cloud.rs

   1use ai_onboarding::YoungAccountBanner;
   2use anthropic::AnthropicModelMode;
   3use anyhow::{Context as _, Result, anyhow};
   4use chrono::{DateTime, Utc};
   5use client::{Client, ModelRequestUsage, UserStore, zed_urls};
   6use cloud_llm_client::{
   7    CLIENT_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, CLIENT_SUPPORTS_X_AI_HEADER_NAME,
   8    CURRENT_PLAN_HEADER_NAME, CompletionBody, CompletionEvent, CompletionRequestStatus,
   9    CountTokensBody, CountTokensResponse, EXPIRED_LLM_TOKEN_HEADER_NAME, ListModelsResponse,
  10    MODEL_REQUESTS_RESOURCE_HEADER_VALUE, Plan, PlanV1, PlanV2,
  11    SERVER_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, SUBSCRIPTION_LIMIT_RESOURCE_HEADER_NAME,
  12    TOOL_USE_LIMIT_REACHED_HEADER_NAME, ZED_VERSION_HEADER_NAME,
  13};
  14use futures::{
  15    AsyncBufReadExt, FutureExt, Stream, StreamExt, future::BoxFuture, stream::BoxStream,
  16};
  17use google_ai::GoogleModelMode;
  18use gpui::{AnyElement, AnyView, App, AsyncApp, Context, Entity, Subscription, Task};
  19use http_client::http::{HeaderMap, HeaderValue};
  20use http_client::{AsyncBody, HttpClient, HttpRequestExt, Method, Response, StatusCode};
  21use language_model::{
  22    AuthenticateError, LanguageModel, LanguageModelCacheConfiguration,
  23    LanguageModelCompletionError, LanguageModelCompletionEvent, LanguageModelId, LanguageModelName,
  24    LanguageModelProvider, LanguageModelProviderId, LanguageModelProviderName,
  25    LanguageModelProviderState, LanguageModelRequest, LanguageModelToolChoice,
  26    LanguageModelToolSchemaFormat, LlmApiToken, ModelRequestLimitReachedError,
  27    PaymentRequiredError, RateLimiter, RefreshLlmTokenListener,
  28};
  29use release_channel::AppVersion;
  30use schemars::JsonSchema;
  31use semver::Version;
  32use serde::{Deserialize, Serialize, de::DeserializeOwned};
  33use settings::SettingsStore;
  34pub use settings::ZedDotDevAvailableModel as AvailableModel;
  35pub use settings::ZedDotDevAvailableProvider as AvailableProvider;
  36use smol::io::{AsyncReadExt, BufReader};
  37use std::pin::Pin;
  38use std::str::FromStr as _;
  39use std::sync::Arc;
  40use std::time::Duration;
  41use thiserror::Error;
  42use ui::{TintColor, prelude::*};
  43use util::{ResultExt as _, maybe};
  44
  45use crate::provider::anthropic::{AnthropicEventMapper, count_anthropic_tokens, into_anthropic};
  46use crate::provider::google::{GoogleEventMapper, into_google};
  47use crate::provider::open_ai::{OpenAiEventMapper, count_open_ai_tokens, into_open_ai};
  48use crate::provider::x_ai::count_xai_tokens;
  49
  50const PROVIDER_ID: LanguageModelProviderId = language_model::ZED_CLOUD_PROVIDER_ID;
  51const PROVIDER_NAME: LanguageModelProviderName = language_model::ZED_CLOUD_PROVIDER_NAME;
  52
  53#[derive(Default, Clone, Debug, PartialEq)]
  54pub struct ZedDotDevSettings {
  55    pub available_models: Vec<AvailableModel>,
  56}
  57#[derive(Default, Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
  58#[serde(tag = "type", rename_all = "lowercase")]
  59pub enum ModelMode {
  60    #[default]
  61    Default,
  62    Thinking {
  63        /// The maximum number of tokens to use for reasoning. Must be lower than the model's `max_output_tokens`.
  64        budget_tokens: Option<u32>,
  65    },
  66}
  67
  68impl From<ModelMode> for AnthropicModelMode {
  69    fn from(value: ModelMode) -> Self {
  70        match value {
  71            ModelMode::Default => AnthropicModelMode::Default,
  72            ModelMode::Thinking { budget_tokens } => AnthropicModelMode::Thinking { budget_tokens },
  73        }
  74    }
  75}
  76
  77pub struct CloudLanguageModelProvider {
  78    client: Arc<Client>,
  79    state: Entity<State>,
  80    _maintain_client_status: Task<()>,
  81}
  82
  83pub struct State {
  84    client: Arc<Client>,
  85    llm_api_token: LlmApiToken,
  86    user_store: Entity<UserStore>,
  87    status: client::Status,
  88    models: Vec<Arc<cloud_llm_client::LanguageModel>>,
  89    default_model: Option<Arc<cloud_llm_client::LanguageModel>>,
  90    default_fast_model: Option<Arc<cloud_llm_client::LanguageModel>>,
  91    recommended_models: Vec<Arc<cloud_llm_client::LanguageModel>>,
  92    _fetch_models_task: Task<()>,
  93    _settings_subscription: Subscription,
  94    _llm_token_subscription: Subscription,
  95}
  96
  97impl State {
  98    fn new(
  99        client: Arc<Client>,
 100        user_store: Entity<UserStore>,
 101        status: client::Status,
 102        cx: &mut Context<Self>,
 103    ) -> Self {
 104        let refresh_llm_token_listener = RefreshLlmTokenListener::global(cx);
 105        let mut current_user = user_store.read(cx).watch_current_user();
 106        Self {
 107            client: client.clone(),
 108            llm_api_token: LlmApiToken::default(),
 109            user_store,
 110            status,
 111            models: Vec::new(),
 112            default_model: None,
 113            default_fast_model: None,
 114            recommended_models: Vec::new(),
 115            _fetch_models_task: cx.spawn(async move |this, cx| {
 116                maybe!(async move {
 117                    let (client, llm_api_token) = this
 118                        .read_with(cx, |this, _cx| (client.clone(), this.llm_api_token.clone()))?;
 119
 120                    while current_user.borrow().is_none() {
 121                        current_user.next().await;
 122                    }
 123
 124                    let response =
 125                        Self::fetch_models(client.clone(), llm_api_token.clone()).await?;
 126                    this.update(cx, |this, cx| this.update_models(response, cx))?;
 127                    anyhow::Ok(())
 128                })
 129                .await
 130                .context("failed to fetch Zed models")
 131                .log_err();
 132            }),
 133            _settings_subscription: cx.observe_global::<SettingsStore>(|_, cx| {
 134                cx.notify();
 135            }),
 136            _llm_token_subscription: cx.subscribe(
 137                &refresh_llm_token_listener,
 138                move |this, _listener, _event, cx| {
 139                    let client = this.client.clone();
 140                    let llm_api_token = this.llm_api_token.clone();
 141                    cx.spawn(async move |this, cx| {
 142                        llm_api_token.refresh(&client).await?;
 143                        let response = Self::fetch_models(client, llm_api_token).await?;
 144                        this.update(cx, |this, cx| {
 145                            this.update_models(response, cx);
 146                        })
 147                    })
 148                    .detach_and_log_err(cx);
 149                },
 150            ),
 151        }
 152    }
 153
 154    fn is_signed_out(&self, cx: &App) -> bool {
 155        self.user_store.read(cx).current_user().is_none()
 156    }
 157
 158    fn authenticate(&self, cx: &mut Context<Self>) -> Task<Result<()>> {
 159        let client = self.client.clone();
 160        cx.spawn(async move |state, cx| {
 161            client.sign_in_with_optional_connect(true, cx).await?;
 162            state.update(cx, |_, cx| cx.notify())
 163        })
 164    }
 165    fn update_models(&mut self, response: ListModelsResponse, cx: &mut Context<Self>) {
 166        let mut models = Vec::new();
 167
 168        for model in response.models {
 169            models.push(Arc::new(model.clone()));
 170
 171            // Right now we represent thinking variants of models as separate models on the client,
 172            // so we need to insert variants for any model that supports thinking.
 173            if model.supports_thinking {
 174                models.push(Arc::new(cloud_llm_client::LanguageModel {
 175                    id: cloud_llm_client::LanguageModelId(format!("{}-thinking", model.id).into()),
 176                    display_name: format!("{} Thinking", model.display_name),
 177                    ..model
 178                }));
 179            }
 180        }
 181
 182        self.default_model = models
 183            .iter()
 184            .find(|model| {
 185                response
 186                    .default_model
 187                    .as_ref()
 188                    .is_some_and(|default_model_id| &model.id == default_model_id)
 189            })
 190            .cloned();
 191        self.default_fast_model = models
 192            .iter()
 193            .find(|model| {
 194                response
 195                    .default_fast_model
 196                    .as_ref()
 197                    .is_some_and(|default_fast_model_id| &model.id == default_fast_model_id)
 198            })
 199            .cloned();
 200        self.recommended_models = response
 201            .recommended_models
 202            .iter()
 203            .filter_map(|id| models.iter().find(|model| &model.id == id))
 204            .cloned()
 205            .collect();
 206        self.models = models;
 207        cx.notify();
 208    }
 209
 210    async fn fetch_models(
 211        client: Arc<Client>,
 212        llm_api_token: LlmApiToken,
 213    ) -> Result<ListModelsResponse> {
 214        let http_client = &client.http_client();
 215        let token = llm_api_token.acquire(&client).await?;
 216
 217        let request = http_client::Request::builder()
 218            .method(Method::GET)
 219            .header(CLIENT_SUPPORTS_X_AI_HEADER_NAME, "true")
 220            .uri(http_client.build_zed_llm_url("/models", &[])?.as_ref())
 221            .header("Authorization", format!("Bearer {token}"))
 222            .body(AsyncBody::empty())?;
 223        let mut response = http_client
 224            .send(request)
 225            .await
 226            .context("failed to send list models request")?;
 227
 228        if response.status().is_success() {
 229            let mut body = String::new();
 230            response.body_mut().read_to_string(&mut body).await?;
 231            Ok(serde_json::from_str(&body)?)
 232        } else {
 233            let mut body = String::new();
 234            response.body_mut().read_to_string(&mut body).await?;
 235            anyhow::bail!(
 236                "error listing models.\nStatus: {:?}\nBody: {body}",
 237                response.status(),
 238            );
 239        }
 240    }
 241}
 242
 243impl CloudLanguageModelProvider {
 244    pub fn new(user_store: Entity<UserStore>, client: Arc<Client>, cx: &mut App) -> Self {
 245        let mut status_rx = client.status();
 246        let status = *status_rx.borrow();
 247
 248        let state = cx.new(|cx| State::new(client.clone(), user_store.clone(), status, cx));
 249
 250        let state_ref = state.downgrade();
 251        let maintain_client_status = cx.spawn(async move |cx| {
 252            while let Some(status) = status_rx.next().await {
 253                if let Some(this) = state_ref.upgrade() {
 254                    _ = this.update(cx, |this, cx| {
 255                        if this.status != status {
 256                            this.status = status;
 257                            cx.notify();
 258                        }
 259                    });
 260                } else {
 261                    break;
 262                }
 263            }
 264        });
 265
 266        Self {
 267            client,
 268            state,
 269            _maintain_client_status: maintain_client_status,
 270        }
 271    }
 272
 273    fn create_language_model(
 274        &self,
 275        model: Arc<cloud_llm_client::LanguageModel>,
 276        llm_api_token: LlmApiToken,
 277    ) -> Arc<dyn LanguageModel> {
 278        Arc::new(CloudLanguageModel {
 279            id: LanguageModelId(SharedString::from(model.id.0.clone())),
 280            model,
 281            llm_api_token,
 282            client: self.client.clone(),
 283            request_limiter: RateLimiter::new(4),
 284        })
 285    }
 286}
 287
 288impl LanguageModelProviderState for CloudLanguageModelProvider {
 289    type ObservableEntity = State;
 290
 291    fn observable_entity(&self) -> Option<Entity<Self::ObservableEntity>> {
 292        Some(self.state.clone())
 293    }
 294}
 295
 296impl LanguageModelProvider for CloudLanguageModelProvider {
 297    fn id(&self) -> LanguageModelProviderId {
 298        PROVIDER_ID
 299    }
 300
 301    fn name(&self) -> LanguageModelProviderName {
 302        PROVIDER_NAME
 303    }
 304
 305    fn icon(&self) -> IconName {
 306        IconName::AiZed
 307    }
 308
 309    fn default_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
 310        let default_model = self.state.read(cx).default_model.clone()?;
 311        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 312        Some(self.create_language_model(default_model, llm_api_token))
 313    }
 314
 315    fn default_fast_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
 316        let default_fast_model = self.state.read(cx).default_fast_model.clone()?;
 317        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 318        Some(self.create_language_model(default_fast_model, llm_api_token))
 319    }
 320
 321    fn recommended_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 322        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 323        self.state
 324            .read(cx)
 325            .recommended_models
 326            .iter()
 327            .cloned()
 328            .map(|model| self.create_language_model(model, llm_api_token.clone()))
 329            .collect()
 330    }
 331
 332    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 333        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 334        self.state
 335            .read(cx)
 336            .models
 337            .iter()
 338            .cloned()
 339            .map(|model| self.create_language_model(model, llm_api_token.clone()))
 340            .collect()
 341    }
 342
 343    fn is_authenticated(&self, cx: &App) -> bool {
 344        let state = self.state.read(cx);
 345        !state.is_signed_out(cx)
 346    }
 347
 348    fn authenticate(&self, _cx: &mut App) -> Task<Result<(), AuthenticateError>> {
 349        Task::ready(Ok(()))
 350    }
 351
 352    fn configuration_view(
 353        &self,
 354        _target_agent: language_model::ConfigurationViewTargetAgent,
 355        _: &mut Window,
 356        cx: &mut App,
 357    ) -> AnyView {
 358        cx.new(|_| ConfigurationView::new(self.state.clone()))
 359            .into()
 360    }
 361
 362    fn reset_credentials(&self, _cx: &mut App) -> Task<Result<()>> {
 363        Task::ready(Ok(()))
 364    }
 365}
 366
 367pub struct CloudLanguageModel {
 368    id: LanguageModelId,
 369    model: Arc<cloud_llm_client::LanguageModel>,
 370    llm_api_token: LlmApiToken,
 371    client: Arc<Client>,
 372    request_limiter: RateLimiter,
 373}
 374
 375struct PerformLlmCompletionResponse {
 376    response: Response<AsyncBody>,
 377    usage: Option<ModelRequestUsage>,
 378    tool_use_limit_reached: bool,
 379    includes_status_messages: bool,
 380}
 381
 382impl CloudLanguageModel {
 383    async fn perform_llm_completion(
 384        client: Arc<Client>,
 385        llm_api_token: LlmApiToken,
 386        app_version: Option<Version>,
 387        body: CompletionBody,
 388    ) -> Result<PerformLlmCompletionResponse> {
 389        let http_client = &client.http_client();
 390
 391        let mut token = llm_api_token.acquire(&client).await?;
 392        let mut refreshed_token = false;
 393
 394        loop {
 395            let request = http_client::Request::builder()
 396                .method(Method::POST)
 397                .uri(http_client.build_zed_llm_url("/completions", &[])?.as_ref())
 398                .when_some(app_version.as_ref(), |builder, app_version| {
 399                    builder.header(ZED_VERSION_HEADER_NAME, app_version.to_string())
 400                })
 401                .header("Content-Type", "application/json")
 402                .header("Authorization", format!("Bearer {token}"))
 403                .header(CLIENT_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, "true")
 404                .body(serde_json::to_string(&body)?.into())?;
 405
 406            let mut response = http_client.send(request).await?;
 407            let status = response.status();
 408            if status.is_success() {
 409                let includes_status_messages = response
 410                    .headers()
 411                    .get(SERVER_SUPPORTS_STATUS_MESSAGES_HEADER_NAME)
 412                    .is_some();
 413
 414                let tool_use_limit_reached = response
 415                    .headers()
 416                    .get(TOOL_USE_LIMIT_REACHED_HEADER_NAME)
 417                    .is_some();
 418
 419                let usage = if includes_status_messages {
 420                    None
 421                } else {
 422                    ModelRequestUsage::from_headers(response.headers()).ok()
 423                };
 424
 425                return Ok(PerformLlmCompletionResponse {
 426                    response,
 427                    usage,
 428                    includes_status_messages,
 429                    tool_use_limit_reached,
 430                });
 431            }
 432
 433            if !refreshed_token
 434                && response
 435                    .headers()
 436                    .get(EXPIRED_LLM_TOKEN_HEADER_NAME)
 437                    .is_some()
 438            {
 439                token = llm_api_token.refresh(&client).await?;
 440                refreshed_token = true;
 441                continue;
 442            }
 443
 444            if status == StatusCode::FORBIDDEN
 445                && response
 446                    .headers()
 447                    .get(SUBSCRIPTION_LIMIT_RESOURCE_HEADER_NAME)
 448                    .is_some()
 449            {
 450                if let Some(MODEL_REQUESTS_RESOURCE_HEADER_VALUE) = response
 451                    .headers()
 452                    .get(SUBSCRIPTION_LIMIT_RESOURCE_HEADER_NAME)
 453                    .and_then(|resource| resource.to_str().ok())
 454                    && let Some(plan) = response
 455                        .headers()
 456                        .get(CURRENT_PLAN_HEADER_NAME)
 457                        .and_then(|plan| plan.to_str().ok())
 458                        .and_then(|plan| cloud_llm_client::PlanV1::from_str(plan).ok())
 459                        .map(Plan::V1)
 460                {
 461                    return Err(anyhow!(ModelRequestLimitReachedError { plan }));
 462                }
 463            } else if status == StatusCode::PAYMENT_REQUIRED {
 464                return Err(anyhow!(PaymentRequiredError));
 465            }
 466
 467            let mut body = String::new();
 468            let headers = response.headers().clone();
 469            response.body_mut().read_to_string(&mut body).await?;
 470            return Err(anyhow!(ApiError {
 471                status,
 472                body,
 473                headers
 474            }));
 475        }
 476    }
 477}
 478
 479#[derive(Debug, Error)]
 480#[error("cloud language model request failed with status {status}: {body}")]
 481struct ApiError {
 482    status: StatusCode,
 483    body: String,
 484    headers: HeaderMap<HeaderValue>,
 485}
 486
 487/// Represents error responses from Zed's cloud API.
 488///
 489/// Example JSON for an upstream HTTP error:
 490/// ```json
 491/// {
 492///   "code": "upstream_http_error",
 493///   "message": "Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout",
 494///   "upstream_status": 503
 495/// }
 496/// ```
 497#[derive(Debug, serde::Deserialize)]
 498struct CloudApiError {
 499    code: String,
 500    message: String,
 501    #[serde(default)]
 502    #[serde(deserialize_with = "deserialize_optional_status_code")]
 503    upstream_status: Option<StatusCode>,
 504    #[serde(default)]
 505    retry_after: Option<f64>,
 506}
 507
 508fn deserialize_optional_status_code<'de, D>(deserializer: D) -> Result<Option<StatusCode>, D::Error>
 509where
 510    D: serde::Deserializer<'de>,
 511{
 512    let opt: Option<u16> = Option::deserialize(deserializer)?;
 513    Ok(opt.and_then(|code| StatusCode::from_u16(code).ok()))
 514}
 515
 516impl From<ApiError> for LanguageModelCompletionError {
 517    fn from(error: ApiError) -> Self {
 518        if let Ok(cloud_error) = serde_json::from_str::<CloudApiError>(&error.body) {
 519            if cloud_error.code.starts_with("upstream_http_") {
 520                let status = if let Some(status) = cloud_error.upstream_status {
 521                    status
 522                } else if cloud_error.code.ends_with("_error") {
 523                    error.status
 524                } else {
 525                    // If there's a status code in the code string (e.g. "upstream_http_429")
 526                    // then use that; otherwise, see if the JSON contains a status code.
 527                    cloud_error
 528                        .code
 529                        .strip_prefix("upstream_http_")
 530                        .and_then(|code_str| code_str.parse::<u16>().ok())
 531                        .and_then(|code| StatusCode::from_u16(code).ok())
 532                        .unwrap_or(error.status)
 533                };
 534
 535                return LanguageModelCompletionError::UpstreamProviderError {
 536                    message: cloud_error.message,
 537                    status,
 538                    retry_after: cloud_error.retry_after.map(Duration::from_secs_f64),
 539                };
 540            }
 541
 542            return LanguageModelCompletionError::from_http_status(
 543                PROVIDER_NAME,
 544                error.status,
 545                cloud_error.message,
 546                None,
 547            );
 548        }
 549
 550        let retry_after = None;
 551        LanguageModelCompletionError::from_http_status(
 552            PROVIDER_NAME,
 553            error.status,
 554            error.body,
 555            retry_after,
 556        )
 557    }
 558}
 559
 560impl LanguageModel for CloudLanguageModel {
 561    fn id(&self) -> LanguageModelId {
 562        self.id.clone()
 563    }
 564
 565    fn name(&self) -> LanguageModelName {
 566        LanguageModelName::from(self.model.display_name.clone())
 567    }
 568
 569    fn provider_id(&self) -> LanguageModelProviderId {
 570        PROVIDER_ID
 571    }
 572
 573    fn provider_name(&self) -> LanguageModelProviderName {
 574        PROVIDER_NAME
 575    }
 576
 577    fn upstream_provider_id(&self) -> LanguageModelProviderId {
 578        use cloud_llm_client::LanguageModelProvider::*;
 579        match self.model.provider {
 580            Anthropic => language_model::ANTHROPIC_PROVIDER_ID,
 581            OpenAi => language_model::OPEN_AI_PROVIDER_ID,
 582            Google => language_model::GOOGLE_PROVIDER_ID,
 583            XAi => language_model::X_AI_PROVIDER_ID,
 584        }
 585    }
 586
 587    fn upstream_provider_name(&self) -> LanguageModelProviderName {
 588        use cloud_llm_client::LanguageModelProvider::*;
 589        match self.model.provider {
 590            Anthropic => language_model::ANTHROPIC_PROVIDER_NAME,
 591            OpenAi => language_model::OPEN_AI_PROVIDER_NAME,
 592            Google => language_model::GOOGLE_PROVIDER_NAME,
 593            XAi => language_model::X_AI_PROVIDER_NAME,
 594        }
 595    }
 596
 597    fn supports_tools(&self) -> bool {
 598        self.model.supports_tools
 599    }
 600
 601    fn supports_images(&self) -> bool {
 602        self.model.supports_images
 603    }
 604
 605    fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
 606        match choice {
 607            LanguageModelToolChoice::Auto
 608            | LanguageModelToolChoice::Any
 609            | LanguageModelToolChoice::None => true,
 610        }
 611    }
 612
 613    fn supports_burn_mode(&self) -> bool {
 614        self.model.supports_max_mode
 615    }
 616
 617    fn telemetry_id(&self) -> String {
 618        format!("zed.dev/{}", self.model.id)
 619    }
 620
 621    fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
 622        match self.model.provider {
 623            cloud_llm_client::LanguageModelProvider::Anthropic
 624            | cloud_llm_client::LanguageModelProvider::OpenAi
 625            | cloud_llm_client::LanguageModelProvider::XAi => {
 626                LanguageModelToolSchemaFormat::JsonSchema
 627            }
 628            cloud_llm_client::LanguageModelProvider::Google => {
 629                LanguageModelToolSchemaFormat::JsonSchemaSubset
 630            }
 631        }
 632    }
 633
 634    fn max_token_count(&self) -> u64 {
 635        self.model.max_token_count as u64
 636    }
 637
 638    fn max_token_count_in_burn_mode(&self) -> Option<u64> {
 639        self.model
 640            .max_token_count_in_max_mode
 641            .filter(|_| self.model.supports_max_mode)
 642            .map(|max_token_count| max_token_count as u64)
 643    }
 644
 645    fn cache_configuration(&self) -> Option<LanguageModelCacheConfiguration> {
 646        match &self.model.provider {
 647            cloud_llm_client::LanguageModelProvider::Anthropic => {
 648                Some(LanguageModelCacheConfiguration {
 649                    min_total_token: 2_048,
 650                    should_speculate: true,
 651                    max_cache_anchors: 4,
 652                })
 653            }
 654            cloud_llm_client::LanguageModelProvider::OpenAi
 655            | cloud_llm_client::LanguageModelProvider::XAi
 656            | cloud_llm_client::LanguageModelProvider::Google => None,
 657        }
 658    }
 659
 660    fn count_tokens(
 661        &self,
 662        request: LanguageModelRequest,
 663        cx: &App,
 664    ) -> BoxFuture<'static, Result<u64>> {
 665        match self.model.provider {
 666            cloud_llm_client::LanguageModelProvider::Anthropic => {
 667                count_anthropic_tokens(request, cx)
 668            }
 669            cloud_llm_client::LanguageModelProvider::OpenAi => {
 670                let model = match open_ai::Model::from_id(&self.model.id.0) {
 671                    Ok(model) => model,
 672                    Err(err) => return async move { Err(anyhow!(err)) }.boxed(),
 673                };
 674                count_open_ai_tokens(request, model, cx)
 675            }
 676            cloud_llm_client::LanguageModelProvider::XAi => {
 677                let model = match x_ai::Model::from_id(&self.model.id.0) {
 678                    Ok(model) => model,
 679                    Err(err) => return async move { Err(anyhow!(err)) }.boxed(),
 680                };
 681                count_xai_tokens(request, model, cx)
 682            }
 683            cloud_llm_client::LanguageModelProvider::Google => {
 684                let client = self.client.clone();
 685                let llm_api_token = self.llm_api_token.clone();
 686                let model_id = self.model.id.to_string();
 687                let generate_content_request =
 688                    into_google(request, model_id.clone(), GoogleModelMode::Default);
 689                async move {
 690                    let http_client = &client.http_client();
 691                    let token = llm_api_token.acquire(&client).await?;
 692
 693                    let request_body = CountTokensBody {
 694                        provider: cloud_llm_client::LanguageModelProvider::Google,
 695                        model: model_id,
 696                        provider_request: serde_json::to_value(&google_ai::CountTokensRequest {
 697                            generate_content_request,
 698                        })?,
 699                    };
 700                    let request = http_client::Request::builder()
 701                        .method(Method::POST)
 702                        .uri(
 703                            http_client
 704                                .build_zed_llm_url("/count_tokens", &[])?
 705                                .as_ref(),
 706                        )
 707                        .header("Content-Type", "application/json")
 708                        .header("Authorization", format!("Bearer {token}"))
 709                        .body(serde_json::to_string(&request_body)?.into())?;
 710                    let mut response = http_client.send(request).await?;
 711                    let status = response.status();
 712                    let headers = response.headers().clone();
 713                    let mut response_body = String::new();
 714                    response
 715                        .body_mut()
 716                        .read_to_string(&mut response_body)
 717                        .await?;
 718
 719                    if status.is_success() {
 720                        let response_body: CountTokensResponse =
 721                            serde_json::from_str(&response_body)?;
 722
 723                        Ok(response_body.tokens as u64)
 724                    } else {
 725                        Err(anyhow!(ApiError {
 726                            status,
 727                            body: response_body,
 728                            headers
 729                        }))
 730                    }
 731                }
 732                .boxed()
 733            }
 734        }
 735    }
 736
 737    fn stream_completion(
 738        &self,
 739        request: LanguageModelRequest,
 740        cx: &AsyncApp,
 741    ) -> BoxFuture<
 742        'static,
 743        Result<
 744            BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>,
 745            LanguageModelCompletionError,
 746        >,
 747    > {
 748        let thread_id = request.thread_id.clone();
 749        let prompt_id = request.prompt_id.clone();
 750        let intent = request.intent;
 751        let mode = request.mode;
 752        let app_version = cx.update(|cx| AppVersion::global(cx)).ok();
 753        let thinking_allowed = request.thinking_allowed;
 754        let provider_name = provider_name(&self.model.provider);
 755        match self.model.provider {
 756            cloud_llm_client::LanguageModelProvider::Anthropic => {
 757                let request = into_anthropic(
 758                    request,
 759                    self.model.id.to_string(),
 760                    1.0,
 761                    self.model.max_output_tokens as u64,
 762                    if thinking_allowed && self.model.id.0.ends_with("-thinking") {
 763                        AnthropicModelMode::Thinking {
 764                            budget_tokens: Some(4_096),
 765                        }
 766                    } else {
 767                        AnthropicModelMode::Default
 768                    },
 769                );
 770                let client = self.client.clone();
 771                let llm_api_token = self.llm_api_token.clone();
 772                let future = self.request_limiter.stream(async move {
 773                    let PerformLlmCompletionResponse {
 774                        response,
 775                        usage,
 776                        includes_status_messages,
 777                        tool_use_limit_reached,
 778                    } = Self::perform_llm_completion(
 779                        client.clone(),
 780                        llm_api_token,
 781                        app_version,
 782                        CompletionBody {
 783                            thread_id,
 784                            prompt_id,
 785                            intent,
 786                            mode,
 787                            provider: cloud_llm_client::LanguageModelProvider::Anthropic,
 788                            model: request.model.clone(),
 789                            provider_request: serde_json::to_value(&request)
 790                                .map_err(|e| anyhow!(e))?,
 791                        },
 792                    )
 793                    .await
 794                    .map_err(|err| match err.downcast::<ApiError>() {
 795                        Ok(api_err) => anyhow!(LanguageModelCompletionError::from(api_err)),
 796                        Err(err) => anyhow!(err),
 797                    })?;
 798
 799                    let mut mapper = AnthropicEventMapper::new();
 800                    Ok(map_cloud_completion_events(
 801                        Box::pin(
 802                            response_lines(response, includes_status_messages)
 803                                .chain(usage_updated_event(usage))
 804                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)), // .map(|_| {}),
 805                        ),
 806                        &provider_name,
 807                        move |event| mapper.map_event(event),
 808                    ))
 809                });
 810                async move { Ok(future.await?.boxed()) }.boxed()
 811            }
 812            cloud_llm_client::LanguageModelProvider::OpenAi => {
 813                let client = self.client.clone();
 814                let request = into_open_ai(
 815                    request,
 816                    &self.model.id.0,
 817                    self.model.supports_parallel_tool_calls,
 818                    true,
 819                    None,
 820                    None,
 821                );
 822                let llm_api_token = self.llm_api_token.clone();
 823                let future = self.request_limiter.stream(async move {
 824                    let PerformLlmCompletionResponse {
 825                        response,
 826                        usage,
 827                        includes_status_messages,
 828                        tool_use_limit_reached,
 829                    } = Self::perform_llm_completion(
 830                        client.clone(),
 831                        llm_api_token,
 832                        app_version,
 833                        CompletionBody {
 834                            thread_id,
 835                            prompt_id,
 836                            intent,
 837                            mode,
 838                            provider: cloud_llm_client::LanguageModelProvider::OpenAi,
 839                            model: request.model.clone(),
 840                            provider_request: serde_json::to_value(&request)
 841                                .map_err(|e| anyhow!(e))?,
 842                        },
 843                    )
 844                    .await?;
 845
 846                    let mut mapper = OpenAiEventMapper::new();
 847                    Ok(map_cloud_completion_events(
 848                        Box::pin(
 849                            response_lines(response, includes_status_messages)
 850                                .chain(usage_updated_event(usage))
 851                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)),
 852                        ),
 853                        &provider_name,
 854                        move |event| mapper.map_event(event),
 855                    ))
 856                });
 857                async move { Ok(future.await?.boxed()) }.boxed()
 858            }
 859            cloud_llm_client::LanguageModelProvider::XAi => {
 860                let client = self.client.clone();
 861                let request = into_open_ai(
 862                    request,
 863                    &self.model.id.0,
 864                    self.model.supports_parallel_tool_calls,
 865                    false,
 866                    None,
 867                    None,
 868                );
 869                let llm_api_token = self.llm_api_token.clone();
 870                let future = self.request_limiter.stream(async move {
 871                    let PerformLlmCompletionResponse {
 872                        response,
 873                        usage,
 874                        includes_status_messages,
 875                        tool_use_limit_reached,
 876                    } = Self::perform_llm_completion(
 877                        client.clone(),
 878                        llm_api_token,
 879                        app_version,
 880                        CompletionBody {
 881                            thread_id,
 882                            prompt_id,
 883                            intent,
 884                            mode,
 885                            provider: cloud_llm_client::LanguageModelProvider::XAi,
 886                            model: request.model.clone(),
 887                            provider_request: serde_json::to_value(&request)
 888                                .map_err(|e| anyhow!(e))?,
 889                        },
 890                    )
 891                    .await?;
 892
 893                    let mut mapper = OpenAiEventMapper::new();
 894                    Ok(map_cloud_completion_events(
 895                        Box::pin(
 896                            response_lines(response, includes_status_messages)
 897                                .chain(usage_updated_event(usage))
 898                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)),
 899                        ),
 900                        &provider_name,
 901                        move |event| mapper.map_event(event),
 902                    ))
 903                });
 904                async move { Ok(future.await?.boxed()) }.boxed()
 905            }
 906            cloud_llm_client::LanguageModelProvider::Google => {
 907                let client = self.client.clone();
 908                let request =
 909                    into_google(request, self.model.id.to_string(), GoogleModelMode::Default);
 910                let llm_api_token = self.llm_api_token.clone();
 911                let future = self.request_limiter.stream(async move {
 912                    let PerformLlmCompletionResponse {
 913                        response,
 914                        usage,
 915                        includes_status_messages,
 916                        tool_use_limit_reached,
 917                    } = Self::perform_llm_completion(
 918                        client.clone(),
 919                        llm_api_token,
 920                        app_version,
 921                        CompletionBody {
 922                            thread_id,
 923                            prompt_id,
 924                            intent,
 925                            mode,
 926                            provider: cloud_llm_client::LanguageModelProvider::Google,
 927                            model: request.model.model_id.clone(),
 928                            provider_request: serde_json::to_value(&request)
 929                                .map_err(|e| anyhow!(e))?,
 930                        },
 931                    )
 932                    .await?;
 933
 934                    let mut mapper = GoogleEventMapper::new();
 935                    Ok(map_cloud_completion_events(
 936                        Box::pin(
 937                            response_lines(response, includes_status_messages)
 938                                .chain(usage_updated_event(usage))
 939                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)),
 940                        ),
 941                        &provider_name,
 942                        move |event| mapper.map_event(event),
 943                    ))
 944                });
 945                async move { Ok(future.await?.boxed()) }.boxed()
 946            }
 947        }
 948    }
 949}
 950
 951fn map_cloud_completion_events<T, F>(
 952    stream: Pin<Box<dyn Stream<Item = Result<CompletionEvent<T>>> + Send>>,
 953    provider: &LanguageModelProviderName,
 954    mut map_callback: F,
 955) -> BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 956where
 957    T: DeserializeOwned + 'static,
 958    F: FnMut(T) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 959        + Send
 960        + 'static,
 961{
 962    let provider = provider.clone();
 963    stream
 964        .flat_map(move |event| {
 965            futures::stream::iter(match event {
 966                Err(error) => {
 967                    vec![Err(LanguageModelCompletionError::from(error))]
 968                }
 969                Ok(CompletionEvent::Status(event)) => {
 970                    vec![
 971                        LanguageModelCompletionEvent::from_completion_request_status(
 972                            event,
 973                            provider.clone(),
 974                        ),
 975                    ]
 976                }
 977                Ok(CompletionEvent::Event(event)) => map_callback(event),
 978            })
 979        })
 980        .boxed()
 981}
 982
 983fn provider_name(provider: &cloud_llm_client::LanguageModelProvider) -> LanguageModelProviderName {
 984    match provider {
 985        cloud_llm_client::LanguageModelProvider::Anthropic => {
 986            language_model::ANTHROPIC_PROVIDER_NAME
 987        }
 988        cloud_llm_client::LanguageModelProvider::OpenAi => language_model::OPEN_AI_PROVIDER_NAME,
 989        cloud_llm_client::LanguageModelProvider::Google => language_model::GOOGLE_PROVIDER_NAME,
 990        cloud_llm_client::LanguageModelProvider::XAi => language_model::X_AI_PROVIDER_NAME,
 991    }
 992}
 993
 994fn usage_updated_event<T>(
 995    usage: Option<ModelRequestUsage>,
 996) -> impl Stream<Item = Result<CompletionEvent<T>>> {
 997    futures::stream::iter(usage.map(|usage| {
 998        Ok(CompletionEvent::Status(
 999            CompletionRequestStatus::UsageUpdated {
1000                amount: usage.amount as usize,
1001                limit: usage.limit,
1002            },
1003        ))
1004    }))
1005}
1006
1007fn tool_use_limit_reached_event<T>(
1008    tool_use_limit_reached: bool,
1009) -> impl Stream<Item = Result<CompletionEvent<T>>> {
1010    futures::stream::iter(tool_use_limit_reached.then(|| {
1011        Ok(CompletionEvent::Status(
1012            CompletionRequestStatus::ToolUseLimitReached,
1013        ))
1014    }))
1015}
1016
1017fn response_lines<T: DeserializeOwned>(
1018    response: Response<AsyncBody>,
1019    includes_status_messages: bool,
1020) -> impl Stream<Item = Result<CompletionEvent<T>>> {
1021    futures::stream::try_unfold(
1022        (String::new(), BufReader::new(response.into_body())),
1023        move |(mut line, mut body)| async move {
1024            match body.read_line(&mut line).await {
1025                Ok(0) => Ok(None),
1026                Ok(_) => {
1027                    let event = if includes_status_messages {
1028                        serde_json::from_str::<CompletionEvent<T>>(&line)?
1029                    } else {
1030                        CompletionEvent::Event(serde_json::from_str::<T>(&line)?)
1031                    };
1032
1033                    line.clear();
1034                    Ok(Some((event, (line, body))))
1035                }
1036                Err(e) => Err(e.into()),
1037            }
1038        },
1039    )
1040}
1041
1042#[derive(IntoElement, RegisterComponent)]
1043struct ZedAiConfiguration {
1044    is_connected: bool,
1045    plan: Option<Plan>,
1046    subscription_period: Option<(DateTime<Utc>, DateTime<Utc>)>,
1047    eligible_for_trial: bool,
1048    account_too_young: bool,
1049    sign_in_callback: Arc<dyn Fn(&mut Window, &mut App) + Send + Sync>,
1050}
1051
1052impl RenderOnce for ZedAiConfiguration {
1053    fn render(self, _window: &mut Window, _cx: &mut App) -> impl IntoElement {
1054        let is_pro = self.plan.is_some_and(|plan| {
1055            matches!(plan, Plan::V1(PlanV1::ZedPro) | Plan::V2(PlanV2::ZedPro))
1056        });
1057        let subscription_text = match (self.plan, self.subscription_period) {
1058            (Some(Plan::V1(PlanV1::ZedPro) | Plan::V2(PlanV2::ZedPro)), Some(_)) => {
1059                "You have access to Zed's hosted models through your Pro subscription."
1060            }
1061            (Some(Plan::V1(PlanV1::ZedProTrial) | Plan::V2(PlanV2::ZedProTrial)), Some(_)) => {
1062                "You have access to Zed's hosted models through your Pro trial."
1063            }
1064            (Some(Plan::V1(PlanV1::ZedFree)), Some(_)) => {
1065                "You have basic access to Zed's hosted models through the Free plan."
1066            }
1067            (Some(Plan::V2(PlanV2::ZedFree)), Some(_)) => {
1068                if self.eligible_for_trial {
1069                    "Subscribe for access to Zed's hosted models. Start with a 14 day free trial."
1070                } else {
1071                    "Subscribe for access to Zed's hosted models."
1072                }
1073            }
1074            _ => {
1075                if self.eligible_for_trial {
1076                    "Subscribe for access to Zed's hosted models. Start with a 14 day free trial."
1077                } else {
1078                    "Subscribe for access to Zed's hosted models."
1079                }
1080            }
1081        };
1082
1083        let manage_subscription_buttons = if is_pro {
1084            Button::new("manage_settings", "Manage Subscription")
1085                .full_width()
1086                .style(ButtonStyle::Tinted(TintColor::Accent))
1087                .on_click(|_, _, cx| cx.open_url(&zed_urls::account_url(cx)))
1088                .into_any_element()
1089        } else if self.plan.is_none() || self.eligible_for_trial {
1090            Button::new("start_trial", "Start 14-day Free Pro Trial")
1091                .full_width()
1092                .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1093                .on_click(|_, _, cx| cx.open_url(&zed_urls::start_trial_url(cx)))
1094                .into_any_element()
1095        } else {
1096            Button::new("upgrade", "Upgrade to Pro")
1097                .full_width()
1098                .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1099                .on_click(|_, _, cx| cx.open_url(&zed_urls::upgrade_to_zed_pro_url(cx)))
1100                .into_any_element()
1101        };
1102
1103        if !self.is_connected {
1104            return v_flex()
1105                .gap_2()
1106                .child(Label::new("Sign in to have access to Zed's complete agentic experience with hosted models."))
1107                .child(
1108                    Button::new("sign_in", "Sign In to use Zed AI")
1109                        .icon_color(Color::Muted)
1110                        .icon(IconName::Github)
1111                        .icon_size(IconSize::Small)
1112                        .icon_position(IconPosition::Start)
1113                        .full_width()
1114                        .on_click({
1115                            let callback = self.sign_in_callback.clone();
1116                            move |_, window, cx| (callback)(window, cx)
1117                        }),
1118                );
1119        }
1120
1121        v_flex().gap_2().w_full().map(|this| {
1122            if self.account_too_young {
1123                this.child(YoungAccountBanner).child(
1124                    Button::new("upgrade", "Upgrade to Pro")
1125                        .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1126                        .full_width()
1127                        .on_click(|_, _, cx| cx.open_url(&zed_urls::upgrade_to_zed_pro_url(cx))),
1128                )
1129            } else {
1130                this.text_sm()
1131                    .child(subscription_text)
1132                    .child(manage_subscription_buttons)
1133            }
1134        })
1135    }
1136}
1137
1138struct ConfigurationView {
1139    state: Entity<State>,
1140    sign_in_callback: Arc<dyn Fn(&mut Window, &mut App) + Send + Sync>,
1141}
1142
1143impl ConfigurationView {
1144    fn new(state: Entity<State>) -> Self {
1145        let sign_in_callback = Arc::new({
1146            let state = state.clone();
1147            move |_window: &mut Window, cx: &mut App| {
1148                state.update(cx, |state, cx| {
1149                    state.authenticate(cx).detach_and_log_err(cx);
1150                });
1151            }
1152        });
1153
1154        Self {
1155            state,
1156            sign_in_callback,
1157        }
1158    }
1159}
1160
1161impl Render for ConfigurationView {
1162    fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
1163        let state = self.state.read(cx);
1164        let user_store = state.user_store.read(cx);
1165
1166        ZedAiConfiguration {
1167            is_connected: !state.is_signed_out(cx),
1168            plan: user_store.plan(),
1169            subscription_period: user_store.subscription_period(),
1170            eligible_for_trial: user_store.trial_started_at().is_none(),
1171            account_too_young: user_store.account_too_young(),
1172            sign_in_callback: self.sign_in_callback.clone(),
1173        }
1174    }
1175}
1176
1177impl Component for ZedAiConfiguration {
1178    fn name() -> &'static str {
1179        "AI Configuration Content"
1180    }
1181
1182    fn sort_name() -> &'static str {
1183        "AI Configuration Content"
1184    }
1185
1186    fn scope() -> ComponentScope {
1187        ComponentScope::Onboarding
1188    }
1189
1190    fn preview(_window: &mut Window, _cx: &mut App) -> Option<AnyElement> {
1191        fn configuration(
1192            is_connected: bool,
1193            plan: Option<Plan>,
1194            eligible_for_trial: bool,
1195            account_too_young: bool,
1196        ) -> AnyElement {
1197            ZedAiConfiguration {
1198                is_connected,
1199                plan,
1200                subscription_period: plan
1201                    .is_some()
1202                    .then(|| (Utc::now(), Utc::now() + chrono::Duration::days(7))),
1203                eligible_for_trial,
1204                account_too_young,
1205                sign_in_callback: Arc::new(|_, _| {}),
1206            }
1207            .into_any_element()
1208        }
1209
1210        Some(
1211            v_flex()
1212                .p_4()
1213                .gap_4()
1214                .children(vec![
1215                    single_example("Not connected", configuration(false, None, false, false)),
1216                    single_example(
1217                        "Accept Terms of Service",
1218                        configuration(true, None, true, false),
1219                    ),
1220                    single_example(
1221                        "No Plan - Not eligible for trial",
1222                        configuration(true, None, false, false),
1223                    ),
1224                    single_example(
1225                        "No Plan - Eligible for trial",
1226                        configuration(true, None, true, false),
1227                    ),
1228                    single_example(
1229                        "Free Plan",
1230                        configuration(true, Some(Plan::V1(PlanV1::ZedFree)), true, false),
1231                    ),
1232                    single_example(
1233                        "Zed Pro Trial Plan",
1234                        configuration(true, Some(Plan::V1(PlanV1::ZedProTrial)), true, false),
1235                    ),
1236                    single_example(
1237                        "Zed Pro Plan",
1238                        configuration(true, Some(Plan::V1(PlanV1::ZedPro)), true, false),
1239                    ),
1240                ])
1241                .into_any_element(),
1242        )
1243    }
1244}
1245
1246#[cfg(test)]
1247mod tests {
1248    use super::*;
1249    use http_client::http::{HeaderMap, StatusCode};
1250    use language_model::LanguageModelCompletionError;
1251
1252    #[test]
1253    fn test_api_error_conversion_with_upstream_http_error() {
1254        // upstream_http_error with 503 status should become ServerOverloaded
1255        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout","upstream_status":503}"#;
1256
1257        let api_error = ApiError {
1258            status: StatusCode::INTERNAL_SERVER_ERROR,
1259            body: error_body.to_string(),
1260            headers: HeaderMap::new(),
1261        };
1262
1263        let completion_error: LanguageModelCompletionError = api_error.into();
1264
1265        match completion_error {
1266            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1267                assert_eq!(
1268                    message,
1269                    "Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout"
1270                );
1271            }
1272            _ => panic!(
1273                "Expected UpstreamProviderError for upstream 503, got: {:?}",
1274                completion_error
1275            ),
1276        }
1277
1278        // upstream_http_error with 500 status should become ApiInternalServerError
1279        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the OpenAI API: internal server error","upstream_status":500}"#;
1280
1281        let api_error = ApiError {
1282            status: StatusCode::INTERNAL_SERVER_ERROR,
1283            body: error_body.to_string(),
1284            headers: HeaderMap::new(),
1285        };
1286
1287        let completion_error: LanguageModelCompletionError = api_error.into();
1288
1289        match completion_error {
1290            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1291                assert_eq!(
1292                    message,
1293                    "Received an error from the OpenAI API: internal server error"
1294                );
1295            }
1296            _ => panic!(
1297                "Expected UpstreamProviderError for upstream 500, got: {:?}",
1298                completion_error
1299            ),
1300        }
1301
1302        // upstream_http_error with 429 status should become RateLimitExceeded
1303        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the Google API: rate limit exceeded","upstream_status":429}"#;
1304
1305        let api_error = ApiError {
1306            status: StatusCode::INTERNAL_SERVER_ERROR,
1307            body: error_body.to_string(),
1308            headers: HeaderMap::new(),
1309        };
1310
1311        let completion_error: LanguageModelCompletionError = api_error.into();
1312
1313        match completion_error {
1314            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1315                assert_eq!(
1316                    message,
1317                    "Received an error from the Google API: rate limit exceeded"
1318                );
1319            }
1320            _ => panic!(
1321                "Expected UpstreamProviderError for upstream 429, got: {:?}",
1322                completion_error
1323            ),
1324        }
1325
1326        // Regular 500 error without upstream_http_error should remain ApiInternalServerError for Zed
1327        let error_body = "Regular internal server error";
1328
1329        let api_error = ApiError {
1330            status: StatusCode::INTERNAL_SERVER_ERROR,
1331            body: error_body.to_string(),
1332            headers: HeaderMap::new(),
1333        };
1334
1335        let completion_error: LanguageModelCompletionError = api_error.into();
1336
1337        match completion_error {
1338            LanguageModelCompletionError::ApiInternalServerError { provider, message } => {
1339                assert_eq!(provider, PROVIDER_NAME);
1340                assert_eq!(message, "Regular internal server error");
1341            }
1342            _ => panic!(
1343                "Expected ApiInternalServerError for regular 500, got: {:?}",
1344                completion_error
1345            ),
1346        }
1347
1348        // upstream_http_429 format should be converted to UpstreamProviderError
1349        let error_body = r#"{"code":"upstream_http_429","message":"Upstream Anthropic rate limit exceeded.","retry_after":30.5}"#;
1350
1351        let api_error = ApiError {
1352            status: StatusCode::INTERNAL_SERVER_ERROR,
1353            body: error_body.to_string(),
1354            headers: HeaderMap::new(),
1355        };
1356
1357        let completion_error: LanguageModelCompletionError = api_error.into();
1358
1359        match completion_error {
1360            LanguageModelCompletionError::UpstreamProviderError {
1361                message,
1362                status,
1363                retry_after,
1364            } => {
1365                assert_eq!(message, "Upstream Anthropic rate limit exceeded.");
1366                assert_eq!(status, StatusCode::TOO_MANY_REQUESTS);
1367                assert_eq!(retry_after, Some(Duration::from_secs_f64(30.5)));
1368            }
1369            _ => panic!(
1370                "Expected UpstreamProviderError for upstream_http_429, got: {:?}",
1371                completion_error
1372            ),
1373        }
1374
1375        // Invalid JSON in error body should fall back to regular error handling
1376        let error_body = "Not JSON at all";
1377
1378        let api_error = ApiError {
1379            status: StatusCode::INTERNAL_SERVER_ERROR,
1380            body: error_body.to_string(),
1381            headers: HeaderMap::new(),
1382        };
1383
1384        let completion_error: LanguageModelCompletionError = api_error.into();
1385
1386        match completion_error {
1387            LanguageModelCompletionError::ApiInternalServerError { provider, .. } => {
1388                assert_eq!(provider, PROVIDER_NAME);
1389            }
1390            _ => panic!(
1391                "Expected ApiInternalServerError for invalid JSON, got: {:?}",
1392                completion_error
1393            ),
1394        }
1395    }
1396}