1use crate::{
2 point, prelude::*, px, size, transparent_black, Action, AnyDrag, AnyElement, AnyTooltip,
3 AnyView, App, AppContext, Arena, Asset, AsyncWindowContext, AvailableSpace, Background, Bounds,
4 BoxShadow, Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
5 DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
6 FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
7 KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
8 LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
9 MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
10 PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptLevel, Quad, Render,
11 RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge,
12 ScaledPixels, Scene, Shadow, SharedString, Size, StrikethroughStyle, Style, SubscriberSet,
13 Subscription, TaffyLayoutEngine, Task, TextStyle, TextStyleRefinement, TransformationMatrix,
14 Underline, UnderlineStyle, WindowAppearance, WindowBackgroundAppearance, WindowBounds,
15 WindowControls, WindowDecorations, WindowOptions, WindowParams, WindowTextSystem,
16 SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS,
17};
18use anyhow::{anyhow, Context as _, Result};
19use collections::{FxHashMap, FxHashSet};
20use derive_more::{Deref, DerefMut};
21use futures::channel::oneshot;
22use futures::FutureExt;
23#[cfg(target_os = "macos")]
24use media::core_video::CVImageBuffer;
25use parking_lot::RwLock;
26use raw_window_handle::{HandleError, HasWindowHandle};
27use refineable::Refineable;
28use slotmap::SlotMap;
29use smallvec::SmallVec;
30use std::{
31 any::{Any, TypeId},
32 borrow::Cow,
33 cell::{Cell, RefCell},
34 cmp,
35 fmt::{Debug, Display},
36 future::Future,
37 hash::{Hash, Hasher},
38 marker::PhantomData,
39 mem,
40 ops::{DerefMut, Range},
41 rc::Rc,
42 sync::{
43 atomic::{AtomicUsize, Ordering::SeqCst},
44 Arc, Weak,
45 },
46 time::{Duration, Instant},
47};
48use util::post_inc;
49use util::{measure, ResultExt};
50use uuid::Uuid;
51
52mod prompts;
53
54pub use prompts::*;
55
56pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1024.), px(700.));
57
58/// Represents the two different phases when dispatching events.
59#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
60pub enum DispatchPhase {
61 /// After the capture phase comes the bubble phase, in which mouse event listeners are
62 /// invoked front to back and keyboard event listeners are invoked from the focused element
63 /// to the root of the element tree. This is the phase you'll most commonly want to use when
64 /// registering event listeners.
65 #[default]
66 Bubble,
67 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
68 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
69 /// is used for special purposes such as clearing the "pressed" state for click events. If
70 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
71 /// outside of the immediate region may rely on detecting non-local events during this phase.
72 Capture,
73}
74
75impl DispatchPhase {
76 /// Returns true if this represents the "bubble" phase.
77 pub fn bubble(self) -> bool {
78 self == DispatchPhase::Bubble
79 }
80
81 /// Returns true if this represents the "capture" phase.
82 pub fn capture(self) -> bool {
83 self == DispatchPhase::Capture
84 }
85}
86
87struct WindowInvalidatorInner {
88 pub dirty: bool,
89 pub draw_phase: DrawPhase,
90 pub dirty_views: FxHashSet<EntityId>,
91}
92
93#[derive(Clone)]
94pub(crate) struct WindowInvalidator {
95 inner: Rc<RefCell<WindowInvalidatorInner>>,
96}
97
98impl WindowInvalidator {
99 pub fn new() -> Self {
100 WindowInvalidator {
101 inner: Rc::new(RefCell::new(WindowInvalidatorInner {
102 dirty: true,
103 draw_phase: DrawPhase::None,
104 dirty_views: FxHashSet::default(),
105 })),
106 }
107 }
108
109 pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
110 let mut inner = self.inner.borrow_mut();
111 inner.dirty_views.insert(entity);
112 if inner.draw_phase == DrawPhase::None {
113 inner.dirty = true;
114 cx.push_effect(Effect::Notify { emitter: entity });
115 true
116 } else {
117 false
118 }
119 }
120
121 pub fn is_dirty(&self) -> bool {
122 self.inner.borrow().dirty
123 }
124
125 pub fn set_dirty(&self, dirty: bool) {
126 self.inner.borrow_mut().dirty = dirty
127 }
128
129 pub fn set_phase(&self, phase: DrawPhase) {
130 self.inner.borrow_mut().draw_phase = phase
131 }
132
133 pub fn take_views(&self) -> FxHashSet<EntityId> {
134 mem::take(&mut self.inner.borrow_mut().dirty_views)
135 }
136
137 pub fn replace_views(&self, views: FxHashSet<EntityId>) {
138 self.inner.borrow_mut().dirty_views = views;
139 }
140
141 pub fn not_drawing(&self) -> bool {
142 self.inner.borrow().draw_phase == DrawPhase::None
143 }
144
145 #[track_caller]
146 pub fn debug_assert_paint(&self) {
147 debug_assert!(
148 matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
149 "this method can only be called during paint"
150 );
151 }
152
153 #[track_caller]
154 pub fn debug_assert_prepaint(&self) {
155 debug_assert!(
156 matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
157 "this method can only be called during request_layout, or prepaint"
158 );
159 }
160
161 #[track_caller]
162 pub fn debug_assert_paint_or_prepaint(&self) {
163 debug_assert!(
164 matches!(
165 self.inner.borrow().draw_phase,
166 DrawPhase::Paint | DrawPhase::Prepaint
167 ),
168 "this method can only be called during request_layout, prepaint, or paint"
169 );
170 }
171}
172
173type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
174
175pub(crate) type AnyWindowFocusListener =
176 Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
177
178pub(crate) struct WindowFocusEvent {
179 pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
180 pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
181}
182
183impl WindowFocusEvent {
184 pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
185 !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
186 }
187
188 pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
189 self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
190 }
191}
192
193/// This is provided when subscribing for `Context::on_focus_out` events.
194pub struct FocusOutEvent {
195 /// A weak focus handle representing what was blurred.
196 pub blurred: WeakFocusHandle,
197}
198
199slotmap::new_key_type! {
200 /// A globally unique identifier for a focusable element.
201 pub struct FocusId;
202}
203
204thread_local! {
205 /// 8MB wasn't quite enough...
206 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(32 * 1024 * 1024));
207}
208
209pub(crate) type FocusMap = RwLock<SlotMap<FocusId, AtomicUsize>>;
210
211impl FocusId {
212 /// Obtains whether the element associated with this handle is currently focused.
213 pub fn is_focused(&self, window: &Window) -> bool {
214 window.focus == Some(*self)
215 }
216
217 /// Obtains whether the element associated with this handle contains the focused
218 /// element or is itself focused.
219 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
220 window
221 .focused(cx)
222 .map_or(false, |focused| self.contains(focused.id, window))
223 }
224
225 /// Obtains whether the element associated with this handle is contained within the
226 /// focused element or is itself focused.
227 pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
228 let focused = window.focused(cx);
229 focused.map_or(false, |focused| focused.id.contains(*self, window))
230 }
231
232 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
233 pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
234 window
235 .rendered_frame
236 .dispatch_tree
237 .focus_contains(*self, other)
238 }
239}
240
241/// A handle which can be used to track and manipulate the focused element in a window.
242pub struct FocusHandle {
243 pub(crate) id: FocusId,
244 handles: Arc<FocusMap>,
245}
246
247impl std::fmt::Debug for FocusHandle {
248 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
249 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
250 }
251}
252
253impl FocusHandle {
254 pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
255 let id = handles.write().insert(AtomicUsize::new(1));
256 Self {
257 id,
258 handles: handles.clone(),
259 }
260 }
261
262 pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
263 let lock = handles.read();
264 let ref_count = lock.get(id)?;
265 if ref_count.load(SeqCst) == 0 {
266 None
267 } else {
268 ref_count.fetch_add(1, SeqCst);
269 Some(Self {
270 id,
271 handles: handles.clone(),
272 })
273 }
274 }
275
276 /// Converts this focus handle into a weak variant, which does not prevent it from being released.
277 pub fn downgrade(&self) -> WeakFocusHandle {
278 WeakFocusHandle {
279 id: self.id,
280 handles: Arc::downgrade(&self.handles),
281 }
282 }
283
284 /// Moves the focus to the element associated with this handle.
285 pub fn focus(&self, window: &mut Window) {
286 window.focus(self)
287 }
288
289 /// Obtains whether the element associated with this handle is currently focused.
290 pub fn is_focused(&self, window: &Window) -> bool {
291 self.id.is_focused(window)
292 }
293
294 /// Obtains whether the element associated with this handle contains the focused
295 /// element or is itself focused.
296 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
297 self.id.contains_focused(window, cx)
298 }
299
300 /// Obtains whether the element associated with this handle is contained within the
301 /// focused element or is itself focused.
302 pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
303 self.id.within_focused(window, cx)
304 }
305
306 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
307 pub fn contains(&self, other: &Self, window: &Window) -> bool {
308 self.id.contains(other.id, window)
309 }
310
311 /// Dispatch an action on the element that rendered this focus handle
312 pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
313 if let Some(node_id) = window
314 .rendered_frame
315 .dispatch_tree
316 .focusable_node_id(self.id)
317 {
318 window.dispatch_action_on_node(node_id, action, cx)
319 }
320 }
321}
322
323impl Clone for FocusHandle {
324 fn clone(&self) -> Self {
325 Self::for_id(self.id, &self.handles).unwrap()
326 }
327}
328
329impl PartialEq for FocusHandle {
330 fn eq(&self, other: &Self) -> bool {
331 self.id == other.id
332 }
333}
334
335impl Eq for FocusHandle {}
336
337impl Drop for FocusHandle {
338 fn drop(&mut self) {
339 self.handles
340 .read()
341 .get(self.id)
342 .unwrap()
343 .fetch_sub(1, SeqCst);
344 }
345}
346
347/// A weak reference to a focus handle.
348#[derive(Clone, Debug)]
349pub struct WeakFocusHandle {
350 pub(crate) id: FocusId,
351 pub(crate) handles: Weak<FocusMap>,
352}
353
354impl WeakFocusHandle {
355 /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
356 pub fn upgrade(&self) -> Option<FocusHandle> {
357 let handles = self.handles.upgrade()?;
358 FocusHandle::for_id(self.id, &handles)
359 }
360}
361
362impl PartialEq for WeakFocusHandle {
363 fn eq(&self, other: &WeakFocusHandle) -> bool {
364 self.id == other.id
365 }
366}
367
368impl Eq for WeakFocusHandle {}
369
370impl PartialEq<FocusHandle> for WeakFocusHandle {
371 fn eq(&self, other: &FocusHandle) -> bool {
372 self.id == other.id
373 }
374}
375
376impl PartialEq<WeakFocusHandle> for FocusHandle {
377 fn eq(&self, other: &WeakFocusHandle) -> bool {
378 self.id == other.id
379 }
380}
381
382/// Focusable allows users of your view to easily
383/// focus it (using window.focus_view(cx, view))
384pub trait Focusable: 'static {
385 /// Returns the focus handle associated with this view.
386 fn focus_handle(&self, cx: &App) -> FocusHandle;
387}
388
389impl<V: Focusable> Focusable for Entity<V> {
390 fn focus_handle(&self, cx: &App) -> FocusHandle {
391 self.read(cx).focus_handle(cx)
392 }
393}
394
395/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
396/// where the lifecycle of the view is handled by another view.
397pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
398
399impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
400
401/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
402pub struct DismissEvent;
403
404type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
405
406pub(crate) type AnyMouseListener =
407 Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
408
409#[derive(Clone)]
410pub(crate) struct CursorStyleRequest {
411 pub(crate) hitbox_id: HitboxId,
412 pub(crate) style: CursorStyle,
413}
414
415/// An identifier for a [Hitbox].
416#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
417pub struct HitboxId(usize);
418
419impl HitboxId {
420 /// Checks if the hitbox with this id is currently hovered.
421 pub fn is_hovered(&self, window: &Window) -> bool {
422 window.mouse_hit_test.0.contains(self)
423 }
424}
425
426/// A rectangular region that potentially blocks hitboxes inserted prior.
427/// See [Window::insert_hitbox] for more details.
428#[derive(Clone, Debug, Deref)]
429pub struct Hitbox {
430 /// A unique identifier for the hitbox.
431 pub id: HitboxId,
432 /// The bounds of the hitbox.
433 #[deref]
434 pub bounds: Bounds<Pixels>,
435 /// The content mask when the hitbox was inserted.
436 pub content_mask: ContentMask<Pixels>,
437 /// Whether the hitbox occludes other hitboxes inserted prior.
438 pub opaque: bool,
439}
440
441impl Hitbox {
442 /// Checks if the hitbox is currently hovered.
443 pub fn is_hovered(&self, window: &Window) -> bool {
444 self.id.is_hovered(window)
445 }
446}
447
448#[derive(Default, Eq, PartialEq)]
449pub(crate) struct HitTest(SmallVec<[HitboxId; 8]>);
450
451/// An identifier for a tooltip.
452#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
453pub struct TooltipId(usize);
454
455impl TooltipId {
456 /// Checks if the tooltip is currently hovered.
457 pub fn is_hovered(&self, window: &Window) -> bool {
458 window
459 .tooltip_bounds
460 .as_ref()
461 .map_or(false, |tooltip_bounds| {
462 tooltip_bounds.id == *self
463 && tooltip_bounds.bounds.contains(&window.mouse_position())
464 })
465 }
466}
467
468pub(crate) struct TooltipBounds {
469 id: TooltipId,
470 bounds: Bounds<Pixels>,
471}
472
473#[derive(Clone)]
474pub(crate) struct TooltipRequest {
475 id: TooltipId,
476 tooltip: AnyTooltip,
477}
478
479pub(crate) struct DeferredDraw {
480 current_view: EntityId,
481 priority: usize,
482 parent_node: DispatchNodeId,
483 element_id_stack: SmallVec<[ElementId; 32]>,
484 text_style_stack: Vec<TextStyleRefinement>,
485 element: Option<AnyElement>,
486 absolute_offset: Point<Pixels>,
487 prepaint_range: Range<PrepaintStateIndex>,
488 paint_range: Range<PaintIndex>,
489}
490
491pub(crate) struct Frame {
492 pub(crate) focus: Option<FocusId>,
493 pub(crate) window_active: bool,
494 pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
495 accessed_element_states: Vec<(GlobalElementId, TypeId)>,
496 pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
497 pub(crate) dispatch_tree: DispatchTree,
498 pub(crate) scene: Scene,
499 pub(crate) hitboxes: Vec<Hitbox>,
500 pub(crate) deferred_draws: Vec<DeferredDraw>,
501 pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
502 pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
503 pub(crate) cursor_styles: Vec<CursorStyleRequest>,
504 #[cfg(any(test, feature = "test-support"))]
505 pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
506}
507
508#[derive(Clone, Default)]
509pub(crate) struct PrepaintStateIndex {
510 hitboxes_index: usize,
511 tooltips_index: usize,
512 deferred_draws_index: usize,
513 dispatch_tree_index: usize,
514 accessed_element_states_index: usize,
515 line_layout_index: LineLayoutIndex,
516}
517
518#[derive(Clone, Default)]
519pub(crate) struct PaintIndex {
520 scene_index: usize,
521 mouse_listeners_index: usize,
522 input_handlers_index: usize,
523 cursor_styles_index: usize,
524 accessed_element_states_index: usize,
525 line_layout_index: LineLayoutIndex,
526}
527
528impl Frame {
529 pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
530 Frame {
531 focus: None,
532 window_active: false,
533 element_states: FxHashMap::default(),
534 accessed_element_states: Vec::new(),
535 mouse_listeners: Vec::new(),
536 dispatch_tree,
537 scene: Scene::default(),
538 hitboxes: Vec::new(),
539 deferred_draws: Vec::new(),
540 input_handlers: Vec::new(),
541 tooltip_requests: Vec::new(),
542 cursor_styles: Vec::new(),
543
544 #[cfg(any(test, feature = "test-support"))]
545 debug_bounds: FxHashMap::default(),
546 }
547 }
548
549 pub(crate) fn clear(&mut self) {
550 self.element_states.clear();
551 self.accessed_element_states.clear();
552 self.mouse_listeners.clear();
553 self.dispatch_tree.clear();
554 self.scene.clear();
555 self.input_handlers.clear();
556 self.tooltip_requests.clear();
557 self.cursor_styles.clear();
558 self.hitboxes.clear();
559 self.deferred_draws.clear();
560 self.focus = None;
561 }
562
563 pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
564 let mut hit_test = HitTest::default();
565 for hitbox in self.hitboxes.iter().rev() {
566 let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
567 if bounds.contains(&position) {
568 hit_test.0.push(hitbox.id);
569 if hitbox.opaque {
570 break;
571 }
572 }
573 }
574 hit_test
575 }
576
577 pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
578 self.focus
579 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
580 .unwrap_or_default()
581 }
582
583 pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
584 for element_state_key in &self.accessed_element_states {
585 if let Some((element_state_key, element_state)) =
586 prev_frame.element_states.remove_entry(element_state_key)
587 {
588 self.element_states.insert(element_state_key, element_state);
589 }
590 }
591
592 self.scene.finish();
593 }
594}
595
596/// Holds the state for a specific window.
597pub struct Window {
598 pub(crate) handle: AnyWindowHandle,
599 pub(crate) invalidator: WindowInvalidator,
600 pub(crate) removed: bool,
601 pub(crate) platform_window: Box<dyn PlatformWindow>,
602 display_id: Option<DisplayId>,
603 sprite_atlas: Arc<dyn PlatformAtlas>,
604 text_system: Arc<WindowTextSystem>,
605 rem_size: Pixels,
606 /// The stack of override values for the window's rem size.
607 ///
608 /// This is used by `with_rem_size` to allow rendering an element tree with
609 /// a given rem size.
610 rem_size_override_stack: SmallVec<[Pixels; 8]>,
611 pub(crate) viewport_size: Size<Pixels>,
612 layout_engine: Option<TaffyLayoutEngine>,
613 pub(crate) root: Option<AnyView>,
614 pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
615 pub(crate) text_style_stack: Vec<TextStyleRefinement>,
616 pub(crate) rendered_entity_stack: Vec<EntityId>,
617 pub(crate) element_offset_stack: Vec<Point<Pixels>>,
618 pub(crate) element_opacity: Option<f32>,
619 pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
620 pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
621 pub(crate) rendered_frame: Frame,
622 pub(crate) next_frame: Frame,
623 pub(crate) next_hitbox_id: HitboxId,
624 pub(crate) next_tooltip_id: TooltipId,
625 pub(crate) tooltip_bounds: Option<TooltipBounds>,
626 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
627 pub(crate) dirty_views: FxHashSet<EntityId>,
628 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
629 pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
630 default_prevented: bool,
631 mouse_position: Point<Pixels>,
632 mouse_hit_test: HitTest,
633 modifiers: Modifiers,
634 scale_factor: f32,
635 pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
636 appearance: WindowAppearance,
637 pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
638 active: Rc<Cell<bool>>,
639 hovered: Rc<Cell<bool>>,
640 pub(crate) needs_present: Rc<Cell<bool>>,
641 pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
642 pub(crate) refreshing: bool,
643 pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
644 pub(crate) focus: Option<FocusId>,
645 focus_enabled: bool,
646 pending_input: Option<PendingInput>,
647 pending_modifier: ModifierState,
648 pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
649 prompt: Option<RenderablePromptHandle>,
650}
651
652#[derive(Clone, Debug, Default)]
653struct ModifierState {
654 modifiers: Modifiers,
655 saw_keystroke: bool,
656}
657
658#[derive(Clone, Copy, Debug, Eq, PartialEq)]
659pub(crate) enum DrawPhase {
660 None,
661 Prepaint,
662 Paint,
663 Focus,
664}
665
666#[derive(Default, Debug)]
667struct PendingInput {
668 keystrokes: SmallVec<[Keystroke; 1]>,
669 focus: Option<FocusId>,
670 timer: Option<Task<()>>,
671}
672
673pub(crate) struct ElementStateBox {
674 pub(crate) inner: Box<dyn Any>,
675 #[cfg(debug_assertions)]
676 pub(crate) type_name: &'static str,
677}
678
679fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> Bounds<Pixels> {
680 const DEFAULT_WINDOW_OFFSET: Point<Pixels> = point(px(0.), px(35.));
681
682 // TODO, BUG: if you open a window with the currently active window
683 // on the stack, this will erroneously select the 'unwrap_or_else'
684 // code path
685 cx.active_window()
686 .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok())
687 .map(|mut bounds| {
688 bounds.origin += DEFAULT_WINDOW_OFFSET;
689 bounds
690 })
691 .unwrap_or_else(|| {
692 let display = display_id
693 .map(|id| cx.find_display(id))
694 .unwrap_or_else(|| cx.primary_display());
695
696 display
697 .map(|display| display.default_bounds())
698 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE))
699 })
700}
701
702impl Window {
703 pub(crate) fn new(
704 handle: AnyWindowHandle,
705 options: WindowOptions,
706 cx: &mut App,
707 ) -> Result<Self> {
708 let WindowOptions {
709 window_bounds,
710 titlebar,
711 focus,
712 show,
713 kind,
714 is_movable,
715 display_id,
716 window_background,
717 app_id,
718 window_min_size,
719 window_decorations,
720 } = options;
721
722 let bounds = window_bounds
723 .map(|bounds| bounds.get_bounds())
724 .unwrap_or_else(|| default_bounds(display_id, cx));
725 let mut platform_window = cx.platform.open_window(
726 handle,
727 WindowParams {
728 bounds,
729 titlebar,
730 kind,
731 is_movable,
732 focus,
733 show,
734 display_id,
735 window_min_size,
736 },
737 )?;
738 let display_id = platform_window.display().map(|display| display.id());
739 let sprite_atlas = platform_window.sprite_atlas();
740 let mouse_position = platform_window.mouse_position();
741 let modifiers = platform_window.modifiers();
742 let content_size = platform_window.content_size();
743 let scale_factor = platform_window.scale_factor();
744 let appearance = platform_window.appearance();
745 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
746 let invalidator = WindowInvalidator::new();
747 let active = Rc::new(Cell::new(platform_window.is_active()));
748 let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
749 let needs_present = Rc::new(Cell::new(false));
750 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
751 let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
752
753 platform_window
754 .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
755 platform_window.set_background_appearance(window_background);
756
757 if let Some(ref window_open_state) = window_bounds {
758 match window_open_state {
759 WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
760 WindowBounds::Maximized(_) => platform_window.zoom(),
761 WindowBounds::Windowed(_) => {}
762 }
763 }
764
765 platform_window.on_close(Box::new({
766 let mut cx = cx.to_async();
767 move || {
768 let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
769 }
770 }));
771 platform_window.on_request_frame(Box::new({
772 let mut cx = cx.to_async();
773 let invalidator = invalidator.clone();
774 let active = active.clone();
775 let needs_present = needs_present.clone();
776 let next_frame_callbacks = next_frame_callbacks.clone();
777 let last_input_timestamp = last_input_timestamp.clone();
778 move |request_frame_options| {
779 let next_frame_callbacks = next_frame_callbacks.take();
780 if !next_frame_callbacks.is_empty() {
781 handle
782 .update(&mut cx, |_, window, cx| {
783 for callback in next_frame_callbacks {
784 callback(window, cx);
785 }
786 })
787 .log_err();
788 }
789
790 // Keep presenting the current scene for 1 extra second since the
791 // last input to prevent the display from underclocking the refresh rate.
792 let needs_present = request_frame_options.require_presentation
793 || needs_present.get()
794 || (active.get()
795 && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
796
797 if invalidator.is_dirty() {
798 measure("frame duration", || {
799 handle
800 .update(&mut cx, |_, window, cx| {
801 window.draw(cx);
802 window.present();
803 })
804 .log_err();
805 })
806 } else if needs_present {
807 handle
808 .update(&mut cx, |_, window, _| window.present())
809 .log_err();
810 }
811
812 handle
813 .update(&mut cx, |_, window, _| {
814 window.complete_frame();
815 })
816 .log_err();
817 }
818 }));
819 platform_window.on_resize(Box::new({
820 let mut cx = cx.to_async();
821 move |_, _| {
822 handle
823 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
824 .log_err();
825 }
826 }));
827 platform_window.on_moved(Box::new({
828 let mut cx = cx.to_async();
829 move || {
830 handle
831 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
832 .log_err();
833 }
834 }));
835 platform_window.on_appearance_changed(Box::new({
836 let mut cx = cx.to_async();
837 move || {
838 handle
839 .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
840 .log_err();
841 }
842 }));
843 platform_window.on_active_status_change(Box::new({
844 let mut cx = cx.to_async();
845 move |active| {
846 handle
847 .update(&mut cx, |_, window, cx| {
848 window.active.set(active);
849 window
850 .activation_observers
851 .clone()
852 .retain(&(), |callback| callback(window, cx));
853 window.refresh();
854 })
855 .log_err();
856 }
857 }));
858 platform_window.on_hover_status_change(Box::new({
859 let mut cx = cx.to_async();
860 move |active| {
861 handle
862 .update(&mut cx, |_, window, _| {
863 window.hovered.set(active);
864 window.refresh();
865 })
866 .log_err();
867 }
868 }));
869 platform_window.on_input({
870 let mut cx = cx.to_async();
871 Box::new(move |event| {
872 handle
873 .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
874 .log_err()
875 .unwrap_or(DispatchEventResult::default())
876 })
877 });
878
879 if let Some(app_id) = app_id {
880 platform_window.set_app_id(&app_id);
881 }
882
883 platform_window.map_window().unwrap();
884
885 Ok(Window {
886 handle,
887 invalidator,
888 removed: false,
889 platform_window,
890 display_id,
891 sprite_atlas,
892 text_system,
893 rem_size: px(16.),
894 rem_size_override_stack: SmallVec::new(),
895 viewport_size: content_size,
896 layout_engine: Some(TaffyLayoutEngine::new()),
897 root: None,
898 element_id_stack: SmallVec::default(),
899 text_style_stack: Vec::new(),
900 rendered_entity_stack: Vec::new(),
901 element_offset_stack: Vec::new(),
902 content_mask_stack: Vec::new(),
903 element_opacity: None,
904 requested_autoscroll: None,
905 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
906 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
907 next_frame_callbacks,
908 next_hitbox_id: HitboxId::default(),
909 next_tooltip_id: TooltipId::default(),
910 tooltip_bounds: None,
911 dirty_views: FxHashSet::default(),
912 focus_listeners: SubscriberSet::new(),
913 focus_lost_listeners: SubscriberSet::new(),
914 default_prevented: true,
915 mouse_position,
916 mouse_hit_test: HitTest::default(),
917 modifiers,
918 scale_factor,
919 bounds_observers: SubscriberSet::new(),
920 appearance,
921 appearance_observers: SubscriberSet::new(),
922 active,
923 hovered,
924 needs_present,
925 last_input_timestamp,
926 refreshing: false,
927 activation_observers: SubscriberSet::new(),
928 focus: None,
929 focus_enabled: true,
930 pending_input: None,
931 pending_modifier: ModifierState::default(),
932 pending_input_observers: SubscriberSet::new(),
933 prompt: None,
934 })
935 }
936
937 pub(crate) fn new_focus_listener(
938 &self,
939 value: AnyWindowFocusListener,
940 ) -> (Subscription, impl FnOnce()) {
941 self.focus_listeners.insert((), value)
942 }
943}
944
945#[derive(Clone, Debug, Default, PartialEq, Eq)]
946pub(crate) struct DispatchEventResult {
947 pub propagate: bool,
948 pub default_prevented: bool,
949}
950
951/// Indicates which region of the window is visible. Content falling outside of this mask will not be
952/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
953/// to leave room to support more complex shapes in the future.
954#[derive(Clone, Debug, Default, PartialEq, Eq)]
955#[repr(C)]
956pub struct ContentMask<P: Clone + Default + Debug> {
957 /// The bounds
958 pub bounds: Bounds<P>,
959}
960
961impl ContentMask<Pixels> {
962 /// Scale the content mask's pixel units by the given scaling factor.
963 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
964 ContentMask {
965 bounds: self.bounds.scale(factor),
966 }
967 }
968
969 /// Intersect the content mask with the given content mask.
970 pub fn intersect(&self, other: &Self) -> Self {
971 let bounds = self.bounds.intersect(&other.bounds);
972 ContentMask { bounds }
973 }
974}
975
976impl Window {
977 fn mark_view_dirty(&mut self, view_id: EntityId) {
978 // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
979 // should already be dirty.
980 for view_id in self
981 .rendered_frame
982 .dispatch_tree
983 .view_path(view_id)
984 .into_iter()
985 .rev()
986 {
987 if !self.dirty_views.insert(view_id) {
988 break;
989 }
990 }
991 }
992
993 /// Registers a callback to be invoked when the window appearance changes.
994 pub fn observe_window_appearance(
995 &self,
996 mut callback: impl FnMut(&mut Window, &mut App) + 'static,
997 ) -> Subscription {
998 let (subscription, activate) = self.appearance_observers.insert(
999 (),
1000 Box::new(move |window, cx| {
1001 callback(window, cx);
1002 true
1003 }),
1004 );
1005 activate();
1006 subscription
1007 }
1008
1009 /// Replaces the root entity of the window with a new one.
1010 pub fn replace_root<E>(
1011 &mut self,
1012 cx: &mut App,
1013 build_view: impl FnOnce(&mut Window, &mut Context<'_, E>) -> E,
1014 ) -> Entity<E>
1015 where
1016 E: 'static + Render,
1017 {
1018 let view = cx.new(|cx| build_view(self, cx));
1019 self.root = Some(view.clone().into());
1020 self.refresh();
1021 view
1022 }
1023
1024 /// Returns the root entity of the window, if it has one.
1025 pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1026 where
1027 E: 'static + Render,
1028 {
1029 self.root
1030 .as_ref()
1031 .map(|view| view.clone().downcast::<E>().ok())
1032 }
1033
1034 /// Obtain a handle to the window that belongs to this context.
1035 pub fn window_handle(&self) -> AnyWindowHandle {
1036 self.handle
1037 }
1038
1039 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1040 pub fn refresh(&mut self) {
1041 if self.invalidator.not_drawing() {
1042 self.refreshing = true;
1043 self.invalidator.set_dirty(true);
1044 }
1045 }
1046
1047 /// Close this window.
1048 pub fn remove_window(&mut self) {
1049 self.removed = true;
1050 }
1051
1052 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1053 pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1054 self.focus
1055 .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1056 }
1057
1058 /// Move focus to the element associated with the given [`FocusHandle`].
1059 pub fn focus(&mut self, handle: &FocusHandle) {
1060 if !self.focus_enabled || self.focus == Some(handle.id) {
1061 return;
1062 }
1063
1064 self.focus = Some(handle.id);
1065 self.clear_pending_keystrokes();
1066 self.refresh();
1067 }
1068
1069 /// Remove focus from all elements within this context's window.
1070 pub fn blur(&mut self) {
1071 if !self.focus_enabled {
1072 return;
1073 }
1074
1075 self.focus = None;
1076 self.refresh();
1077 }
1078
1079 /// Blur the window and don't allow anything in it to be focused again.
1080 pub fn disable_focus(&mut self) {
1081 self.blur();
1082 self.focus_enabled = false;
1083 }
1084
1085 /// Accessor for the text system.
1086 pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1087 &self.text_system
1088 }
1089
1090 /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1091 pub fn text_style(&self) -> TextStyle {
1092 let mut style = TextStyle::default();
1093 for refinement in &self.text_style_stack {
1094 style.refine(refinement);
1095 }
1096 style
1097 }
1098
1099 /// Check if the platform window is maximized
1100 /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1101 pub fn is_maximized(&self) -> bool {
1102 self.platform_window.is_maximized()
1103 }
1104
1105 /// request a certain window decoration (Wayland)
1106 pub fn request_decorations(&self, decorations: WindowDecorations) {
1107 self.platform_window.request_decorations(decorations);
1108 }
1109
1110 /// Start a window resize operation (Wayland)
1111 pub fn start_window_resize(&self, edge: ResizeEdge) {
1112 self.platform_window.start_window_resize(edge);
1113 }
1114
1115 /// Return the `WindowBounds` to indicate that how a window should be opened
1116 /// after it has been closed
1117 pub fn window_bounds(&self) -> WindowBounds {
1118 self.platform_window.window_bounds()
1119 }
1120
1121 /// Return the `WindowBounds` excluding insets (Wayland and X11)
1122 pub fn inner_window_bounds(&self) -> WindowBounds {
1123 self.platform_window.inner_window_bounds()
1124 }
1125
1126 /// Dispatch the given action on the currently focused element.
1127 pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1128 let focus_handle = self.focused(cx);
1129
1130 let window = self.handle;
1131 cx.defer(move |cx| {
1132 window
1133 .update(cx, |_, window, cx| {
1134 let node_id = focus_handle
1135 .and_then(|handle| {
1136 window
1137 .rendered_frame
1138 .dispatch_tree
1139 .focusable_node_id(handle.id)
1140 })
1141 .unwrap_or_else(|| window.rendered_frame.dispatch_tree.root_node_id());
1142
1143 window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1144 })
1145 .log_err();
1146 })
1147 }
1148
1149 pub(crate) fn dispatch_keystroke_observers(
1150 &mut self,
1151 event: &dyn Any,
1152 action: Option<Box<dyn Action>>,
1153 cx: &mut App,
1154 ) {
1155 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1156 return;
1157 };
1158
1159 cx.keystroke_observers.clone().retain(&(), move |callback| {
1160 (callback)(
1161 &KeystrokeEvent {
1162 keystroke: key_down_event.keystroke.clone(),
1163 action: action.as_ref().map(|action| action.boxed_clone()),
1164 },
1165 self,
1166 cx,
1167 )
1168 });
1169 }
1170
1171 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1172 /// that are currently on the stack to be returned to the app.
1173 pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1174 let handle = self.handle;
1175 cx.defer(move |cx| {
1176 handle.update(cx, |_, window, cx| f(window, cx)).ok();
1177 });
1178 }
1179
1180 /// Subscribe to events emitted by a entity.
1181 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1182 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1183 pub fn observe<T: 'static>(
1184 &mut self,
1185 observed: &Entity<T>,
1186 cx: &mut App,
1187 mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1188 ) -> Subscription {
1189 let entity_id = observed.entity_id();
1190 let observed = observed.downgrade();
1191 let window_handle = self.handle;
1192 cx.new_observer(
1193 entity_id,
1194 Box::new(move |cx| {
1195 window_handle
1196 .update(cx, |_, window, cx| {
1197 if let Some(handle) = observed.upgrade() {
1198 on_notify(handle, window, cx);
1199 true
1200 } else {
1201 false
1202 }
1203 })
1204 .unwrap_or(false)
1205 }),
1206 )
1207 }
1208
1209 /// Subscribe to events emitted by a entity.
1210 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1211 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1212 pub fn subscribe<Emitter, Evt>(
1213 &mut self,
1214 entity: &Entity<Emitter>,
1215 cx: &mut App,
1216 mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1217 ) -> Subscription
1218 where
1219 Emitter: EventEmitter<Evt>,
1220 Evt: 'static,
1221 {
1222 let entity_id = entity.entity_id();
1223 let entity = entity.downgrade();
1224 let window_handle = self.handle;
1225 cx.new_subscription(
1226 entity_id,
1227 (
1228 TypeId::of::<Evt>(),
1229 Box::new(move |event, cx| {
1230 window_handle
1231 .update(cx, |_, window, cx| {
1232 if let Some(handle) = Entity::<Emitter>::upgrade_from(&entity) {
1233 let event = event.downcast_ref().expect("invalid event type");
1234 on_event(handle, event, window, cx);
1235 true
1236 } else {
1237 false
1238 }
1239 })
1240 .unwrap_or(false)
1241 }),
1242 ),
1243 )
1244 }
1245
1246 /// Register a callback to be invoked when the given `Entity` is released.
1247 pub fn observe_release<T>(
1248 &self,
1249 entity: &Entity<T>,
1250 cx: &mut App,
1251 mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1252 ) -> Subscription
1253 where
1254 T: 'static,
1255 {
1256 let entity_id = entity.entity_id();
1257 let window_handle = self.handle;
1258 let (subscription, activate) = cx.release_listeners.insert(
1259 entity_id,
1260 Box::new(move |entity, cx| {
1261 let entity = entity.downcast_mut().expect("invalid entity type");
1262 let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1263 }),
1264 );
1265 activate();
1266 subscription
1267 }
1268
1269 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1270 /// await points in async code.
1271 pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1272 AsyncWindowContext::new_context(cx.to_async(), self.handle)
1273 }
1274
1275 /// Schedule the given closure to be run directly after the current frame is rendered.
1276 pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1277 RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1278 }
1279
1280 /// Schedule a frame to be drawn on the next animation frame.
1281 ///
1282 /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1283 /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1284 ///
1285 /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1286 pub fn request_animation_frame(&self) {
1287 let entity = self.current_view();
1288 self.on_next_frame(move |_, cx| cx.notify(entity));
1289 }
1290
1291 /// Spawn the future returned by the given closure on the application thread pool.
1292 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1293 /// use within your future.
1294 #[track_caller]
1295 pub fn spawn<Fut, R>(&self, cx: &App, f: impl FnOnce(AsyncWindowContext) -> Fut) -> Task<R>
1296 where
1297 R: 'static,
1298 Fut: Future<Output = R> + 'static,
1299 {
1300 cx.spawn(|app| f(AsyncWindowContext::new_context(app, self.handle)))
1301 }
1302
1303 fn bounds_changed(&mut self, cx: &mut App) {
1304 self.scale_factor = self.platform_window.scale_factor();
1305 self.viewport_size = self.platform_window.content_size();
1306 self.display_id = self.platform_window.display().map(|display| display.id());
1307
1308 self.refresh();
1309
1310 self.bounds_observers
1311 .clone()
1312 .retain(&(), |callback| callback(self, cx));
1313 }
1314
1315 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1316 pub fn bounds(&self) -> Bounds<Pixels> {
1317 self.platform_window.bounds()
1318 }
1319
1320 /// Returns whether or not the window is currently fullscreen
1321 pub fn is_fullscreen(&self) -> bool {
1322 self.platform_window.is_fullscreen()
1323 }
1324
1325 pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1326 self.appearance = self.platform_window.appearance();
1327
1328 self.appearance_observers
1329 .clone()
1330 .retain(&(), |callback| callback(self, cx));
1331 }
1332
1333 /// Returns the appearance of the current window.
1334 pub fn appearance(&self) -> WindowAppearance {
1335 self.appearance
1336 }
1337
1338 /// Returns the size of the drawable area within the window.
1339 pub fn viewport_size(&self) -> Size<Pixels> {
1340 self.viewport_size
1341 }
1342
1343 /// Returns whether this window is focused by the operating system (receiving key events).
1344 pub fn is_window_active(&self) -> bool {
1345 self.active.get()
1346 }
1347
1348 /// Returns whether this window is considered to be the window
1349 /// that currently owns the mouse cursor.
1350 /// On mac, this is equivalent to `is_window_active`.
1351 pub fn is_window_hovered(&self) -> bool {
1352 if cfg!(any(
1353 target_os = "windows",
1354 target_os = "linux",
1355 target_os = "freebsd"
1356 )) {
1357 self.hovered.get()
1358 } else {
1359 self.is_window_active()
1360 }
1361 }
1362
1363 /// Toggle zoom on the window.
1364 pub fn zoom_window(&self) {
1365 self.platform_window.zoom();
1366 }
1367
1368 /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1369 pub fn show_window_menu(&self, position: Point<Pixels>) {
1370 self.platform_window.show_window_menu(position)
1371 }
1372
1373 /// Tells the compositor to take control of window movement (Wayland and X11)
1374 ///
1375 /// Events may not be received during a move operation.
1376 pub fn start_window_move(&self) {
1377 self.platform_window.start_window_move()
1378 }
1379
1380 /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1381 pub fn set_client_inset(&self, inset: Pixels) {
1382 self.platform_window.set_client_inset(inset);
1383 }
1384
1385 /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1386 pub fn window_decorations(&self) -> Decorations {
1387 self.platform_window.window_decorations()
1388 }
1389
1390 /// Returns which window controls are currently visible (Wayland)
1391 pub fn window_controls(&self) -> WindowControls {
1392 self.platform_window.window_controls()
1393 }
1394
1395 /// Updates the window's title at the platform level.
1396 pub fn set_window_title(&mut self, title: &str) {
1397 self.platform_window.set_title(title);
1398 }
1399
1400 /// Sets the application identifier.
1401 pub fn set_app_id(&mut self, app_id: &str) {
1402 self.platform_window.set_app_id(app_id);
1403 }
1404
1405 /// Sets the window background appearance.
1406 pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1407 self.platform_window
1408 .set_background_appearance(background_appearance);
1409 }
1410
1411 /// Mark the window as dirty at the platform level.
1412 pub fn set_window_edited(&mut self, edited: bool) {
1413 self.platform_window.set_edited(edited);
1414 }
1415
1416 /// Determine the display on which the window is visible.
1417 pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1418 cx.platform
1419 .displays()
1420 .into_iter()
1421 .find(|display| Some(display.id()) == self.display_id)
1422 }
1423
1424 /// Show the platform character palette.
1425 pub fn show_character_palette(&self) {
1426 self.platform_window.show_character_palette();
1427 }
1428
1429 /// The scale factor of the display associated with the window. For example, it could
1430 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1431 /// be rendered as two pixels on screen.
1432 pub fn scale_factor(&self) -> f32 {
1433 self.scale_factor
1434 }
1435
1436 /// The size of an em for the base font of the application. Adjusting this value allows the
1437 /// UI to scale, just like zooming a web page.
1438 pub fn rem_size(&self) -> Pixels {
1439 self.rem_size_override_stack
1440 .last()
1441 .copied()
1442 .unwrap_or(self.rem_size)
1443 }
1444
1445 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1446 /// UI to scale, just like zooming a web page.
1447 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1448 self.rem_size = rem_size.into();
1449 }
1450
1451 /// Executes the provided function with the specified rem size.
1452 ///
1453 /// This method must only be called as part of element drawing.
1454 pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1455 where
1456 F: FnOnce(&mut Self) -> R,
1457 {
1458 self.invalidator.debug_assert_paint_or_prepaint();
1459
1460 if let Some(rem_size) = rem_size {
1461 self.rem_size_override_stack.push(rem_size.into());
1462 let result = f(self);
1463 self.rem_size_override_stack.pop();
1464 result
1465 } else {
1466 f(self)
1467 }
1468 }
1469
1470 /// The line height associated with the current text style.
1471 pub fn line_height(&self) -> Pixels {
1472 self.text_style().line_height_in_pixels(self.rem_size())
1473 }
1474
1475 /// Call to prevent the default action of an event. Currently only used to prevent
1476 /// parent elements from becoming focused on mouse down.
1477 pub fn prevent_default(&mut self) {
1478 self.default_prevented = true;
1479 }
1480
1481 /// Obtain whether default has been prevented for the event currently being dispatched.
1482 pub fn default_prevented(&self) -> bool {
1483 self.default_prevented
1484 }
1485
1486 /// Determine whether the given action is available along the dispatch path to the currently focused element.
1487 pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1488 let target = self
1489 .focused(cx)
1490 .and_then(|focused_handle| {
1491 self.rendered_frame
1492 .dispatch_tree
1493 .focusable_node_id(focused_handle.id)
1494 })
1495 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
1496 self.rendered_frame
1497 .dispatch_tree
1498 .is_action_available(action, target)
1499 }
1500
1501 /// The position of the mouse relative to the window.
1502 pub fn mouse_position(&self) -> Point<Pixels> {
1503 self.mouse_position
1504 }
1505
1506 /// The current state of the keyboard's modifiers
1507 pub fn modifiers(&self) -> Modifiers {
1508 self.modifiers
1509 }
1510
1511 fn complete_frame(&self) {
1512 self.platform_window.completed_frame();
1513 }
1514
1515 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1516 /// the contents of the new [Scene], use [present].
1517 #[profiling::function]
1518 pub fn draw(&mut self, cx: &mut App) {
1519 self.invalidate_entities();
1520 cx.entities.clear_accessed();
1521 debug_assert!(self.rendered_entity_stack.is_empty());
1522 self.invalidator.set_dirty(false);
1523 self.requested_autoscroll = None;
1524
1525 // Restore the previously-used input handler.
1526 if let Some(input_handler) = self.platform_window.take_input_handler() {
1527 self.rendered_frame.input_handlers.push(Some(input_handler));
1528 }
1529 self.draw_roots(cx);
1530 self.dirty_views.clear();
1531 self.next_frame.window_active = self.active.get();
1532
1533 // Register requested input handler with the platform window.
1534 if let Some(input_handler) = self.next_frame.input_handlers.pop() {
1535 self.platform_window
1536 .set_input_handler(input_handler.unwrap());
1537 }
1538
1539 self.layout_engine.as_mut().unwrap().clear();
1540 self.text_system().finish_frame();
1541 self.next_frame.finish(&mut self.rendered_frame);
1542 ELEMENT_ARENA.with_borrow_mut(|element_arena| {
1543 let percentage = (element_arena.len() as f32 / element_arena.capacity() as f32) * 100.;
1544 if percentage >= 80. {
1545 log::warn!("elevated element arena occupation: {}.", percentage);
1546 }
1547 element_arena.clear();
1548 });
1549
1550 self.invalidator.set_phase(DrawPhase::Focus);
1551 let previous_focus_path = self.rendered_frame.focus_path();
1552 let previous_window_active = self.rendered_frame.window_active;
1553 mem::swap(&mut self.rendered_frame, &mut self.next_frame);
1554 self.next_frame.clear();
1555 let current_focus_path = self.rendered_frame.focus_path();
1556 let current_window_active = self.rendered_frame.window_active;
1557
1558 if previous_focus_path != current_focus_path
1559 || previous_window_active != current_window_active
1560 {
1561 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
1562 self.focus_lost_listeners
1563 .clone()
1564 .retain(&(), |listener| listener(self, cx));
1565 }
1566
1567 let event = WindowFocusEvent {
1568 previous_focus_path: if previous_window_active {
1569 previous_focus_path
1570 } else {
1571 Default::default()
1572 },
1573 current_focus_path: if current_window_active {
1574 current_focus_path
1575 } else {
1576 Default::default()
1577 },
1578 };
1579 self.focus_listeners
1580 .clone()
1581 .retain(&(), |listener| listener(&event, self, cx));
1582 }
1583
1584 debug_assert!(self.rendered_entity_stack.is_empty());
1585 self.record_entities_accessed(cx);
1586 self.reset_cursor_style(cx);
1587 self.refreshing = false;
1588 self.invalidator.set_phase(DrawPhase::None);
1589 self.needs_present.set(true);
1590 }
1591
1592 fn record_entities_accessed(&mut self, cx: &mut App) {
1593 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1594 let mut entities = mem::take(entities_ref.deref_mut());
1595 drop(entities_ref);
1596 let handle = self.handle;
1597 cx.record_entities_accessed(
1598 handle,
1599 // Try moving window invalidator into the Window
1600 self.invalidator.clone(),
1601 &entities,
1602 );
1603 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1604 mem::swap(&mut entities, entities_ref.deref_mut());
1605 }
1606
1607 fn invalidate_entities(&mut self) {
1608 let mut views = self.invalidator.take_views();
1609 for entity in views.drain() {
1610 self.mark_view_dirty(entity);
1611 }
1612 self.invalidator.replace_views(views);
1613 }
1614
1615 #[profiling::function]
1616 fn present(&self) {
1617 self.platform_window.draw(&self.rendered_frame.scene);
1618 self.needs_present.set(false);
1619 profiling::finish_frame!();
1620 }
1621
1622 fn draw_roots(&mut self, cx: &mut App) {
1623 self.invalidator.set_phase(DrawPhase::Prepaint);
1624 self.tooltip_bounds.take();
1625
1626 // Layout all root elements.
1627 let mut root_element = self.root.as_ref().unwrap().clone().into_any();
1628 root_element.prepaint_as_root(Point::default(), self.viewport_size.into(), self, cx);
1629
1630 let mut sorted_deferred_draws =
1631 (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
1632 sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
1633 self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
1634
1635 let mut prompt_element = None;
1636 let mut active_drag_element = None;
1637 let mut tooltip_element = None;
1638 if let Some(prompt) = self.prompt.take() {
1639 let mut element = prompt.view.any_view().into_any();
1640 element.prepaint_as_root(Point::default(), self.viewport_size.into(), self, cx);
1641 prompt_element = Some(element);
1642 self.prompt = Some(prompt);
1643 } else if let Some(active_drag) = cx.active_drag.take() {
1644 let mut element = active_drag.view.clone().into_any();
1645 let offset = self.mouse_position() - active_drag.cursor_offset;
1646 element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
1647 active_drag_element = Some(element);
1648 cx.active_drag = Some(active_drag);
1649 } else {
1650 tooltip_element = self.prepaint_tooltip(cx);
1651 }
1652
1653 self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
1654
1655 // Now actually paint the elements.
1656 self.invalidator.set_phase(DrawPhase::Paint);
1657 root_element.paint(self, cx);
1658
1659 self.paint_deferred_draws(&sorted_deferred_draws, cx);
1660
1661 if let Some(mut prompt_element) = prompt_element {
1662 prompt_element.paint(self, cx);
1663 } else if let Some(mut drag_element) = active_drag_element {
1664 drag_element.paint(self, cx);
1665 } else if let Some(mut tooltip_element) = tooltip_element {
1666 tooltip_element.paint(self, cx);
1667 }
1668 }
1669
1670 fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
1671 // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
1672 for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
1673 let Some(Some(tooltip_request)) = self
1674 .next_frame
1675 .tooltip_requests
1676 .get(tooltip_request_index)
1677 .cloned()
1678 else {
1679 log::error!("Unexpectedly absent TooltipRequest");
1680 continue;
1681 };
1682 let mut element = tooltip_request.tooltip.view.clone().into_any();
1683 let mouse_position = tooltip_request.tooltip.mouse_position;
1684 let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
1685
1686 let mut tooltip_bounds =
1687 Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
1688 let window_bounds = Bounds {
1689 origin: Point::default(),
1690 size: self.viewport_size(),
1691 };
1692
1693 if tooltip_bounds.right() > window_bounds.right() {
1694 let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
1695 if new_x >= Pixels::ZERO {
1696 tooltip_bounds.origin.x = new_x;
1697 } else {
1698 tooltip_bounds.origin.x = cmp::max(
1699 Pixels::ZERO,
1700 tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
1701 );
1702 }
1703 }
1704
1705 if tooltip_bounds.bottom() > window_bounds.bottom() {
1706 let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
1707 if new_y >= Pixels::ZERO {
1708 tooltip_bounds.origin.y = new_y;
1709 } else {
1710 tooltip_bounds.origin.y = cmp::max(
1711 Pixels::ZERO,
1712 tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
1713 );
1714 }
1715 }
1716
1717 // It's possible for an element to have an active tooltip while not being painted (e.g.
1718 // via the `visible_on_hover` method). Since mouse listeners are not active in this
1719 // case, instead update the tooltip's visibility here.
1720 let is_visible =
1721 (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
1722 if !is_visible {
1723 continue;
1724 }
1725
1726 self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
1727 element.prepaint(window, cx)
1728 });
1729
1730 self.tooltip_bounds = Some(TooltipBounds {
1731 id: tooltip_request.id,
1732 bounds: tooltip_bounds,
1733 });
1734 return Some(element);
1735 }
1736 None
1737 }
1738
1739 fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
1740 assert_eq!(self.element_id_stack.len(), 0);
1741
1742 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
1743 for deferred_draw_ix in deferred_draw_indices {
1744 let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
1745 self.element_id_stack
1746 .clone_from(&deferred_draw.element_id_stack);
1747 self.text_style_stack
1748 .clone_from(&deferred_draw.text_style_stack);
1749 self.next_frame
1750 .dispatch_tree
1751 .set_active_node(deferred_draw.parent_node);
1752
1753 let prepaint_start = self.prepaint_index();
1754 if let Some(element) = deferred_draw.element.as_mut() {
1755 self.with_rendered_view(deferred_draw.current_view, |window| {
1756 window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
1757 element.prepaint(window, cx)
1758 });
1759 })
1760 } else {
1761 self.reuse_prepaint(deferred_draw.prepaint_range.clone());
1762 }
1763 let prepaint_end = self.prepaint_index();
1764 deferred_draw.prepaint_range = prepaint_start..prepaint_end;
1765 }
1766 assert_eq!(
1767 self.next_frame.deferred_draws.len(),
1768 0,
1769 "cannot call defer_draw during deferred drawing"
1770 );
1771 self.next_frame.deferred_draws = deferred_draws;
1772 self.element_id_stack.clear();
1773 self.text_style_stack.clear();
1774 }
1775
1776 fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
1777 assert_eq!(self.element_id_stack.len(), 0);
1778
1779 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
1780 for deferred_draw_ix in deferred_draw_indices {
1781 let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
1782 self.element_id_stack
1783 .clone_from(&deferred_draw.element_id_stack);
1784 self.next_frame
1785 .dispatch_tree
1786 .set_active_node(deferred_draw.parent_node);
1787
1788 let paint_start = self.paint_index();
1789 if let Some(element) = deferred_draw.element.as_mut() {
1790 self.with_rendered_view(deferred_draw.current_view, |window| {
1791 element.paint(window, cx);
1792 })
1793 } else {
1794 self.reuse_paint(deferred_draw.paint_range.clone());
1795 }
1796 let paint_end = self.paint_index();
1797 deferred_draw.paint_range = paint_start..paint_end;
1798 }
1799 self.next_frame.deferred_draws = deferred_draws;
1800 self.element_id_stack.clear();
1801 }
1802
1803 pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
1804 PrepaintStateIndex {
1805 hitboxes_index: self.next_frame.hitboxes.len(),
1806 tooltips_index: self.next_frame.tooltip_requests.len(),
1807 deferred_draws_index: self.next_frame.deferred_draws.len(),
1808 dispatch_tree_index: self.next_frame.dispatch_tree.len(),
1809 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
1810 line_layout_index: self.text_system.layout_index(),
1811 }
1812 }
1813
1814 pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
1815 self.next_frame.hitboxes.extend(
1816 self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
1817 .iter()
1818 .cloned(),
1819 );
1820 self.next_frame.tooltip_requests.extend(
1821 self.rendered_frame.tooltip_requests
1822 [range.start.tooltips_index..range.end.tooltips_index]
1823 .iter_mut()
1824 .map(|request| request.take()),
1825 );
1826 self.next_frame.accessed_element_states.extend(
1827 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
1828 ..range.end.accessed_element_states_index]
1829 .iter()
1830 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
1831 );
1832 self.text_system
1833 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
1834
1835 let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
1836 range.start.dispatch_tree_index..range.end.dispatch_tree_index,
1837 &mut self.rendered_frame.dispatch_tree,
1838 self.focus,
1839 );
1840
1841 if reused_subtree.contains_focus() {
1842 self.next_frame.focus = self.focus;
1843 }
1844
1845 self.next_frame.deferred_draws.extend(
1846 self.rendered_frame.deferred_draws
1847 [range.start.deferred_draws_index..range.end.deferred_draws_index]
1848 .iter()
1849 .map(|deferred_draw| DeferredDraw {
1850 current_view: deferred_draw.current_view,
1851 parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
1852 element_id_stack: deferred_draw.element_id_stack.clone(),
1853 text_style_stack: deferred_draw.text_style_stack.clone(),
1854 priority: deferred_draw.priority,
1855 element: None,
1856 absolute_offset: deferred_draw.absolute_offset,
1857 prepaint_range: deferred_draw.prepaint_range.clone(),
1858 paint_range: deferred_draw.paint_range.clone(),
1859 }),
1860 );
1861 }
1862
1863 pub(crate) fn paint_index(&self) -> PaintIndex {
1864 PaintIndex {
1865 scene_index: self.next_frame.scene.len(),
1866 mouse_listeners_index: self.next_frame.mouse_listeners.len(),
1867 input_handlers_index: self.next_frame.input_handlers.len(),
1868 cursor_styles_index: self.next_frame.cursor_styles.len(),
1869 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
1870 line_layout_index: self.text_system.layout_index(),
1871 }
1872 }
1873
1874 pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
1875 self.next_frame.cursor_styles.extend(
1876 self.rendered_frame.cursor_styles
1877 [range.start.cursor_styles_index..range.end.cursor_styles_index]
1878 .iter()
1879 .cloned(),
1880 );
1881 self.next_frame.input_handlers.extend(
1882 self.rendered_frame.input_handlers
1883 [range.start.input_handlers_index..range.end.input_handlers_index]
1884 .iter_mut()
1885 .map(|handler| handler.take()),
1886 );
1887 self.next_frame.mouse_listeners.extend(
1888 self.rendered_frame.mouse_listeners
1889 [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
1890 .iter_mut()
1891 .map(|listener| listener.take()),
1892 );
1893 self.next_frame.accessed_element_states.extend(
1894 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
1895 ..range.end.accessed_element_states_index]
1896 .iter()
1897 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
1898 );
1899
1900 self.text_system
1901 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
1902 self.next_frame.scene.replay(
1903 range.start.scene_index..range.end.scene_index,
1904 &self.rendered_frame.scene,
1905 );
1906 }
1907
1908 /// Push a text style onto the stack, and call a function with that style active.
1909 /// Use [`Window::text_style`] to get the current, combined text style. This method
1910 /// should only be called as part of element drawing.
1911 pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
1912 where
1913 F: FnOnce(&mut Self) -> R,
1914 {
1915 self.invalidator.debug_assert_paint_or_prepaint();
1916 if let Some(style) = style {
1917 self.text_style_stack.push(style);
1918 let result = f(self);
1919 self.text_style_stack.pop();
1920 result
1921 } else {
1922 f(self)
1923 }
1924 }
1925
1926 /// Updates the cursor style at the platform level. This method should only be called
1927 /// during the prepaint phase of element drawing.
1928 pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
1929 self.invalidator.debug_assert_paint();
1930 self.next_frame.cursor_styles.push(CursorStyleRequest {
1931 hitbox_id: hitbox.id,
1932 style,
1933 });
1934 }
1935
1936 /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
1937 /// during the paint phase of element drawing.
1938 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
1939 self.invalidator.debug_assert_prepaint();
1940 let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
1941 self.next_frame
1942 .tooltip_requests
1943 .push(Some(TooltipRequest { id, tooltip }));
1944 id
1945 }
1946
1947 /// Invoke the given function with the given content mask after intersecting it
1948 /// with the current mask. This method should only be called during element drawing.
1949 pub fn with_content_mask<R>(
1950 &mut self,
1951 mask: Option<ContentMask<Pixels>>,
1952 f: impl FnOnce(&mut Self) -> R,
1953 ) -> R {
1954 self.invalidator.debug_assert_paint_or_prepaint();
1955 if let Some(mask) = mask {
1956 let mask = mask.intersect(&self.content_mask());
1957 self.content_mask_stack.push(mask);
1958 let result = f(self);
1959 self.content_mask_stack.pop();
1960 result
1961 } else {
1962 f(self)
1963 }
1964 }
1965
1966 /// Updates the global element offset relative to the current offset. This is used to implement
1967 /// scrolling. This method should only be called during the prepaint phase of element drawing.
1968 pub fn with_element_offset<R>(
1969 &mut self,
1970 offset: Point<Pixels>,
1971 f: impl FnOnce(&mut Self) -> R,
1972 ) -> R {
1973 self.invalidator.debug_assert_prepaint();
1974
1975 if offset.is_zero() {
1976 return f(self);
1977 };
1978
1979 let abs_offset = self.element_offset() + offset;
1980 self.with_absolute_element_offset(abs_offset, f)
1981 }
1982
1983 /// Updates the global element offset based on the given offset. This is used to implement
1984 /// drag handles and other manual painting of elements. This method should only be called during
1985 /// the prepaint phase of element drawing.
1986 pub fn with_absolute_element_offset<R>(
1987 &mut self,
1988 offset: Point<Pixels>,
1989 f: impl FnOnce(&mut Self) -> R,
1990 ) -> R {
1991 self.invalidator.debug_assert_prepaint();
1992 self.element_offset_stack.push(offset);
1993 let result = f(self);
1994 self.element_offset_stack.pop();
1995 result
1996 }
1997
1998 pub(crate) fn with_element_opacity<R>(
1999 &mut self,
2000 opacity: Option<f32>,
2001 f: impl FnOnce(&mut Self) -> R,
2002 ) -> R {
2003 if opacity.is_none() {
2004 return f(self);
2005 }
2006
2007 self.invalidator.debug_assert_paint_or_prepaint();
2008 self.element_opacity = opacity;
2009 let result = f(self);
2010 self.element_opacity = None;
2011 result
2012 }
2013
2014 /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2015 /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2016 /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2017 /// element offset and prepaint again. See [`List`] for an example. This method should only be
2018 /// called during the prepaint phase of element drawing.
2019 pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2020 self.invalidator.debug_assert_prepaint();
2021 let index = self.prepaint_index();
2022 let result = f(self);
2023 if result.is_err() {
2024 self.next_frame.hitboxes.truncate(index.hitboxes_index);
2025 self.next_frame
2026 .tooltip_requests
2027 .truncate(index.tooltips_index);
2028 self.next_frame
2029 .deferred_draws
2030 .truncate(index.deferred_draws_index);
2031 self.next_frame
2032 .dispatch_tree
2033 .truncate(index.dispatch_tree_index);
2034 self.next_frame
2035 .accessed_element_states
2036 .truncate(index.accessed_element_states_index);
2037 self.text_system.truncate_layouts(index.line_layout_index);
2038 }
2039 result
2040 }
2041
2042 /// When you call this method during [`prepaint`], containing elements will attempt to
2043 /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2044 /// [`prepaint`] again with a new set of bounds. See [`List`] for an example of an element
2045 /// that supports this method being called on the elements it contains. This method should only be
2046 /// called during the prepaint phase of element drawing.
2047 pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2048 self.invalidator.debug_assert_prepaint();
2049 self.requested_autoscroll = Some(bounds);
2050 }
2051
2052 /// This method can be called from a containing element such as [`List`] to support the autoscroll behavior
2053 /// described in [`request_autoscroll`].
2054 pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2055 self.invalidator.debug_assert_prepaint();
2056 self.requested_autoscroll.take()
2057 }
2058
2059 /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2060 /// Your view will be re-drawn once the asset has finished loading.
2061 ///
2062 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2063 /// time.
2064 pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2065 let (task, is_first) = cx.fetch_asset::<A>(source);
2066 task.clone().now_or_never().or_else(|| {
2067 if is_first {
2068 let entity = self.current_view();
2069 self.spawn(cx, {
2070 let task = task.clone();
2071 |mut cx| async move {
2072 task.await;
2073
2074 cx.on_next_frame(move |_, cx| {
2075 cx.notify(entity);
2076 });
2077 }
2078 })
2079 .detach();
2080 }
2081
2082 None
2083 })
2084 }
2085 /// Obtain the current element offset. This method should only be called during the
2086 /// prepaint phase of element drawing.
2087 pub fn element_offset(&self) -> Point<Pixels> {
2088 self.invalidator.debug_assert_prepaint();
2089 self.element_offset_stack
2090 .last()
2091 .copied()
2092 .unwrap_or_default()
2093 }
2094
2095 /// Obtain the current element opacity. This method should only be called during the
2096 /// prepaint phase of element drawing.
2097 pub(crate) fn element_opacity(&self) -> f32 {
2098 self.invalidator.debug_assert_paint_or_prepaint();
2099 self.element_opacity.unwrap_or(1.0)
2100 }
2101
2102 /// Obtain the current content mask. This method should only be called during element drawing.
2103 pub fn content_mask(&self) -> ContentMask<Pixels> {
2104 self.invalidator.debug_assert_paint_or_prepaint();
2105 self.content_mask_stack
2106 .last()
2107 .cloned()
2108 .unwrap_or_else(|| ContentMask {
2109 bounds: Bounds {
2110 origin: Point::default(),
2111 size: self.viewport_size,
2112 },
2113 })
2114 }
2115
2116 /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2117 /// This can be used within a custom element to distinguish multiple sets of child elements.
2118 pub fn with_element_namespace<R>(
2119 &mut self,
2120 element_id: impl Into<ElementId>,
2121 f: impl FnOnce(&mut Self) -> R,
2122 ) -> R {
2123 self.element_id_stack.push(element_id.into());
2124 let result = f(self);
2125 self.element_id_stack.pop();
2126 result
2127 }
2128
2129 /// Updates or initializes state for an element with the given id that lives across multiple
2130 /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2131 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2132 /// when drawing the next frame. This method should only be called as part of element drawing.
2133 pub fn with_element_state<S, R>(
2134 &mut self,
2135 global_id: &GlobalElementId,
2136 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2137 ) -> R
2138 where
2139 S: 'static,
2140 {
2141 self.invalidator.debug_assert_paint_or_prepaint();
2142
2143 let key = (GlobalElementId(global_id.0.clone()), TypeId::of::<S>());
2144 self.next_frame
2145 .accessed_element_states
2146 .push((GlobalElementId(key.0.clone()), TypeId::of::<S>()));
2147
2148 if let Some(any) = self
2149 .next_frame
2150 .element_states
2151 .remove(&key)
2152 .or_else(|| self.rendered_frame.element_states.remove(&key))
2153 {
2154 let ElementStateBox {
2155 inner,
2156 #[cfg(debug_assertions)]
2157 type_name,
2158 } = any;
2159 // Using the extra inner option to avoid needing to reallocate a new box.
2160 let mut state_box = inner
2161 .downcast::<Option<S>>()
2162 .map_err(|_| {
2163 #[cfg(debug_assertions)]
2164 {
2165 anyhow::anyhow!(
2166 "invalid element state type for id, requested {:?}, actual: {:?}",
2167 std::any::type_name::<S>(),
2168 type_name
2169 )
2170 }
2171
2172 #[cfg(not(debug_assertions))]
2173 {
2174 anyhow::anyhow!(
2175 "invalid element state type for id, requested {:?}",
2176 std::any::type_name::<S>(),
2177 )
2178 }
2179 })
2180 .unwrap();
2181
2182 let state = state_box.take().expect(
2183 "reentrant call to with_element_state for the same state type and element id",
2184 );
2185 let (result, state) = f(Some(state), self);
2186 state_box.replace(state);
2187 self.next_frame.element_states.insert(
2188 key,
2189 ElementStateBox {
2190 inner: state_box,
2191 #[cfg(debug_assertions)]
2192 type_name,
2193 },
2194 );
2195 result
2196 } else {
2197 let (result, state) = f(None, self);
2198 self.next_frame.element_states.insert(
2199 key,
2200 ElementStateBox {
2201 inner: Box::new(Some(state)),
2202 #[cfg(debug_assertions)]
2203 type_name: std::any::type_name::<S>(),
2204 },
2205 );
2206 result
2207 }
2208 }
2209
2210 /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2211 /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2212 /// when the element is guaranteed to have an id.
2213 ///
2214 /// The first option means 'no ID provided'
2215 /// The second option means 'not yet initialized'
2216 pub fn with_optional_element_state<S, R>(
2217 &mut self,
2218 global_id: Option<&GlobalElementId>,
2219 f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2220 ) -> R
2221 where
2222 S: 'static,
2223 {
2224 self.invalidator.debug_assert_paint_or_prepaint();
2225
2226 if let Some(global_id) = global_id {
2227 self.with_element_state(global_id, |state, cx| {
2228 let (result, state) = f(Some(state), cx);
2229 let state =
2230 state.expect("you must return some state when you pass some element id");
2231 (result, state)
2232 })
2233 } else {
2234 let (result, state) = f(None, self);
2235 debug_assert!(
2236 state.is_none(),
2237 "you must not return an element state when passing None for the global id"
2238 );
2239 result
2240 }
2241 }
2242
2243 /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2244 /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2245 /// with higher values being drawn on top.
2246 ///
2247 /// This method should only be called as part of the prepaint phase of element drawing.
2248 pub fn defer_draw(
2249 &mut self,
2250 element: AnyElement,
2251 absolute_offset: Point<Pixels>,
2252 priority: usize,
2253 ) {
2254 self.invalidator.debug_assert_prepaint();
2255 let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2256 self.next_frame.deferred_draws.push(DeferredDraw {
2257 current_view: self.current_view(),
2258 parent_node,
2259 element_id_stack: self.element_id_stack.clone(),
2260 text_style_stack: self.text_style_stack.clone(),
2261 priority,
2262 element: Some(element),
2263 absolute_offset,
2264 prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2265 paint_range: PaintIndex::default()..PaintIndex::default(),
2266 });
2267 }
2268
2269 /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2270 /// of geometry that are non-overlapping and have the same draw order. This is typically used
2271 /// for performance reasons.
2272 ///
2273 /// This method should only be called as part of the paint phase of element drawing.
2274 pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2275 self.invalidator.debug_assert_paint();
2276
2277 let scale_factor = self.scale_factor();
2278 let content_mask = self.content_mask();
2279 let clipped_bounds = bounds.intersect(&content_mask.bounds);
2280 if !clipped_bounds.is_empty() {
2281 self.next_frame
2282 .scene
2283 .push_layer(clipped_bounds.scale(scale_factor));
2284 }
2285
2286 let result = f(self);
2287
2288 if !clipped_bounds.is_empty() {
2289 self.next_frame.scene.pop_layer();
2290 }
2291
2292 result
2293 }
2294
2295 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2296 ///
2297 /// This method should only be called as part of the paint phase of element drawing.
2298 pub fn paint_shadows(
2299 &mut self,
2300 bounds: Bounds<Pixels>,
2301 corner_radii: Corners<Pixels>,
2302 shadows: &[BoxShadow],
2303 ) {
2304 self.invalidator.debug_assert_paint();
2305
2306 let scale_factor = self.scale_factor();
2307 let content_mask = self.content_mask();
2308 let opacity = self.element_opacity();
2309 for shadow in shadows {
2310 let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2311 self.next_frame.scene.insert_primitive(Shadow {
2312 order: 0,
2313 blur_radius: shadow.blur_radius.scale(scale_factor),
2314 bounds: shadow_bounds.scale(scale_factor),
2315 content_mask: content_mask.scale(scale_factor),
2316 corner_radii: corner_radii.scale(scale_factor),
2317 color: shadow.color.opacity(opacity),
2318 });
2319 }
2320 }
2321
2322 /// Paint one or more quads into the scene for the next frame at the current stacking context.
2323 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2324 /// see [`fill`](crate::fill), [`outline`](crate::outline), and [`quad`](crate::quad) to construct this type.
2325 ///
2326 /// This method should only be called as part of the paint phase of element drawing.
2327 pub fn paint_quad(&mut self, quad: PaintQuad) {
2328 self.invalidator.debug_assert_paint();
2329
2330 let scale_factor = self.scale_factor();
2331 let content_mask = self.content_mask();
2332 let opacity = self.element_opacity();
2333 self.next_frame.scene.insert_primitive(Quad {
2334 order: 0,
2335 pad: 0,
2336 bounds: quad.bounds.scale(scale_factor),
2337 content_mask: content_mask.scale(scale_factor),
2338 background: quad.background.opacity(opacity),
2339 border_color: quad.border_color.opacity(opacity),
2340 corner_radii: quad.corner_radii.scale(scale_factor),
2341 border_widths: quad.border_widths.scale(scale_factor),
2342 });
2343 }
2344
2345 /// Paint the given `Path` into the scene for the next frame at the current z-index.
2346 ///
2347 /// This method should only be called as part of the paint phase of element drawing.
2348 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2349 self.invalidator.debug_assert_paint();
2350
2351 let scale_factor = self.scale_factor();
2352 let content_mask = self.content_mask();
2353 let opacity = self.element_opacity();
2354 path.content_mask = content_mask;
2355 let color: Background = color.into();
2356 path.color = color.opacity(opacity);
2357 self.next_frame
2358 .scene
2359 .insert_primitive(path.scale(scale_factor));
2360 }
2361
2362 /// Paint an underline into the scene for the next frame at the current z-index.
2363 ///
2364 /// This method should only be called as part of the paint phase of element drawing.
2365 pub fn paint_underline(
2366 &mut self,
2367 origin: Point<Pixels>,
2368 width: Pixels,
2369 style: &UnderlineStyle,
2370 ) {
2371 self.invalidator.debug_assert_paint();
2372
2373 let scale_factor = self.scale_factor();
2374 let height = if style.wavy {
2375 style.thickness * 3.
2376 } else {
2377 style.thickness
2378 };
2379 let bounds = Bounds {
2380 origin,
2381 size: size(width, height),
2382 };
2383 let content_mask = self.content_mask();
2384 let element_opacity = self.element_opacity();
2385
2386 self.next_frame.scene.insert_primitive(Underline {
2387 order: 0,
2388 pad: 0,
2389 bounds: bounds.scale(scale_factor),
2390 content_mask: content_mask.scale(scale_factor),
2391 color: style.color.unwrap_or_default().opacity(element_opacity),
2392 thickness: style.thickness.scale(scale_factor),
2393 wavy: style.wavy,
2394 });
2395 }
2396
2397 /// Paint a strikethrough into the scene for the next frame at the current z-index.
2398 ///
2399 /// This method should only be called as part of the paint phase of element drawing.
2400 pub fn paint_strikethrough(
2401 &mut self,
2402 origin: Point<Pixels>,
2403 width: Pixels,
2404 style: &StrikethroughStyle,
2405 ) {
2406 self.invalidator.debug_assert_paint();
2407
2408 let scale_factor = self.scale_factor();
2409 let height = style.thickness;
2410 let bounds = Bounds {
2411 origin,
2412 size: size(width, height),
2413 };
2414 let content_mask = self.content_mask();
2415 let opacity = self.element_opacity();
2416
2417 self.next_frame.scene.insert_primitive(Underline {
2418 order: 0,
2419 pad: 0,
2420 bounds: bounds.scale(scale_factor),
2421 content_mask: content_mask.scale(scale_factor),
2422 thickness: style.thickness.scale(scale_factor),
2423 color: style.color.unwrap_or_default().opacity(opacity),
2424 wavy: false,
2425 });
2426 }
2427
2428 /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
2429 ///
2430 /// The y component of the origin is the baseline of the glyph.
2431 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2432 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2433 /// This method is only useful if you need to paint a single glyph that has already been shaped.
2434 ///
2435 /// This method should only be called as part of the paint phase of element drawing.
2436 pub fn paint_glyph(
2437 &mut self,
2438 origin: Point<Pixels>,
2439 font_id: FontId,
2440 glyph_id: GlyphId,
2441 font_size: Pixels,
2442 color: Hsla,
2443 ) -> Result<()> {
2444 self.invalidator.debug_assert_paint();
2445
2446 let element_opacity = self.element_opacity();
2447 let scale_factor = self.scale_factor();
2448 let glyph_origin = origin.scale(scale_factor);
2449 let subpixel_variant = Point {
2450 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2451 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2452 };
2453 let params = RenderGlyphParams {
2454 font_id,
2455 glyph_id,
2456 font_size,
2457 subpixel_variant,
2458 scale_factor,
2459 is_emoji: false,
2460 };
2461
2462 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2463 if !raster_bounds.is_zero() {
2464 let tile = self
2465 .sprite_atlas
2466 .get_or_insert_with(¶ms.clone().into(), &mut || {
2467 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2468 Ok(Some((size, Cow::Owned(bytes))))
2469 })?
2470 .expect("Callback above only errors or returns Some");
2471 let bounds = Bounds {
2472 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2473 size: tile.bounds.size.map(Into::into),
2474 };
2475 let content_mask = self.content_mask().scale(scale_factor);
2476 self.next_frame.scene.insert_primitive(MonochromeSprite {
2477 order: 0,
2478 pad: 0,
2479 bounds,
2480 content_mask,
2481 color: color.opacity(element_opacity),
2482 tile,
2483 transformation: TransformationMatrix::unit(),
2484 });
2485 }
2486 Ok(())
2487 }
2488
2489 /// Paints an emoji glyph into the scene for the next frame at the current z-index.
2490 ///
2491 /// The y component of the origin is the baseline of the glyph.
2492 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2493 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2494 /// This method is only useful if you need to paint a single emoji that has already been shaped.
2495 ///
2496 /// This method should only be called as part of the paint phase of element drawing.
2497 pub fn paint_emoji(
2498 &mut self,
2499 origin: Point<Pixels>,
2500 font_id: FontId,
2501 glyph_id: GlyphId,
2502 font_size: Pixels,
2503 ) -> Result<()> {
2504 self.invalidator.debug_assert_paint();
2505
2506 let scale_factor = self.scale_factor();
2507 let glyph_origin = origin.scale(scale_factor);
2508 let params = RenderGlyphParams {
2509 font_id,
2510 glyph_id,
2511 font_size,
2512 // We don't render emojis with subpixel variants.
2513 subpixel_variant: Default::default(),
2514 scale_factor,
2515 is_emoji: true,
2516 };
2517
2518 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2519 if !raster_bounds.is_zero() {
2520 let tile = self
2521 .sprite_atlas
2522 .get_or_insert_with(¶ms.clone().into(), &mut || {
2523 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2524 Ok(Some((size, Cow::Owned(bytes))))
2525 })?
2526 .expect("Callback above only errors or returns Some");
2527
2528 let bounds = Bounds {
2529 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2530 size: tile.bounds.size.map(Into::into),
2531 };
2532 let content_mask = self.content_mask().scale(scale_factor);
2533 let opacity = self.element_opacity();
2534
2535 self.next_frame.scene.insert_primitive(PolychromeSprite {
2536 order: 0,
2537 pad: 0,
2538 grayscale: false,
2539 bounds,
2540 corner_radii: Default::default(),
2541 content_mask,
2542 tile,
2543 opacity,
2544 });
2545 }
2546 Ok(())
2547 }
2548
2549 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
2550 ///
2551 /// This method should only be called as part of the paint phase of element drawing.
2552 pub fn paint_svg(
2553 &mut self,
2554 bounds: Bounds<Pixels>,
2555 path: SharedString,
2556 transformation: TransformationMatrix,
2557 color: Hsla,
2558 cx: &App,
2559 ) -> Result<()> {
2560 self.invalidator.debug_assert_paint();
2561
2562 let element_opacity = self.element_opacity();
2563 let scale_factor = self.scale_factor();
2564 let bounds = bounds.scale(scale_factor);
2565 let params = RenderSvgParams {
2566 path,
2567 size: bounds.size.map(|pixels| {
2568 DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
2569 }),
2570 };
2571
2572 let Some(tile) =
2573 self.sprite_atlas
2574 .get_or_insert_with(¶ms.clone().into(), &mut || {
2575 let Some(bytes) = cx.svg_renderer.render(¶ms)? else {
2576 return Ok(None);
2577 };
2578 Ok(Some((params.size, Cow::Owned(bytes))))
2579 })?
2580 else {
2581 return Ok(());
2582 };
2583 let content_mask = self.content_mask().scale(scale_factor);
2584
2585 self.next_frame.scene.insert_primitive(MonochromeSprite {
2586 order: 0,
2587 pad: 0,
2588 bounds: bounds
2589 .map_origin(|origin| origin.floor())
2590 .map_size(|size| size.ceil()),
2591 content_mask,
2592 color: color.opacity(element_opacity),
2593 tile,
2594 transformation,
2595 });
2596
2597 Ok(())
2598 }
2599
2600 /// Paint an image into the scene for the next frame at the current z-index.
2601 /// This method will panic if the frame_index is not valid
2602 ///
2603 /// This method should only be called as part of the paint phase of element drawing.
2604 pub fn paint_image(
2605 &mut self,
2606 bounds: Bounds<Pixels>,
2607 corner_radii: Corners<Pixels>,
2608 data: Arc<RenderImage>,
2609 frame_index: usize,
2610 grayscale: bool,
2611 ) -> Result<()> {
2612 self.invalidator.debug_assert_paint();
2613
2614 let scale_factor = self.scale_factor();
2615 let bounds = bounds.scale(scale_factor);
2616 let params = RenderImageParams {
2617 image_id: data.id,
2618 frame_index,
2619 };
2620
2621 let tile = self
2622 .sprite_atlas
2623 .get_or_insert_with(¶ms.clone().into(), &mut || {
2624 Ok(Some((
2625 data.size(frame_index),
2626 Cow::Borrowed(
2627 data.as_bytes(frame_index)
2628 .expect("It's the caller's job to pass a valid frame index"),
2629 ),
2630 )))
2631 })?
2632 .expect("Callback above only returns Some");
2633 let content_mask = self.content_mask().scale(scale_factor);
2634 let corner_radii = corner_radii.scale(scale_factor);
2635 let opacity = self.element_opacity();
2636
2637 self.next_frame.scene.insert_primitive(PolychromeSprite {
2638 order: 0,
2639 pad: 0,
2640 grayscale,
2641 bounds,
2642 content_mask,
2643 corner_radii,
2644 tile,
2645 opacity,
2646 });
2647 Ok(())
2648 }
2649
2650 /// Paint a surface into the scene for the next frame at the current z-index.
2651 ///
2652 /// This method should only be called as part of the paint phase of element drawing.
2653 #[cfg(target_os = "macos")]
2654 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVImageBuffer) {
2655 use crate::PaintSurface;
2656
2657 self.invalidator.debug_assert_paint();
2658
2659 let scale_factor = self.scale_factor();
2660 let bounds = bounds.scale(scale_factor);
2661 let content_mask = self.content_mask().scale(scale_factor);
2662 self.next_frame.scene.insert_primitive(PaintSurface {
2663 order: 0,
2664 bounds,
2665 content_mask,
2666 image_buffer,
2667 });
2668 }
2669
2670 /// Removes an image from the sprite atlas.
2671 pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
2672 for frame_index in 0..data.frame_count() {
2673 let params = RenderImageParams {
2674 image_id: data.id,
2675 frame_index,
2676 };
2677
2678 self.sprite_atlas.remove(¶ms.clone().into());
2679 }
2680
2681 Ok(())
2682 }
2683
2684 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
2685 /// layout is being requested, along with the layout ids of any children. This method is called during
2686 /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
2687 ///
2688 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
2689 #[must_use]
2690 pub fn request_layout(
2691 &mut self,
2692 style: Style,
2693 children: impl IntoIterator<Item = LayoutId>,
2694 cx: &mut App,
2695 ) -> LayoutId {
2696 self.invalidator.debug_assert_prepaint();
2697
2698 cx.layout_id_buffer.clear();
2699 cx.layout_id_buffer.extend(children);
2700 let rem_size = self.rem_size();
2701
2702 self.layout_engine
2703 .as_mut()
2704 .unwrap()
2705 .request_layout(style, rem_size, &cx.layout_id_buffer)
2706 }
2707
2708 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
2709 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
2710 /// determine the element's size. One place this is used internally is when measuring text.
2711 ///
2712 /// The given closure is invoked at layout time with the known dimensions and available space and
2713 /// returns a `Size`.
2714 ///
2715 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
2716 pub fn request_measured_layout<
2717 F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
2718 + 'static,
2719 >(
2720 &mut self,
2721 style: Style,
2722 measure: F,
2723 ) -> LayoutId {
2724 self.invalidator.debug_assert_prepaint();
2725
2726 let rem_size = self.rem_size();
2727 self.layout_engine
2728 .as_mut()
2729 .unwrap()
2730 .request_measured_layout(style, rem_size, measure)
2731 }
2732
2733 /// Compute the layout for the given id within the given available space.
2734 /// This method is called for its side effect, typically by the framework prior to painting.
2735 /// After calling it, you can request the bounds of the given layout node id or any descendant.
2736 ///
2737 /// This method should only be called as part of the prepaint phase of element drawing.
2738 pub fn compute_layout(
2739 &mut self,
2740 layout_id: LayoutId,
2741 available_space: Size<AvailableSpace>,
2742 cx: &mut App,
2743 ) {
2744 self.invalidator.debug_assert_prepaint();
2745
2746 let mut layout_engine = self.layout_engine.take().unwrap();
2747 layout_engine.compute_layout(layout_id, available_space, self, cx);
2748 self.layout_engine = Some(layout_engine);
2749 }
2750
2751 /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
2752 /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
2753 ///
2754 /// This method should only be called as part of element drawing.
2755 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
2756 self.invalidator.debug_assert_prepaint();
2757
2758 let mut bounds = self
2759 .layout_engine
2760 .as_mut()
2761 .unwrap()
2762 .layout_bounds(layout_id)
2763 .map(Into::into);
2764 bounds.origin += self.element_offset();
2765 bounds
2766 }
2767
2768 /// This method should be called during `prepaint`. You can use
2769 /// the returned [Hitbox] during `paint` or in an event handler
2770 /// to determine whether the inserted hitbox was the topmost.
2771 ///
2772 /// This method should only be called as part of the prepaint phase of element drawing.
2773 pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, opaque: bool) -> Hitbox {
2774 self.invalidator.debug_assert_prepaint();
2775
2776 let content_mask = self.content_mask();
2777 let id = self.next_hitbox_id;
2778 self.next_hitbox_id.0 += 1;
2779 let hitbox = Hitbox {
2780 id,
2781 bounds,
2782 content_mask,
2783 opaque,
2784 };
2785 self.next_frame.hitboxes.push(hitbox.clone());
2786 hitbox
2787 }
2788
2789 /// Sets the key context for the current element. This context will be used to translate
2790 /// keybindings into actions.
2791 ///
2792 /// This method should only be called as part of the paint phase of element drawing.
2793 pub fn set_key_context(&mut self, context: KeyContext) {
2794 self.invalidator.debug_assert_paint();
2795 self.next_frame.dispatch_tree.set_key_context(context);
2796 }
2797
2798 /// Sets the focus handle for the current element. This handle will be used to manage focus state
2799 /// and keyboard event dispatch for the element.
2800 ///
2801 /// This method should only be called as part of the prepaint phase of element drawing.
2802 pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
2803 self.invalidator.debug_assert_prepaint();
2804 if focus_handle.is_focused(self) {
2805 self.next_frame.focus = Some(focus_handle.id);
2806 }
2807 self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
2808 }
2809
2810 /// Sets the view id for the current element, which will be used to manage view caching.
2811 ///
2812 /// This method should only be called as part of element prepaint. We plan on removing this
2813 /// method eventually when we solve some issues that require us to construct editor elements
2814 /// directly instead of always using editors via views.
2815 pub fn set_view_id(&mut self, view_id: EntityId) {
2816 self.invalidator.debug_assert_prepaint();
2817 self.next_frame.dispatch_tree.set_view_id(view_id);
2818 }
2819
2820 /// Get the entity ID for the currently rendering view
2821 pub fn current_view(&self) -> EntityId {
2822 self.invalidator.debug_assert_paint_or_prepaint();
2823 self.rendered_entity_stack.last().copied().unwrap()
2824 }
2825
2826 pub(crate) fn with_rendered_view<R>(
2827 &mut self,
2828 id: EntityId,
2829 f: impl FnOnce(&mut Self) -> R,
2830 ) -> R {
2831 self.rendered_entity_stack.push(id);
2832 let result = f(self);
2833 self.rendered_entity_stack.pop();
2834 result
2835 }
2836
2837 /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
2838 /// platform to receive textual input with proper integration with concerns such
2839 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
2840 /// rendered.
2841 ///
2842 /// This method should only be called as part of the paint phase of element drawing.
2843 ///
2844 /// [element_input_handler]: crate::ElementInputHandler
2845 pub fn handle_input(
2846 &mut self,
2847 focus_handle: &FocusHandle,
2848 input_handler: impl InputHandler,
2849 cx: &App,
2850 ) {
2851 self.invalidator.debug_assert_paint();
2852
2853 if focus_handle.is_focused(self) {
2854 let cx = self.to_async(cx);
2855 self.next_frame
2856 .input_handlers
2857 .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
2858 }
2859 }
2860
2861 /// Register a mouse event listener on the window for the next frame. The type of event
2862 /// is determined by the first parameter of the given listener. When the next frame is rendered
2863 /// the listener will be cleared.
2864 ///
2865 /// This method should only be called as part of the paint phase of element drawing.
2866 pub fn on_mouse_event<Event: MouseEvent>(
2867 &mut self,
2868 mut handler: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
2869 ) {
2870 self.invalidator.debug_assert_paint();
2871
2872 self.next_frame.mouse_listeners.push(Some(Box::new(
2873 move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
2874 if let Some(event) = event.downcast_ref() {
2875 handler(event, phase, window, cx)
2876 }
2877 },
2878 )));
2879 }
2880
2881 /// Register a key event listener on the window for the next frame. The type of event
2882 /// is determined by the first parameter of the given listener. When the next frame is rendered
2883 /// the listener will be cleared.
2884 ///
2885 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
2886 /// a specific need to register a global listener.
2887 ///
2888 /// This method should only be called as part of the paint phase of element drawing.
2889 pub fn on_key_event<Event: KeyEvent>(
2890 &mut self,
2891 listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
2892 ) {
2893 self.invalidator.debug_assert_paint();
2894
2895 self.next_frame.dispatch_tree.on_key_event(Rc::new(
2896 move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
2897 if let Some(event) = event.downcast_ref::<Event>() {
2898 listener(event, phase, window, cx)
2899 }
2900 },
2901 ));
2902 }
2903
2904 /// Register a modifiers changed event listener on the window for the next frame.
2905 ///
2906 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
2907 /// a specific need to register a global listener.
2908 ///
2909 /// This method should only be called as part of the paint phase of element drawing.
2910 pub fn on_modifiers_changed(
2911 &mut self,
2912 listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
2913 ) {
2914 self.invalidator.debug_assert_paint();
2915
2916 self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
2917 move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
2918 listener(event, window, cx)
2919 },
2920 ));
2921 }
2922
2923 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
2924 /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
2925 /// Returns a subscription and persists until the subscription is dropped.
2926 pub fn on_focus_in(
2927 &mut self,
2928 handle: &FocusHandle,
2929 cx: &mut App,
2930 mut listener: impl FnMut(&mut Window, &mut App) + 'static,
2931 ) -> Subscription {
2932 let focus_id = handle.id;
2933 let (subscription, activate) =
2934 self.new_focus_listener(Box::new(move |event, window, cx| {
2935 if event.is_focus_in(focus_id) {
2936 listener(window, cx);
2937 }
2938 true
2939 }));
2940 cx.defer(move |_| activate());
2941 subscription
2942 }
2943
2944 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
2945 /// Returns a subscription and persists until the subscription is dropped.
2946 pub fn on_focus_out(
2947 &mut self,
2948 handle: &FocusHandle,
2949 cx: &mut App,
2950 mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
2951 ) -> Subscription {
2952 let focus_id = handle.id;
2953 let (subscription, activate) =
2954 self.new_focus_listener(Box::new(move |event, window, cx| {
2955 if let Some(blurred_id) = event.previous_focus_path.last().copied() {
2956 if event.is_focus_out(focus_id) {
2957 let event = FocusOutEvent {
2958 blurred: WeakFocusHandle {
2959 id: blurred_id,
2960 handles: Arc::downgrade(&cx.focus_handles),
2961 },
2962 };
2963 listener(event, window, cx)
2964 }
2965 }
2966 true
2967 }));
2968 cx.defer(move |_| activate());
2969 subscription
2970 }
2971
2972 fn reset_cursor_style(&self, cx: &mut App) {
2973 // Set the cursor only if we're the active window.
2974 if self.is_window_hovered() {
2975 let style = self
2976 .rendered_frame
2977 .cursor_styles
2978 .iter()
2979 .rev()
2980 .find(|request| request.hitbox_id.is_hovered(self))
2981 .map(|request| request.style)
2982 .unwrap_or(CursorStyle::Arrow);
2983 cx.platform.set_cursor_style(style);
2984 }
2985 }
2986
2987 /// Dispatch a given keystroke as though the user had typed it.
2988 /// You can create a keystroke with Keystroke::parse("").
2989 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
2990 let keystroke = keystroke.with_simulated_ime();
2991 let result = self.dispatch_event(
2992 PlatformInput::KeyDown(KeyDownEvent {
2993 keystroke: keystroke.clone(),
2994 is_held: false,
2995 }),
2996 cx,
2997 );
2998 if !result.propagate {
2999 return true;
3000 }
3001
3002 if let Some(input) = keystroke.key_char {
3003 if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3004 input_handler.dispatch_input(&input, self, cx);
3005 self.platform_window.set_input_handler(input_handler);
3006 return true;
3007 }
3008 }
3009
3010 false
3011 }
3012
3013 /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3014 /// binding for the action (last binding added to the keymap).
3015 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3016 self.bindings_for_action(action)
3017 .last()
3018 .map(|binding| {
3019 binding
3020 .keystrokes()
3021 .iter()
3022 .map(ToString::to_string)
3023 .collect::<Vec<_>>()
3024 .join(" ")
3025 })
3026 .unwrap_or_else(|| action.name().to_string())
3027 }
3028
3029 /// Dispatch a mouse or keyboard event on the window.
3030 #[profiling::function]
3031 pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3032 self.last_input_timestamp.set(Instant::now());
3033 // Handlers may set this to false by calling `stop_propagation`.
3034 cx.propagate_event = true;
3035 // Handlers may set this to true by calling `prevent_default`.
3036 self.default_prevented = false;
3037
3038 let event = match event {
3039 // Track the mouse position with our own state, since accessing the platform
3040 // API for the mouse position can only occur on the main thread.
3041 PlatformInput::MouseMove(mouse_move) => {
3042 self.mouse_position = mouse_move.position;
3043 self.modifiers = mouse_move.modifiers;
3044 PlatformInput::MouseMove(mouse_move)
3045 }
3046 PlatformInput::MouseDown(mouse_down) => {
3047 self.mouse_position = mouse_down.position;
3048 self.modifiers = mouse_down.modifiers;
3049 PlatformInput::MouseDown(mouse_down)
3050 }
3051 PlatformInput::MouseUp(mouse_up) => {
3052 self.mouse_position = mouse_up.position;
3053 self.modifiers = mouse_up.modifiers;
3054 PlatformInput::MouseUp(mouse_up)
3055 }
3056 PlatformInput::MouseExited(mouse_exited) => {
3057 self.modifiers = mouse_exited.modifiers;
3058 PlatformInput::MouseExited(mouse_exited)
3059 }
3060 PlatformInput::ModifiersChanged(modifiers_changed) => {
3061 self.modifiers = modifiers_changed.modifiers;
3062 PlatformInput::ModifiersChanged(modifiers_changed)
3063 }
3064 PlatformInput::ScrollWheel(scroll_wheel) => {
3065 self.mouse_position = scroll_wheel.position;
3066 self.modifiers = scroll_wheel.modifiers;
3067 PlatformInput::ScrollWheel(scroll_wheel)
3068 }
3069 // Translate dragging and dropping of external files from the operating system
3070 // to internal drag and drop events.
3071 PlatformInput::FileDrop(file_drop) => match file_drop {
3072 FileDropEvent::Entered { position, paths } => {
3073 self.mouse_position = position;
3074 if cx.active_drag.is_none() {
3075 cx.active_drag = Some(AnyDrag {
3076 value: Arc::new(paths.clone()),
3077 view: cx.new(|_| paths).into(),
3078 cursor_offset: position,
3079 });
3080 }
3081 PlatformInput::MouseMove(MouseMoveEvent {
3082 position,
3083 pressed_button: Some(MouseButton::Left),
3084 modifiers: Modifiers::default(),
3085 })
3086 }
3087 FileDropEvent::Pending { position } => {
3088 self.mouse_position = position;
3089 PlatformInput::MouseMove(MouseMoveEvent {
3090 position,
3091 pressed_button: Some(MouseButton::Left),
3092 modifiers: Modifiers::default(),
3093 })
3094 }
3095 FileDropEvent::Submit { position } => {
3096 cx.activate(true);
3097 self.mouse_position = position;
3098 PlatformInput::MouseUp(MouseUpEvent {
3099 button: MouseButton::Left,
3100 position,
3101 modifiers: Modifiers::default(),
3102 click_count: 1,
3103 })
3104 }
3105 FileDropEvent::Exited => {
3106 cx.active_drag.take();
3107 PlatformInput::FileDrop(FileDropEvent::Exited)
3108 }
3109 },
3110 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3111 };
3112
3113 if let Some(any_mouse_event) = event.mouse_event() {
3114 self.dispatch_mouse_event(any_mouse_event, cx);
3115 } else if let Some(any_key_event) = event.keyboard_event() {
3116 self.dispatch_key_event(any_key_event, cx);
3117 }
3118
3119 DispatchEventResult {
3120 propagate: cx.propagate_event,
3121 default_prevented: self.default_prevented,
3122 }
3123 }
3124
3125 fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3126 let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3127 if hit_test != self.mouse_hit_test {
3128 self.mouse_hit_test = hit_test;
3129 self.reset_cursor_style(cx);
3130 }
3131
3132 let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3133
3134 // Capture phase, events bubble from back to front. Handlers for this phase are used for
3135 // special purposes, such as detecting events outside of a given Bounds.
3136 for listener in &mut mouse_listeners {
3137 let listener = listener.as_mut().unwrap();
3138 listener(event, DispatchPhase::Capture, self, cx);
3139 if !cx.propagate_event {
3140 break;
3141 }
3142 }
3143
3144 // Bubble phase, where most normal handlers do their work.
3145 if cx.propagate_event {
3146 for listener in mouse_listeners.iter_mut().rev() {
3147 let listener = listener.as_mut().unwrap();
3148 listener(event, DispatchPhase::Bubble, self, cx);
3149 if !cx.propagate_event {
3150 break;
3151 }
3152 }
3153 }
3154
3155 self.rendered_frame.mouse_listeners = mouse_listeners;
3156
3157 if cx.has_active_drag() {
3158 if event.is::<MouseMoveEvent>() {
3159 // If this was a mouse move event, redraw the window so that the
3160 // active drag can follow the mouse cursor.
3161 self.refresh();
3162 } else if event.is::<MouseUpEvent>() {
3163 // If this was a mouse up event, cancel the active drag and redraw
3164 // the window.
3165 cx.active_drag = None;
3166 self.refresh();
3167 }
3168 }
3169 }
3170
3171 fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3172 if self.invalidator.is_dirty() {
3173 self.draw(cx);
3174 }
3175
3176 let node_id = self
3177 .focus
3178 .and_then(|focus_id| {
3179 self.rendered_frame
3180 .dispatch_tree
3181 .focusable_node_id(focus_id)
3182 })
3183 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
3184
3185 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3186
3187 let mut keystroke: Option<Keystroke> = None;
3188
3189 if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3190 if event.modifiers.number_of_modifiers() == 0
3191 && self.pending_modifier.modifiers.number_of_modifiers() == 1
3192 && !self.pending_modifier.saw_keystroke
3193 {
3194 let key = match self.pending_modifier.modifiers {
3195 modifiers if modifiers.shift => Some("shift"),
3196 modifiers if modifiers.control => Some("control"),
3197 modifiers if modifiers.alt => Some("alt"),
3198 modifiers if modifiers.platform => Some("platform"),
3199 modifiers if modifiers.function => Some("function"),
3200 _ => None,
3201 };
3202 if let Some(key) = key {
3203 keystroke = Some(Keystroke {
3204 key: key.to_string(),
3205 key_char: None,
3206 modifiers: Modifiers::default(),
3207 });
3208 }
3209 }
3210
3211 if self.pending_modifier.modifiers.number_of_modifiers() == 0
3212 && event.modifiers.number_of_modifiers() == 1
3213 {
3214 self.pending_modifier.saw_keystroke = false
3215 }
3216 self.pending_modifier.modifiers = event.modifiers
3217 } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3218 self.pending_modifier.saw_keystroke = true;
3219 keystroke = Some(key_down_event.keystroke.clone());
3220 }
3221
3222 let Some(keystroke) = keystroke else {
3223 self.finish_dispatch_key_event(event, dispatch_path, cx);
3224 return;
3225 };
3226
3227 let mut currently_pending = self.pending_input.take().unwrap_or_default();
3228 if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3229 currently_pending = PendingInput::default();
3230 }
3231
3232 let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3233 currently_pending.keystrokes,
3234 keystroke,
3235 &dispatch_path,
3236 );
3237 if !match_result.to_replay.is_empty() {
3238 self.replay_pending_input(match_result.to_replay, cx)
3239 }
3240
3241 if !match_result.pending.is_empty() {
3242 currently_pending.keystrokes = match_result.pending;
3243 currently_pending.focus = self.focus;
3244 currently_pending.timer = Some(self.spawn(cx, |mut cx| async move {
3245 cx.background_executor.timer(Duration::from_secs(1)).await;
3246 cx.update(move |window, cx| {
3247 let Some(currently_pending) = window
3248 .pending_input
3249 .take()
3250 .filter(|pending| pending.focus == window.focus)
3251 else {
3252 return;
3253 };
3254
3255 let dispatch_path = window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3256
3257 let to_replay = window
3258 .rendered_frame
3259 .dispatch_tree
3260 .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3261
3262 window.replay_pending_input(to_replay, cx)
3263 })
3264 .log_err();
3265 }));
3266 self.pending_input = Some(currently_pending);
3267 self.pending_input_changed(cx);
3268 cx.propagate_event = false;
3269 return;
3270 }
3271
3272 cx.propagate_event = true;
3273 for binding in match_result.bindings {
3274 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3275 if !cx.propagate_event {
3276 self.dispatch_keystroke_observers(event, Some(binding.action), cx);
3277 self.pending_input_changed(cx);
3278 return;
3279 }
3280 }
3281
3282 self.finish_dispatch_key_event(event, dispatch_path, cx);
3283 self.pending_input_changed(cx);
3284 }
3285
3286 fn finish_dispatch_key_event(
3287 &mut self,
3288 event: &dyn Any,
3289 dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3290 cx: &mut App,
3291 ) {
3292 self.dispatch_key_down_up_event(event, &dispatch_path, cx);
3293 if !cx.propagate_event {
3294 return;
3295 }
3296
3297 self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
3298 if !cx.propagate_event {
3299 return;
3300 }
3301
3302 self.dispatch_keystroke_observers(event, None, cx);
3303 }
3304
3305 fn pending_input_changed(&mut self, cx: &mut App) {
3306 self.pending_input_observers
3307 .clone()
3308 .retain(&(), |callback| callback(self, cx));
3309 }
3310
3311 fn dispatch_key_down_up_event(
3312 &mut self,
3313 event: &dyn Any,
3314 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3315 cx: &mut App,
3316 ) {
3317 // Capture phase
3318 for node_id in dispatch_path {
3319 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3320
3321 for key_listener in node.key_listeners.clone() {
3322 key_listener(event, DispatchPhase::Capture, self, cx);
3323 if !cx.propagate_event {
3324 return;
3325 }
3326 }
3327 }
3328
3329 // Bubble phase
3330 for node_id in dispatch_path.iter().rev() {
3331 // Handle low level key events
3332 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3333 for key_listener in node.key_listeners.clone() {
3334 key_listener(event, DispatchPhase::Bubble, self, cx);
3335 if !cx.propagate_event {
3336 return;
3337 }
3338 }
3339 }
3340 }
3341
3342 fn dispatch_modifiers_changed_event(
3343 &mut self,
3344 event: &dyn Any,
3345 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3346 cx: &mut App,
3347 ) {
3348 let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
3349 return;
3350 };
3351 for node_id in dispatch_path.iter().rev() {
3352 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3353 for listener in node.modifiers_changed_listeners.clone() {
3354 listener(event, self, cx);
3355 if !cx.propagate_event {
3356 return;
3357 }
3358 }
3359 }
3360 }
3361
3362 /// Determine whether a potential multi-stroke key binding is in progress on this window.
3363 pub fn has_pending_keystrokes(&self) -> bool {
3364 self.pending_input.is_some()
3365 }
3366
3367 pub(crate) fn clear_pending_keystrokes(&mut self) {
3368 self.pending_input.take();
3369 }
3370
3371 /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
3372 pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
3373 self.pending_input
3374 .as_ref()
3375 .map(|pending_input| pending_input.keystrokes.as_slice())
3376 }
3377
3378 fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
3379 let node_id = self
3380 .focus
3381 .and_then(|focus_id| {
3382 self.rendered_frame
3383 .dispatch_tree
3384 .focusable_node_id(focus_id)
3385 })
3386 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
3387
3388 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3389
3390 'replay: for replay in replays {
3391 let event = KeyDownEvent {
3392 keystroke: replay.keystroke.clone(),
3393 is_held: false,
3394 };
3395
3396 cx.propagate_event = true;
3397 for binding in replay.bindings {
3398 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3399 if !cx.propagate_event {
3400 self.dispatch_keystroke_observers(&event, Some(binding.action), cx);
3401 continue 'replay;
3402 }
3403 }
3404
3405 self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
3406 if !cx.propagate_event {
3407 continue 'replay;
3408 }
3409 if let Some(input) = replay.keystroke.key_char.as_ref().cloned() {
3410 if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3411 input_handler.dispatch_input(&input, self, cx);
3412 self.platform_window.set_input_handler(input_handler)
3413 }
3414 }
3415 }
3416 }
3417
3418 fn dispatch_action_on_node(
3419 &mut self,
3420 node_id: DispatchNodeId,
3421 action: &dyn Action,
3422 cx: &mut App,
3423 ) {
3424 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3425
3426 // Capture phase for global actions.
3427 cx.propagate_event = true;
3428 if let Some(mut global_listeners) = cx
3429 .global_action_listeners
3430 .remove(&action.as_any().type_id())
3431 {
3432 for listener in &global_listeners {
3433 listener(action.as_any(), DispatchPhase::Capture, cx);
3434 if !cx.propagate_event {
3435 break;
3436 }
3437 }
3438
3439 global_listeners.extend(
3440 cx.global_action_listeners
3441 .remove(&action.as_any().type_id())
3442 .unwrap_or_default(),
3443 );
3444
3445 cx.global_action_listeners
3446 .insert(action.as_any().type_id(), global_listeners);
3447 }
3448
3449 if !cx.propagate_event {
3450 return;
3451 }
3452
3453 // Capture phase for window actions.
3454 for node_id in &dispatch_path {
3455 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3456 for DispatchActionListener {
3457 action_type,
3458 listener,
3459 } in node.action_listeners.clone()
3460 {
3461 let any_action = action.as_any();
3462 if action_type == any_action.type_id() {
3463 listener(any_action, DispatchPhase::Capture, self, cx);
3464
3465 if !cx.propagate_event {
3466 return;
3467 }
3468 }
3469 }
3470 }
3471
3472 // Bubble phase for window actions.
3473 for node_id in dispatch_path.iter().rev() {
3474 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3475 for DispatchActionListener {
3476 action_type,
3477 listener,
3478 } in node.action_listeners.clone()
3479 {
3480 let any_action = action.as_any();
3481 if action_type == any_action.type_id() {
3482 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3483 listener(any_action, DispatchPhase::Bubble, self, cx);
3484
3485 if !cx.propagate_event {
3486 return;
3487 }
3488 }
3489 }
3490 }
3491
3492 // Bubble phase for global actions.
3493 if let Some(mut global_listeners) = cx
3494 .global_action_listeners
3495 .remove(&action.as_any().type_id())
3496 {
3497 for listener in global_listeners.iter().rev() {
3498 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3499
3500 listener(action.as_any(), DispatchPhase::Bubble, cx);
3501 if !cx.propagate_event {
3502 break;
3503 }
3504 }
3505
3506 global_listeners.extend(
3507 cx.global_action_listeners
3508 .remove(&action.as_any().type_id())
3509 .unwrap_or_default(),
3510 );
3511
3512 cx.global_action_listeners
3513 .insert(action.as_any().type_id(), global_listeners);
3514 }
3515 }
3516
3517 /// Register the given handler to be invoked whenever the global of the given type
3518 /// is updated.
3519 pub fn observe_global<G: Global>(
3520 &mut self,
3521 cx: &mut App,
3522 f: impl Fn(&mut Window, &mut App) + 'static,
3523 ) -> Subscription {
3524 let window_handle = self.handle;
3525 let (subscription, activate) = cx.global_observers.insert(
3526 TypeId::of::<G>(),
3527 Box::new(move |cx| {
3528 window_handle
3529 .update(cx, |_, window, cx| f(window, cx))
3530 .is_ok()
3531 }),
3532 );
3533 cx.defer(move |_| activate());
3534 subscription
3535 }
3536
3537 /// Focus the current window and bring it to the foreground at the platform level.
3538 pub fn activate_window(&self) {
3539 self.platform_window.activate();
3540 }
3541
3542 /// Minimize the current window at the platform level.
3543 pub fn minimize_window(&self) {
3544 self.platform_window.minimize();
3545 }
3546
3547 /// Toggle full screen status on the current window at the platform level.
3548 pub fn toggle_fullscreen(&self) {
3549 self.platform_window.toggle_fullscreen();
3550 }
3551
3552 /// Updates the IME panel position suggestions for languages like japanese, chinese.
3553 pub fn invalidate_character_coordinates(&self) {
3554 self.on_next_frame(|window, cx| {
3555 if let Some(mut input_handler) = window.platform_window.take_input_handler() {
3556 if let Some(bounds) = input_handler.selected_bounds(window, cx) {
3557 window
3558 .platform_window
3559 .update_ime_position(bounds.scale(window.scale_factor()));
3560 }
3561 window.platform_window.set_input_handler(input_handler);
3562 }
3563 });
3564 }
3565
3566 /// Present a platform dialog.
3567 /// The provided message will be presented, along with buttons for each answer.
3568 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
3569 pub fn prompt(
3570 &mut self,
3571 level: PromptLevel,
3572 message: &str,
3573 detail: Option<&str>,
3574 answers: &[&str],
3575 cx: &mut App,
3576 ) -> oneshot::Receiver<usize> {
3577 let prompt_builder = cx.prompt_builder.take();
3578 let Some(prompt_builder) = prompt_builder else {
3579 unreachable!("Re-entrant window prompting is not supported by GPUI");
3580 };
3581
3582 let receiver = match &prompt_builder {
3583 PromptBuilder::Default => self
3584 .platform_window
3585 .prompt(level, message, detail, answers)
3586 .unwrap_or_else(|| {
3587 self.build_custom_prompt(&prompt_builder, level, message, detail, answers, cx)
3588 }),
3589 PromptBuilder::Custom(_) => {
3590 self.build_custom_prompt(&prompt_builder, level, message, detail, answers, cx)
3591 }
3592 };
3593
3594 cx.prompt_builder = Some(prompt_builder);
3595
3596 receiver
3597 }
3598
3599 fn build_custom_prompt(
3600 &mut self,
3601 prompt_builder: &PromptBuilder,
3602 level: PromptLevel,
3603 message: &str,
3604 detail: Option<&str>,
3605 answers: &[&str],
3606 cx: &mut App,
3607 ) -> oneshot::Receiver<usize> {
3608 let (sender, receiver) = oneshot::channel();
3609 let handle = PromptHandle::new(sender);
3610 let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
3611 self.prompt = Some(handle);
3612 receiver
3613 }
3614
3615 /// Returns the current context stack.
3616 pub fn context_stack(&self) -> Vec<KeyContext> {
3617 let dispatch_tree = &self.rendered_frame.dispatch_tree;
3618 let node_id = self
3619 .focus
3620 .and_then(|focus_id| dispatch_tree.focusable_node_id(focus_id))
3621 .unwrap_or_else(|| dispatch_tree.root_node_id());
3622
3623 dispatch_tree
3624 .dispatch_path(node_id)
3625 .iter()
3626 .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
3627 .collect()
3628 }
3629
3630 /// Returns all available actions for the focused element.
3631 pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
3632 let node_id = self
3633 .focus
3634 .and_then(|focus_id| {
3635 self.rendered_frame
3636 .dispatch_tree
3637 .focusable_node_id(focus_id)
3638 })
3639 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
3640
3641 let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
3642 for action_type in cx.global_action_listeners.keys() {
3643 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
3644 let action = cx.actions.build_action_type(action_type).ok();
3645 if let Some(action) = action {
3646 actions.insert(ix, action);
3647 }
3648 }
3649 }
3650 actions
3651 }
3652
3653 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
3654 /// returned in the order they were added. For display, the last binding should take precedence.
3655 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
3656 self.rendered_frame
3657 .dispatch_tree
3658 .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
3659 }
3660
3661 /// Returns any bindings that would invoke an action on the given focus handle if it were
3662 /// focused. Bindings are returned in the order they were added. For display, the last binding
3663 /// should take precedence.
3664 pub fn bindings_for_action_in(
3665 &self,
3666 action: &dyn Action,
3667 focus_handle: &FocusHandle,
3668 ) -> Vec<KeyBinding> {
3669 let dispatch_tree = &self.rendered_frame.dispatch_tree;
3670
3671 let Some(node_id) = dispatch_tree.focusable_node_id(focus_handle.id) else {
3672 return vec![];
3673 };
3674 let context_stack: Vec<_> = dispatch_tree
3675 .dispatch_path(node_id)
3676 .into_iter()
3677 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
3678 .collect();
3679 dispatch_tree.bindings_for_action(action, &context_stack)
3680 }
3681
3682 /// Returns the key bindings for the given action in the given context.
3683 pub fn bindings_for_action_in_context(
3684 &self,
3685 action: &dyn Action,
3686 context: KeyContext,
3687 ) -> Vec<KeyBinding> {
3688 let dispatch_tree = &self.rendered_frame.dispatch_tree;
3689 dispatch_tree.bindings_for_action(action, &[context])
3690 }
3691
3692 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
3693 pub fn listener_for<V: Render, E>(
3694 &self,
3695 view: &Entity<V>,
3696 f: impl Fn(&mut V, &E, &mut Window, &mut Context<V>) + 'static,
3697 ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
3698 let view = view.downgrade();
3699 move |e: &E, window: &mut Window, cx: &mut App| {
3700 view.update(cx, |view, cx| f(view, e, window, cx)).ok();
3701 }
3702 }
3703
3704 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
3705 pub fn handler_for<V: Render>(
3706 &self,
3707 view: &Entity<V>,
3708 f: impl Fn(&mut V, &mut Window, &mut Context<V>) + 'static,
3709 ) -> impl Fn(&mut Window, &mut App) {
3710 let view = view.downgrade();
3711 move |window: &mut Window, cx: &mut App| {
3712 view.update(cx, |view, cx| f(view, window, cx)).ok();
3713 }
3714 }
3715
3716 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
3717 /// If the callback returns false, the window won't be closed.
3718 pub fn on_window_should_close(
3719 &self,
3720 cx: &App,
3721 f: impl Fn(&mut Window, &mut App) -> bool + 'static,
3722 ) {
3723 let mut cx = self.to_async(cx);
3724 self.platform_window.on_should_close(Box::new(move || {
3725 cx.update(|window, cx| f(window, cx)).unwrap_or(true)
3726 }))
3727 }
3728
3729 /// Register an action listener on the window for the next frame. The type of action
3730 /// is determined by the first parameter of the given listener. When the next frame is rendered
3731 /// the listener will be cleared.
3732 ///
3733 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
3734 /// a specific need to register a global listener.
3735 pub fn on_action(
3736 &mut self,
3737 action_type: TypeId,
3738 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
3739 ) {
3740 self.next_frame
3741 .dispatch_tree
3742 .on_action(action_type, Rc::new(listener));
3743 }
3744
3745 /// Read information about the GPU backing this window.
3746 /// Currently returns None on Mac and Windows.
3747 pub fn gpu_specs(&self) -> Option<GpuSpecs> {
3748 self.platform_window.gpu_specs()
3749 }
3750}
3751
3752// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
3753slotmap::new_key_type! {
3754 /// A unique identifier for a window.
3755 pub struct WindowId;
3756}
3757
3758impl WindowId {
3759 /// Converts this window ID to a `u64`.
3760 pub fn as_u64(&self) -> u64 {
3761 self.0.as_ffi()
3762 }
3763}
3764
3765impl From<u64> for WindowId {
3766 fn from(value: u64) -> Self {
3767 WindowId(slotmap::KeyData::from_ffi(value))
3768 }
3769}
3770
3771/// A handle to a window with a specific root view type.
3772/// Note that this does not keep the window alive on its own.
3773#[derive(Deref, DerefMut)]
3774pub struct WindowHandle<V> {
3775 #[deref]
3776 #[deref_mut]
3777 pub(crate) any_handle: AnyWindowHandle,
3778 state_type: PhantomData<V>,
3779}
3780
3781impl<V: 'static + Render> WindowHandle<V> {
3782 /// Creates a new handle from a window ID.
3783 /// This does not check if the root type of the window is `V`.
3784 pub fn new(id: WindowId) -> Self {
3785 WindowHandle {
3786 any_handle: AnyWindowHandle {
3787 id,
3788 state_type: TypeId::of::<V>(),
3789 },
3790 state_type: PhantomData,
3791 }
3792 }
3793
3794 /// Get the root view out of this window.
3795 ///
3796 /// This will fail if the window is closed or if the root view's type does not match `V`.
3797 #[cfg(any(test, feature = "test-support"))]
3798 pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
3799 where
3800 C: AppContext,
3801 {
3802 crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
3803 root_view
3804 .downcast::<V>()
3805 .map_err(|_| anyhow!("the type of the window's root view has changed"))
3806 }))
3807 }
3808
3809 /// Updates the root view of this window.
3810 ///
3811 /// This will fail if the window has been closed or if the root view's type does not match
3812 pub fn update<C, R>(
3813 &self,
3814 cx: &mut C,
3815 update: impl FnOnce(&mut V, &mut Window, &mut Context<'_, V>) -> R,
3816 ) -> Result<R>
3817 where
3818 C: AppContext,
3819 {
3820 cx.update_window(self.any_handle, |root_view, window, cx| {
3821 let view = root_view
3822 .downcast::<V>()
3823 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
3824
3825 Ok(view.update(cx, |view, cx| update(view, window, cx)))
3826 })?
3827 }
3828
3829 /// Read the root view out of this window.
3830 ///
3831 /// This will fail if the window is closed or if the root view's type does not match `V`.
3832 pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
3833 let x = cx
3834 .windows
3835 .get(self.id)
3836 .and_then(|window| {
3837 window
3838 .as_ref()
3839 .and_then(|window| window.root.clone())
3840 .map(|root_view| root_view.downcast::<V>())
3841 })
3842 .ok_or_else(|| anyhow!("window not found"))?
3843 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
3844
3845 Ok(x.read(cx))
3846 }
3847
3848 /// Read the root view out of this window, with a callback
3849 ///
3850 /// This will fail if the window is closed or if the root view's type does not match `V`.
3851 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
3852 where
3853 C: AppContext,
3854 {
3855 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
3856 }
3857
3858 /// Read the root view pointer off of this window.
3859 ///
3860 /// This will fail if the window is closed or if the root view's type does not match `V`.
3861 pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
3862 where
3863 C: AppContext,
3864 {
3865 cx.read_window(self, |root_view, _cx| root_view.clone())
3866 }
3867
3868 /// Check if this window is 'active'.
3869 ///
3870 /// Will return `None` if the window is closed or currently
3871 /// borrowed.
3872 pub fn is_active(&self, cx: &mut App) -> Option<bool> {
3873 cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
3874 .ok()
3875 }
3876}
3877
3878impl<V> Copy for WindowHandle<V> {}
3879
3880impl<V> Clone for WindowHandle<V> {
3881 fn clone(&self) -> Self {
3882 *self
3883 }
3884}
3885
3886impl<V> PartialEq for WindowHandle<V> {
3887 fn eq(&self, other: &Self) -> bool {
3888 self.any_handle == other.any_handle
3889 }
3890}
3891
3892impl<V> Eq for WindowHandle<V> {}
3893
3894impl<V> Hash for WindowHandle<V> {
3895 fn hash<H: Hasher>(&self, state: &mut H) {
3896 self.any_handle.hash(state);
3897 }
3898}
3899
3900impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
3901 fn from(val: WindowHandle<V>) -> Self {
3902 val.any_handle
3903 }
3904}
3905
3906unsafe impl<V> Send for WindowHandle<V> {}
3907unsafe impl<V> Sync for WindowHandle<V> {}
3908
3909/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
3910#[derive(Copy, Clone, PartialEq, Eq, Hash)]
3911pub struct AnyWindowHandle {
3912 pub(crate) id: WindowId,
3913 state_type: TypeId,
3914}
3915
3916impl AnyWindowHandle {
3917 /// Get the ID of this window.
3918 pub fn window_id(&self) -> WindowId {
3919 self.id
3920 }
3921
3922 /// Attempt to convert this handle to a window handle with a specific root view type.
3923 /// If the types do not match, this will return `None`.
3924 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
3925 if TypeId::of::<T>() == self.state_type {
3926 Some(WindowHandle {
3927 any_handle: *self,
3928 state_type: PhantomData,
3929 })
3930 } else {
3931 None
3932 }
3933 }
3934
3935 /// Updates the state of the root view of this window.
3936 ///
3937 /// This will fail if the window has been closed.
3938 pub fn update<C, R>(
3939 self,
3940 cx: &mut C,
3941 update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
3942 ) -> Result<R>
3943 where
3944 C: AppContext,
3945 {
3946 cx.update_window(self, update)
3947 }
3948
3949 /// Read the state of the root view of this window.
3950 ///
3951 /// This will fail if the window has been closed.
3952 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
3953 where
3954 C: AppContext,
3955 T: 'static,
3956 {
3957 let view = self
3958 .downcast::<T>()
3959 .context("the type of the window's root view has changed")?;
3960
3961 cx.read_window(&view, read)
3962 }
3963}
3964
3965impl HasWindowHandle for Window {
3966 fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
3967 self.platform_window.window_handle()
3968 }
3969}
3970
3971/// An identifier for an [`Element`](crate::Element).
3972///
3973/// Can be constructed with a string, a number, or both, as well
3974/// as other internal representations.
3975#[derive(Clone, Debug, Eq, PartialEq, Hash)]
3976pub enum ElementId {
3977 /// The ID of a View element
3978 View(EntityId),
3979 /// An integer ID.
3980 Integer(usize),
3981 /// A string based ID.
3982 Name(SharedString),
3983 /// A UUID.
3984 Uuid(Uuid),
3985 /// An ID that's equated with a focus handle.
3986 FocusHandle(FocusId),
3987 /// A combination of a name and an integer.
3988 NamedInteger(SharedString, usize),
3989 /// A path
3990 Path(Arc<std::path::Path>),
3991}
3992
3993impl Display for ElementId {
3994 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
3995 match self {
3996 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
3997 ElementId::Integer(ix) => write!(f, "{}", ix)?,
3998 ElementId::Name(name) => write!(f, "{}", name)?,
3999 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
4000 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
4001 ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
4002 ElementId::Path(path) => write!(f, "{}", path.display())?,
4003 }
4004
4005 Ok(())
4006 }
4007}
4008
4009impl TryInto<SharedString> for ElementId {
4010 type Error = anyhow::Error;
4011
4012 fn try_into(self) -> anyhow::Result<SharedString> {
4013 if let ElementId::Name(name) = self {
4014 Ok(name)
4015 } else {
4016 Err(anyhow!("element id is not string"))
4017 }
4018 }
4019}
4020
4021impl From<usize> for ElementId {
4022 fn from(id: usize) -> Self {
4023 ElementId::Integer(id)
4024 }
4025}
4026
4027impl From<i32> for ElementId {
4028 fn from(id: i32) -> Self {
4029 Self::Integer(id as usize)
4030 }
4031}
4032
4033impl From<SharedString> for ElementId {
4034 fn from(name: SharedString) -> Self {
4035 ElementId::Name(name)
4036 }
4037}
4038
4039impl From<Arc<std::path::Path>> for ElementId {
4040 fn from(path: Arc<std::path::Path>) -> Self {
4041 ElementId::Path(path)
4042 }
4043}
4044
4045impl From<&'static str> for ElementId {
4046 fn from(name: &'static str) -> Self {
4047 ElementId::Name(name.into())
4048 }
4049}
4050
4051impl<'a> From<&'a FocusHandle> for ElementId {
4052 fn from(handle: &'a FocusHandle) -> Self {
4053 ElementId::FocusHandle(handle.id)
4054 }
4055}
4056
4057impl From<(&'static str, EntityId)> for ElementId {
4058 fn from((name, id): (&'static str, EntityId)) -> Self {
4059 ElementId::NamedInteger(name.into(), id.as_u64() as usize)
4060 }
4061}
4062
4063impl From<(&'static str, usize)> for ElementId {
4064 fn from((name, id): (&'static str, usize)) -> Self {
4065 ElementId::NamedInteger(name.into(), id)
4066 }
4067}
4068
4069impl From<(SharedString, usize)> for ElementId {
4070 fn from((name, id): (SharedString, usize)) -> Self {
4071 ElementId::NamedInteger(name, id)
4072 }
4073}
4074
4075impl From<(&'static str, u64)> for ElementId {
4076 fn from((name, id): (&'static str, u64)) -> Self {
4077 ElementId::NamedInteger(name.into(), id as usize)
4078 }
4079}
4080
4081impl From<Uuid> for ElementId {
4082 fn from(value: Uuid) -> Self {
4083 Self::Uuid(value)
4084 }
4085}
4086
4087impl From<(&'static str, u32)> for ElementId {
4088 fn from((name, id): (&'static str, u32)) -> Self {
4089 ElementId::NamedInteger(name.into(), id as usize)
4090 }
4091}
4092
4093/// A rectangle to be rendered in the window at the given position and size.
4094/// Passed as an argument [`Window::paint_quad`].
4095#[derive(Clone)]
4096pub struct PaintQuad {
4097 /// The bounds of the quad within the window.
4098 pub bounds: Bounds<Pixels>,
4099 /// The radii of the quad's corners.
4100 pub corner_radii: Corners<Pixels>,
4101 /// The background color of the quad.
4102 pub background: Background,
4103 /// The widths of the quad's borders.
4104 pub border_widths: Edges<Pixels>,
4105 /// The color of the quad's borders.
4106 pub border_color: Hsla,
4107}
4108
4109impl PaintQuad {
4110 /// Sets the corner radii of the quad.
4111 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
4112 PaintQuad {
4113 corner_radii: corner_radii.into(),
4114 ..self
4115 }
4116 }
4117
4118 /// Sets the border widths of the quad.
4119 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
4120 PaintQuad {
4121 border_widths: border_widths.into(),
4122 ..self
4123 }
4124 }
4125
4126 /// Sets the border color of the quad.
4127 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
4128 PaintQuad {
4129 border_color: border_color.into(),
4130 ..self
4131 }
4132 }
4133
4134 /// Sets the background color of the quad.
4135 pub fn background(self, background: impl Into<Background>) -> Self {
4136 PaintQuad {
4137 background: background.into(),
4138 ..self
4139 }
4140 }
4141}
4142
4143/// Creates a quad with the given parameters.
4144pub fn quad(
4145 bounds: Bounds<Pixels>,
4146 corner_radii: impl Into<Corners<Pixels>>,
4147 background: impl Into<Background>,
4148 border_widths: impl Into<Edges<Pixels>>,
4149 border_color: impl Into<Hsla>,
4150) -> PaintQuad {
4151 PaintQuad {
4152 bounds,
4153 corner_radii: corner_radii.into(),
4154 background: background.into(),
4155 border_widths: border_widths.into(),
4156 border_color: border_color.into(),
4157 }
4158}
4159
4160/// Creates a filled quad with the given bounds and background color.
4161pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
4162 PaintQuad {
4163 bounds: bounds.into(),
4164 corner_radii: (0.).into(),
4165 background: background.into(),
4166 border_widths: (0.).into(),
4167 border_color: transparent_black(),
4168 }
4169}
4170
4171/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
4172pub fn outline(bounds: impl Into<Bounds<Pixels>>, border_color: impl Into<Hsla>) -> PaintQuad {
4173 PaintQuad {
4174 bounds: bounds.into(),
4175 corner_radii: (0.).into(),
4176 background: transparent_black().into(),
4177 border_widths: (1.).into(),
4178 border_color: border_color.into(),
4179 }
4180}