
1257 }),
1258 ),
1259 )
1260 }
1261
1262 /// Register a callback to be invoked when the given `Entity` is released.
1263 pub fn observe_release<T>(
1264 &self,
1265 entity: &Entity<T>,
1266 cx: &mut App,
1267 mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1268 ) -> Subscription
1269 where
1270 T: 'static,
1271 {
1272 let entity_id = entity.entity_id();
1273 let window_handle = self.handle;
1274 let (subscription, activate) = cx.release_listeners.insert(
1275 entity_id,
1276 Box::new(move |entity, cx| {
1277 let entity = entity.downcast_mut().expect("invalid entity type");
1278 let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1279 }),
1280 );
1281 activate();
1282 subscription
1283 }
1284
1285 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1286 /// await points in async code.
1287 pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1288 AsyncWindowContext::new_context(cx.to_async(), self.handle)
1289 }
1290
1291 /// Schedule the given closure to be run directly after the current frame is rendered.
1292 pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1293 RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1294 }
1295
1296 /// Schedule a frame to be drawn on the next animation frame.
1297 ///
1298 /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1299 /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1300 ///
1301 /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1302 pub fn request_animation_frame(&self) {
1303 let parent_id = self.parent_view_id();
1304 self.on_next_frame(move |window, cx| window.notify(true, parent_id, cx));
1305 }
1306
1307 /// Spawn the future returned by the given closure on the application thread pool.
1308 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1309 /// use within your future.
1310 #[track_caller]
1311 pub fn spawn<Fut, R>(&self, cx: &App, f: impl FnOnce(AsyncWindowContext) -> Fut) -> Task<R>
1312 where
1313 R: 'static,
1314 Fut: Future<Output = R> + 'static,
1315 {
1316 cx.spawn(|app| f(AsyncWindowContext::new_context(app, self.handle)))
1317 }
1318
1319 fn bounds_changed(&mut self, cx: &mut App) {
1320 self.scale_factor = self.platform_window.scale_factor();
1321 self.viewport_size = self.platform_window.content_size();
1322 self.display_id = self.platform_window.display().map(|display| display.id());
1323
1324 self.refresh();
1325
1326 self.bounds_observers
1327 .clone()
1328 .retain(&(), |callback| callback(self, cx));
1329 }
1330
1331 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1332 pub fn bounds(&self) -> Bounds<Pixels> {
1333 self.platform_window.bounds()
1334 }
1335
1336 /// Returns whether or not the window is currently fullscreen
1337 pub fn is_fullscreen(&self) -> bool {
1338 self.platform_window.is_fullscreen()
1339 }
1340
1341 pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1342 self.appearance = self.platform_window.appearance();
1343
1344 self.appearance_observers
1345 .clone()
1346 .retain(&(), |callback| callback(self, cx));
1347 }
1348
1349 /// Returns the appearance of the current window.
1350 pub fn appearance(&self) -> WindowAppearance {
1351 self.appearance
1352 }
1353
1354 /// Returns the size of the drawable area within the window.
1355 pub fn viewport_size(&self) -> Size<Pixels> {
1356 self.viewport_size
1357 }
1358
1359 /// Returns whether this window is focused by the operating system (receiving key events).
1360 pub fn is_window_active(&self) -> bool {
1361 self.active.get()
1362 }
1363
1364 /// Returns whether this window is considered to be the window
1365 /// that currently owns the mouse cursor.
1366 /// On mac, this is equivalent to `is_window_active`.
1367 pub fn is_window_hovered(&self) -> bool {
1368 if cfg!(any(
1369 target_os = "windows",
1370 target_os = "linux",
1371 target_os = "freebsd"
1372 )) {
1373 self.hovered.get()
1374 } else {
1375 self.is_window_active()
1376 }
1377 }
1378
1379 /// Toggle zoom on the window.
1380 pub fn zoom_window(&self) {
1381 self.platform_window.zoom();
1382 }
1383
1384 /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1385 pub fn show_window_menu(&self, position: Point<Pixels>) {
1386 self.platform_window.show_window_menu(position)
1387 }
1388
1389 /// Tells the compositor to take control of window movement (Wayland and X11)
1390 ///
1391 /// Events may not be received during a move operation.
1392 pub fn start_window_move(&self) {
1393 self.platform_window.start_window_move()
1394 }
1395
1396 /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1397 pub fn set_client_inset(&self, inset: Pixels) {
1398 self.platform_window.set_client_inset(inset);
1399 }
1400
1401 /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1402 pub fn window_decorations(&self) -> Decorations {
1403 self.platform_window.window_decorations()
1404 }
1405
1406 /// Returns which window controls are currently visible (Wayland)
1407 pub fn window_controls(&self) -> WindowControls {
1408 self.platform_window.window_controls()
1409 }
1410
1411 /// Updates the window's title at the platform level.
1412 pub fn set_window_title(&mut self, title: &str) {
1413 self.platform_window.set_title(title);
1414 }
1415
1416 /// Sets the application identifier.
1417 pub fn set_app_id(&mut self, app_id: &str) {
1418 self.platform_window.set_app_id(app_id);
1419 }
1420
1421 /// Sets the window background appearance.
1422 pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1423 self.platform_window
1424 .set_background_appearance(background_appearance);
1425 }
1426
1427 /// Mark the window as dirty at the platform level.
1428 pub fn set_window_edited(&mut self, edited: bool) {
1429 self.platform_window.set_edited(edited);
1430 }
1431
1432 /// Determine the display on which the window is visible.
1433 pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1434 cx.platform
1435 .displays()
1436 .into_iter()
1437 .find(|display| Some(display.id()) == self.display_id)
1438 }
1439
1440 /// Show the platform character palette.
1441 pub fn show_character_palette(&self) {
1442 self.platform_window.show_character_palette();
1443 }
1444
1445 /// The scale factor of the display associated with the window. For example, it could
1446 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1447 /// be rendered as two pixels on screen.
1448 pub fn scale_factor(&self) -> f32 {
1449 self.scale_factor
1450 }
1451
1452 /// The size of an em for the base font of the application. Adjusting this value allows the
1453 /// UI to scale, just like zooming a web page.
1454 pub fn rem_size(&self) -> Pixels {
1455 self.rem_size_override_stack
1456 .last()
1457 .copied()
1458 .unwrap_or(self.rem_size)
1459 }
1460
1461 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1462 /// UI to scale, just like zooming a web page.
1463 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1464 self.rem_size = rem_size.into();
1465 }
1466
1467 /// Executes the provided function with the specified rem size.
1468 ///
1469 /// This method must only be called as part of element drawing.
1470 pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1471 where
1472 F: FnOnce(&mut Self) -> R,
1473 {
1474 self.invalidator.debug_assert_paint_or_prepaint();
1475
1476 if let Some(rem_size) = rem_size {
1477 self.rem_size_override_stack.push(rem_size.into());
1478 let result = f(self);
1479 self.rem_size_override_stack.pop();
1480 result
1481 } else {
1482 f(self)
1483 }
1484 }
1485
1486 /// The line height associated with the current text style.
1487 pub fn line_height(&self) -> Pixels {
1488 self.text_style().line_height_in_pixels(self.rem_size())
1489 }
1490
1491 /// Call to prevent the default action of an event. Currently only used to prevent
1492 /// parent elements from becoming focused on mouse down.
1493 pub fn prevent_default(&mut self) {
1494 self.default_prevented = true;
1495 }
1496
1497 /// Obtain whether default has been prevented for the event currently being dispatched.
1498 pub fn default_prevented(&self) -> bool {
1499 self.default_prevented
1500 }
1501
1502 /// Determine whether the given action is available along the dispatch path to the currently focused element.
1503 pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1504 let target = self
1505 .focused(cx)
1506 .and_then(|focused_handle| {
1507 self.rendered_frame
1508 .dispatch_tree
1509 .focusable_node_id(focused_handle.id)
1510 })
1511 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
1512 self.rendered_frame
1513 .dispatch_tree
1514 .is_action_available(action, target)
1515 }
1516
1517 /// The position of the mouse relative to the window.
1518 pub fn mouse_position(&self) -> Point<Pixels> {
1519 self.mouse_position
1520 }
1521
1522 /// The current state of the keyboard's modifiers
1523 pub fn modifiers(&self) -> Modifiers {
1524 self.modifiers
1525 }
1526
1527 fn complete_frame(&self) {
1528 self.platform_window.completed_frame();
1529 }
1530
1531 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1532 /// the contents of the new [Scene], use [present].
1533 #[profiling::function]
1534 pub fn draw(&mut self, cx: &mut App) {
1535 self.invalidate_entities();
1536 cx.entities.clear_accessed();
1537 self.invalidator.set_dirty(false);
1538 self.requested_autoscroll = None;
1539
1540 // Restore the previously-used input handler.
1541 if let Some(input_handler) = self.platform_window.take_input_handler() {
1542 self.rendered_frame.input_handlers.push(Some(input_handler));
1543 }
1544 self.draw_roots(cx);
1545 self.dirty_views.clear();
1546 self.next_frame.window_active = self.active.get();
1547
1548 // Register requested input handler with the platform window.
1549 if let Some(input_handler) = self.next_frame.input_handlers.pop() {
1550 self.platform_window
1551 .set_input_handler(input_handler.unwrap());
1552 }
1553
1554 self.layout_engine.as_mut().unwrap().clear();
1555 self.text_system().finish_frame();
1556 self.next_frame.finish(&mut self.rendered_frame);
1557 ELEMENT_ARENA.with_borrow_mut(|element_arena| {
1558 let percentage = (element_arena.len() as f32 / element_arena.capacity() as f32) * 100.;
1559 if percentage >= 80. {
1560 log::warn!("elevated element arena occupation: {}.", percentage);
1561 }
1562 element_arena.clear();
1563 });
1564
1565 self.invalidator.set_phase(DrawPhase::Focus);
1566 let previous_focus_path = self.rendered_frame.focus_path();
1567 let previous_window_active = self.rendered_frame.window_active;
1568 mem::swap(&mut self.rendered_frame, &mut self.next_frame);
1569 self.next_frame.clear();
1570 let current_focus_path = self.rendered_frame.focus_path();
1571 let current_window_active = self.rendered_frame.window_active;
1572
1573 if previous_focus_path != current_focus_path
1574 || previous_window_active != current_window_active
1575 {
1576 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
1577 self.focus_lost_listeners
1578 .clone()
1579 .retain(&(), |listener| listener(self, cx));
1580 }
1581
1582 let event = WindowFocusEvent {
1583 previous_focus_path: if previous_window_active {
1584 previous_focus_path
1585 } else {
1586 Default::default()
1587 },
1588 current_focus_path: if current_window_active {
1589 current_focus_path
1590 } else {
1591 Default::default()
1592 },
1593 };
1594 self.focus_listeners
1595 .clone()
1596 .retain(&(), |listener| listener(&event, self, cx));
1597 }
1598
1599 self.record_entities_accessed(cx);
1600 self.reset_cursor_style(cx);
1601 self.refreshing = false;
1602 self.invalidator.set_phase(DrawPhase::None);
1603 self.needs_present.set(true);
1604 }
1605
1606 fn record_entities_accessed(&mut self, cx: &mut App) {
1607 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1608 let mut entities = mem::take(entities_ref.deref_mut());
1609 drop(entities_ref);
1610 let handle = self.handle;
1611 cx.record_entities_accessed(
1612 handle,
1613 // Try moving window invalidator into the Window
1614 self.invalidator.clone(),
1615 &entities,
1616 );
1617 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1618 mem::swap(&mut entities, entities_ref.deref_mut());
1619 }
1620
1621 fn invalidate_entities(&mut self) {
1622 let mut views = self.invalidator.take_views();
1623 for entity in views.drain() {
1624 self.mark_view_dirty(entity);
1625 }
1626 self.invalidator.replace_views(views);
1627 }
1628
1629 #[profiling::function]
1630 fn present(&self) {
1631 self.platform_window.draw(&self.rendered_frame.scene);
1632 self.needs_present.set(false);
1633 profiling::finish_frame!();
1634 }
1635
1636 fn draw_roots(&mut self, cx: &mut App) {
1637 self.invalidator.set_phase(DrawPhase::Prepaint);
1638 self.tooltip_bounds.take();
1639
1640 // Layout all root elements.
1641 let mut root_element = self.root.as_ref().unwrap().clone().into_any();
1642 root_element.prepaint_as_root(Point::default(), self.viewport_size.into(), self, cx);
1643
1644 let mut sorted_deferred_draws =
1645 (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
1646 sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
1647 self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
1648
1649 let mut prompt_element = None;
1650 let mut active_drag_element = None;
1651 let mut tooltip_element = None;
1652 if let Some(prompt) = self.prompt.take() {
1653 let mut element = prompt.view.any_view().into_any();
1654 element.prepaint_as_root(Point::default(), self.viewport_size.into(), self, cx);
1655 prompt_element = Some(element);
1656 self.prompt = Some(prompt);
1657 } else if let Some(active_drag) = cx.active_drag.take() {
1658 let mut element = active_drag.view.clone().into_any();
1659 let offset = self.mouse_position() - active_drag.cursor_offset;
1660 element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
1661 active_drag_element = Some(element);
1662 cx.active_drag = Some(active_drag);
1663 } else {
1664 tooltip_element = self.prepaint_tooltip(cx);
1665 }
1666
1667 self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
1668
1669 // Now actually paint the elements.
1670 self.invalidator.set_phase(DrawPhase::Paint);
1671 root_element.paint(self, cx);
1672
1673 self.paint_deferred_draws(&sorted_deferred_draws, cx);
1674
1675 if let Some(mut prompt_element) = prompt_element {
1676 prompt_element.paint(self, cx);
1677 } else if let Some(mut drag_element) = active_drag_element {
1678 drag_element.paint(self, cx);
1679 } else if let Some(mut tooltip_element) = tooltip_element {
1680 tooltip_element.paint(self, cx);
1681 }
1682 }
1683
1684 fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
1685 // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
1686 for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
1687 let Some(Some(tooltip_request)) = self
1688 .next_frame
1689 .tooltip_requests
1690 .get(tooltip_request_index)
1691 .cloned()
1692 else {
1693 log::error!("Unexpectedly absent TooltipRequest");
1694 continue;
1695 };
1696 let mut element = tooltip_request.tooltip.view.clone().into_any();
1697 let mouse_position = tooltip_request.tooltip.mouse_position;
1698 let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
1699
1700 let mut tooltip_bounds =
1701 Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
1702 let window_bounds = Bounds {
1703 origin: Point::default(),
1704 size: self.viewport_size(),
1705 };
1706
1707 if tooltip_bounds.right() > window_bounds.right() {
1708 let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
1709 if new_x >= Pixels::ZERO {
1710 tooltip_bounds.origin.x = new_x;
1711 } else {
1712 tooltip_bounds.origin.x = cmp::max(
1713 Pixels::ZERO,
1714 tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
1715 );
1716 }
1717 }
1718
1719 if tooltip_bounds.bottom() > window_bounds.bottom() {
1720 let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
1721 if new_y >= Pixels::ZERO {
1722 tooltip_bounds.origin.y = new_y;
1723 } else {
1724 tooltip_bounds.origin.y = cmp::max(
1725 Pixels::ZERO,
1726 tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
1727 );
1728 }
1729 }
1730
1731 // It's possible for an element to have an active tooltip while not being painted (e.g.
1732 // via the `visible_on_hover` method). Since mouse listeners are not active in this
1733 // case, instead update the tooltip's visibility here.
1734 let is_visible =
1735 (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
1736 if !is_visible {
1737 continue;
1738 }
1739
1740 self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
1741 element.prepaint(window, cx)
1742 });
1743
1744 self.tooltip_bounds = Some(TooltipBounds {
1745 id: tooltip_request.id,
1746 bounds: tooltip_bounds,
1747 });
1748 return Some(element);
1749 }
1750 None
1751 }
1752
1753 fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
1754 assert_eq!(self.element_id_stack.len(), 0);
1755
1756 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
1757 for deferred_draw_ix in deferred_draw_indices {
1758 let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
1759 self.element_id_stack
1760 .clone_from(&deferred_draw.element_id_stack);
1761 self.text_style_stack
1762 .clone_from(&deferred_draw.text_style_stack);
1763 self.next_frame
1764 .dispatch_tree
1765 .set_active_node(deferred_draw.parent_node);
1766
1767 let prepaint_start = self.prepaint_index();
1768 if let Some(element) = deferred_draw.element.as_mut() {
1769 self.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
1770 element.prepaint(window, cx)
1771 });
1772 } else {
1773 self.reuse_prepaint(deferred_draw.prepaint_range.clone());
1774 }
1775 let prepaint_end = self.prepaint_index();
1776 deferred_draw.prepaint_range = prepaint_start..prepaint_end;
1777 }
1778 assert_eq!(
1779 self.next_frame.deferred_draws.len(),
1780 0,
1781 "cannot call defer_draw during deferred drawing"
1782 );
1783 self.next_frame.deferred_draws = deferred_draws;
1784 self.element_id_stack.clear();
1785 self.text_style_stack.clear();
1786 }
1787
1788 fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
1789 assert_eq!(self.element_id_stack.len(), 0);
1790
1791 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
1792 for deferred_draw_ix in deferred_draw_indices {
1793 let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
1794 self.element_id_stack
1795 .clone_from(&deferred_draw.element_id_stack);
1796 self.next_frame
1797 .dispatch_tree
1798 .set_active_node(deferred_draw.parent_node);
1799
1800 let paint_start = self.paint_index();
1801 if let Some(element) = deferred_draw.element.as_mut() {
1802 element.paint(self, cx);
1803 } else {
1804 self.reuse_paint(deferred_draw.paint_range.clone());
1805 }
1806 let paint_end = self.paint_index();
1807 deferred_draw.paint_range = paint_start..paint_end;
1808 }
1809 self.next_frame.deferred_draws = deferred_draws;
1810 self.element_id_stack.clear();
1811 }
1812
1813 pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
1814 PrepaintStateIndex {
1815 hitboxes_index: self.next_frame.hitboxes.len(),
1816 tooltips_index: self.next_frame.tooltip_requests.len(),
1817 deferred_draws_index: self.next_frame.deferred_draws.len(),
1818 dispatch_tree_index: self.next_frame.dispatch_tree.len(),
1819 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
1820 line_layout_index: self.text_system.layout_index(),
1821 }
1822 }
1823
1824 pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
1825 self.next_frame.hitboxes.extend(
1826 self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
1827 .iter()
1828 .cloned(),
1829 );
1830 self.next_frame.tooltip_requests.extend(
1831 self.rendered_frame.tooltip_requests
1832 [range.start.tooltips_index..range.end.tooltips_index]
1833 .iter_mut()
1834 .map(|request| request.take()),
1835 );
1836 self.next_frame.accessed_element_states.extend(
1837 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
1838 ..range.end.accessed_element_states_index]
1839 .iter()
1840 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
1841 );
1842 self.text_system
1843 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
1844
1845 let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
1846 range.start.dispatch_tree_index..range.end.dispatch_tree_index,
1847 &mut self.rendered_frame.dispatch_tree,
1848 self.focus,
1849 );
1850
1851 if reused_subtree.contains_focus() {
1852 self.next_frame.focus = self.focus;
1853 }
1854
1855 self.next_frame.deferred_draws.extend(
1856 self.rendered_frame.deferred_draws
1857 [range.start.deferred_draws_index..range.end.deferred_draws_index]
1858 .iter()
1859 .map(|deferred_draw| DeferredDraw {
1860 parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
1861 element_id_stack: deferred_draw.element_id_stack.clone(),
1862 text_style_stack: deferred_draw.text_style_stack.clone(),
1863 priority: deferred_draw.priority,
1864 element: None,
1865 absolute_offset: deferred_draw.absolute_offset,
1866 prepaint_range: deferred_draw.prepaint_range.clone(),
1867 paint_range: deferred_draw.paint_range.clone(),
1868 }),
1869 );
1870 }
1871
1872 pub(crate) fn paint_index(&self) -> PaintIndex {
1873 PaintIndex {
1874 scene_index: self.next_frame.scene.len(),
1875 mouse_listeners_index: self.next_frame.mouse_listeners.len(),
1876 input_handlers_index: self.next_frame.input_handlers.len(),
1877 cursor_styles_index: self.next_frame.cursor_styles.len(),
1878 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
1879 line_layout_index: self.text_system.layout_index(),
1880 }
1881 }
1882
1883 pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
1884 self.next_frame.cursor_styles.extend(
1885 self.rendered_frame.cursor_styles
1886 [range.start.cursor_styles_index..range.end.cursor_styles_index]
1887 .iter()
1888 .cloned(),
1889 );
1890 self.next_frame.input_handlers.extend(
1891 self.rendered_frame.input_handlers
1892 [range.start.input_handlers_index..range.end.input_handlers_index]
1893 .iter_mut()
1894 .map(|handler| handler.take()),
1895 );
1896 self.next_frame.mouse_listeners.extend(
1897 self.rendered_frame.mouse_listeners
1898 [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
1899 .iter_mut()
1900 .map(|listener| listener.take()),
1901 );
1902 self.next_frame.accessed_element_states.extend(
1903 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
1904 ..range.end.accessed_element_states_index]
1905 .iter()
1906 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
1907 );
1908
1909 self.text_system
1910 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
1911 self.next_frame.scene.replay(
1912 range.start.scene_index..range.end.scene_index,
1913 &self.rendered_frame.scene,
1914 );
1915 }
1916
1917 /// Push a text style onto the stack, and call a function with that style active.
1918 /// Use [`Window::text_style`] to get the current, combined text style. This method
1919 /// should only be called as part of element drawing.
1920 pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
1921 where
1922 F: FnOnce(&mut Self) -> R,
1923 {
1924 self.invalidator.debug_assert_paint_or_prepaint();
1925 if let Some(style) = style {
1926 self.text_style_stack.push(style);
1927 let result = f(self);
1928 self.text_style_stack.pop();
1929 result
1930 } else {
1931 f(self)
1932 }
1933 }
1934
1935 /// Updates the cursor style at the platform level. This method should only be called
1936 /// during the prepaint phase of element drawing.
1937 pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
1938 self.invalidator.debug_assert_paint();
1939 self.next_frame.cursor_styles.push(CursorStyleRequest {
1940 hitbox_id: hitbox.id,
1941 style,
1942 });
1943 }
1944
1945 /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
1946 /// during the paint phase of element drawing.
1947 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
1948 self.invalidator.debug_assert_prepaint();
1949 let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
1950 self.next_frame
1951 .tooltip_requests
1952 .push(Some(TooltipRequest { id, tooltip }));
1953 id
1954 }
1955
1956 /// Invoke the given function with the given content mask after intersecting it
1957 /// with the current mask. This method should only be called during element drawing.
1958 pub fn with_content_mask<R>(
1959 &mut self,
1960 mask: Option<ContentMask<Pixels>>,
1961 f: impl FnOnce(&mut Self) -> R,
1962 ) -> R {
1963 self.invalidator.debug_assert_paint_or_prepaint();
1964 if let Some(mask) = mask {
1965 let mask = mask.intersect(&self.content_mask());
1966 self.content_mask_stack.push(mask);
1967 let result = f(self);
1968 self.content_mask_stack.pop();
1969 result
1970 } else {
1971 f(self)
1972 }
1973 }
1974
1975 /// Updates the global element offset relative to the current offset. This is used to implement
1976 /// scrolling. This method should only be called during the prepaint phase of element drawing.
1977 pub fn with_element_offset<R>(
1978 &mut self,
1979 offset: Point<Pixels>,
1980 f: impl FnOnce(&mut Self) -> R,
1981 ) -> R {
1982 self.invalidator.debug_assert_prepaint();
1983
1984 if offset.is_zero() {
1985 return f(self);
1986 };
1987
1988 let abs_offset = self.element_offset() + offset;
1989 self.with_absolute_element_offset(abs_offset, f)
1990 }
1991
1992 /// Updates the global element offset based on the given offset. This is used to implement
1993 /// drag handles and other manual painting of elements. This method should only be called during
1994 /// the prepaint phase of element drawing.
1995 pub fn with_absolute_element_offset<R>(
1996 &mut self,
1997 offset: Point<Pixels>,
1998 f: impl FnOnce(&mut Self) -> R,
1999 ) -> R {
2000 self.invalidator.debug_assert_prepaint();
2001 self.element_offset_stack.push(offset);
2002 let result = f(self);
2003 self.element_offset_stack.pop();
2004 result
2005 }
2006
2007 pub(crate) fn with_element_opacity<R>(
2008 &mut self,
2009 opacity: Option<f32>,
2010 f: impl FnOnce(&mut Self) -> R,
2011 ) -> R {
2012 if opacity.is_none() {
2013 return f(self);
2014 }
2015
2016 self.invalidator.debug_assert_paint_or_prepaint();
2017 self.element_opacity = opacity;
2018 let result = f(self);
2019 self.element_opacity = None;
2020 result
2021 }
2022
2023 /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2024 /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2025 /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2026 /// element offset and prepaint again. See [`List`] for an example. This method should only be
2027 /// called during the prepaint phase of element drawing.
2028 pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2029 self.invalidator.debug_assert_prepaint();
2030 let index = self.prepaint_index();
2031 let result = f(self);
2032 if result.is_err() {
2033 self.next_frame.hitboxes.truncate(index.hitboxes_index);
2034 self.next_frame
2035 .tooltip_requests
2036 .truncate(index.tooltips_index);
2037 self.next_frame
2038 .deferred_draws
2039 .truncate(index.deferred_draws_index);
2040 self.next_frame
2041 .dispatch_tree
2042 .truncate(index.dispatch_tree_index);
2043 self.next_frame
2044 .accessed_element_states
2045 .truncate(index.accessed_element_states_index);
2046 self.text_system.truncate_layouts(index.line_layout_index);
2047 }
2048 result
2049 }
2050
2051 /// When you call this method during [`prepaint`], containing elements will attempt to
2052 /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2053 /// [`prepaint`] again with a new set of bounds. See [`List`] for an example of an element
2054 /// that supports this method being called on the elements it contains. This method should only be
2055 /// called during the prepaint phase of element drawing.
2056 pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2057 self.invalidator.debug_assert_prepaint();
2058 self.requested_autoscroll = Some(bounds);
2059 }
2060
2061 /// This method can be called from a containing element such as [`List`] to support the autoscroll behavior
2062 /// described in [`request_autoscroll`].
2063 pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2064 self.invalidator.debug_assert_prepaint();
2065 self.requested_autoscroll.take()
2066 }
2067
2068 /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2069 /// Your view will be re-drawn once the asset has finished loading.
2070 ///
2071 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2072 /// time.
2073 pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2074 let (task, is_first) = cx.fetch_asset::<A>(source);
2075 task.clone().now_or_never().or_else(|| {
2076 if is_first {
2077 let parent_id = self.parent_view_id();
2078 self.spawn(cx, {
2079 let task = task.clone();
2080 |mut cx| async move {
2081 task.await;
2082
2083 cx.on_next_frame(move |window, cx| {
2084 window.notify(true, parent_id, cx);
2085 });
2086 }
2087 })
2088 .detach();
2089 }
2090
2091 None
2092 })
2093 }
2094 /// Obtain the current element offset. This method should only be called during the
2095 /// prepaint phase of element drawing.
2096 pub fn element_offset(&self) -> Point<Pixels> {
2097 self.invalidator.debug_assert_prepaint();
2098 self.element_offset_stack
2099 .last()
2100 .copied()
2101 .unwrap_or_default()
2102 }
2103
2104 /// Obtain the current element opacity. This method should only be called during the
2105 /// prepaint phase of element drawing.
2106 pub(crate) fn element_opacity(&self) -> f32 {
2107 self.invalidator.debug_assert_paint_or_prepaint();
2108 self.element_opacity.unwrap_or(1.0)
2109 }
2110
2111 /// Obtain the current content mask. This method should only be called during element drawing.
2112 pub fn content_mask(&self) -> ContentMask<Pixels> {
2113 self.invalidator.debug_assert_paint_or_prepaint();
2114 self.content_mask_stack
2115 .last()
2116 .cloned()
2117 .unwrap_or_else(|| ContentMask {
2118 bounds: Bounds {
2119 origin: Point::default(),
2120 size: self.viewport_size,
2121 },
2122 })
2123 }
2124
2125 /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2126 /// This can be used within a custom element to distinguish multiple sets of child elements.
2127 pub fn with_element_namespace<R>(
2128 &mut self,
2129 element_id: impl Into<ElementId>,
2130 f: impl FnOnce(&mut Self) -> R,
2131 ) -> R {
2132 self.element_id_stack.push(element_id.into());
2133 let result = f(self);
2134 self.element_id_stack.pop();
2135 result
2136 }
2137
2138 /// Updates or initializes state for an element with the given id that lives across multiple
2139 /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2140 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2141 /// when drawing the next frame. This method should only be called as part of element drawing.
2142 pub fn with_element_state<S, R>(
2143 &mut self,
2144 global_id: &GlobalElementId,
2145 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2146 ) -> R
2147 where
2148 S: 'static,
2149 {
2150 self.invalidator.debug_assert_paint_or_prepaint();
2151
2152 let key = (GlobalElementId(global_id.0.clone()), TypeId::of::<S>());
2153 self.next_frame
2154 .accessed_element_states
2155 .push((GlobalElementId(key.0.clone()), TypeId::of::<S>()));
2156
2157 if let Some(any) = self
2158 .next_frame
2159 .element_states
2160 .remove(&key)
2161 .or_else(|| self.rendered_frame.element_states.remove(&key))
2162 {
2163 let ElementStateBox {
2164 inner,
2165 #[cfg(debug_assertions)]
2166 type_name,
2167 } = any;
2168 // Using the extra inner option to avoid needing to reallocate a new box.
2169 let mut state_box = inner
2170 .downcast::<Option<S>>()
2171 .map_err(|_| {
2172 #[cfg(debug_assertions)]
2173 {
2174 anyhow::anyhow!(
2175 "invalid element state type for id, requested {:?}, actual: {:?}",
2176 std::any::type_name::<S>(),
2177 type_name
2178 )
2179 }
2180
2181 #[cfg(not(debug_assertions))]
2182 {
2183 anyhow::anyhow!(
2184 "invalid element state type for id, requested {:?}",
2185 std::any::type_name::<S>(),
2186 )
2187 }
2188 })
2189 .unwrap();
2190
2191 let state = state_box.take().expect(
2192 "reentrant call to with_element_state for the same state type and element id",
2193 );
2194 let (result, state) = f(Some(state), self);
2195 state_box.replace(state);
2196 self.next_frame.element_states.insert(
2197 key,
2198 ElementStateBox {
2199 inner: state_box,
2200 #[cfg(debug_assertions)]
2201 type_name,
2202 },
2203 );
2204 result
2205 } else {
2206 let (result, state) = f(None, self);
2207 self.next_frame.element_states.insert(
2208 key,
2209 ElementStateBox {
2210 inner: Box::new(Some(state)),
2211 #[cfg(debug_assertions)]
2212 type_name: std::any::type_name::<S>(),
2213 },
2214 );
2215 result
2216 }
2217 }
2218
2219 /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2220 /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2221 /// when the element is guaranteed to have an id.
2222 ///
2223 /// The first option means 'no ID provided'
2224 /// The second option means 'not yet initialized'
2225 pub fn with_optional_element_state<S, R>(
2226 &mut self,
2227 global_id: Option<&GlobalElementId>,
2228 f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2229 ) -> R
2230 where
2231 S: 'static,
2232 {
2233 self.invalidator.debug_assert_paint_or_prepaint();
2234
2235 if let Some(global_id) = global_id {
2236 self.with_element_state(global_id, |state, cx| {
2237 let (result, state) = f(Some(state), cx);
2238 let state =
2239 state.expect("you must return some state when you pass some element id");
2240 (result, state)
2241 })
2242 } else {
2243 let (result, state) = f(None, self);
2244 debug_assert!(
2245 state.is_none(),
2246 "you must not return an element state when passing None for the global id"
2247 );
2248 result
2249 }
2250 }
2251
2252 /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2253 /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2254 /// with higher values being drawn on top.
2255 ///
2256 /// This method should only be called as part of the prepaint phase of element drawing.
2257 pub fn defer_draw(
2258 &mut self,
2259 element: AnyElement,
2260 absolute_offset: Point<Pixels>,
2261 priority: usize,
2262 ) {
2263 self.invalidator.debug_assert_prepaint();
2264 let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2265 self.next_frame.deferred_draws.push(DeferredDraw {
2266 parent_node,
2267 element_id_stack: self.element_id_stack.clone(),
2268 text_style_stack: self.text_style_stack.clone(),
2269 priority,
2270 element: Some(element),
2271 absolute_offset,
2272 prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2273 paint_range: PaintIndex::default()..PaintIndex::default(),
2274 });
2275 }
2276
2277 /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2278 /// of geometry that are non-overlapping and have the same draw order. This is typically used
2279 /// for performance reasons.
2280 ///
2281 /// This method should only be called as part of the paint phase of element drawing.
2282 pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2283 self.invalidator.debug_assert_paint();
2284
2285 let scale_factor = self.scale_factor();
2286 let content_mask = self.content_mask();
2287 let clipped_bounds = bounds.intersect(&content_mask.bounds);
2288 if !clipped_bounds.is_empty() {
2289 self.next_frame
2290 .scene
2291 .push_layer(clipped_bounds.scale(scale_factor));
2292 }
2293
2294 let result = f(self);
2295
2296 if !clipped_bounds.is_empty() {
2297 self.next_frame.scene.pop_layer();
2298 }
2299
2300 result
2301 }
2302
2303 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2304 ///
2305 /// This method should only be called as part of the paint phase of element drawing.
2306 pub fn paint_shadows(
2307 &mut self,
2308 bounds: Bounds<Pixels>,
2309 corner_radii: Corners<Pixels>,
2310 shadows: &[BoxShadow],
2311 ) {
2312 self.invalidator.debug_assert_paint();
2313
2314 let scale_factor = self.scale_factor();
2315 let content_mask = self.content_mask();
2316 let opacity = self.element_opacity();
2317 for shadow in shadows {
2318 let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2319 self.next_frame.scene.insert_primitive(Shadow {
2320 order: 0,
2321 blur_radius: shadow.blur_radius.scale(scale_factor),
2322 bounds: shadow_bounds.scale(scale_factor),
2323 content_mask: content_mask.scale(scale_factor),
2324 corner_radii: corner_radii.scale(scale_factor),
2325 color: shadow.color.opacity(opacity),
2326 });
2327 }
2328 }
2329
2330 /// Paint one or more quads into the scene for the next frame at the current stacking context.
2331 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2332 /// see [`fill`](crate::fill), [`outline`](crate::outline), and [`quad`](crate::quad) to construct this type.
2333 ///
2334 /// This method should only be called as part of the paint phase of element drawing.
2335 pub fn paint_quad(&mut self, quad: PaintQuad) {
2336 self.invalidator.debug_assert_paint();
2337
2338 let scale_factor = self.scale_factor();
2339 let content_mask = self.content_mask();
2340 let opacity = self.element_opacity();
2341 self.next_frame.scene.insert_primitive(Quad {
2342 order: 0,
2343 pad: 0,
2344 bounds: quad.bounds.scale(scale_factor),
2345 content_mask: content_mask.scale(scale_factor),
2346 background: quad.background.opacity(opacity),
2347 border_color: quad.border_color.opacity(opacity),
2348 corner_radii: quad.corner_radii.scale(scale_factor),
2349 border_widths: quad.border_widths.scale(scale_factor),
2350 });
2351 }
2352
2353 /// Paint the given `Path` into the scene for the next frame at the current z-index.
2354 ///
2355 /// This method should only be called as part of the paint phase of element drawing.
2356 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2357 self.invalidator.debug_assert_paint();
2358
2359 let scale_factor = self.scale_factor();
2360 let content_mask = self.content_mask();
2361 let opacity = self.element_opacity();
2362 path.content_mask = content_mask;
2363 let color: Background = color.into();
2364 path.color = color.opacity(opacity);
2365 self.next_frame
2366 .scene
2367 .insert_primitive(path.scale(scale_factor));
2368 }
2369
2370 /// Paint an underline into the scene for the next frame at the current z-index.
2371 ///
2372 /// This method should only be called as part of the paint phase of element drawing.
2373 pub fn paint_underline(
2374 &mut self,
2375 origin: Point<Pixels>,
2376 width: Pixels,
2377 style: &UnderlineStyle,
2378 ) {
2379 self.invalidator.debug_assert_paint();
2380
2381 let scale_factor = self.scale_factor();
2382 let height = if style.wavy {
2383 style.thickness * 3.
2384 } else {
2385 style.thickness
2386 };
2387 let bounds = Bounds {
2388 origin,
2389 size: size(width, height),
2390 };
2391 let content_mask = self.content_mask();
2392 let element_opacity = self.element_opacity();
2393
2394 self.next_frame.scene.insert_primitive(Underline {
2395 order: 0,
2396 pad: 0,
2397 bounds: bounds.scale(scale_factor),
2398 content_mask: content_mask.scale(scale_factor),
2399 color: style.color.unwrap_or_default().opacity(element_opacity),
2400 thickness: style.thickness.scale(scale_factor),
2401 wavy: style.wavy,
2402 });
2403 }
2404
2405 /// Paint a strikethrough into the scene for the next frame at the current z-index.
2406 ///
2407 /// This method should only be called as part of the paint phase of element drawing.
2408 pub fn paint_strikethrough(
2409 &mut self,
2410 origin: Point<Pixels>,
2411 width: Pixels,
2412 style: &StrikethroughStyle,
2413 ) {
2414 self.invalidator.debug_assert_paint();
2415
2416 let scale_factor = self.scale_factor();
2417 let height = style.thickness;
2418 let bounds = Bounds {
2419 origin,
2420 size: size(width, height),
2421 };
2422 let content_mask = self.content_mask();
2423 let opacity = self.element_opacity();
2424
2425 self.next_frame.scene.insert_primitive(Underline {
2426 order: 0,
2427 pad: 0,
2428 bounds: bounds.scale(scale_factor),
2429 content_mask: content_mask.scale(scale_factor),
2430 thickness: style.thickness.scale(scale_factor),
2431 color: style.color.unwrap_or_default().opacity(opacity),
2432 wavy: false,
2433 });
2434 }
2435
2436 /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
2437 ///
2438 /// The y component of the origin is the baseline of the glyph.
2439 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2440 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2441 /// This method is only useful if you need to paint a single glyph that has already been shaped.
2442 ///
2443 /// This method should only be called as part of the paint phase of element drawing.
2444 pub fn paint_glyph(
2445 &mut self,
2446 origin: Point<Pixels>,
2447 font_id: FontId,
2448 glyph_id: GlyphId,
2449 font_size: Pixels,
2450 color: Hsla,
2451 ) -> Result<()> {
2452 self.invalidator.debug_assert_paint();
2453
2454 let element_opacity = self.element_opacity();
2455 let scale_factor = self.scale_factor();
2456 let glyph_origin = origin.scale(scale_factor);
2457 let subpixel_variant = Point {
2458 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2459 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2460 };
2461 let params = RenderGlyphParams {
2462 font_id,
2463 glyph_id,
2464 font_size,
2465 subpixel_variant,
2466 scale_factor,
2467 is_emoji: false,
2468 };
2469
2470 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2471 if !raster_bounds.is_zero() {
2472 let tile = self
2473 .sprite_atlas
2474 .get_or_insert_with(¶ms.clone().into(), &mut || {
2475 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2476 Ok(Some((size, Cow::Owned(bytes))))
2477 })?
2478 .expect("Callback above only errors or returns Some");
2479 let bounds = Bounds {
2480 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2481 size: tile.bounds.size.map(Into::into),
2482 };
2483 let content_mask = self.content_mask().scale(scale_factor);
2484 self.next_frame.scene.insert_primitive(MonochromeSprite {
2485 order: 0,
2486 pad: 0,
2487 bounds,
2488 content_mask,
2489 color: color.opacity(element_opacity),
2490 tile,
2491 transformation: TransformationMatrix::unit(),
2492 });
2493 }
2494 Ok(())
2495 }
2496
2497 /// Paints an emoji glyph into the scene for the next frame at the current z-index.
2498 ///
2499 /// The y component of the origin is the baseline of the glyph.
2500 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2501 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2502 /// This method is only useful if you need to paint a single emoji that has already been shaped.
2503 ///
2504 /// This method should only be called as part of the paint phase of element drawing.
2505 pub fn paint_emoji(
2506 &mut self,
2507 origin: Point<Pixels>,
2508 font_id: FontId,
2509 glyph_id: GlyphId,
2510 font_size: Pixels,
2511 ) -> Result<()> {
2512 self.invalidator.debug_assert_paint();
2513
2514 let scale_factor = self.scale_factor();
2515 let glyph_origin = origin.scale(scale_factor);
2516 let params = RenderGlyphParams {
2517 font_id,
2518 glyph_id,
2519 font_size,
2520 // We don't render emojis with subpixel variants.
2521 subpixel_variant: Default::default(),
2522 scale_factor,
2523 is_emoji: true,
2524 };
2525
2526 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2527 if !raster_bounds.is_zero() {
2528 let tile = self
2529 .sprite_atlas
2530 .get_or_insert_with(¶ms.clone().into(), &mut || {
2531 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2532 Ok(Some((size, Cow::Owned(bytes))))
2533 })?
2534 .expect("Callback above only errors or returns Some");
2535
2536 let bounds = Bounds {
2537 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2538 size: tile.bounds.size.map(Into::into),
2539 };
2540 let content_mask = self.content_mask().scale(scale_factor);
2541 let opacity = self.element_opacity();
2542
2543 self.next_frame.scene.insert_primitive(PolychromeSprite {
2544 order: 0,
2545 pad: 0,
2546 grayscale: false,
2547 bounds,
2548 corner_radii: Default::default(),
2549 content_mask,
2550 tile,
2551 opacity,
2552 });
2553 }
2554 Ok(())
2555 }
2556
2557 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
2558 ///
2559 /// This method should only be called as part of the paint phase of element drawing.
2560 pub fn paint_svg(
2561 &mut self,
2562 bounds: Bounds<Pixels>,
2563 path: SharedString,
2564 transformation: TransformationMatrix,
2565 color: Hsla,
2566 cx: &App,
2567 ) -> Result<()> {
2568 self.invalidator.debug_assert_paint();
2569
2570 let element_opacity = self.element_opacity();
2571 let scale_factor = self.scale_factor();
2572 let bounds = bounds.scale(scale_factor);
2573 // Render the SVG at twice the size to get a higher quality result.
2574 let params = RenderSvgParams {
2575 path,
2576 size: bounds
2577 .size
2578 .map(|pixels| DevicePixels::from((pixels.0 * 2.).ceil() as i32)),
2579 };
2580
2581 let Some(tile) =
2582 self.sprite_atlas
2583 .get_or_insert_with(¶ms.clone().into(), &mut || {
2584 let Some(bytes) = cx.svg_renderer.render(¶ms)? else {
2585 return Ok(None);
2586 };
2587 Ok(Some((params.size, Cow::Owned(bytes))))
2588 })?
2589 else {
2590 return Ok(());
2591 };
2592 let content_mask = self.content_mask().scale(scale_factor);
2593
2594 self.next_frame.scene.insert_primitive(MonochromeSprite {
2595 order: 0,
2596 pad: 0,
2597 bounds: bounds
2598 .map_origin(|origin| origin.floor())
2599 .map_size(|size| size.ceil()),
2600 content_mask,
2601 color: color.opacity(element_opacity),
2602 tile,
2603 transformation,
2604 });
2605
2606 Ok(())
2607 }
2608
2609 /// Paint an image into the scene for the next frame at the current z-index.
2610 /// This method will panic if the frame_index is not valid
2611 ///
2612 /// This method should only be called as part of the paint phase of element drawing.
2613 pub fn paint_image(
2614 &mut self,
2615 bounds: Bounds<Pixels>,
2616 corner_radii: Corners<Pixels>,
2617 data: Arc<RenderImage>,
2618 frame_index: usize,
2619 grayscale: bool,
2620 ) -> Result<()> {
2621 self.invalidator.debug_assert_paint();
2622
2623 let scale_factor = self.scale_factor();
2624 let bounds = bounds.scale(scale_factor);
2625 let params = RenderImageParams {
2626 image_id: data.id,
2627 frame_index,
2628 };
2629
2630 let tile = self
2631 .sprite_atlas
2632 .get_or_insert_with(¶ms.clone().into(), &mut || {
2633 Ok(Some((
2634 data.size(frame_index),
2635 Cow::Borrowed(
2636 data.as_bytes(frame_index)
2637 .expect("It's the caller's job to pass a valid frame index"),
2638 ),
2639 )))
2640 })?
2641 .expect("Callback above only returns Some");
2642 let content_mask = self.content_mask().scale(scale_factor);
2643 let corner_radii = corner_radii.scale(scale_factor);
2644 let opacity = self.element_opacity();
2645
2646 self.next_frame.scene.insert_primitive(PolychromeSprite {
2647 order: 0,
2648 pad: 0,
2649 grayscale,
2650 bounds,
2651 content_mask,
2652 corner_radii,
2653 tile,
2654 opacity,
2655 });
2656 Ok(())
2657 }
2658
2659 /// Paint a surface into the scene for the next frame at the current z-index.
2660 ///
2661 /// This method should only be called as part of the paint phase of element drawing.
2662 #[cfg(target_os = "macos")]
2663 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVImageBuffer) {
2664 use crate::PaintSurface;
2665
2666 self.invalidator.debug_assert_paint();
2667
2668 let scale_factor = self.scale_factor();
2669 let bounds = bounds.scale(scale_factor);
2670 let content_mask = self.content_mask().scale(scale_factor);
2671 self.next_frame.scene.insert_primitive(PaintSurface {
2672 order: 0,
2673 bounds,
2674 content_mask,
2675 image_buffer,
2676 });
2677 }
2678
2679 /// Removes an image from the sprite atlas.
2680 pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
2681 for frame_index in 0..data.frame_count() {
2682 let params = RenderImageParams {
2683 image_id: data.id,
2684 frame_index,
2685 };
2686
2687 self.sprite_atlas.remove(¶ms.clone().into());
2688 }
2689
2690 Ok(())
2691 }
2692
2693 #[must_use]
2694 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
2695 /// layout is being requested, along with the layout ids of any children. This method is called during
2696 /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
2697 ///
2698 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
2699 pub fn request_layout(
2700 &mut self,
2701 style: Style,
2702 children: impl IntoIterator<Item = LayoutId>,
2703 cx: &mut App,
2704 ) -> LayoutId {
2705 self.invalidator.debug_assert_prepaint();
2706
2707 cx.layout_id_buffer.clear();
2708 cx.layout_id_buffer.extend(children);
2709 let rem_size = self.rem_size();
2710
2711 self.layout_engine
2712 .as_mut()
2713 .unwrap()
2714 .request_layout(style, rem_size, &cx.layout_id_buffer)
2715 }
2716
2717 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
2718 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
2719 /// determine the element's size. One place this is used internally is when measuring text.
2720 ///
2721 /// The given closure is invoked at layout time with the known dimensions and available space and
2722 /// returns a `Size`.
2723 ///
2724 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
2725 pub fn request_measured_layout<
2726 F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
2727 + 'static,
2728 >(
2729 &mut self,
2730 style: Style,
2731 measure: F,
2732 ) -> LayoutId {
2733 self.invalidator.debug_assert_prepaint();
2734
2735 let rem_size = self.rem_size();
2736 self.layout_engine
2737 .as_mut()
2738 .unwrap()
2739 .request_measured_layout(style, rem_size, measure)
2740 }
2741
2742 /// Compute the layout for the given id within the given available space.
2743 /// This method is called for its side effect, typically by the framework prior to painting.
2744 /// After calling it, you can request the bounds of the given layout node id or any descendant.
2745 ///
2746 /// This method should only be called as part of the prepaint phase of element drawing.
2747 pub fn compute_layout(
2748 &mut self,
2749 layout_id: LayoutId,
2750 available_space: Size<AvailableSpace>,
2751 cx: &mut App,
2752 ) {
2753 self.invalidator.debug_assert_prepaint();
2754
2755 let mut layout_engine = self.layout_engine.take().unwrap();
2756 layout_engine.compute_layout(layout_id, available_space, self, cx);
2757 self.layout_engine = Some(layout_engine);
2758 }
2759
2760 /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
2761 /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
2762 ///
2763 /// This method should only be called as part of element drawing.
2764 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
2765 self.invalidator.debug_assert_prepaint();
2766
2767 let mut bounds = self
2768 .layout_engine
2769 .as_mut()
2770 .unwrap()
2771 .layout_bounds(layout_id)
2772 .map(Into::into);
2773 bounds.origin += self.element_offset();
2774 bounds
2775 }
2776
2777 /// This method should be called during `prepaint`. You can use
2778 /// the returned [Hitbox] during `paint` or in an event handler
2779 /// to determine whether the inserted hitbox was the topmost.
2780 ///
2781 /// This method should only be called as part of the prepaint phase of element drawing.
2782 pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, opaque: bool) -> Hitbox {
2783 self.invalidator.debug_assert_prepaint();
2784
2785 let content_mask = self.content_mask();
2786 let id = self.next_hitbox_id;
2787 self.next_hitbox_id.0 += 1;
2788 let hitbox = Hitbox {
2789 id,
2790 bounds,
2791 content_mask,
2792 opaque,
2793 };
2794 self.next_frame.hitboxes.push(hitbox.clone());
2795 hitbox
2796 }
2797
2798 /// Sets the key context for the current element. This context will be used to translate
2799 /// keybindings into actions.
2800 ///
2801 /// This method should only be called as part of the paint phase of element drawing.
2802 pub fn set_key_context(&mut self, context: KeyContext) {
2803 self.invalidator.debug_assert_paint();
2804 self.next_frame.dispatch_tree.set_key_context(context);
2805 }
2806
2807 /// Sets the focus handle for the current element. This handle will be used to manage focus state
2808 /// and keyboard event dispatch for the element.
2809 ///
2810 /// This method should only be called as part of the prepaint phase of element drawing.
2811 pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
2812 self.invalidator.debug_assert_prepaint();
2813 if focus_handle.is_focused(self) {
2814 self.next_frame.focus = Some(focus_handle.id);
2815 }
2816 self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
2817 }
2818
2819 /// Sets the view id for the current element, which will be used to manage view caching.
2820 ///
2821 /// This method should only be called as part of element prepaint. We plan on removing this
2822 /// method eventually when we solve some issues that require us to construct editor elements
2823 /// directly instead of always using editors via views.
2824 pub fn set_view_id(&mut self, view_id: EntityId) {
2825 self.invalidator.debug_assert_prepaint();
2826 self.next_frame.dispatch_tree.set_view_id(view_id);
2827 }
2828
2829 /// Get the last view id for the current element
2830 pub fn parent_view_id(&self) -> Option<EntityId> {
2831 self.next_frame.dispatch_tree.parent_view_id()
2832 }
2833
2834 /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
2835 /// platform to receive textual input with proper integration with concerns such
2836 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
2837 /// rendered.
2838 ///
2839 /// This method should only be called as part of the paint phase of element drawing.
2840 ///
2841 /// [element_input_handler]: crate::ElementInputHandler
2842 pub fn handle_input(
2843 &mut self,
2844 focus_handle: &FocusHandle,
2845 input_handler: impl InputHandler,
2846 cx: &App,
2847 ) {
2848 self.invalidator.debug_assert_paint();
2849
2850 if focus_handle.is_focused(self) {
2851 let cx = self.to_async(cx);
2852 self.next_frame
2853 .input_handlers
2854 .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
2855 }
2856 }
2857
2858 /// Register a mouse event listener on the window for the next frame. The type of event
2859 /// is determined by the first parameter of the given listener. When the next frame is rendered
2860 /// the listener will be cleared.
2861 ///
2862 /// This method should only be called as part of the paint phase of element drawing.
2863 pub fn on_mouse_event<Event: MouseEvent>(
2864 &mut self,
2865 mut handler: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
2866 ) {
2867 self.invalidator.debug_assert_paint();
2868
2869 self.next_frame.mouse_listeners.push(Some(Box::new(
2870 move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
2871 if let Some(event) = event.downcast_ref() {
2872 handler(event, phase, window, cx)
2873 }
2874 },
2875 )));
2876 }
2877
2878 /// Register a key event listener on the window for the next frame. The type of event
2879 /// is determined by the first parameter of the given listener. When the next frame is rendered
2880 /// the listener will be cleared.
2881 ///
2882 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
2883 /// a specific need to register a global listener.
2884 ///
2885 /// This method should only be called as part of the paint phase of element drawing.
2886 pub fn on_key_event<Event: KeyEvent>(
2887 &mut self,
2888 listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
2889 ) {
2890 self.invalidator.debug_assert_paint();
2891
2892 self.next_frame.dispatch_tree.on_key_event(Rc::new(
2893 move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
2894 if let Some(event) = event.downcast_ref::<Event>() {
2895 listener(event, phase, window, cx)
2896 }
2897 },
2898 ));
2899 }
2900
2901 /// Register a modifiers changed event listener on the window for the next frame.
2902 ///
2903 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
2904 /// a specific need to register a global listener.
2905 ///
2906 /// This method should only be called as part of the paint phase of element drawing.
2907 pub fn on_modifiers_changed(
2908 &mut self,
2909 listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
2910 ) {
2911 self.invalidator.debug_assert_paint();
2912
2913 self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
2914 move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
2915 listener(event, window, cx)
2916 },
2917 ));
2918 }
2919
2920 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
2921 /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
2922 /// Returns a subscription and persists until the subscription is dropped.
2923 pub fn on_focus_in(
2924 &mut self,
2925 handle: &FocusHandle,
2926 cx: &mut App,
2927 mut listener: impl FnMut(&mut Window, &mut App) + 'static,
2928 ) -> Subscription {
2929 let focus_id = handle.id;
2930 let (subscription, activate) =
2931 self.new_focus_listener(Box::new(move |event, window, cx| {
2932 if event.is_focus_in(focus_id) {
2933 listener(window, cx);
2934 }
2935 true
2936 }));
2937 cx.defer(move |_| activate());
2938 subscription
2939 }
2940
2941 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
2942 /// Returns a subscription and persists until the subscription is dropped.
2943 pub fn on_focus_out(
2944 &mut self,
2945 handle: &FocusHandle,
2946 cx: &mut App,
2947 mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
2948 ) -> Subscription {
2949 let focus_id = handle.id;
2950 let (subscription, activate) =
2951 self.new_focus_listener(Box::new(move |event, window, cx| {
2952 if let Some(blurred_id) = event.previous_focus_path.last().copied() {
2953 if event.is_focus_out(focus_id) {
2954 let event = FocusOutEvent {
2955 blurred: WeakFocusHandle {
2956 id: blurred_id,
2957 handles: Arc::downgrade(&cx.focus_handles),
2958 },
2959 };
2960 listener(event, window, cx)
2961 }
2962 }
2963 true
2964 }));
2965 cx.defer(move |_| activate());
2966 subscription
2967 }
2968
2969 fn reset_cursor_style(&self, cx: &mut App) {
2970 // Set the cursor only if we're the active window.
2971 if self.is_window_hovered() {
2972 let style = self
2973 .rendered_frame
2974 .cursor_styles
2975 .iter()
2976 .rev()
2977 .find(|request| request.hitbox_id.is_hovered(self))
2978 .map(|request| request.style)
2979 .unwrap_or(CursorStyle::Arrow);
2980 cx.platform.set_cursor_style(style);
2981 }
2982 }
2983
2984 /// Dispatch a given keystroke as though the user had typed it.
2985 /// You can create a keystroke with Keystroke::parse("").
2986 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
2987 let keystroke = keystroke.with_simulated_ime();
2988 let result = self.dispatch_event(
2989 PlatformInput::KeyDown(KeyDownEvent {
2990 keystroke: keystroke.clone(),
2991 is_held: false,
2992 }),
2993 cx,
2994 );
2995 if !result.propagate {
2996 return true;
2997 }
2998
2999 if let Some(input) = keystroke.key_char {
3000 if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3001 input_handler.dispatch_input(&input, self, cx);
3002 self.platform_window.set_input_handler(input_handler);
3003 return true;
3004 }
3005 }
3006
3007 false
3008 }
3009
3010 /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3011 /// binding for the action (last binding added to the keymap).
3012 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3013 self.bindings_for_action(action)
3014 .last()
3015 .map(|binding| {
3016 binding
3017 .keystrokes()
3018 .iter()
3019 .map(ToString::to_string)
3020 .collect::<Vec<_>>()
3021 .join(" ")
3022 })
3023 .unwrap_or_else(|| action.name().to_string())
3024 }
3025
3026 /// Dispatch a mouse or keyboard event on the window.
3027 #[profiling::function]
3028 pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3029 self.last_input_timestamp.set(Instant::now());
3030 // Handlers may set this to false by calling `stop_propagation`.
3031 cx.propagate_event = true;
3032 // Handlers may set this to true by calling `prevent_default`.
3033 self.default_prevented = false;
3034
3035 let event = match event {
3036 // Track the mouse position with our own state, since accessing the platform
3037 // API for the mouse position can only occur on the main thread.
3038 PlatformInput::MouseMove(mouse_move) => {
3039 self.mouse_position = mouse_move.position;
3040 self.modifiers = mouse_move.modifiers;
3041 PlatformInput::MouseMove(mouse_move)
3042 }
3043 PlatformInput::MouseDown(mouse_down) => {
3044 self.mouse_position = mouse_down.position;
3045 self.modifiers = mouse_down.modifiers;
3046 PlatformInput::MouseDown(mouse_down)
3047 }
3048 PlatformInput::MouseUp(mouse_up) => {
3049 self.mouse_position = mouse_up.position;
3050 self.modifiers = mouse_up.modifiers;
3051 PlatformInput::MouseUp(mouse_up)
3052 }
3053 PlatformInput::MouseExited(mouse_exited) => {
3054 self.modifiers = mouse_exited.modifiers;
3055 PlatformInput::MouseExited(mouse_exited)
3056 }
3057 PlatformInput::ModifiersChanged(modifiers_changed) => {
3058 self.modifiers = modifiers_changed.modifiers;
3059 PlatformInput::ModifiersChanged(modifiers_changed)
3060 }
3061 PlatformInput::ScrollWheel(scroll_wheel) => {
3062 self.mouse_position = scroll_wheel.position;
3063 self.modifiers = scroll_wheel.modifiers;
3064 PlatformInput::ScrollWheel(scroll_wheel)
3065 }
3066 // Translate dragging and dropping of external files from the operating system
3067 // to internal drag and drop events.
3068 PlatformInput::FileDrop(file_drop) => match file_drop {
3069 FileDropEvent::Entered { position, paths } => {
3070 self.mouse_position = position;
3071 if cx.active_drag.is_none() {
3072 cx.active_drag = Some(AnyDrag {
3073 value: Arc::new(paths.clone()),
3074 view: cx.new(|_| paths).into(),
3075 cursor_offset: position,
3076 });
3077 }
3078 PlatformInput::MouseMove(MouseMoveEvent {
3079 position,
3080 pressed_button: Some(MouseButton::Left),
3081 modifiers: Modifiers::default(),
3082 })
3083 }
3084 FileDropEvent::Pending { position } => {
3085 self.mouse_position = position;
3086 PlatformInput::MouseMove(MouseMoveEvent {
3087 position,
3088 pressed_button: Some(MouseButton::Left),
3089 modifiers: Modifiers::default(),
3090 })
3091 }
3092 FileDropEvent::Submit { position } => {
3093 cx.activate(true);
3094 self.mouse_position = position;
3095 PlatformInput::MouseUp(MouseUpEvent {
3096 button: MouseButton::Left,
3097 position,
3098 modifiers: Modifiers::default(),
3099 click_count: 1,
3100 })
3101 }
3102 FileDropEvent::Exited => {
3103 cx.active_drag.take();
3104 PlatformInput::FileDrop(FileDropEvent::Exited)
3105 }
3106 },
3107 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3108 };
3109
3110 if let Some(any_mouse_event) = event.mouse_event() {
3111 self.dispatch_mouse_event(any_mouse_event, cx);
3112 } else if let Some(any_key_event) = event.keyboard_event() {
3113 self.dispatch_key_event(any_key_event, cx);
3114 }
3115
3116 DispatchEventResult {
3117 propagate: cx.propagate_event,
3118 default_prevented: self.default_prevented,
3119 }
3120 }
3121
3122 fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3123 let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3124 if hit_test != self.mouse_hit_test {
3125 self.mouse_hit_test = hit_test;
3126 self.reset_cursor_style(cx);
3127 }
3128
3129 let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3130
3131 // Capture phase, events bubble from back to front. Handlers for this phase are used for
3132 // special purposes, such as detecting events outside of a given Bounds.
3133 for listener in &mut mouse_listeners {
3134 let listener = listener.as_mut().unwrap();
3135 listener(event, DispatchPhase::Capture, self, cx);
3136 if !cx.propagate_event {
3137 break;
3138 }
3139 }
3140
3141 // Bubble phase, where most normal handlers do their work.
3142 if cx.propagate_event {
3143 for listener in mouse_listeners.iter_mut().rev() {
3144 let listener = listener.as_mut().unwrap();
3145 listener(event, DispatchPhase::Bubble, self, cx);
3146 if !cx.propagate_event {
3147 break;
3148 }
3149 }
3150 }
3151
3152 self.rendered_frame.mouse_listeners = mouse_listeners;
3153
3154 if cx.has_active_drag() {
3155 if event.is::<MouseMoveEvent>() {
3156 // If this was a mouse move event, redraw the window so that the
3157 // active drag can follow the mouse cursor.
3158 self.refresh();
3159 } else if event.is::<MouseUpEvent>() {
3160 // If this was a mouse up event, cancel the active drag and redraw
3161 // the window.
3162 cx.active_drag = None;
3163 self.refresh();
3164 }
3165 }
3166 }
3167
3168 fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3169 if self.invalidator.is_dirty() {
3170 self.draw(cx);
3171 }
3172
3173 let node_id = self
3174 .focus
3175 .and_then(|focus_id| {
3176 self.rendered_frame
3177 .dispatch_tree
3178 .focusable_node_id(focus_id)
3179 })
3180 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
3181
3182 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3183
3184 let mut keystroke: Option<Keystroke> = None;
3185
3186 if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3187 if event.modifiers.number_of_modifiers() == 0
3188 && self.pending_modifier.modifiers.number_of_modifiers() == 1
3189 && !self.pending_modifier.saw_keystroke
3190 {
3191 let key = match self.pending_modifier.modifiers {
3192 modifiers if modifiers.shift => Some("shift"),
3193 modifiers if modifiers.control => Some("control"),
3194 modifiers if modifiers.alt => Some("alt"),
3195 modifiers if modifiers.platform => Some("platform"),
3196 modifiers if modifiers.function => Some("function"),
3197 _ => None,
3198 };
3199 if let Some(key) = key {
3200 keystroke = Some(Keystroke {
3201 key: key.to_string(),
3202 key_char: None,
3203 modifiers: Modifiers::default(),
3204 });
3205 }
3206 }
3207
3208 if self.pending_modifier.modifiers.number_of_modifiers() == 0
3209 && event.modifiers.number_of_modifiers() == 1
3210 {
3211 self.pending_modifier.saw_keystroke = false
3212 }
3213 self.pending_modifier.modifiers = event.modifiers
3214 } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3215 self.pending_modifier.saw_keystroke = true;
3216 keystroke = Some(key_down_event.keystroke.clone());
3217 }
3218
3219 let Some(keystroke) = keystroke else {
3220 self.finish_dispatch_key_event(event, dispatch_path, cx);
3221 return;
3222 };
3223
3224 let mut currently_pending = self.pending_input.take().unwrap_or_default();
3225 if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3226 currently_pending = PendingInput::default();
3227 }
3228
3229 let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3230 currently_pending.keystrokes,
3231 keystroke,
3232 &dispatch_path,
3233 );
3234 if !match_result.to_replay.is_empty() {
3235 self.replay_pending_input(match_result.to_replay, cx)
3236 }
3237
3238 if !match_result.pending.is_empty() {
3239 currently_pending.keystrokes = match_result.pending;
3240 currently_pending.focus = self.focus;
3241 currently_pending.timer = Some(self.spawn(cx, |mut cx| async move {
3242 cx.background_executor.timer(Duration::from_secs(1)).await;
3243 cx.update(move |window, cx| {
3244 let Some(currently_pending) = window
3245 .pending_input
3246 .take()
3247 .filter(|pending| pending.focus == window.focus)
3248 else {
3249 return;
3250 };
3251
3252 let dispatch_path = window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3253
3254 let to_replay = window
3255 .rendered_frame
3256 .dispatch_tree
3257 .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3258
3259 window.replay_pending_input(to_replay, cx)
3260 })
3261 .log_err();
3262 }));
3263 self.pending_input = Some(currently_pending);
3264 self.pending_input_changed(cx);
3265 cx.propagate_event = false;
3266 return;
3267 }
3268
3269 cx.propagate_event = true;
3270 for binding in match_result.bindings {
3271 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3272 if !cx.propagate_event {
3273 self.dispatch_keystroke_observers(event, Some(binding.action), cx);
3274 self.pending_input_changed(cx);
3275 return;
3276 }
3277 }
3278
3279 self.finish_dispatch_key_event(event, dispatch_path, cx);
3280 self.pending_input_changed(cx);
3281 }
3282
3283 fn finish_dispatch_key_event(
3284 &mut self,
3285 event: &dyn Any,
3286 dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3287 cx: &mut App,
3288 ) {
3289 self.dispatch_key_down_up_event(event, &dispatch_path, cx);
3290 if !cx.propagate_event {
3291 return;
3292 }
3293
3294 self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
3295 if !cx.propagate_event {
3296 return;
3297 }
3298
3299 self.dispatch_keystroke_observers(event, None, cx);
3300 }
3301
3302 fn pending_input_changed(&mut self, cx: &mut App) {
3303 self.pending_input_observers
3304 .clone()
3305 .retain(&(), |callback| callback(self, cx));
3306 }
3307
3308 fn dispatch_key_down_up_event(
3309 &mut self,
3310 event: &dyn Any,
3311 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3312 cx: &mut App,
3313 ) {
3314 // Capture phase
3315 for node_id in dispatch_path {
3316 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3317
3318 for key_listener in node.key_listeners.clone() {
3319 key_listener(event, DispatchPhase::Capture, self, cx);
3320 if !cx.propagate_event {
3321 return;
3322 }
3323 }
3324 }
3325
3326 // Bubble phase
3327 for node_id in dispatch_path.iter().rev() {
3328 // Handle low level key events
3329 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3330 for key_listener in node.key_listeners.clone() {
3331 key_listener(event, DispatchPhase::Bubble, self, cx);
3332 if !cx.propagate_event {
3333 return;
3334 }
3335 }
3336 }
3337 }
3338
3339 fn dispatch_modifiers_changed_event(
3340 &mut self,
3341 event: &dyn Any,
3342 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3343 cx: &mut App,
3344 ) {
3345 let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
3346 return;
3347 };
3348 for node_id in dispatch_path.iter().rev() {
3349 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3350 for listener in node.modifiers_changed_listeners.clone() {
3351 listener(event, self, cx);
3352 if !cx.propagate_event {
3353 return;
3354 }
3355 }
3356 }
3357 }
3358
3359 /// Determine whether a potential multi-stroke key binding is in progress on this window.
3360 pub fn has_pending_keystrokes(&self) -> bool {
3361 self.pending_input.is_some()
3362 }
3363
3364 pub(crate) fn clear_pending_keystrokes(&mut self) {
3365 self.pending_input.take();
3366 }
3367
3368 /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
3369 pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
3370 self.pending_input
3371 .as_ref()
3372 .map(|pending_input| pending_input.keystrokes.as_slice())
3373 }
3374
3375 fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
3376 let node_id = self
3377 .focus
3378 .and_then(|focus_id| {
3379 self.rendered_frame
3380 .dispatch_tree
3381 .focusable_node_id(focus_id)
3382 })
3383 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
3384
3385 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3386
3387 'replay: for replay in replays {
3388 let event = KeyDownEvent {
3389 keystroke: replay.keystroke.clone(),
3390 is_held: false,
3391 };
3392
3393 cx.propagate_event = true;
3394 for binding in replay.bindings {
3395 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3396 if !cx.propagate_event {
3397 self.dispatch_keystroke_observers(&event, Some(binding.action), cx);
3398 continue 'replay;
3399 }
3400 }
3401
3402 self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
3403 if !cx.propagate_event {
3404 continue 'replay;
3405 }
3406 if let Some(input) = replay.keystroke.key_char.as_ref().cloned() {
3407 if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3408 input_handler.dispatch_input(&input, self, cx);
3409 self.platform_window.set_input_handler(input_handler)
3410 }
3411 }
3412 }
3413 }
3414
3415 fn dispatch_action_on_node(
3416 &mut self,
3417 node_id: DispatchNodeId,
3418 action: &dyn Action,
3419 cx: &mut App,
3420 ) {
3421 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3422
3423 // Capture phase for global actions.
3424 cx.propagate_event = true;
3425 if let Some(mut global_listeners) = cx
3426 .global_action_listeners
3427 .remove(&action.as_any().type_id())
3428 {
3429 for listener in &global_listeners {
3430 listener(action.as_any(), DispatchPhase::Capture, cx);
3431 if !cx.propagate_event {
3432 break;
3433 }
3434 }
3435
3436 global_listeners.extend(
3437 cx.global_action_listeners
3438 .remove(&action.as_any().type_id())
3439 .unwrap_or_default(),
3440 );
3441
3442 cx.global_action_listeners
3443 .insert(action.as_any().type_id(), global_listeners);
3444 }
3445
3446 if !cx.propagate_event {
3447 return;
3448 }
3449
3450 // Capture phase for window actions.
3451 for node_id in &dispatch_path {
3452 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3453 for DispatchActionListener {
3454 action_type,
3455 listener,
3456 } in node.action_listeners.clone()
3457 {
3458 let any_action = action.as_any();
3459 if action_type == any_action.type_id() {
3460 listener(any_action, DispatchPhase::Capture, self, cx);
3461
3462 if !cx.propagate_event {
3463 return;
3464 }
3465 }
3466 }
3467 }
3468
3469 // Bubble phase for window actions.
3470 for node_id in dispatch_path.iter().rev() {
3471 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3472 for DispatchActionListener {
3473 action_type,
3474 listener,
3475 } in node.action_listeners.clone()
3476 {
3477 let any_action = action.as_any();
3478 if action_type == any_action.type_id() {
3479 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3480 listener(any_action, DispatchPhase::Bubble, self, cx);
3481
3482 if !cx.propagate_event {
3483 return;
3484 }
3485 }
3486 }
3487 }
3488
3489 // Bubble phase for global actions.
3490 if let Some(mut global_listeners) = cx
3491 .global_action_listeners
3492 .remove(&action.as_any().type_id())
3493 {
3494 for listener in global_listeners.iter().rev() {
3495 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3496
3497 listener(action.as_any(), DispatchPhase::Bubble, cx);
3498 if !cx.propagate_event {
3499 break;
3500 }
3501 }
3502
3503 global_listeners.extend(
3504 cx.global_action_listeners
3505 .remove(&action.as_any().type_id())
3506 .unwrap_or_default(),
3507 );
3508
3509 cx.global_action_listeners
3510 .insert(action.as_any().type_id(), global_listeners);
3511 }
3512 }
3513
3514 /// Register the given handler to be invoked whenever the global of the given type
3515 /// is updated.
3516 pub fn observe_global<G: Global>(
3517 &mut self,
3518 cx: &mut App,
3519 f: impl Fn(&mut Window, &mut App) + 'static,
3520 ) -> Subscription {
3521 let window_handle = self.handle;
3522 let (subscription, activate) = cx.global_observers.insert(
3523 TypeId::of::<G>(),
3524 Box::new(move |cx| {
3525 window_handle
3526 .update(cx, |_, window, cx| f(window, cx))
3527 .is_ok()
3528 }),
3529 );
3530 cx.defer(move |_| activate());
3531 subscription
3532 }
3533
3534 /// Focus the current window and bring it to the foreground at the platform level.
3535 pub fn activate_window(&self) {
3536 self.platform_window.activate();
3537 }
3538
3539 /// Minimize the current window at the platform level.
3540 pub fn minimize_window(&self) {
3541 self.platform_window.minimize();
3542 }
3543
3544 /// Toggle full screen status on the current window at the platform level.
3545 pub fn toggle_fullscreen(&self) {
3546 self.platform_window.toggle_fullscreen();
3547 }
3548
3549 /// Updates the IME panel position suggestions for languages like japanese, chinese.
3550 pub fn invalidate_character_coordinates(&self) {
3551 self.on_next_frame(|window, cx| {
3552 if let Some(mut input_handler) = window.platform_window.take_input_handler() {
3553 if let Some(bounds) = input_handler.selected_bounds(window, cx) {
3554 window
3555 .platform_window
3556 .update_ime_position(bounds.scale(window.scale_factor()));
3557 }
3558 window.platform_window.set_input_handler(input_handler);
3559 }
3560 });
3561 }
3562
3563 /// Present a platform dialog.
3564 /// The provided message will be presented, along with buttons for each answer.
3565 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
3566 pub fn prompt(
3567 &mut self,
3568 level: PromptLevel,
3569 message: &str,
3570 detail: Option<&str>,
3571 answers: &[&str],
3572 cx: &mut App,
3573 ) -> oneshot::Receiver<usize> {
3574 let prompt_builder = cx.prompt_builder.take();
3575 let Some(prompt_builder) = prompt_builder else {
3576 unreachable!("Re-entrant window prompting is not supported by GPUI");
3577 };
3578
3579 let receiver = match &prompt_builder {
3580 PromptBuilder::Default => self
3581 .platform_window
3582 .prompt(level, message, detail, answers)
3583 .unwrap_or_else(|| {
3584 self.build_custom_prompt(&prompt_builder, level, message, detail, answers, cx)
3585 }),
3586 PromptBuilder::Custom(_) => {
3587 self.build_custom_prompt(&prompt_builder, level, message, detail, answers, cx)
3588 }
3589 };
3590
3591 cx.prompt_builder = Some(prompt_builder);
3592
3593 receiver
3594 }
3595
3596 fn build_custom_prompt(
3597 &mut self,
3598 prompt_builder: &PromptBuilder,
3599 level: PromptLevel,
3600 message: &str,
3601 detail: Option<&str>,
3602 answers: &[&str],
3603 cx: &mut App,
3604 ) -> oneshot::Receiver<usize> {
3605 let (sender, receiver) = oneshot::channel();
3606 let handle = PromptHandle::new(sender);
3607 let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
3608 self.prompt = Some(handle);
3609 receiver
3610 }
3611
3612 /// Returns the current context stack.
3613 pub fn context_stack(&self) -> Vec<KeyContext> {
3614 let dispatch_tree = &self.rendered_frame.dispatch_tree;
3615 let node_id = self
3616 .focus
3617 .and_then(|focus_id| dispatch_tree.focusable_node_id(focus_id))
3618 .unwrap_or_else(|| dispatch_tree.root_node_id());
3619
3620 dispatch_tree
3621 .dispatch_path(node_id)
3622 .iter()
3623 .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
3624 .collect()
3625 }
3626
3627 /// Returns all available actions for the focused element.
3628 pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
3629 let node_id = self
3630 .focus
3631 .and_then(|focus_id| {
3632 self.rendered_frame
3633 .dispatch_tree
3634 .focusable_node_id(focus_id)
3635 })
3636 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
3637
3638 let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
3639 for action_type in cx.global_action_listeners.keys() {
3640 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
3641 let action = cx.actions.build_action_type(action_type).ok();
3642 if let Some(action) = action {
3643 actions.insert(ix, action);
3644 }
3645 }
3646 }
3647 actions
3648 }
3649
3650 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
3651 /// returned in the order they were added. For display, the last binding should take precedence.
3652 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
3653 self.rendered_frame
3654 .dispatch_tree
3655 .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
3656 }
3657
3658 /// Returns any bindings that would invoke an action on the given focus handle if it were
3659 /// focused. Bindings are returned in the order they were added. For display, the last binding
3660 /// should take precedence.
3661 pub fn bindings_for_action_in(
3662 &self,
3663 action: &dyn Action,
3664 focus_handle: &FocusHandle,
3665 ) -> Vec<KeyBinding> {
3666 let dispatch_tree = &self.rendered_frame.dispatch_tree;
3667
3668 let Some(node_id) = dispatch_tree.focusable_node_id(focus_handle.id) else {
3669 return vec![];
3670 };
3671 let context_stack: Vec<_> = dispatch_tree
3672 .dispatch_path(node_id)
3673 .into_iter()
3674 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
3675 .collect();
3676 dispatch_tree.bindings_for_action(action, &context_stack)
3677 }
3678
3679 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
3680 pub fn listener_for<V: Render, E>(
3681 &self,
3682 view: &Entity<V>,
3683 f: impl Fn(&mut V, &E, &mut Window, &mut Context<V>) + 'static,
3684 ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
3685 let view = view.downgrade();
3686 move |e: &E, window: &mut Window, cx: &mut App| {
3687 view.update(cx, |view, cx| f(view, e, window, cx)).ok();
3688 }
3689 }
3690
3691 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
3692 pub fn handler_for<V: Render>(
3693 &self,
3694 view: &Entity<V>,
3695 f: impl Fn(&mut V, &mut Window, &mut Context<V>) + 'static,
3696 ) -> impl Fn(&mut Window, &mut App) {
3697 let view = view.downgrade();
3698 move |window: &mut Window, cx: &mut App| {
3699 view.update(cx, |view, cx| f(view, window, cx)).ok();
3700 }
3701 }
3702
3703 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
3704 /// If the callback returns false, the window won't be closed.
3705 pub fn on_window_should_close(
3706 &self,
3707 cx: &App,
3708 f: impl Fn(&mut Window, &mut App) -> bool + 'static,
3709 ) {
3710 let mut cx = self.to_async(cx);
3711 self.platform_window.on_should_close(Box::new(move || {
3712 cx.update(|window, cx| f(window, cx)).unwrap_or(true)
3713 }))
3714 }
3715
3716 /// Register an action listener on the window for the next frame. The type of action
3717 /// is determined by the first parameter of the given listener. When the next frame is rendered
3718 /// the listener will be cleared.
3719 ///
3720 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
3721 /// a specific need to register a global listener.
3722 pub fn on_action(
3723 &mut self,
3724 action_type: TypeId,
3725 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
3726 ) {
3727 self.next_frame
3728 .dispatch_tree
3729 .on_action(action_type, Rc::new(listener));
3730 }
3731
3732 /// Read information about the GPU backing this window.
3733 /// Currently returns None on Mac and Windows.
3734 pub fn gpu_specs(&self) -> Option<GpuSpecs> {
3735 self.platform_window.gpu_specs()
3736 }
3737}
3738
3739// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
3740slotmap::new_key_type! {
3741 /// A unique identifier for a window.
3742 pub struct WindowId;
3743}
3744
3745impl WindowId {
3746 /// Converts this window ID to a `u64`.
3747 pub fn as_u64(&self) -> u64 {
3748 self.0.as_ffi()
3749 }
3750}
3751
3752impl From<u64> for WindowId {
3753 fn from(value: u64) -> Self {
3754 WindowId(slotmap::KeyData::from_ffi(value))
3755 }
3756}
3757
3758/// A handle to a window with a specific root view type.
3759/// Note that this does not keep the window alive on its own.
3760#[derive(Deref, DerefMut)]
3761pub struct WindowHandle<V> {
3762 #[deref]
3763 #[deref_mut]
3764 pub(crate) any_handle: AnyWindowHandle,
3765 state_type: PhantomData<V>,
3766}
3767
3768impl<V: 'static + Render> WindowHandle<V> {
3769 /// Creates a new handle from a window ID.
3770 /// This does not check if the root type of the window is `V`.
3771 pub fn new(id: WindowId) -> Self {
3772 WindowHandle {
3773 any_handle: AnyWindowHandle {
3774 id,
3775 state_type: TypeId::of::<V>(),
3776 },
3777 state_type: PhantomData,
3778 }
3779 }
3780
3781 /// Get the root view out of this window.
3782 ///
3783 /// This will fail if the window is closed or if the root view's type does not match `V`.
3784 #[cfg(any(test, feature = "test-support"))]
3785 pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
3786 where
3787 C: AppContext,
3788 {
3789 crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
3790 root_view
3791 .downcast::<V>()
3792 .map_err(|_| anyhow!("the type of the window's root view has changed"))
3793 }))
3794 }
3795
3796 /// Updates the root view of this window.
3797 ///
3798 /// This will fail if the window has been closed or if the root view's type does not match
3799 pub fn update<C, R>(
3800 &self,
3801 cx: &mut C,
3802 update: impl FnOnce(&mut V, &mut Window, &mut Context<'_, V>) -> R,
3803 ) -> Result<R>
3804 where
3805 C: AppContext,
3806 {
3807 cx.update_window(self.any_handle, |root_view, window, cx| {
3808 let view = root_view
3809 .downcast::<V>()
3810 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
3811
3812 Ok(view.update(cx, |view, cx| update(view, window, cx)))
3813 })?
3814 }
3815
3816 /// Read the root view out of this window.
3817 ///
3818 /// This will fail if the window is closed or if the root view's type does not match `V`.
3819 pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
3820 let x = cx
3821 .windows
3822 .get(self.id)
3823 .and_then(|window| {
3824 window
3825 .as_ref()
3826 .and_then(|window| window.root.clone())
3827 .map(|root_view| root_view.downcast::<V>())
3828 })
3829 .ok_or_else(|| anyhow!("window not found"))?
3830 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
3831
3832 Ok(x.read(cx))
3833 }
3834
3835 /// Read the root view out of this window, with a callback
3836 ///
3837 /// This will fail if the window is closed or if the root view's type does not match `V`.
3838 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
3839 where
3840 C: AppContext,
3841 {
3842 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
3843 }
3844
3845 /// Read the root view pointer off of this window.
3846 ///
3847 /// This will fail if the window is closed or if the root view's type does not match `V`.
3848 pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
3849 where
3850 C: AppContext,
3851 {
3852 cx.read_window(self, |root_view, _cx| root_view.clone())
3853 }
3854
3855 /// Check if this window is 'active'.
3856 ///
3857 /// Will return `None` if the window is closed or currently
3858 /// borrowed.
3859 pub fn is_active(&self, cx: &mut App) -> Option<bool> {
3860 cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
3861 .ok()
3862 }
3863}
3864
3865impl<V> Copy for WindowHandle<V> {}
3866
3867impl<V> Clone for WindowHandle<V> {
3868 fn clone(&self) -> Self {
3869 *self
3870 }
3871}
3872
3873impl<V> PartialEq for WindowHandle<V> {
3874 fn eq(&self, other: &Self) -> bool {
3875 self.any_handle == other.any_handle
3876 }
3877}
3878
3879impl<V> Eq for WindowHandle<V> {}
3880
3881impl<V> Hash for WindowHandle<V> {
3882 fn hash<H: Hasher>(&self, state: &mut H) {
3883 self.any_handle.hash(state);
3884 }
3885}
3886
3887impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
3888 fn from(val: WindowHandle<V>) -> Self {
3889 val.any_handle
3890 }
3891}
3892
3893unsafe impl<V> Send for WindowHandle<V> {}
3894unsafe impl<V> Sync for WindowHandle<V> {}
3895
3896/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
3897#[derive(Copy, Clone, PartialEq, Eq, Hash)]
3898pub struct AnyWindowHandle {
3899 pub(crate) id: WindowId,
3900 state_type: TypeId,
3901}
3902
3903impl AnyWindowHandle {
3904 /// Get the ID of this window.
3905 pub fn window_id(&self) -> WindowId {
3906 self.id
3907 }
3908
3909 /// Attempt to convert this handle to a window handle with a specific root view type.
3910 /// If the types do not match, this will return `None`.
3911 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
3912 if TypeId::of::<T>() == self.state_type {
3913 Some(WindowHandle {
3914 any_handle: *self,
3915 state_type: PhantomData,
3916 })
3917 } else {
3918 None
3919 }
3920 }
3921
3922 /// Updates the state of the root view of this window.
3923 ///
3924 /// This will fail if the window has been closed.
3925 pub fn update<C, R>(
3926 self,
3927 cx: &mut C,
3928 update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
3929 ) -> Result<R>
3930 where
3931 C: AppContext,
3932 {
3933 cx.update_window(self, update)
3934 }
3935
3936 /// Read the state of the root view of this window.
3937 ///
3938 /// This will fail if the window has been closed.
3939 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
3940 where
3941 C: AppContext,
3942 T: 'static,
3943 {
3944 let view = self
3945 .downcast::<T>()
3946 .context("the type of the window's root view has changed")?;
3947
3948 cx.read_window(&view, read)
3949 }
3950}
3951
3952/// An identifier for an [`Element`](crate::Element).
3953///
3954/// Can be constructed with a string, a number, or both, as well
3955/// as other internal representations.
3956#[derive(Clone, Debug, Eq, PartialEq, Hash)]
3957pub enum ElementId {
3958 /// The ID of a View element
3959 View(EntityId),
3960 /// An integer ID.
3961 Integer(usize),
3962 /// A string based ID.
3963 Name(SharedString),
3964 /// A UUID.
3965 Uuid(Uuid),
3966 /// An ID that's equated with a focus handle.
3967 FocusHandle(FocusId),
3968 /// A combination of a name and an integer.
3969 NamedInteger(SharedString, usize),
3970 /// A path
3971 Path(Arc<std::path::Path>),
3972}
3973
3974impl Display for ElementId {
3975 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
3976 match self {
3977 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
3978 ElementId::Integer(ix) => write!(f, "{}", ix)?,
3979 ElementId::Name(name) => write!(f, "{}", name)?,
3980 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
3981 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
3982 ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
3983 ElementId::Path(path) => write!(f, "{}", path.display())?,
3984 }
3985
3986 Ok(())
3987 }
3988}
3989
3990impl TryInto<SharedString> for ElementId {
3991 type Error = anyhow::Error;
3992
3993 fn try_into(self) -> anyhow::Result<SharedString> {
3994 if let ElementId::Name(name) = self {
3995 Ok(name)
3996 } else {
3997 Err(anyhow!("element id is not string"))
3998 }
3999 }
4000}
4001
4002impl From<usize> for ElementId {
4003 fn from(id: usize) -> Self {
4004 ElementId::Integer(id)
4005 }
4006}
4007
4008impl From<i32> for ElementId {
4009 fn from(id: i32) -> Self {
4010 Self::Integer(id as usize)
4011 }
4012}
4013
4014impl From<SharedString> for ElementId {
4015 fn from(name: SharedString) -> Self {
4016 ElementId::Name(name)
4017 }
4018}
4019
4020impl From<Arc<std::path::Path>> for ElementId {
4021 fn from(path: Arc<std::path::Path>) -> Self {
4022 ElementId::Path(path)
4023 }
4024}
4025
4026impl From<&'static str> for ElementId {
4027 fn from(name: &'static str) -> Self {
4028 ElementId::Name(name.into())
4029 }
4030}
4031
4032impl<'a> From<&'a FocusHandle> for ElementId {
4033 fn from(handle: &'a FocusHandle) -> Self {
4034 ElementId::FocusHandle(handle.id)
4035 }
4036}
4037
4038impl From<(&'static str, EntityId)> for ElementId {
4039 fn from((name, id): (&'static str, EntityId)) -> Self {
4040 ElementId::NamedInteger(name.into(), id.as_u64() as usize)
4041 }
4042}
4043
4044impl From<(&'static str, usize)> for ElementId {
4045 fn from((name, id): (&'static str, usize)) -> Self {
4046 ElementId::NamedInteger(name.into(), id)
4047 }
4048}
4049
4050impl From<(SharedString, usize)> for ElementId {
4051 fn from((name, id): (SharedString, usize)) -> Self {
4052 ElementId::NamedInteger(name, id)
4053 }
4054}
4055
4056impl From<(&'static str, u64)> for ElementId {
4057 fn from((name, id): (&'static str, u64)) -> Self {
4058 ElementId::NamedInteger(name.into(), id as usize)
4059 }
4060}
4061
4062impl From<Uuid> for ElementId {
4063 fn from(value: Uuid) -> Self {
4064 Self::Uuid(value)
4065 }
4066}
4067
4068impl From<(&'static str, u32)> for ElementId {
4069 fn from((name, id): (&'static str, u32)) -> Self {
4070 ElementId::NamedInteger(name.into(), id as usize)
4071 }
4072}
4073
4074/// A rectangle to be rendered in the window at the given position and size.
4075/// Passed as an argument [`Window::paint_quad`].
4076#[derive(Clone)]
4077pub struct PaintQuad {
4078 /// The bounds of the quad within the window.
4079 pub bounds: Bounds<Pixels>,
4080 /// The radii of the quad's corners.
4081 pub corner_radii: Corners<Pixels>,
4082 /// The background color of the quad.
4083 pub background: Background,
4084 /// The widths of the quad's borders.
4085 pub border_widths: Edges<Pixels>,
4086 /// The color of the quad's borders.
4087 pub border_color: Hsla,
4088}
4089
4090impl PaintQuad {
4091 /// Sets the corner radii of the quad.
4092 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
4093 PaintQuad {
4094 corner_radii: corner_radii.into(),
4095 ..self
4096 }
4097 }
4098
4099 /// Sets the border widths of the quad.
4100 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
4101 PaintQuad {
4102 border_widths: border_widths.into(),
4103 ..self
4104 }
4105 }
4106
4107 /// Sets the border color of the quad.
4108 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
4109 PaintQuad {
4110 border_color: border_color.into(),
4111 ..self
4112 }
4113 }
4114
4115 /// Sets the background color of the quad.
4116 pub fn background(self, background: impl Into<Background>) -> Self {
4117 PaintQuad {
4118 background: background.into(),
4119 ..self
4120 }
4121 }
4122}
4123
4124/// Creates a quad with the given parameters.
4125pub fn quad(
4126 bounds: Bounds<Pixels>,
4127 corner_radii: impl Into<Corners<Pixels>>,
4128 background: impl Into<Background>,
4129 border_widths: impl Into<Edges<Pixels>>,
4130 border_color: impl Into<Hsla>,
4131) -> PaintQuad {
4132 PaintQuad {
4133 bounds,
4134 corner_radii: corner_radii.into(),
4135 background: background.into(),
4136 border_widths: border_widths.into(),
4137 border_color: border_color.into(),
4138 }
4139}
4140
4141/// Creates a filled quad with the given bounds and background color.
4142pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
4143 PaintQuad {
4144 bounds: bounds.into(),
4145 corner_radii: (0.).into(),
4146 background: background.into(),
4147 border_widths: (0.).into(),
4148 border_color: transparent_black(),
4149 }
4150}
4151
4152/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
4153pub fn outline(bounds: impl Into<Bounds<Pixels>>, border_color: impl Into<Hsla>) -> PaintQuad {
4154 PaintQuad {
4155 bounds: bounds.into(),
4156 corner_radii: (0.).into(),
4157 background: transparent_black().into(),
4158 border_widths: (1.).into(),
4159 border_color: border_color.into(),
4160 }
4161}