1#[cfg(any(feature = "inspector", debug_assertions))]
2use crate::Inspector;
3use crate::{
4 Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
5 AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Capslock,
6 Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
7 DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
8 FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
9 KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
10 LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
11 MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
12 PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptButton, PromptLevel, Quad,
13 Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge,
14 SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS_X, SUBPIXEL_VARIANTS_Y, ScaledPixels, Scene, Shadow,
15 SharedString, Size, StrikethroughStyle, Style, SubscriberSet, Subscription, SystemWindowTab,
16 SystemWindowTabController, TabStopMap, TaffyLayoutEngine, Task, TextStyle, TextStyleRefinement,
17 TransformationMatrix, Underline, UnderlineStyle, WindowAppearance, WindowBackgroundAppearance,
18 WindowBounds, WindowControls, WindowDecorations, WindowOptions, WindowParams, WindowTextSystem,
19 point, prelude::*, px, rems, size, transparent_black,
20};
21use anyhow::{Context as _, Result, anyhow};
22use collections::{FxHashMap, FxHashSet};
23#[cfg(target_os = "macos")]
24use core_video::pixel_buffer::CVPixelBuffer;
25use derive_more::{Deref, DerefMut};
26use futures::FutureExt;
27use futures::channel::oneshot;
28use itertools::FoldWhile::{Continue, Done};
29use itertools::Itertools;
30use parking_lot::RwLock;
31use raw_window_handle::{HandleError, HasDisplayHandle, HasWindowHandle};
32use refineable::Refineable;
33use slotmap::SlotMap;
34use smallvec::SmallVec;
35use std::{
36 any::{Any, TypeId},
37 borrow::Cow,
38 cell::{Cell, RefCell},
39 cmp,
40 fmt::{Debug, Display},
41 hash::{Hash, Hasher},
42 marker::PhantomData,
43 mem,
44 ops::{DerefMut, Range},
45 rc::Rc,
46 sync::{
47 Arc, Weak,
48 atomic::{AtomicUsize, Ordering::SeqCst},
49 },
50 time::{Duration, Instant},
51};
52use util::post_inc;
53use util::{ResultExt, measure};
54use uuid::Uuid;
55
56mod prompts;
57
58use crate::util::atomic_incr_if_not_zero;
59pub use prompts::*;
60
61pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1536.), px(864.));
62
63/// A 6:5 aspect ratio minimum window size to be used for functional,
64/// additional-to-main-Zed windows, like the settings and rules library windows.
65pub const DEFAULT_ADDITIONAL_WINDOW_SIZE: Size<Pixels> = Size {
66 width: Pixels(900.),
67 height: Pixels(750.),
68};
69
70/// Represents the two different phases when dispatching events.
71#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
72pub enum DispatchPhase {
73 /// After the capture phase comes the bubble phase, in which mouse event listeners are
74 /// invoked front to back and keyboard event listeners are invoked from the focused element
75 /// to the root of the element tree. This is the phase you'll most commonly want to use when
76 /// registering event listeners.
77 #[default]
78 Bubble,
79 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
80 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
81 /// is used for special purposes such as clearing the "pressed" state for click events. If
82 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
83 /// outside of the immediate region may rely on detecting non-local events during this phase.
84 Capture,
85}
86
87impl DispatchPhase {
88 /// Returns true if this represents the "bubble" phase.
89 #[inline]
90 pub fn bubble(self) -> bool {
91 self == DispatchPhase::Bubble
92 }
93
94 /// Returns true if this represents the "capture" phase.
95 #[inline]
96 pub fn capture(self) -> bool {
97 self == DispatchPhase::Capture
98 }
99}
100
101struct WindowInvalidatorInner {
102 pub dirty: bool,
103 pub draw_phase: DrawPhase,
104 pub dirty_views: FxHashSet<EntityId>,
105}
106
107#[derive(Clone)]
108pub(crate) struct WindowInvalidator {
109 inner: Rc<RefCell<WindowInvalidatorInner>>,
110}
111
112impl WindowInvalidator {
113 pub fn new() -> Self {
114 WindowInvalidator {
115 inner: Rc::new(RefCell::new(WindowInvalidatorInner {
116 dirty: true,
117 draw_phase: DrawPhase::None,
118 dirty_views: FxHashSet::default(),
119 })),
120 }
121 }
122
123 pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
124 let mut inner = self.inner.borrow_mut();
125 inner.dirty_views.insert(entity);
126 if inner.draw_phase == DrawPhase::None {
127 inner.dirty = true;
128 cx.push_effect(Effect::Notify { emitter: entity });
129 true
130 } else {
131 false
132 }
133 }
134
135 pub fn is_dirty(&self) -> bool {
136 self.inner.borrow().dirty
137 }
138
139 pub fn set_dirty(&self, dirty: bool) {
140 self.inner.borrow_mut().dirty = dirty
141 }
142
143 pub fn set_phase(&self, phase: DrawPhase) {
144 self.inner.borrow_mut().draw_phase = phase
145 }
146
147 pub fn take_views(&self) -> FxHashSet<EntityId> {
148 mem::take(&mut self.inner.borrow_mut().dirty_views)
149 }
150
151 pub fn replace_views(&self, views: FxHashSet<EntityId>) {
152 self.inner.borrow_mut().dirty_views = views;
153 }
154
155 pub fn not_drawing(&self) -> bool {
156 self.inner.borrow().draw_phase == DrawPhase::None
157 }
158
159 #[track_caller]
160 pub fn debug_assert_paint(&self) {
161 debug_assert!(
162 matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
163 "this method can only be called during paint"
164 );
165 }
166
167 #[track_caller]
168 pub fn debug_assert_prepaint(&self) {
169 debug_assert!(
170 matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
171 "this method can only be called during request_layout, or prepaint"
172 );
173 }
174
175 #[track_caller]
176 pub fn debug_assert_paint_or_prepaint(&self) {
177 debug_assert!(
178 matches!(
179 self.inner.borrow().draw_phase,
180 DrawPhase::Paint | DrawPhase::Prepaint
181 ),
182 "this method can only be called during request_layout, prepaint, or paint"
183 );
184 }
185}
186
187type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
188
189pub(crate) type AnyWindowFocusListener =
190 Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
191
192pub(crate) struct WindowFocusEvent {
193 pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
194 pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
195}
196
197impl WindowFocusEvent {
198 pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
199 !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
200 }
201
202 pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
203 self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
204 }
205}
206
207/// This is provided when subscribing for `Context::on_focus_out` events.
208pub struct FocusOutEvent {
209 /// A weak focus handle representing what was blurred.
210 pub blurred: WeakFocusHandle,
211}
212
213slotmap::new_key_type! {
214 /// A globally unique identifier for a focusable element.
215 pub struct FocusId;
216}
217
218thread_local! {
219 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(1024 * 1024));
220}
221
222/// Returned when the element arena has been used and so must be cleared before the next draw.
223#[must_use]
224pub struct ArenaClearNeeded;
225
226impl ArenaClearNeeded {
227 /// Clear the element arena.
228 pub fn clear(self) {
229 ELEMENT_ARENA.with_borrow_mut(|element_arena| {
230 element_arena.clear();
231 });
232 }
233}
234
235pub(crate) type FocusMap = RwLock<SlotMap<FocusId, FocusRef>>;
236pub(crate) struct FocusRef {
237 pub(crate) ref_count: AtomicUsize,
238 pub(crate) tab_index: isize,
239 pub(crate) tab_stop: bool,
240}
241
242impl FocusId {
243 /// Obtains whether the element associated with this handle is currently focused.
244 pub fn is_focused(&self, window: &Window) -> bool {
245 window.focus == Some(*self)
246 }
247
248 /// Obtains whether the element associated with this handle contains the focused
249 /// element or is itself focused.
250 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
251 window
252 .focused(cx)
253 .is_some_and(|focused| self.contains(focused.id, window))
254 }
255
256 /// Obtains whether the element associated with this handle is contained within the
257 /// focused element or is itself focused.
258 pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
259 let focused = window.focused(cx);
260 focused.is_some_and(|focused| focused.id.contains(*self, window))
261 }
262
263 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
264 pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
265 window
266 .rendered_frame
267 .dispatch_tree
268 .focus_contains(*self, other)
269 }
270}
271
272/// A handle which can be used to track and manipulate the focused element in a window.
273pub struct FocusHandle {
274 pub(crate) id: FocusId,
275 handles: Arc<FocusMap>,
276 /// The index of this element in the tab order.
277 pub tab_index: isize,
278 /// Whether this element can be focused by tab navigation.
279 pub tab_stop: bool,
280}
281
282impl std::fmt::Debug for FocusHandle {
283 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
284 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
285 }
286}
287
288impl FocusHandle {
289 pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
290 let id = handles.write().insert(FocusRef {
291 ref_count: AtomicUsize::new(1),
292 tab_index: 0,
293 tab_stop: false,
294 });
295
296 Self {
297 id,
298 tab_index: 0,
299 tab_stop: false,
300 handles: handles.clone(),
301 }
302 }
303
304 pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
305 let lock = handles.read();
306 let focus = lock.get(id)?;
307 if atomic_incr_if_not_zero(&focus.ref_count) == 0 {
308 return None;
309 }
310 Some(Self {
311 id,
312 tab_index: focus.tab_index,
313 tab_stop: focus.tab_stop,
314 handles: handles.clone(),
315 })
316 }
317
318 /// Sets the tab index of the element associated with this handle.
319 pub fn tab_index(mut self, index: isize) -> Self {
320 self.tab_index = index;
321 if let Some(focus) = self.handles.write().get_mut(self.id) {
322 focus.tab_index = index;
323 }
324 self
325 }
326
327 /// Sets whether the element associated with this handle is a tab stop.
328 ///
329 /// When `false`, the element will not be included in the tab order.
330 pub fn tab_stop(mut self, tab_stop: bool) -> Self {
331 self.tab_stop = tab_stop;
332 if let Some(focus) = self.handles.write().get_mut(self.id) {
333 focus.tab_stop = tab_stop;
334 }
335 self
336 }
337
338 /// Converts this focus handle into a weak variant, which does not prevent it from being released.
339 pub fn downgrade(&self) -> WeakFocusHandle {
340 WeakFocusHandle {
341 id: self.id,
342 handles: Arc::downgrade(&self.handles),
343 }
344 }
345
346 /// Moves the focus to the element associated with this handle.
347 pub fn focus(&self, window: &mut Window) {
348 window.focus(self)
349 }
350
351 /// Obtains whether the element associated with this handle is currently focused.
352 pub fn is_focused(&self, window: &Window) -> bool {
353 self.id.is_focused(window)
354 }
355
356 /// Obtains whether the element associated with this handle contains the focused
357 /// element or is itself focused.
358 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
359 self.id.contains_focused(window, cx)
360 }
361
362 /// Obtains whether the element associated with this handle is contained within the
363 /// focused element or is itself focused.
364 pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
365 self.id.within_focused(window, cx)
366 }
367
368 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
369 pub fn contains(&self, other: &Self, window: &Window) -> bool {
370 self.id.contains(other.id, window)
371 }
372
373 /// Dispatch an action on the element that rendered this focus handle
374 pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
375 if let Some(node_id) = window
376 .rendered_frame
377 .dispatch_tree
378 .focusable_node_id(self.id)
379 {
380 window.dispatch_action_on_node(node_id, action, cx)
381 }
382 }
383}
384
385impl Clone for FocusHandle {
386 fn clone(&self) -> Self {
387 Self::for_id(self.id, &self.handles).unwrap()
388 }
389}
390
391impl PartialEq for FocusHandle {
392 fn eq(&self, other: &Self) -> bool {
393 self.id == other.id
394 }
395}
396
397impl Eq for FocusHandle {}
398
399impl Drop for FocusHandle {
400 fn drop(&mut self) {
401 self.handles
402 .read()
403 .get(self.id)
404 .unwrap()
405 .ref_count
406 .fetch_sub(1, SeqCst);
407 }
408}
409
410/// A weak reference to a focus handle.
411#[derive(Clone, Debug)]
412pub struct WeakFocusHandle {
413 pub(crate) id: FocusId,
414 pub(crate) handles: Weak<FocusMap>,
415}
416
417impl WeakFocusHandle {
418 /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
419 pub fn upgrade(&self) -> Option<FocusHandle> {
420 let handles = self.handles.upgrade()?;
421 FocusHandle::for_id(self.id, &handles)
422 }
423}
424
425impl PartialEq for WeakFocusHandle {
426 fn eq(&self, other: &WeakFocusHandle) -> bool {
427 self.id == other.id
428 }
429}
430
431impl Eq for WeakFocusHandle {}
432
433impl PartialEq<FocusHandle> for WeakFocusHandle {
434 fn eq(&self, other: &FocusHandle) -> bool {
435 self.id == other.id
436 }
437}
438
439impl PartialEq<WeakFocusHandle> for FocusHandle {
440 fn eq(&self, other: &WeakFocusHandle) -> bool {
441 self.id == other.id
442 }
443}
444
445/// Focusable allows users of your view to easily
446/// focus it (using window.focus_view(cx, view))
447pub trait Focusable: 'static {
448 /// Returns the focus handle associated with this view.
449 fn focus_handle(&self, cx: &App) -> FocusHandle;
450}
451
452impl<V: Focusable> Focusable for Entity<V> {
453 fn focus_handle(&self, cx: &App) -> FocusHandle {
454 self.read(cx).focus_handle(cx)
455 }
456}
457
458/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
459/// where the lifecycle of the view is handled by another view.
460pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
461
462impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
463
464/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
465pub struct DismissEvent;
466
467type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
468
469pub(crate) type AnyMouseListener =
470 Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
471
472#[derive(Clone)]
473pub(crate) struct CursorStyleRequest {
474 pub(crate) hitbox_id: Option<HitboxId>,
475 pub(crate) style: CursorStyle,
476}
477
478#[derive(Default, Eq, PartialEq)]
479pub(crate) struct HitTest {
480 pub(crate) ids: SmallVec<[HitboxId; 8]>,
481 pub(crate) hover_hitbox_count: usize,
482}
483
484/// A type of window control area that corresponds to the platform window.
485#[derive(Clone, Copy, Debug, Eq, PartialEq)]
486pub enum WindowControlArea {
487 /// An area that allows dragging of the platform window.
488 Drag,
489 /// An area that allows closing of the platform window.
490 Close,
491 /// An area that allows maximizing of the platform window.
492 Max,
493 /// An area that allows minimizing of the platform window.
494 Min,
495}
496
497/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
498#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
499pub struct HitboxId(u64);
500
501impl HitboxId {
502 /// Checks if the hitbox with this ID is currently hovered. Except when handling
503 /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
504 /// events or paint hover styles.
505 ///
506 /// See [`Hitbox::is_hovered`] for details.
507 pub fn is_hovered(self, window: &Window) -> bool {
508 let hit_test = &window.mouse_hit_test;
509 for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
510 if self == *id {
511 return true;
512 }
513 }
514 false
515 }
516
517 /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
518 /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
519 /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
520 /// this distinction.
521 pub fn should_handle_scroll(self, window: &Window) -> bool {
522 window.mouse_hit_test.ids.contains(&self)
523 }
524
525 fn next(mut self) -> HitboxId {
526 HitboxId(self.0.wrapping_add(1))
527 }
528}
529
530/// A rectangular region that potentially blocks hitboxes inserted prior.
531/// See [Window::insert_hitbox] for more details.
532#[derive(Clone, Debug, Deref)]
533pub struct Hitbox {
534 /// A unique identifier for the hitbox.
535 pub id: HitboxId,
536 /// The bounds of the hitbox.
537 #[deref]
538 pub bounds: Bounds<Pixels>,
539 /// The content mask when the hitbox was inserted.
540 pub content_mask: ContentMask<Pixels>,
541 /// Flags that specify hitbox behavior.
542 pub behavior: HitboxBehavior,
543}
544
545impl Hitbox {
546 /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
547 /// typically what you want when determining whether to handle mouse events or paint hover
548 /// styles.
549 ///
550 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
551 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
552 /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
553 ///
554 /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
555 /// Concretely, this is due to use-cases like overlays that cause the elements under to be
556 /// non-interactive while still allowing scrolling. More abstractly, this is because
557 /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
558 /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
559 /// container.
560 pub fn is_hovered(&self, window: &Window) -> bool {
561 self.id.is_hovered(window)
562 }
563
564 /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
565 /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
566 /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
567 ///
568 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
569 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
570 pub fn should_handle_scroll(&self, window: &Window) -> bool {
571 self.id.should_handle_scroll(window)
572 }
573}
574
575/// How the hitbox affects mouse behavior.
576#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
577pub enum HitboxBehavior {
578 /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
579 #[default]
580 Normal,
581
582 /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
583 /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
584 /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
585 /// [`InteractiveElement::occlude`].
586 ///
587 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
588 /// bubble-phase handler for every mouse event type:
589 ///
590 /// ```ignore
591 /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
592 /// if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
593 /// cx.stop_propagation();
594 /// }
595 /// })
596 /// ```
597 ///
598 /// This has effects beyond event handling - any use of hitbox checking, such as hover
599 /// styles and tooltops. These other behaviors are the main point of this mechanism. An
600 /// alternative might be to not affect mouse event handling - but this would allow
601 /// inconsistent UI where clicks and moves interact with elements that are not considered to
602 /// be hovered.
603 BlockMouse,
604
605 /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
606 /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
607 /// interaction except scroll events to be ignored - see the documentation of
608 /// [`Hitbox::is_hovered`] for details. This flag is set by
609 /// [`InteractiveElement::block_mouse_except_scroll`].
610 ///
611 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
612 /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
613 ///
614 /// ```ignore
615 /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, cx| {
616 /// if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
617 /// cx.stop_propagation();
618 /// }
619 /// })
620 /// ```
621 ///
622 /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
623 /// handled differently than other mouse events. If also blocking these scroll events is
624 /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
625 ///
626 /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
627 /// hover styles and tooltops. These other behaviors are the main point of this mechanism.
628 /// An alternative might be to not affect mouse event handling - but this would allow
629 /// inconsistent UI where clicks and moves interact with elements that are not considered to
630 /// be hovered.
631 BlockMouseExceptScroll,
632}
633
634/// An identifier for a tooltip.
635#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
636pub struct TooltipId(usize);
637
638impl TooltipId {
639 /// Checks if the tooltip is currently hovered.
640 pub fn is_hovered(&self, window: &Window) -> bool {
641 window
642 .tooltip_bounds
643 .as_ref()
644 .is_some_and(|tooltip_bounds| {
645 tooltip_bounds.id == *self
646 && tooltip_bounds.bounds.contains(&window.mouse_position())
647 })
648 }
649}
650
651pub(crate) struct TooltipBounds {
652 id: TooltipId,
653 bounds: Bounds<Pixels>,
654}
655
656#[derive(Clone)]
657pub(crate) struct TooltipRequest {
658 id: TooltipId,
659 tooltip: AnyTooltip,
660}
661
662pub(crate) struct DeferredDraw {
663 current_view: EntityId,
664 priority: usize,
665 parent_node: DispatchNodeId,
666 element_id_stack: SmallVec<[ElementId; 32]>,
667 text_style_stack: Vec<TextStyleRefinement>,
668 element: Option<AnyElement>,
669 absolute_offset: Point<Pixels>,
670 prepaint_range: Range<PrepaintStateIndex>,
671 paint_range: Range<PaintIndex>,
672}
673
674pub(crate) struct Frame {
675 pub(crate) focus: Option<FocusId>,
676 pub(crate) window_active: bool,
677 pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
678 accessed_element_states: Vec<(GlobalElementId, TypeId)>,
679 pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
680 pub(crate) dispatch_tree: DispatchTree,
681 pub(crate) scene: Scene,
682 pub(crate) hitboxes: Vec<Hitbox>,
683 pub(crate) window_control_hitboxes: Vec<(WindowControlArea, Hitbox)>,
684 pub(crate) deferred_draws: Vec<DeferredDraw>,
685 pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
686 pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
687 pub(crate) cursor_styles: Vec<CursorStyleRequest>,
688 #[cfg(any(test, feature = "test-support"))]
689 pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
690 #[cfg(any(feature = "inspector", debug_assertions))]
691 pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
692 #[cfg(any(feature = "inspector", debug_assertions))]
693 pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
694 pub(crate) tab_stops: TabStopMap,
695}
696
697#[derive(Clone, Default)]
698pub(crate) struct PrepaintStateIndex {
699 hitboxes_index: usize,
700 tooltips_index: usize,
701 deferred_draws_index: usize,
702 dispatch_tree_index: usize,
703 accessed_element_states_index: usize,
704 line_layout_index: LineLayoutIndex,
705}
706
707#[derive(Clone, Default)]
708pub(crate) struct PaintIndex {
709 scene_index: usize,
710 mouse_listeners_index: usize,
711 input_handlers_index: usize,
712 cursor_styles_index: usize,
713 accessed_element_states_index: usize,
714 tab_handle_index: usize,
715 line_layout_index: LineLayoutIndex,
716}
717
718impl Frame {
719 pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
720 Frame {
721 focus: None,
722 window_active: false,
723 element_states: FxHashMap::default(),
724 accessed_element_states: Vec::new(),
725 mouse_listeners: Vec::new(),
726 dispatch_tree,
727 scene: Scene::default(),
728 hitboxes: Vec::new(),
729 window_control_hitboxes: Vec::new(),
730 deferred_draws: Vec::new(),
731 input_handlers: Vec::new(),
732 tooltip_requests: Vec::new(),
733 cursor_styles: Vec::new(),
734
735 #[cfg(any(test, feature = "test-support"))]
736 debug_bounds: FxHashMap::default(),
737
738 #[cfg(any(feature = "inspector", debug_assertions))]
739 next_inspector_instance_ids: FxHashMap::default(),
740
741 #[cfg(any(feature = "inspector", debug_assertions))]
742 inspector_hitboxes: FxHashMap::default(),
743 tab_stops: TabStopMap::default(),
744 }
745 }
746
747 pub(crate) fn clear(&mut self) {
748 self.element_states.clear();
749 self.accessed_element_states.clear();
750 self.mouse_listeners.clear();
751 self.dispatch_tree.clear();
752 self.scene.clear();
753 self.input_handlers.clear();
754 self.tooltip_requests.clear();
755 self.cursor_styles.clear();
756 self.hitboxes.clear();
757 self.window_control_hitboxes.clear();
758 self.deferred_draws.clear();
759 self.tab_stops.clear();
760 self.focus = None;
761
762 #[cfg(any(feature = "inspector", debug_assertions))]
763 {
764 self.next_inspector_instance_ids.clear();
765 self.inspector_hitboxes.clear();
766 }
767 }
768
769 pub(crate) fn cursor_style(&self, window: &Window) -> Option<CursorStyle> {
770 self.cursor_styles
771 .iter()
772 .rev()
773 .fold_while(None, |style, request| match request.hitbox_id {
774 None => Done(Some(request.style)),
775 Some(hitbox_id) => Continue(
776 style.or_else(|| hitbox_id.is_hovered(window).then_some(request.style)),
777 ),
778 })
779 .into_inner()
780 }
781
782 pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
783 let mut set_hover_hitbox_count = false;
784 let mut hit_test = HitTest::default();
785 for hitbox in self.hitboxes.iter().rev() {
786 let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
787 if bounds.contains(&position) {
788 hit_test.ids.push(hitbox.id);
789 if !set_hover_hitbox_count
790 && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
791 {
792 hit_test.hover_hitbox_count = hit_test.ids.len();
793 set_hover_hitbox_count = true;
794 }
795 if hitbox.behavior == HitboxBehavior::BlockMouse {
796 break;
797 }
798 }
799 }
800 if !set_hover_hitbox_count {
801 hit_test.hover_hitbox_count = hit_test.ids.len();
802 }
803 hit_test
804 }
805
806 pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
807 self.focus
808 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
809 .unwrap_or_default()
810 }
811
812 pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
813 for element_state_key in &self.accessed_element_states {
814 if let Some((element_state_key, element_state)) =
815 prev_frame.element_states.remove_entry(element_state_key)
816 {
817 self.element_states.insert(element_state_key, element_state);
818 }
819 }
820
821 self.scene.finish();
822 }
823}
824
825/// Holds the state for a specific window.
826pub struct Window {
827 pub(crate) handle: AnyWindowHandle,
828 pub(crate) invalidator: WindowInvalidator,
829 pub(crate) removed: bool,
830 pub(crate) platform_window: Box<dyn PlatformWindow>,
831 display_id: Option<DisplayId>,
832 sprite_atlas: Arc<dyn PlatformAtlas>,
833 text_system: Arc<WindowTextSystem>,
834 rem_size: Pixels,
835 /// The stack of override values for the window's rem size.
836 ///
837 /// This is used by `with_rem_size` to allow rendering an element tree with
838 /// a given rem size.
839 rem_size_override_stack: SmallVec<[Pixels; 8]>,
840 pub(crate) viewport_size: Size<Pixels>,
841 layout_engine: Option<TaffyLayoutEngine>,
842 pub(crate) root: Option<AnyView>,
843 pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
844 pub(crate) text_style_stack: Vec<TextStyleRefinement>,
845 pub(crate) rendered_entity_stack: Vec<EntityId>,
846 pub(crate) element_offset_stack: Vec<Point<Pixels>>,
847 pub(crate) element_opacity: f32,
848 pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
849 pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
850 pub(crate) image_cache_stack: Vec<AnyImageCache>,
851 pub(crate) rendered_frame: Frame,
852 pub(crate) next_frame: Frame,
853 next_hitbox_id: HitboxId,
854 pub(crate) next_tooltip_id: TooltipId,
855 pub(crate) tooltip_bounds: Option<TooltipBounds>,
856 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
857 pub(crate) dirty_views: FxHashSet<EntityId>,
858 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
859 pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
860 default_prevented: bool,
861 mouse_position: Point<Pixels>,
862 mouse_hit_test: HitTest,
863 modifiers: Modifiers,
864 capslock: Capslock,
865 scale_factor: f32,
866 pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
867 appearance: WindowAppearance,
868 pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
869 active: Rc<Cell<bool>>,
870 hovered: Rc<Cell<bool>>,
871 pub(crate) needs_present: Rc<Cell<bool>>,
872 pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
873 last_input_was_keyboard: bool,
874 pub(crate) refreshing: bool,
875 pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
876 pub(crate) focus: Option<FocusId>,
877 focus_enabled: bool,
878 pending_input: Option<PendingInput>,
879 pending_modifier: ModifierState,
880 pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
881 prompt: Option<RenderablePromptHandle>,
882 pub(crate) client_inset: Option<Pixels>,
883 #[cfg(any(feature = "inspector", debug_assertions))]
884 inspector: Option<Entity<Inspector>>,
885}
886
887#[derive(Clone, Debug, Default)]
888struct ModifierState {
889 modifiers: Modifiers,
890 saw_keystroke: bool,
891}
892
893#[derive(Clone, Copy, Debug, Eq, PartialEq)]
894pub(crate) enum DrawPhase {
895 None,
896 Prepaint,
897 Paint,
898 Focus,
899}
900
901#[derive(Default, Debug)]
902struct PendingInput {
903 keystrokes: SmallVec<[Keystroke; 1]>,
904 focus: Option<FocusId>,
905 timer: Option<Task<()>>,
906}
907
908pub(crate) struct ElementStateBox {
909 pub(crate) inner: Box<dyn Any>,
910 #[cfg(debug_assertions)]
911 pub(crate) type_name: &'static str,
912}
913
914fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> Bounds<Pixels> {
915 const DEFAULT_WINDOW_OFFSET: Point<Pixels> = point(px(0.), px(35.));
916
917 // TODO, BUG: if you open a window with the currently active window
918 // on the stack, this will erroneously select the 'unwrap_or_else'
919 // code path
920 cx.active_window()
921 .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok())
922 .map(|mut bounds| {
923 bounds.origin += DEFAULT_WINDOW_OFFSET;
924 bounds
925 })
926 .unwrap_or_else(|| {
927 let display = display_id
928 .map(|id| cx.find_display(id))
929 .unwrap_or_else(|| cx.primary_display());
930
931 display
932 .map(|display| display.default_bounds())
933 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE))
934 })
935}
936
937impl Window {
938 pub(crate) fn new(
939 handle: AnyWindowHandle,
940 options: WindowOptions,
941 cx: &mut App,
942 ) -> Result<Self> {
943 let WindowOptions {
944 window_bounds,
945 titlebar,
946 focus,
947 show,
948 kind,
949 is_movable,
950 is_resizable,
951 is_minimizable,
952 display_id,
953 window_background,
954 app_id,
955 window_min_size,
956 window_decorations,
957 #[cfg_attr(not(target_os = "macos"), allow(unused_variables))]
958 tabbing_identifier,
959 } = options;
960
961 let bounds = window_bounds
962 .map(|bounds| bounds.get_bounds())
963 .unwrap_or_else(|| default_bounds(display_id, cx));
964 let mut platform_window = cx.platform.open_window(
965 handle,
966 WindowParams {
967 bounds,
968 titlebar,
969 kind,
970 is_movable,
971 is_resizable,
972 is_minimizable,
973 focus,
974 show,
975 display_id,
976 window_min_size,
977 #[cfg(target_os = "macos")]
978 tabbing_identifier,
979 },
980 )?;
981
982 let tab_bar_visible = platform_window.tab_bar_visible();
983 SystemWindowTabController::init_visible(cx, tab_bar_visible);
984 if let Some(tabs) = platform_window.tabbed_windows() {
985 SystemWindowTabController::add_tab(cx, handle.window_id(), tabs);
986 }
987
988 let display_id = platform_window.display().map(|display| display.id());
989 let sprite_atlas = platform_window.sprite_atlas();
990 let mouse_position = platform_window.mouse_position();
991 let modifiers = platform_window.modifiers();
992 let capslock = platform_window.capslock();
993 let content_size = platform_window.content_size();
994 let scale_factor = platform_window.scale_factor();
995 let appearance = platform_window.appearance();
996 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
997 let invalidator = WindowInvalidator::new();
998 let active = Rc::new(Cell::new(platform_window.is_active()));
999 let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
1000 let needs_present = Rc::new(Cell::new(false));
1001 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
1002 let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
1003
1004 platform_window
1005 .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
1006 platform_window.set_background_appearance(window_background);
1007
1008 if let Some(ref window_open_state) = window_bounds {
1009 match window_open_state {
1010 WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
1011 WindowBounds::Maximized(_) => platform_window.zoom(),
1012 WindowBounds::Windowed(_) => {}
1013 }
1014 }
1015
1016 platform_window.on_close(Box::new({
1017 let window_id = handle.window_id();
1018 let mut cx = cx.to_async();
1019 move || {
1020 let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
1021 let _ = cx.update(|cx| {
1022 SystemWindowTabController::remove_tab(cx, window_id);
1023 });
1024 }
1025 }));
1026 platform_window.on_request_frame(Box::new({
1027 let mut cx = cx.to_async();
1028 let invalidator = invalidator.clone();
1029 let active = active.clone();
1030 let needs_present = needs_present.clone();
1031 let next_frame_callbacks = next_frame_callbacks.clone();
1032 let last_input_timestamp = last_input_timestamp.clone();
1033 move |request_frame_options| {
1034 let next_frame_callbacks = next_frame_callbacks.take();
1035 if !next_frame_callbacks.is_empty() {
1036 handle
1037 .update(&mut cx, |_, window, cx| {
1038 for callback in next_frame_callbacks {
1039 callback(window, cx);
1040 }
1041 })
1042 .log_err();
1043 }
1044
1045 // Keep presenting the current scene for 1 extra second since the
1046 // last input to prevent the display from underclocking the refresh rate.
1047 let needs_present = request_frame_options.require_presentation
1048 || needs_present.get()
1049 || (active.get()
1050 && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
1051
1052 if invalidator.is_dirty() || request_frame_options.force_render {
1053 measure("frame duration", || {
1054 handle
1055 .update(&mut cx, |_, window, cx| {
1056 let arena_clear_needed = window.draw(cx);
1057 window.present();
1058 // drop the arena elements after present to reduce latency
1059 arena_clear_needed.clear();
1060 })
1061 .log_err();
1062 })
1063 } else if needs_present {
1064 handle
1065 .update(&mut cx, |_, window, _| window.present())
1066 .log_err();
1067 }
1068
1069 handle
1070 .update(&mut cx, |_, window, _| {
1071 window.complete_frame();
1072 })
1073 .log_err();
1074 }
1075 }));
1076 platform_window.on_resize(Box::new({
1077 let mut cx = cx.to_async();
1078 move |_, _| {
1079 handle
1080 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1081 .log_err();
1082 }
1083 }));
1084 platform_window.on_moved(Box::new({
1085 let mut cx = cx.to_async();
1086 move || {
1087 handle
1088 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1089 .log_err();
1090 }
1091 }));
1092 platform_window.on_appearance_changed(Box::new({
1093 let mut cx = cx.to_async();
1094 move || {
1095 handle
1096 .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
1097 .log_err();
1098 }
1099 }));
1100 platform_window.on_active_status_change(Box::new({
1101 let mut cx = cx.to_async();
1102 move |active| {
1103 handle
1104 .update(&mut cx, |_, window, cx| {
1105 window.active.set(active);
1106 window.modifiers = window.platform_window.modifiers();
1107 window.capslock = window.platform_window.capslock();
1108 window
1109 .activation_observers
1110 .clone()
1111 .retain(&(), |callback| callback(window, cx));
1112
1113 window.bounds_changed(cx);
1114 window.refresh();
1115
1116 SystemWindowTabController::update_last_active(cx, window.handle.id);
1117 })
1118 .log_err();
1119 }
1120 }));
1121 platform_window.on_hover_status_change(Box::new({
1122 let mut cx = cx.to_async();
1123 move |active| {
1124 handle
1125 .update(&mut cx, |_, window, _| {
1126 window.hovered.set(active);
1127 window.refresh();
1128 })
1129 .log_err();
1130 }
1131 }));
1132 platform_window.on_input({
1133 let mut cx = cx.to_async();
1134 Box::new(move |event| {
1135 handle
1136 .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1137 .log_err()
1138 .unwrap_or(DispatchEventResult::default())
1139 })
1140 });
1141 platform_window.on_hit_test_window_control({
1142 let mut cx = cx.to_async();
1143 Box::new(move || {
1144 handle
1145 .update(&mut cx, |_, window, _cx| {
1146 for (area, hitbox) in &window.rendered_frame.window_control_hitboxes {
1147 if window.mouse_hit_test.ids.contains(&hitbox.id) {
1148 return Some(*area);
1149 }
1150 }
1151 None
1152 })
1153 .log_err()
1154 .unwrap_or(None)
1155 })
1156 });
1157 platform_window.on_move_tab_to_new_window({
1158 let mut cx = cx.to_async();
1159 Box::new(move || {
1160 handle
1161 .update(&mut cx, |_, _window, cx| {
1162 SystemWindowTabController::move_tab_to_new_window(cx, handle.window_id());
1163 })
1164 .log_err();
1165 })
1166 });
1167 platform_window.on_merge_all_windows({
1168 let mut cx = cx.to_async();
1169 Box::new(move || {
1170 handle
1171 .update(&mut cx, |_, _window, cx| {
1172 SystemWindowTabController::merge_all_windows(cx, handle.window_id());
1173 })
1174 .log_err();
1175 })
1176 });
1177 platform_window.on_select_next_tab({
1178 let mut cx = cx.to_async();
1179 Box::new(move || {
1180 handle
1181 .update(&mut cx, |_, _window, cx| {
1182 SystemWindowTabController::select_next_tab(cx, handle.window_id());
1183 })
1184 .log_err();
1185 })
1186 });
1187 platform_window.on_select_previous_tab({
1188 let mut cx = cx.to_async();
1189 Box::new(move || {
1190 handle
1191 .update(&mut cx, |_, _window, cx| {
1192 SystemWindowTabController::select_previous_tab(cx, handle.window_id())
1193 })
1194 .log_err();
1195 })
1196 });
1197 platform_window.on_toggle_tab_bar({
1198 let mut cx = cx.to_async();
1199 Box::new(move || {
1200 handle
1201 .update(&mut cx, |_, window, cx| {
1202 let tab_bar_visible = window.platform_window.tab_bar_visible();
1203 SystemWindowTabController::set_visible(cx, tab_bar_visible);
1204 })
1205 .log_err();
1206 })
1207 });
1208
1209 if let Some(app_id) = app_id {
1210 platform_window.set_app_id(&app_id);
1211 }
1212
1213 platform_window.map_window().unwrap();
1214
1215 Ok(Window {
1216 handle,
1217 invalidator,
1218 removed: false,
1219 platform_window,
1220 display_id,
1221 sprite_atlas,
1222 text_system,
1223 rem_size: px(16.),
1224 rem_size_override_stack: SmallVec::new(),
1225 viewport_size: content_size,
1226 layout_engine: Some(TaffyLayoutEngine::new()),
1227 root: None,
1228 element_id_stack: SmallVec::default(),
1229 text_style_stack: Vec::new(),
1230 rendered_entity_stack: Vec::new(),
1231 element_offset_stack: Vec::new(),
1232 content_mask_stack: Vec::new(),
1233 element_opacity: 1.0,
1234 requested_autoscroll: None,
1235 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1236 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1237 next_frame_callbacks,
1238 next_hitbox_id: HitboxId(0),
1239 next_tooltip_id: TooltipId::default(),
1240 tooltip_bounds: None,
1241 dirty_views: FxHashSet::default(),
1242 focus_listeners: SubscriberSet::new(),
1243 focus_lost_listeners: SubscriberSet::new(),
1244 default_prevented: true,
1245 mouse_position,
1246 mouse_hit_test: HitTest::default(),
1247 modifiers,
1248 capslock,
1249 scale_factor,
1250 bounds_observers: SubscriberSet::new(),
1251 appearance,
1252 appearance_observers: SubscriberSet::new(),
1253 active,
1254 hovered,
1255 needs_present,
1256 last_input_timestamp,
1257 last_input_was_keyboard: false,
1258 refreshing: false,
1259 activation_observers: SubscriberSet::new(),
1260 focus: None,
1261 focus_enabled: true,
1262 pending_input: None,
1263 pending_modifier: ModifierState::default(),
1264 pending_input_observers: SubscriberSet::new(),
1265 prompt: None,
1266 client_inset: None,
1267 image_cache_stack: Vec::new(),
1268 #[cfg(any(feature = "inspector", debug_assertions))]
1269 inspector: None,
1270 })
1271 }
1272
1273 pub(crate) fn new_focus_listener(
1274 &self,
1275 value: AnyWindowFocusListener,
1276 ) -> (Subscription, impl FnOnce() + use<>) {
1277 self.focus_listeners.insert((), value)
1278 }
1279}
1280
1281#[derive(Clone, Debug, Default, PartialEq, Eq)]
1282pub(crate) struct DispatchEventResult {
1283 pub propagate: bool,
1284 pub default_prevented: bool,
1285}
1286
1287/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1288/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1289/// to leave room to support more complex shapes in the future.
1290#[derive(Clone, Debug, Default, PartialEq, Eq)]
1291#[repr(C)]
1292pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1293 /// The bounds
1294 pub bounds: Bounds<P>,
1295}
1296
1297impl ContentMask<Pixels> {
1298 /// Scale the content mask's pixel units by the given scaling factor.
1299 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1300 ContentMask {
1301 bounds: self.bounds.scale(factor),
1302 }
1303 }
1304
1305 /// Intersect the content mask with the given content mask.
1306 pub fn intersect(&self, other: &Self) -> Self {
1307 let bounds = self.bounds.intersect(&other.bounds);
1308 ContentMask { bounds }
1309 }
1310}
1311
1312impl Window {
1313 fn mark_view_dirty(&mut self, view_id: EntityId) {
1314 // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1315 // should already be dirty.
1316 for view_id in self
1317 .rendered_frame
1318 .dispatch_tree
1319 .view_path_reversed(view_id)
1320 {
1321 if !self.dirty_views.insert(view_id) {
1322 break;
1323 }
1324 }
1325 }
1326
1327 /// Registers a callback to be invoked when the window appearance changes.
1328 pub fn observe_window_appearance(
1329 &self,
1330 mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1331 ) -> Subscription {
1332 let (subscription, activate) = self.appearance_observers.insert(
1333 (),
1334 Box::new(move |window, cx| {
1335 callback(window, cx);
1336 true
1337 }),
1338 );
1339 activate();
1340 subscription
1341 }
1342
1343 /// Replaces the root entity of the window with a new one.
1344 pub fn replace_root<E>(
1345 &mut self,
1346 cx: &mut App,
1347 build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1348 ) -> Entity<E>
1349 where
1350 E: 'static + Render,
1351 {
1352 let view = cx.new(|cx| build_view(self, cx));
1353 self.root = Some(view.clone().into());
1354 self.refresh();
1355 view
1356 }
1357
1358 /// Returns the root entity of the window, if it has one.
1359 pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1360 where
1361 E: 'static + Render,
1362 {
1363 self.root
1364 .as_ref()
1365 .map(|view| view.clone().downcast::<E>().ok())
1366 }
1367
1368 /// Obtain a handle to the window that belongs to this context.
1369 pub fn window_handle(&self) -> AnyWindowHandle {
1370 self.handle
1371 }
1372
1373 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1374 pub fn refresh(&mut self) {
1375 if self.invalidator.not_drawing() {
1376 self.refreshing = true;
1377 self.invalidator.set_dirty(true);
1378 }
1379 }
1380
1381 /// Close this window.
1382 pub fn remove_window(&mut self) {
1383 self.removed = true;
1384 }
1385
1386 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1387 pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1388 self.focus
1389 .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1390 }
1391
1392 /// Move focus to the element associated with the given [`FocusHandle`].
1393 pub fn focus(&mut self, handle: &FocusHandle) {
1394 if !self.focus_enabled || self.focus == Some(handle.id) {
1395 return;
1396 }
1397
1398 self.focus = Some(handle.id);
1399 self.clear_pending_keystrokes();
1400 self.refresh();
1401 }
1402
1403 /// Remove focus from all elements within this context's window.
1404 pub fn blur(&mut self) {
1405 if !self.focus_enabled {
1406 return;
1407 }
1408
1409 self.focus = None;
1410 self.refresh();
1411 }
1412
1413 /// Blur the window and don't allow anything in it to be focused again.
1414 pub fn disable_focus(&mut self) {
1415 self.blur();
1416 self.focus_enabled = false;
1417 }
1418
1419 /// Move focus to next tab stop.
1420 pub fn focus_next(&mut self) {
1421 if !self.focus_enabled {
1422 return;
1423 }
1424
1425 if let Some(handle) = self.rendered_frame.tab_stops.next(self.focus.as_ref()) {
1426 self.focus(&handle)
1427 }
1428 }
1429
1430 /// Move focus to previous tab stop.
1431 pub fn focus_prev(&mut self) {
1432 if !self.focus_enabled {
1433 return;
1434 }
1435
1436 if let Some(handle) = self.rendered_frame.tab_stops.prev(self.focus.as_ref()) {
1437 self.focus(&handle)
1438 }
1439 }
1440
1441 /// Accessor for the text system.
1442 pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1443 &self.text_system
1444 }
1445
1446 /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1447 pub fn text_style(&self) -> TextStyle {
1448 let mut style = TextStyle::default();
1449 for refinement in &self.text_style_stack {
1450 style.refine(refinement);
1451 }
1452 style
1453 }
1454
1455 /// Check if the platform window is maximized
1456 /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1457 pub fn is_maximized(&self) -> bool {
1458 self.platform_window.is_maximized()
1459 }
1460
1461 /// request a certain window decoration (Wayland)
1462 pub fn request_decorations(&self, decorations: WindowDecorations) {
1463 self.platform_window.request_decorations(decorations);
1464 }
1465
1466 /// Start a window resize operation (Wayland)
1467 pub fn start_window_resize(&self, edge: ResizeEdge) {
1468 self.platform_window.start_window_resize(edge);
1469 }
1470
1471 /// Return the `WindowBounds` to indicate that how a window should be opened
1472 /// after it has been closed
1473 pub fn window_bounds(&self) -> WindowBounds {
1474 self.platform_window.window_bounds()
1475 }
1476
1477 /// Return the `WindowBounds` excluding insets (Wayland and X11)
1478 pub fn inner_window_bounds(&self) -> WindowBounds {
1479 self.platform_window.inner_window_bounds()
1480 }
1481
1482 /// Dispatch the given action on the currently focused element.
1483 pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1484 let focus_id = self.focused(cx).map(|handle| handle.id);
1485
1486 let window = self.handle;
1487 cx.defer(move |cx| {
1488 window
1489 .update(cx, |_, window, cx| {
1490 let node_id = window.focus_node_id_in_rendered_frame(focus_id);
1491 window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1492 })
1493 .log_err();
1494 })
1495 }
1496
1497 pub(crate) fn dispatch_keystroke_observers(
1498 &mut self,
1499 event: &dyn Any,
1500 action: Option<Box<dyn Action>>,
1501 context_stack: Vec<KeyContext>,
1502 cx: &mut App,
1503 ) {
1504 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1505 return;
1506 };
1507
1508 cx.keystroke_observers.clone().retain(&(), move |callback| {
1509 (callback)(
1510 &KeystrokeEvent {
1511 keystroke: key_down_event.keystroke.clone(),
1512 action: action.as_ref().map(|action| action.boxed_clone()),
1513 context_stack: context_stack.clone(),
1514 },
1515 self,
1516 cx,
1517 )
1518 });
1519 }
1520
1521 pub(crate) fn dispatch_keystroke_interceptors(
1522 &mut self,
1523 event: &dyn Any,
1524 context_stack: Vec<KeyContext>,
1525 cx: &mut App,
1526 ) {
1527 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1528 return;
1529 };
1530
1531 cx.keystroke_interceptors
1532 .clone()
1533 .retain(&(), move |callback| {
1534 (callback)(
1535 &KeystrokeEvent {
1536 keystroke: key_down_event.keystroke.clone(),
1537 action: None,
1538 context_stack: context_stack.clone(),
1539 },
1540 self,
1541 cx,
1542 )
1543 });
1544 }
1545
1546 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1547 /// that are currently on the stack to be returned to the app.
1548 pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1549 let handle = self.handle;
1550 cx.defer(move |cx| {
1551 handle.update(cx, |_, window, cx| f(window, cx)).ok();
1552 });
1553 }
1554
1555 /// Subscribe to events emitted by a entity.
1556 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1557 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1558 pub fn observe<T: 'static>(
1559 &mut self,
1560 observed: &Entity<T>,
1561 cx: &mut App,
1562 mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1563 ) -> Subscription {
1564 let entity_id = observed.entity_id();
1565 let observed = observed.downgrade();
1566 let window_handle = self.handle;
1567 cx.new_observer(
1568 entity_id,
1569 Box::new(move |cx| {
1570 window_handle
1571 .update(cx, |_, window, cx| {
1572 if let Some(handle) = observed.upgrade() {
1573 on_notify(handle, window, cx);
1574 true
1575 } else {
1576 false
1577 }
1578 })
1579 .unwrap_or(false)
1580 }),
1581 )
1582 }
1583
1584 /// Subscribe to events emitted by a entity.
1585 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1586 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1587 pub fn subscribe<Emitter, Evt>(
1588 &mut self,
1589 entity: &Entity<Emitter>,
1590 cx: &mut App,
1591 mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1592 ) -> Subscription
1593 where
1594 Emitter: EventEmitter<Evt>,
1595 Evt: 'static,
1596 {
1597 let entity_id = entity.entity_id();
1598 let handle = entity.downgrade();
1599 let window_handle = self.handle;
1600 cx.new_subscription(
1601 entity_id,
1602 (
1603 TypeId::of::<Evt>(),
1604 Box::new(move |event, cx| {
1605 window_handle
1606 .update(cx, |_, window, cx| {
1607 if let Some(entity) = handle.upgrade() {
1608 let event = event.downcast_ref().expect("invalid event type");
1609 on_event(entity, event, window, cx);
1610 true
1611 } else {
1612 false
1613 }
1614 })
1615 .unwrap_or(false)
1616 }),
1617 ),
1618 )
1619 }
1620
1621 /// Register a callback to be invoked when the given `Entity` is released.
1622 pub fn observe_release<T>(
1623 &self,
1624 entity: &Entity<T>,
1625 cx: &mut App,
1626 mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1627 ) -> Subscription
1628 where
1629 T: 'static,
1630 {
1631 let entity_id = entity.entity_id();
1632 let window_handle = self.handle;
1633 let (subscription, activate) = cx.release_listeners.insert(
1634 entity_id,
1635 Box::new(move |entity, cx| {
1636 let entity = entity.downcast_mut().expect("invalid entity type");
1637 let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1638 }),
1639 );
1640 activate();
1641 subscription
1642 }
1643
1644 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1645 /// await points in async code.
1646 pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1647 AsyncWindowContext::new_context(cx.to_async(), self.handle)
1648 }
1649
1650 /// Schedule the given closure to be run directly after the current frame is rendered.
1651 pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1652 RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1653 }
1654
1655 /// Schedule a frame to be drawn on the next animation frame.
1656 ///
1657 /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1658 /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1659 ///
1660 /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1661 pub fn request_animation_frame(&self) {
1662 let entity = self.current_view();
1663 self.on_next_frame(move |_, cx| cx.notify(entity));
1664 }
1665
1666 /// Spawn the future returned by the given closure on the application thread pool.
1667 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1668 /// use within your future.
1669 #[track_caller]
1670 pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1671 where
1672 R: 'static,
1673 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1674 {
1675 let handle = self.handle;
1676 cx.spawn(async move |app| {
1677 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1678 f(&mut async_window_cx).await
1679 })
1680 }
1681
1682 fn bounds_changed(&mut self, cx: &mut App) {
1683 self.scale_factor = self.platform_window.scale_factor();
1684 self.viewport_size = self.platform_window.content_size();
1685 self.display_id = self.platform_window.display().map(|display| display.id());
1686
1687 self.refresh();
1688
1689 self.bounds_observers
1690 .clone()
1691 .retain(&(), |callback| callback(self, cx));
1692 }
1693
1694 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1695 pub fn bounds(&self) -> Bounds<Pixels> {
1696 self.platform_window.bounds()
1697 }
1698
1699 /// Set the content size of the window.
1700 pub fn resize(&mut self, size: Size<Pixels>) {
1701 self.platform_window.resize(size);
1702 }
1703
1704 /// Returns whether or not the window is currently fullscreen
1705 pub fn is_fullscreen(&self) -> bool {
1706 self.platform_window.is_fullscreen()
1707 }
1708
1709 pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1710 self.appearance = self.platform_window.appearance();
1711
1712 self.appearance_observers
1713 .clone()
1714 .retain(&(), |callback| callback(self, cx));
1715 }
1716
1717 /// Returns the appearance of the current window.
1718 pub fn appearance(&self) -> WindowAppearance {
1719 self.appearance
1720 }
1721
1722 /// Returns the size of the drawable area within the window.
1723 pub fn viewport_size(&self) -> Size<Pixels> {
1724 self.viewport_size
1725 }
1726
1727 /// Returns whether this window is focused by the operating system (receiving key events).
1728 pub fn is_window_active(&self) -> bool {
1729 self.active.get()
1730 }
1731
1732 /// Returns whether this window is considered to be the window
1733 /// that currently owns the mouse cursor.
1734 /// On mac, this is equivalent to `is_window_active`.
1735 pub fn is_window_hovered(&self) -> bool {
1736 if cfg!(any(
1737 target_os = "windows",
1738 target_os = "linux",
1739 target_os = "freebsd"
1740 )) {
1741 self.hovered.get()
1742 } else {
1743 self.is_window_active()
1744 }
1745 }
1746
1747 /// Toggle zoom on the window.
1748 pub fn zoom_window(&self) {
1749 self.platform_window.zoom();
1750 }
1751
1752 /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1753 pub fn show_window_menu(&self, position: Point<Pixels>) {
1754 self.platform_window.show_window_menu(position)
1755 }
1756
1757 /// Tells the compositor to take control of window movement (Wayland and X11)
1758 ///
1759 /// Events may not be received during a move operation.
1760 pub fn start_window_move(&self) {
1761 self.platform_window.start_window_move()
1762 }
1763
1764 /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1765 pub fn set_client_inset(&mut self, inset: Pixels) {
1766 self.client_inset = Some(inset);
1767 self.platform_window.set_client_inset(inset);
1768 }
1769
1770 /// Returns the client_inset value by [`Self::set_client_inset`].
1771 pub fn client_inset(&self) -> Option<Pixels> {
1772 self.client_inset
1773 }
1774
1775 /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1776 pub fn window_decorations(&self) -> Decorations {
1777 self.platform_window.window_decorations()
1778 }
1779
1780 /// Returns which window controls are currently visible (Wayland)
1781 pub fn window_controls(&self) -> WindowControls {
1782 self.platform_window.window_controls()
1783 }
1784
1785 /// Updates the window's title at the platform level.
1786 pub fn set_window_title(&mut self, title: &str) {
1787 self.platform_window.set_title(title);
1788 }
1789
1790 /// Sets the application identifier.
1791 pub fn set_app_id(&mut self, app_id: &str) {
1792 self.platform_window.set_app_id(app_id);
1793 }
1794
1795 /// Sets the window background appearance.
1796 pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1797 self.platform_window
1798 .set_background_appearance(background_appearance);
1799 }
1800
1801 /// Mark the window as dirty at the platform level.
1802 pub fn set_window_edited(&mut self, edited: bool) {
1803 self.platform_window.set_edited(edited);
1804 }
1805
1806 /// Determine the display on which the window is visible.
1807 pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1808 cx.platform
1809 .displays()
1810 .into_iter()
1811 .find(|display| Some(display.id()) == self.display_id)
1812 }
1813
1814 /// Show the platform character palette.
1815 pub fn show_character_palette(&self) {
1816 self.platform_window.show_character_palette();
1817 }
1818
1819 /// The scale factor of the display associated with the window. For example, it could
1820 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1821 /// be rendered as two pixels on screen.
1822 pub fn scale_factor(&self) -> f32 {
1823 self.scale_factor
1824 }
1825
1826 /// The size of an em for the base font of the application. Adjusting this value allows the
1827 /// UI to scale, just like zooming a web page.
1828 pub fn rem_size(&self) -> Pixels {
1829 self.rem_size_override_stack
1830 .last()
1831 .copied()
1832 .unwrap_or(self.rem_size)
1833 }
1834
1835 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1836 /// UI to scale, just like zooming a web page.
1837 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1838 self.rem_size = rem_size.into();
1839 }
1840
1841 /// Acquire a globally unique identifier for the given ElementId.
1842 /// Only valid for the duration of the provided closure.
1843 pub fn with_global_id<R>(
1844 &mut self,
1845 element_id: ElementId,
1846 f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1847 ) -> R {
1848 self.element_id_stack.push(element_id);
1849 let global_id = GlobalElementId(Arc::from(&*self.element_id_stack));
1850
1851 let result = f(&global_id, self);
1852 self.element_id_stack.pop();
1853 result
1854 }
1855
1856 /// Executes the provided function with the specified rem size.
1857 ///
1858 /// This method must only be called as part of element drawing.
1859 pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1860 where
1861 F: FnOnce(&mut Self) -> R,
1862 {
1863 self.invalidator.debug_assert_paint_or_prepaint();
1864
1865 if let Some(rem_size) = rem_size {
1866 self.rem_size_override_stack.push(rem_size.into());
1867 let result = f(self);
1868 self.rem_size_override_stack.pop();
1869 result
1870 } else {
1871 f(self)
1872 }
1873 }
1874
1875 /// The line height associated with the current text style.
1876 pub fn line_height(&self) -> Pixels {
1877 self.text_style().line_height_in_pixels(self.rem_size())
1878 }
1879
1880 /// Call to prevent the default action of an event. Currently only used to prevent
1881 /// parent elements from becoming focused on mouse down.
1882 pub fn prevent_default(&mut self) {
1883 self.default_prevented = true;
1884 }
1885
1886 /// Obtain whether default has been prevented for the event currently being dispatched.
1887 pub fn default_prevented(&self) -> bool {
1888 self.default_prevented
1889 }
1890
1891 /// Determine whether the given action is available along the dispatch path to the currently focused element.
1892 pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1893 let node_id =
1894 self.focus_node_id_in_rendered_frame(self.focused(cx).map(|handle| handle.id));
1895 self.rendered_frame
1896 .dispatch_tree
1897 .is_action_available(action, node_id)
1898 }
1899
1900 /// The position of the mouse relative to the window.
1901 pub fn mouse_position(&self) -> Point<Pixels> {
1902 self.mouse_position
1903 }
1904
1905 /// The current state of the keyboard's modifiers
1906 pub fn modifiers(&self) -> Modifiers {
1907 self.modifiers
1908 }
1909
1910 /// Returns true if the last input event was keyboard-based (key press, tab navigation, etc.)
1911 /// This is used for focus-visible styling to show focus indicators only for keyboard navigation.
1912 pub fn last_input_was_keyboard(&self) -> bool {
1913 self.last_input_was_keyboard
1914 }
1915
1916 /// The current state of the keyboard's capslock
1917 pub fn capslock(&self) -> Capslock {
1918 self.capslock
1919 }
1920
1921 fn complete_frame(&self) {
1922 self.platform_window.completed_frame();
1923 }
1924
1925 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1926 /// the contents of the new [`Scene`], use [`Self::present`].
1927 #[profiling::function]
1928 pub fn draw(&mut self, cx: &mut App) -> ArenaClearNeeded {
1929 self.invalidate_entities();
1930 cx.entities.clear_accessed();
1931 debug_assert!(self.rendered_entity_stack.is_empty());
1932 self.invalidator.set_dirty(false);
1933 self.requested_autoscroll = None;
1934
1935 // Restore the previously-used input handler.
1936 if let Some(input_handler) = self.platform_window.take_input_handler() {
1937 self.rendered_frame.input_handlers.push(Some(input_handler));
1938 }
1939 self.draw_roots(cx);
1940 self.dirty_views.clear();
1941 self.next_frame.window_active = self.active.get();
1942
1943 // Register requested input handler with the platform window.
1944 if let Some(input_handler) = self.next_frame.input_handlers.pop() {
1945 self.platform_window
1946 .set_input_handler(input_handler.unwrap());
1947 }
1948
1949 self.layout_engine.as_mut().unwrap().clear();
1950 self.text_system().finish_frame();
1951 self.next_frame.finish(&mut self.rendered_frame);
1952
1953 self.invalidator.set_phase(DrawPhase::Focus);
1954 let previous_focus_path = self.rendered_frame.focus_path();
1955 let previous_window_active = self.rendered_frame.window_active;
1956 mem::swap(&mut self.rendered_frame, &mut self.next_frame);
1957 self.next_frame.clear();
1958 let current_focus_path = self.rendered_frame.focus_path();
1959 let current_window_active = self.rendered_frame.window_active;
1960
1961 if previous_focus_path != current_focus_path
1962 || previous_window_active != current_window_active
1963 {
1964 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
1965 self.focus_lost_listeners
1966 .clone()
1967 .retain(&(), |listener| listener(self, cx));
1968 }
1969
1970 let event = WindowFocusEvent {
1971 previous_focus_path: if previous_window_active {
1972 previous_focus_path
1973 } else {
1974 Default::default()
1975 },
1976 current_focus_path: if current_window_active {
1977 current_focus_path
1978 } else {
1979 Default::default()
1980 },
1981 };
1982 self.focus_listeners
1983 .clone()
1984 .retain(&(), |listener| listener(&event, self, cx));
1985 }
1986
1987 debug_assert!(self.rendered_entity_stack.is_empty());
1988 self.record_entities_accessed(cx);
1989 self.reset_cursor_style(cx);
1990 self.refreshing = false;
1991 self.invalidator.set_phase(DrawPhase::None);
1992 self.needs_present.set(true);
1993
1994 ArenaClearNeeded
1995 }
1996
1997 fn record_entities_accessed(&mut self, cx: &mut App) {
1998 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1999 let mut entities = mem::take(entities_ref.deref_mut());
2000 drop(entities_ref);
2001 let handle = self.handle;
2002 cx.record_entities_accessed(
2003 handle,
2004 // Try moving window invalidator into the Window
2005 self.invalidator.clone(),
2006 &entities,
2007 );
2008 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2009 mem::swap(&mut entities, entities_ref.deref_mut());
2010 }
2011
2012 fn invalidate_entities(&mut self) {
2013 let mut views = self.invalidator.take_views();
2014 for entity in views.drain() {
2015 self.mark_view_dirty(entity);
2016 }
2017 self.invalidator.replace_views(views);
2018 }
2019
2020 #[profiling::function]
2021 fn present(&self) {
2022 self.platform_window.draw(&self.rendered_frame.scene);
2023 self.needs_present.set(false);
2024 profiling::finish_frame!();
2025 }
2026
2027 fn draw_roots(&mut self, cx: &mut App) {
2028 self.invalidator.set_phase(DrawPhase::Prepaint);
2029 self.tooltip_bounds.take();
2030
2031 let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
2032 let root_size = {
2033 #[cfg(any(feature = "inspector", debug_assertions))]
2034 {
2035 if self.inspector.is_some() {
2036 let mut size = self.viewport_size;
2037 size.width = (size.width - _inspector_width).max(px(0.0));
2038 size
2039 } else {
2040 self.viewport_size
2041 }
2042 }
2043 #[cfg(not(any(feature = "inspector", debug_assertions)))]
2044 {
2045 self.viewport_size
2046 }
2047 };
2048
2049 // Layout all root elements.
2050 let mut root_element = self.root.as_ref().unwrap().clone().into_any();
2051 root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2052
2053 #[cfg(any(feature = "inspector", debug_assertions))]
2054 let inspector_element = self.prepaint_inspector(_inspector_width, cx);
2055
2056 let mut sorted_deferred_draws =
2057 (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
2058 sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
2059 self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
2060
2061 let mut prompt_element = None;
2062 let mut active_drag_element = None;
2063 let mut tooltip_element = None;
2064 if let Some(prompt) = self.prompt.take() {
2065 let mut element = prompt.view.any_view().into_any();
2066 element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2067 prompt_element = Some(element);
2068 self.prompt = Some(prompt);
2069 } else if let Some(active_drag) = cx.active_drag.take() {
2070 let mut element = active_drag.view.clone().into_any();
2071 let offset = self.mouse_position() - active_drag.cursor_offset;
2072 element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
2073 active_drag_element = Some(element);
2074 cx.active_drag = Some(active_drag);
2075 } else {
2076 tooltip_element = self.prepaint_tooltip(cx);
2077 }
2078
2079 self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
2080
2081 // Now actually paint the elements.
2082 self.invalidator.set_phase(DrawPhase::Paint);
2083 root_element.paint(self, cx);
2084
2085 #[cfg(any(feature = "inspector", debug_assertions))]
2086 self.paint_inspector(inspector_element, cx);
2087
2088 self.paint_deferred_draws(&sorted_deferred_draws, cx);
2089
2090 if let Some(mut prompt_element) = prompt_element {
2091 prompt_element.paint(self, cx);
2092 } else if let Some(mut drag_element) = active_drag_element {
2093 drag_element.paint(self, cx);
2094 } else if let Some(mut tooltip_element) = tooltip_element {
2095 tooltip_element.paint(self, cx);
2096 }
2097
2098 #[cfg(any(feature = "inspector", debug_assertions))]
2099 self.paint_inspector_hitbox(cx);
2100 }
2101
2102 fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
2103 // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
2104 for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
2105 let Some(Some(tooltip_request)) = self
2106 .next_frame
2107 .tooltip_requests
2108 .get(tooltip_request_index)
2109 .cloned()
2110 else {
2111 log::error!("Unexpectedly absent TooltipRequest");
2112 continue;
2113 };
2114 let mut element = tooltip_request.tooltip.view.clone().into_any();
2115 let mouse_position = tooltip_request.tooltip.mouse_position;
2116 let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
2117
2118 let mut tooltip_bounds =
2119 Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
2120 let window_bounds = Bounds {
2121 origin: Point::default(),
2122 size: self.viewport_size(),
2123 };
2124
2125 if tooltip_bounds.right() > window_bounds.right() {
2126 let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
2127 if new_x >= Pixels::ZERO {
2128 tooltip_bounds.origin.x = new_x;
2129 } else {
2130 tooltip_bounds.origin.x = cmp::max(
2131 Pixels::ZERO,
2132 tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
2133 );
2134 }
2135 }
2136
2137 if tooltip_bounds.bottom() > window_bounds.bottom() {
2138 let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
2139 if new_y >= Pixels::ZERO {
2140 tooltip_bounds.origin.y = new_y;
2141 } else {
2142 tooltip_bounds.origin.y = cmp::max(
2143 Pixels::ZERO,
2144 tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
2145 );
2146 }
2147 }
2148
2149 // It's possible for an element to have an active tooltip while not being painted (e.g.
2150 // via the `visible_on_hover` method). Since mouse listeners are not active in this
2151 // case, instead update the tooltip's visibility here.
2152 let is_visible =
2153 (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
2154 if !is_visible {
2155 continue;
2156 }
2157
2158 self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
2159 element.prepaint(window, cx)
2160 });
2161
2162 self.tooltip_bounds = Some(TooltipBounds {
2163 id: tooltip_request.id,
2164 bounds: tooltip_bounds,
2165 });
2166 return Some(element);
2167 }
2168 None
2169 }
2170
2171 fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2172 assert_eq!(self.element_id_stack.len(), 0);
2173
2174 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2175 for deferred_draw_ix in deferred_draw_indices {
2176 let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2177 self.element_id_stack
2178 .clone_from(&deferred_draw.element_id_stack);
2179 self.text_style_stack
2180 .clone_from(&deferred_draw.text_style_stack);
2181 self.next_frame
2182 .dispatch_tree
2183 .set_active_node(deferred_draw.parent_node);
2184
2185 let prepaint_start = self.prepaint_index();
2186 if let Some(element) = deferred_draw.element.as_mut() {
2187 self.with_rendered_view(deferred_draw.current_view, |window| {
2188 window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
2189 element.prepaint(window, cx)
2190 });
2191 })
2192 } else {
2193 self.reuse_prepaint(deferred_draw.prepaint_range.clone());
2194 }
2195 let prepaint_end = self.prepaint_index();
2196 deferred_draw.prepaint_range = prepaint_start..prepaint_end;
2197 }
2198 assert_eq!(
2199 self.next_frame.deferred_draws.len(),
2200 0,
2201 "cannot call defer_draw during deferred drawing"
2202 );
2203 self.next_frame.deferred_draws = deferred_draws;
2204 self.element_id_stack.clear();
2205 self.text_style_stack.clear();
2206 }
2207
2208 fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2209 assert_eq!(self.element_id_stack.len(), 0);
2210
2211 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2212 for deferred_draw_ix in deferred_draw_indices {
2213 let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2214 self.element_id_stack
2215 .clone_from(&deferred_draw.element_id_stack);
2216 self.next_frame
2217 .dispatch_tree
2218 .set_active_node(deferred_draw.parent_node);
2219
2220 let paint_start = self.paint_index();
2221 if let Some(element) = deferred_draw.element.as_mut() {
2222 self.with_rendered_view(deferred_draw.current_view, |window| {
2223 element.paint(window, cx);
2224 })
2225 } else {
2226 self.reuse_paint(deferred_draw.paint_range.clone());
2227 }
2228 let paint_end = self.paint_index();
2229 deferred_draw.paint_range = paint_start..paint_end;
2230 }
2231 self.next_frame.deferred_draws = deferred_draws;
2232 self.element_id_stack.clear();
2233 }
2234
2235 pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2236 PrepaintStateIndex {
2237 hitboxes_index: self.next_frame.hitboxes.len(),
2238 tooltips_index: self.next_frame.tooltip_requests.len(),
2239 deferred_draws_index: self.next_frame.deferred_draws.len(),
2240 dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2241 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2242 line_layout_index: self.text_system.layout_index(),
2243 }
2244 }
2245
2246 pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2247 self.next_frame.hitboxes.extend(
2248 self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2249 .iter()
2250 .cloned(),
2251 );
2252 self.next_frame.tooltip_requests.extend(
2253 self.rendered_frame.tooltip_requests
2254 [range.start.tooltips_index..range.end.tooltips_index]
2255 .iter_mut()
2256 .map(|request| request.take()),
2257 );
2258 self.next_frame.accessed_element_states.extend(
2259 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2260 ..range.end.accessed_element_states_index]
2261 .iter()
2262 .map(|(id, type_id)| (id.clone(), *type_id)),
2263 );
2264 self.text_system
2265 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2266
2267 let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2268 range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2269 &mut self.rendered_frame.dispatch_tree,
2270 self.focus,
2271 );
2272
2273 if reused_subtree.contains_focus() {
2274 self.next_frame.focus = self.focus;
2275 }
2276
2277 self.next_frame.deferred_draws.extend(
2278 self.rendered_frame.deferred_draws
2279 [range.start.deferred_draws_index..range.end.deferred_draws_index]
2280 .iter()
2281 .map(|deferred_draw| DeferredDraw {
2282 current_view: deferred_draw.current_view,
2283 parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2284 element_id_stack: deferred_draw.element_id_stack.clone(),
2285 text_style_stack: deferred_draw.text_style_stack.clone(),
2286 priority: deferred_draw.priority,
2287 element: None,
2288 absolute_offset: deferred_draw.absolute_offset,
2289 prepaint_range: deferred_draw.prepaint_range.clone(),
2290 paint_range: deferred_draw.paint_range.clone(),
2291 }),
2292 );
2293 }
2294
2295 pub(crate) fn paint_index(&self) -> PaintIndex {
2296 PaintIndex {
2297 scene_index: self.next_frame.scene.len(),
2298 mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2299 input_handlers_index: self.next_frame.input_handlers.len(),
2300 cursor_styles_index: self.next_frame.cursor_styles.len(),
2301 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2302 tab_handle_index: self.next_frame.tab_stops.paint_index(),
2303 line_layout_index: self.text_system.layout_index(),
2304 }
2305 }
2306
2307 pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2308 self.next_frame.cursor_styles.extend(
2309 self.rendered_frame.cursor_styles
2310 [range.start.cursor_styles_index..range.end.cursor_styles_index]
2311 .iter()
2312 .cloned(),
2313 );
2314 self.next_frame.input_handlers.extend(
2315 self.rendered_frame.input_handlers
2316 [range.start.input_handlers_index..range.end.input_handlers_index]
2317 .iter_mut()
2318 .map(|handler| handler.take()),
2319 );
2320 self.next_frame.mouse_listeners.extend(
2321 self.rendered_frame.mouse_listeners
2322 [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2323 .iter_mut()
2324 .map(|listener| listener.take()),
2325 );
2326 self.next_frame.accessed_element_states.extend(
2327 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2328 ..range.end.accessed_element_states_index]
2329 .iter()
2330 .map(|(id, type_id)| (id.clone(), *type_id)),
2331 );
2332 self.next_frame.tab_stops.replay(
2333 &self.rendered_frame.tab_stops.insertion_history
2334 [range.start.tab_handle_index..range.end.tab_handle_index],
2335 );
2336
2337 self.text_system
2338 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2339 self.next_frame.scene.replay(
2340 range.start.scene_index..range.end.scene_index,
2341 &self.rendered_frame.scene,
2342 );
2343 }
2344
2345 /// Push a text style onto the stack, and call a function with that style active.
2346 /// Use [`Window::text_style`] to get the current, combined text style. This method
2347 /// should only be called as part of element drawing.
2348 pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2349 where
2350 F: FnOnce(&mut Self) -> R,
2351 {
2352 self.invalidator.debug_assert_paint_or_prepaint();
2353 if let Some(style) = style {
2354 self.text_style_stack.push(style);
2355 let result = f(self);
2356 self.text_style_stack.pop();
2357 result
2358 } else {
2359 f(self)
2360 }
2361 }
2362
2363 /// Updates the cursor style at the platform level. This method should only be called
2364 /// during the prepaint phase of element drawing.
2365 pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
2366 self.invalidator.debug_assert_paint();
2367 self.next_frame.cursor_styles.push(CursorStyleRequest {
2368 hitbox_id: Some(hitbox.id),
2369 style,
2370 });
2371 }
2372
2373 /// Updates the cursor style for the entire window at the platform level. A cursor
2374 /// style using this method will have precedence over any cursor style set using
2375 /// `set_cursor_style`. This method should only be called during the prepaint
2376 /// phase of element drawing.
2377 pub fn set_window_cursor_style(&mut self, style: CursorStyle) {
2378 self.invalidator.debug_assert_paint();
2379 self.next_frame.cursor_styles.push(CursorStyleRequest {
2380 hitbox_id: None,
2381 style,
2382 })
2383 }
2384
2385 /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2386 /// during the paint phase of element drawing.
2387 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2388 self.invalidator.debug_assert_prepaint();
2389 let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2390 self.next_frame
2391 .tooltip_requests
2392 .push(Some(TooltipRequest { id, tooltip }));
2393 id
2394 }
2395
2396 /// Invoke the given function with the given content mask after intersecting it
2397 /// with the current mask. This method should only be called during element drawing.
2398 pub fn with_content_mask<R>(
2399 &mut self,
2400 mask: Option<ContentMask<Pixels>>,
2401 f: impl FnOnce(&mut Self) -> R,
2402 ) -> R {
2403 self.invalidator.debug_assert_paint_or_prepaint();
2404 if let Some(mask) = mask {
2405 let mask = mask.intersect(&self.content_mask());
2406 self.content_mask_stack.push(mask);
2407 let result = f(self);
2408 self.content_mask_stack.pop();
2409 result
2410 } else {
2411 f(self)
2412 }
2413 }
2414
2415 /// Updates the global element offset relative to the current offset. This is used to implement
2416 /// scrolling. This method should only be called during the prepaint phase of element drawing.
2417 pub fn with_element_offset<R>(
2418 &mut self,
2419 offset: Point<Pixels>,
2420 f: impl FnOnce(&mut Self) -> R,
2421 ) -> R {
2422 self.invalidator.debug_assert_prepaint();
2423
2424 if offset.is_zero() {
2425 return f(self);
2426 };
2427
2428 let abs_offset = self.element_offset() + offset;
2429 self.with_absolute_element_offset(abs_offset, f)
2430 }
2431
2432 /// Updates the global element offset based on the given offset. This is used to implement
2433 /// drag handles and other manual painting of elements. This method should only be called during
2434 /// the prepaint phase of element drawing.
2435 pub fn with_absolute_element_offset<R>(
2436 &mut self,
2437 offset: Point<Pixels>,
2438 f: impl FnOnce(&mut Self) -> R,
2439 ) -> R {
2440 self.invalidator.debug_assert_prepaint();
2441 self.element_offset_stack.push(offset);
2442 let result = f(self);
2443 self.element_offset_stack.pop();
2444 result
2445 }
2446
2447 pub(crate) fn with_element_opacity<R>(
2448 &mut self,
2449 opacity: Option<f32>,
2450 f: impl FnOnce(&mut Self) -> R,
2451 ) -> R {
2452 self.invalidator.debug_assert_paint_or_prepaint();
2453
2454 let Some(opacity) = opacity else {
2455 return f(self);
2456 };
2457
2458 let previous_opacity = self.element_opacity;
2459 self.element_opacity = previous_opacity * opacity;
2460 let result = f(self);
2461 self.element_opacity = previous_opacity;
2462 result
2463 }
2464
2465 /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2466 /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2467 /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2468 /// element offset and prepaint again. See [`crate::List`] for an example. This method should only be
2469 /// called during the prepaint phase of element drawing.
2470 pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2471 self.invalidator.debug_assert_prepaint();
2472 let index = self.prepaint_index();
2473 let result = f(self);
2474 if result.is_err() {
2475 self.next_frame.hitboxes.truncate(index.hitboxes_index);
2476 self.next_frame
2477 .tooltip_requests
2478 .truncate(index.tooltips_index);
2479 self.next_frame
2480 .deferred_draws
2481 .truncate(index.deferred_draws_index);
2482 self.next_frame
2483 .dispatch_tree
2484 .truncate(index.dispatch_tree_index);
2485 self.next_frame
2486 .accessed_element_states
2487 .truncate(index.accessed_element_states_index);
2488 self.text_system.truncate_layouts(index.line_layout_index);
2489 }
2490 result
2491 }
2492
2493 /// When you call this method during [`Element::prepaint`], containing elements will attempt to
2494 /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2495 /// [`Element::prepaint`] again with a new set of bounds. See [`crate::List`] for an example of an element
2496 /// that supports this method being called on the elements it contains. This method should only be
2497 /// called during the prepaint phase of element drawing.
2498 pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2499 self.invalidator.debug_assert_prepaint();
2500 self.requested_autoscroll = Some(bounds);
2501 }
2502
2503 /// This method can be called from a containing element such as [`crate::List`] to support the autoscroll behavior
2504 /// described in [`Self::request_autoscroll`].
2505 pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2506 self.invalidator.debug_assert_prepaint();
2507 self.requested_autoscroll.take()
2508 }
2509
2510 /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2511 /// Your view will be re-drawn once the asset has finished loading.
2512 ///
2513 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2514 /// time.
2515 pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2516 let (task, is_first) = cx.fetch_asset::<A>(source);
2517 task.clone().now_or_never().or_else(|| {
2518 if is_first {
2519 let entity_id = self.current_view();
2520 self.spawn(cx, {
2521 let task = task.clone();
2522 async move |cx| {
2523 task.await;
2524
2525 cx.on_next_frame(move |_, cx| {
2526 cx.notify(entity_id);
2527 });
2528 }
2529 })
2530 .detach();
2531 }
2532
2533 None
2534 })
2535 }
2536
2537 /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2538 /// Your view will not be re-drawn once the asset has finished loading.
2539 ///
2540 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2541 /// time.
2542 pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2543 let (task, _) = cx.fetch_asset::<A>(source);
2544 task.now_or_never()
2545 }
2546 /// Obtain the current element offset. This method should only be called during the
2547 /// prepaint phase of element drawing.
2548 pub fn element_offset(&self) -> Point<Pixels> {
2549 self.invalidator.debug_assert_prepaint();
2550 self.element_offset_stack
2551 .last()
2552 .copied()
2553 .unwrap_or_default()
2554 }
2555
2556 /// Obtain the current element opacity. This method should only be called during the
2557 /// prepaint phase of element drawing.
2558 #[inline]
2559 pub(crate) fn element_opacity(&self) -> f32 {
2560 self.invalidator.debug_assert_paint_or_prepaint();
2561 self.element_opacity
2562 }
2563
2564 /// Obtain the current content mask. This method should only be called during element drawing.
2565 pub fn content_mask(&self) -> ContentMask<Pixels> {
2566 self.invalidator.debug_assert_paint_or_prepaint();
2567 self.content_mask_stack
2568 .last()
2569 .cloned()
2570 .unwrap_or_else(|| ContentMask {
2571 bounds: Bounds {
2572 origin: Point::default(),
2573 size: self.viewport_size,
2574 },
2575 })
2576 }
2577
2578 /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2579 /// This can be used within a custom element to distinguish multiple sets of child elements.
2580 pub fn with_element_namespace<R>(
2581 &mut self,
2582 element_id: impl Into<ElementId>,
2583 f: impl FnOnce(&mut Self) -> R,
2584 ) -> R {
2585 self.element_id_stack.push(element_id.into());
2586 let result = f(self);
2587 self.element_id_stack.pop();
2588 result
2589 }
2590
2591 /// Use a piece of state that exists as long this element is being rendered in consecutive frames.
2592 pub fn use_keyed_state<S: 'static>(
2593 &mut self,
2594 key: impl Into<ElementId>,
2595 cx: &mut App,
2596 init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2597 ) -> Entity<S> {
2598 let current_view = self.current_view();
2599 self.with_global_id(key.into(), |global_id, window| {
2600 window.with_element_state(global_id, |state: Option<Entity<S>>, window| {
2601 if let Some(state) = state {
2602 (state.clone(), state)
2603 } else {
2604 let new_state = cx.new(|cx| init(window, cx));
2605 cx.observe(&new_state, move |_, cx| {
2606 cx.notify(current_view);
2607 })
2608 .detach();
2609 (new_state.clone(), new_state)
2610 }
2611 })
2612 })
2613 }
2614
2615 /// Immediately push an element ID onto the stack. Useful for simplifying IDs in lists
2616 pub fn with_id<R>(&mut self, id: impl Into<ElementId>, f: impl FnOnce(&mut Self) -> R) -> R {
2617 self.with_global_id(id.into(), |_, window| f(window))
2618 }
2619
2620 /// Use a piece of state that exists as long this element is being rendered in consecutive frames, without needing to specify a key
2621 ///
2622 /// NOTE: This method uses the location of the caller to generate an ID for this state.
2623 /// If this is not sufficient to identify your state (e.g. you're rendering a list item),
2624 /// you can provide a custom ElementID using the `use_keyed_state` method.
2625 #[track_caller]
2626 pub fn use_state<S: 'static>(
2627 &mut self,
2628 cx: &mut App,
2629 init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2630 ) -> Entity<S> {
2631 self.use_keyed_state(
2632 ElementId::CodeLocation(*core::panic::Location::caller()),
2633 cx,
2634 init,
2635 )
2636 }
2637
2638 /// Updates or initializes state for an element with the given id that lives across multiple
2639 /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2640 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2641 /// when drawing the next frame. This method should only be called as part of element drawing.
2642 pub fn with_element_state<S, R>(
2643 &mut self,
2644 global_id: &GlobalElementId,
2645 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2646 ) -> R
2647 where
2648 S: 'static,
2649 {
2650 self.invalidator.debug_assert_paint_or_prepaint();
2651
2652 let key = (global_id.clone(), TypeId::of::<S>());
2653 self.next_frame.accessed_element_states.push(key.clone());
2654
2655 if let Some(any) = self
2656 .next_frame
2657 .element_states
2658 .remove(&key)
2659 .or_else(|| self.rendered_frame.element_states.remove(&key))
2660 {
2661 let ElementStateBox {
2662 inner,
2663 #[cfg(debug_assertions)]
2664 type_name,
2665 } = any;
2666 // Using the extra inner option to avoid needing to reallocate a new box.
2667 let mut state_box = inner
2668 .downcast::<Option<S>>()
2669 .map_err(|_| {
2670 #[cfg(debug_assertions)]
2671 {
2672 anyhow::anyhow!(
2673 "invalid element state type for id, requested {:?}, actual: {:?}",
2674 std::any::type_name::<S>(),
2675 type_name
2676 )
2677 }
2678
2679 #[cfg(not(debug_assertions))]
2680 {
2681 anyhow::anyhow!(
2682 "invalid element state type for id, requested {:?}",
2683 std::any::type_name::<S>(),
2684 )
2685 }
2686 })
2687 .unwrap();
2688
2689 let state = state_box.take().expect(
2690 "reentrant call to with_element_state for the same state type and element id",
2691 );
2692 let (result, state) = f(Some(state), self);
2693 state_box.replace(state);
2694 self.next_frame.element_states.insert(
2695 key,
2696 ElementStateBox {
2697 inner: state_box,
2698 #[cfg(debug_assertions)]
2699 type_name,
2700 },
2701 );
2702 result
2703 } else {
2704 let (result, state) = f(None, self);
2705 self.next_frame.element_states.insert(
2706 key,
2707 ElementStateBox {
2708 inner: Box::new(Some(state)),
2709 #[cfg(debug_assertions)]
2710 type_name: std::any::type_name::<S>(),
2711 },
2712 );
2713 result
2714 }
2715 }
2716
2717 /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2718 /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2719 /// when the element is guaranteed to have an id.
2720 ///
2721 /// The first option means 'no ID provided'
2722 /// The second option means 'not yet initialized'
2723 pub fn with_optional_element_state<S, R>(
2724 &mut self,
2725 global_id: Option<&GlobalElementId>,
2726 f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2727 ) -> R
2728 where
2729 S: 'static,
2730 {
2731 self.invalidator.debug_assert_paint_or_prepaint();
2732
2733 if let Some(global_id) = global_id {
2734 self.with_element_state(global_id, |state, cx| {
2735 let (result, state) = f(Some(state), cx);
2736 let state =
2737 state.expect("you must return some state when you pass some element id");
2738 (result, state)
2739 })
2740 } else {
2741 let (result, state) = f(None, self);
2742 debug_assert!(
2743 state.is_none(),
2744 "you must not return an element state when passing None for the global id"
2745 );
2746 result
2747 }
2748 }
2749
2750 /// Executes the given closure within the context of a tab group.
2751 #[inline]
2752 pub fn with_tab_group<R>(&mut self, index: Option<isize>, f: impl FnOnce(&mut Self) -> R) -> R {
2753 if let Some(index) = index {
2754 self.next_frame.tab_stops.begin_group(index);
2755 let result = f(self);
2756 self.next_frame.tab_stops.end_group();
2757 result
2758 } else {
2759 f(self)
2760 }
2761 }
2762
2763 /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2764 /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2765 /// with higher values being drawn on top.
2766 ///
2767 /// This method should only be called as part of the prepaint phase of element drawing.
2768 pub fn defer_draw(
2769 &mut self,
2770 element: AnyElement,
2771 absolute_offset: Point<Pixels>,
2772 priority: usize,
2773 ) {
2774 self.invalidator.debug_assert_prepaint();
2775 let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2776 self.next_frame.deferred_draws.push(DeferredDraw {
2777 current_view: self.current_view(),
2778 parent_node,
2779 element_id_stack: self.element_id_stack.clone(),
2780 text_style_stack: self.text_style_stack.clone(),
2781 priority,
2782 element: Some(element),
2783 absolute_offset,
2784 prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2785 paint_range: PaintIndex::default()..PaintIndex::default(),
2786 });
2787 }
2788
2789 /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2790 /// of geometry that are non-overlapping and have the same draw order. This is typically used
2791 /// for performance reasons.
2792 ///
2793 /// This method should only be called as part of the paint phase of element drawing.
2794 pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2795 self.invalidator.debug_assert_paint();
2796
2797 let scale_factor = self.scale_factor();
2798 let content_mask = self.content_mask();
2799 let clipped_bounds = bounds.intersect(&content_mask.bounds);
2800 if !clipped_bounds.is_empty() {
2801 self.next_frame
2802 .scene
2803 .push_layer(clipped_bounds.scale(scale_factor));
2804 }
2805
2806 let result = f(self);
2807
2808 if !clipped_bounds.is_empty() {
2809 self.next_frame.scene.pop_layer();
2810 }
2811
2812 result
2813 }
2814
2815 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2816 ///
2817 /// This method should only be called as part of the paint phase of element drawing.
2818 pub fn paint_shadows(
2819 &mut self,
2820 bounds: Bounds<Pixels>,
2821 corner_radii: Corners<Pixels>,
2822 shadows: &[BoxShadow],
2823 ) {
2824 self.invalidator.debug_assert_paint();
2825
2826 let scale_factor = self.scale_factor();
2827 let content_mask = self.content_mask();
2828 let opacity = self.element_opacity();
2829 for shadow in shadows {
2830 let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2831 self.next_frame.scene.insert_primitive(Shadow {
2832 order: 0,
2833 blur_radius: shadow.blur_radius.scale(scale_factor),
2834 bounds: shadow_bounds.scale(scale_factor),
2835 content_mask: content_mask.scale(scale_factor),
2836 corner_radii: corner_radii.scale(scale_factor),
2837 color: shadow.color.opacity(opacity),
2838 });
2839 }
2840 }
2841
2842 /// Paint one or more quads into the scene for the next frame at the current stacking context.
2843 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2844 /// see [`fill`], [`outline`], and [`quad`] to construct this type.
2845 ///
2846 /// This method should only be called as part of the paint phase of element drawing.
2847 ///
2848 /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2849 /// where the circular arcs meet. This will not display well when combined with dashed borders.
2850 /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2851 pub fn paint_quad(&mut self, quad: PaintQuad) {
2852 self.invalidator.debug_assert_paint();
2853
2854 let scale_factor = self.scale_factor();
2855 let content_mask = self.content_mask();
2856 let opacity = self.element_opacity();
2857 self.next_frame.scene.insert_primitive(Quad {
2858 order: 0,
2859 bounds: quad.bounds.scale(scale_factor),
2860 content_mask: content_mask.scale(scale_factor),
2861 background: quad.background.opacity(opacity),
2862 border_color: quad.border_color.opacity(opacity),
2863 corner_radii: quad.corner_radii.scale(scale_factor),
2864 border_widths: quad.border_widths.scale(scale_factor),
2865 border_style: quad.border_style,
2866 });
2867 }
2868
2869 /// Paint the given `Path` into the scene for the next frame at the current z-index.
2870 ///
2871 /// This method should only be called as part of the paint phase of element drawing.
2872 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2873 self.invalidator.debug_assert_paint();
2874
2875 let scale_factor = self.scale_factor();
2876 let content_mask = self.content_mask();
2877 let opacity = self.element_opacity();
2878 path.content_mask = content_mask;
2879 let color: Background = color.into();
2880 path.color = color.opacity(opacity);
2881 self.next_frame
2882 .scene
2883 .insert_primitive(path.scale(scale_factor));
2884 }
2885
2886 /// Paint an underline into the scene for the next frame at the current z-index.
2887 ///
2888 /// This method should only be called as part of the paint phase of element drawing.
2889 pub fn paint_underline(
2890 &mut self,
2891 origin: Point<Pixels>,
2892 width: Pixels,
2893 style: &UnderlineStyle,
2894 ) {
2895 self.invalidator.debug_assert_paint();
2896
2897 let scale_factor = self.scale_factor();
2898 let height = if style.wavy {
2899 style.thickness * 3.
2900 } else {
2901 style.thickness
2902 };
2903 let bounds = Bounds {
2904 origin,
2905 size: size(width, height),
2906 };
2907 let content_mask = self.content_mask();
2908 let element_opacity = self.element_opacity();
2909
2910 self.next_frame.scene.insert_primitive(Underline {
2911 order: 0,
2912 pad: 0,
2913 bounds: bounds.scale(scale_factor),
2914 content_mask: content_mask.scale(scale_factor),
2915 color: style.color.unwrap_or_default().opacity(element_opacity),
2916 thickness: style.thickness.scale(scale_factor),
2917 wavy: if style.wavy { 1 } else { 0 },
2918 });
2919 }
2920
2921 /// Paint a strikethrough into the scene for the next frame at the current z-index.
2922 ///
2923 /// This method should only be called as part of the paint phase of element drawing.
2924 pub fn paint_strikethrough(
2925 &mut self,
2926 origin: Point<Pixels>,
2927 width: Pixels,
2928 style: &StrikethroughStyle,
2929 ) {
2930 self.invalidator.debug_assert_paint();
2931
2932 let scale_factor = self.scale_factor();
2933 let height = style.thickness;
2934 let bounds = Bounds {
2935 origin,
2936 size: size(width, height),
2937 };
2938 let content_mask = self.content_mask();
2939 let opacity = self.element_opacity();
2940
2941 self.next_frame.scene.insert_primitive(Underline {
2942 order: 0,
2943 pad: 0,
2944 bounds: bounds.scale(scale_factor),
2945 content_mask: content_mask.scale(scale_factor),
2946 thickness: style.thickness.scale(scale_factor),
2947 color: style.color.unwrap_or_default().opacity(opacity),
2948 wavy: 0,
2949 });
2950 }
2951
2952 /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
2953 ///
2954 /// The y component of the origin is the baseline of the glyph.
2955 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2956 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2957 /// This method is only useful if you need to paint a single glyph that has already been shaped.
2958 ///
2959 /// This method should only be called as part of the paint phase of element drawing.
2960 pub fn paint_glyph(
2961 &mut self,
2962 origin: Point<Pixels>,
2963 font_id: FontId,
2964 glyph_id: GlyphId,
2965 font_size: Pixels,
2966 color: Hsla,
2967 ) -> Result<()> {
2968 self.invalidator.debug_assert_paint();
2969
2970 let element_opacity = self.element_opacity();
2971 let scale_factor = self.scale_factor();
2972 let glyph_origin = origin.scale(scale_factor);
2973
2974 let subpixel_variant = Point {
2975 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS_X as f32).floor() as u8,
2976 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS_Y as f32).floor() as u8,
2977 };
2978 let params = RenderGlyphParams {
2979 font_id,
2980 glyph_id,
2981 font_size,
2982 subpixel_variant,
2983 scale_factor,
2984 is_emoji: false,
2985 };
2986
2987 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2988 if !raster_bounds.is_zero() {
2989 let tile = self
2990 .sprite_atlas
2991 .get_or_insert_with(¶ms.clone().into(), &mut || {
2992 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2993 Ok(Some((size, Cow::Owned(bytes))))
2994 })?
2995 .expect("Callback above only errors or returns Some");
2996 let bounds = Bounds {
2997 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2998 size: tile.bounds.size.map(Into::into),
2999 };
3000 let content_mask = self.content_mask().scale(scale_factor);
3001 self.next_frame.scene.insert_primitive(MonochromeSprite {
3002 order: 0,
3003 pad: 0,
3004 bounds,
3005 content_mask,
3006 color: color.opacity(element_opacity),
3007 tile,
3008 transformation: TransformationMatrix::unit(),
3009 });
3010 }
3011 Ok(())
3012 }
3013
3014 /// Paints an emoji glyph into the scene for the next frame at the current z-index.
3015 ///
3016 /// The y component of the origin is the baseline of the glyph.
3017 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3018 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3019 /// This method is only useful if you need to paint a single emoji that has already been shaped.
3020 ///
3021 /// This method should only be called as part of the paint phase of element drawing.
3022 pub fn paint_emoji(
3023 &mut self,
3024 origin: Point<Pixels>,
3025 font_id: FontId,
3026 glyph_id: GlyphId,
3027 font_size: Pixels,
3028 ) -> Result<()> {
3029 self.invalidator.debug_assert_paint();
3030
3031 let scale_factor = self.scale_factor();
3032 let glyph_origin = origin.scale(scale_factor);
3033 let params = RenderGlyphParams {
3034 font_id,
3035 glyph_id,
3036 font_size,
3037 // We don't render emojis with subpixel variants.
3038 subpixel_variant: Default::default(),
3039 scale_factor,
3040 is_emoji: true,
3041 };
3042
3043 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
3044 if !raster_bounds.is_zero() {
3045 let tile = self
3046 .sprite_atlas
3047 .get_or_insert_with(¶ms.clone().into(), &mut || {
3048 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
3049 Ok(Some((size, Cow::Owned(bytes))))
3050 })?
3051 .expect("Callback above only errors or returns Some");
3052
3053 let bounds = Bounds {
3054 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3055 size: tile.bounds.size.map(Into::into),
3056 };
3057 let content_mask = self.content_mask().scale(scale_factor);
3058 let opacity = self.element_opacity();
3059
3060 self.next_frame.scene.insert_primitive(PolychromeSprite {
3061 order: 0,
3062 pad: 0,
3063 grayscale: false,
3064 bounds,
3065 corner_radii: Default::default(),
3066 content_mask,
3067 tile,
3068 opacity,
3069 });
3070 }
3071 Ok(())
3072 }
3073
3074 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
3075 ///
3076 /// This method should only be called as part of the paint phase of element drawing.
3077 pub fn paint_svg(
3078 &mut self,
3079 bounds: Bounds<Pixels>,
3080 path: SharedString,
3081 transformation: TransformationMatrix,
3082 color: Hsla,
3083 cx: &App,
3084 ) -> Result<()> {
3085 self.invalidator.debug_assert_paint();
3086
3087 let element_opacity = self.element_opacity();
3088 let scale_factor = self.scale_factor();
3089
3090 let bounds = bounds.scale(scale_factor);
3091 let params = RenderSvgParams {
3092 path,
3093 size: bounds.size.map(|pixels| {
3094 DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
3095 }),
3096 };
3097
3098 let Some(tile) =
3099 self.sprite_atlas
3100 .get_or_insert_with(¶ms.clone().into(), &mut || {
3101 let Some((size, bytes)) = cx.svg_renderer.render(¶ms)? else {
3102 return Ok(None);
3103 };
3104 Ok(Some((size, Cow::Owned(bytes))))
3105 })?
3106 else {
3107 return Ok(());
3108 };
3109 let content_mask = self.content_mask().scale(scale_factor);
3110 let svg_bounds = Bounds {
3111 origin: bounds.center()
3112 - Point::new(
3113 ScaledPixels(tile.bounds.size.width.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3114 ScaledPixels(tile.bounds.size.height.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3115 ),
3116 size: tile
3117 .bounds
3118 .size
3119 .map(|value| ScaledPixels(value.0 as f32 / SMOOTH_SVG_SCALE_FACTOR)),
3120 };
3121
3122 self.next_frame.scene.insert_primitive(MonochromeSprite {
3123 order: 0,
3124 pad: 0,
3125 bounds: svg_bounds
3126 .map_origin(|origin| origin.round())
3127 .map_size(|size| size.ceil()),
3128 content_mask,
3129 color: color.opacity(element_opacity),
3130 tile,
3131 transformation,
3132 });
3133
3134 Ok(())
3135 }
3136
3137 /// Paint an image into the scene for the next frame at the current z-index.
3138 /// This method will panic if the frame_index is not valid
3139 ///
3140 /// This method should only be called as part of the paint phase of element drawing.
3141 pub fn paint_image(
3142 &mut self,
3143 bounds: Bounds<Pixels>,
3144 corner_radii: Corners<Pixels>,
3145 data: Arc<RenderImage>,
3146 frame_index: usize,
3147 grayscale: bool,
3148 ) -> Result<()> {
3149 self.invalidator.debug_assert_paint();
3150
3151 let scale_factor = self.scale_factor();
3152 let bounds = bounds.scale(scale_factor);
3153 let params = RenderImageParams {
3154 image_id: data.id,
3155 frame_index,
3156 };
3157
3158 let tile = self
3159 .sprite_atlas
3160 .get_or_insert_with(¶ms.into(), &mut || {
3161 Ok(Some((
3162 data.size(frame_index),
3163 Cow::Borrowed(
3164 data.as_bytes(frame_index)
3165 .expect("It's the caller's job to pass a valid frame index"),
3166 ),
3167 )))
3168 })?
3169 .expect("Callback above only returns Some");
3170 let content_mask = self.content_mask().scale(scale_factor);
3171 let corner_radii = corner_radii.scale(scale_factor);
3172 let opacity = self.element_opacity();
3173
3174 self.next_frame.scene.insert_primitive(PolychromeSprite {
3175 order: 0,
3176 pad: 0,
3177 grayscale,
3178 bounds: bounds
3179 .map_origin(|origin| origin.floor())
3180 .map_size(|size| size.ceil()),
3181 content_mask,
3182 corner_radii,
3183 tile,
3184 opacity,
3185 });
3186 Ok(())
3187 }
3188
3189 /// Paint a surface into the scene for the next frame at the current z-index.
3190 ///
3191 /// This method should only be called as part of the paint phase of element drawing.
3192 #[cfg(target_os = "macos")]
3193 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
3194 use crate::PaintSurface;
3195
3196 self.invalidator.debug_assert_paint();
3197
3198 let scale_factor = self.scale_factor();
3199 let bounds = bounds.scale(scale_factor);
3200 let content_mask = self.content_mask().scale(scale_factor);
3201 self.next_frame.scene.insert_primitive(PaintSurface {
3202 order: 0,
3203 bounds,
3204 content_mask,
3205 image_buffer,
3206 });
3207 }
3208
3209 /// Removes an image from the sprite atlas.
3210 pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
3211 for frame_index in 0..data.frame_count() {
3212 let params = RenderImageParams {
3213 image_id: data.id,
3214 frame_index,
3215 };
3216
3217 self.sprite_atlas.remove(¶ms.clone().into());
3218 }
3219
3220 Ok(())
3221 }
3222
3223 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
3224 /// layout is being requested, along with the layout ids of any children. This method is called during
3225 /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
3226 ///
3227 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3228 #[must_use]
3229 pub fn request_layout(
3230 &mut self,
3231 style: Style,
3232 children: impl IntoIterator<Item = LayoutId>,
3233 cx: &mut App,
3234 ) -> LayoutId {
3235 self.invalidator.debug_assert_prepaint();
3236
3237 cx.layout_id_buffer.clear();
3238 cx.layout_id_buffer.extend(children);
3239 let rem_size = self.rem_size();
3240 let scale_factor = self.scale_factor();
3241
3242 self.layout_engine.as_mut().unwrap().request_layout(
3243 style,
3244 rem_size,
3245 scale_factor,
3246 &cx.layout_id_buffer,
3247 )
3248 }
3249
3250 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
3251 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
3252 /// determine the element's size. One place this is used internally is when measuring text.
3253 ///
3254 /// The given closure is invoked at layout time with the known dimensions and available space and
3255 /// returns a `Size`.
3256 ///
3257 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3258 pub fn request_measured_layout<F>(&mut self, style: Style, measure: F) -> LayoutId
3259 where
3260 F: Fn(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
3261 + 'static,
3262 {
3263 self.invalidator.debug_assert_prepaint();
3264
3265 let rem_size = self.rem_size();
3266 let scale_factor = self.scale_factor();
3267 self.layout_engine
3268 .as_mut()
3269 .unwrap()
3270 .request_measured_layout(style, rem_size, scale_factor, measure)
3271 }
3272
3273 /// Compute the layout for the given id within the given available space.
3274 /// This method is called for its side effect, typically by the framework prior to painting.
3275 /// After calling it, you can request the bounds of the given layout node id or any descendant.
3276 ///
3277 /// This method should only be called as part of the prepaint phase of element drawing.
3278 pub fn compute_layout(
3279 &mut self,
3280 layout_id: LayoutId,
3281 available_space: Size<AvailableSpace>,
3282 cx: &mut App,
3283 ) {
3284 self.invalidator.debug_assert_prepaint();
3285
3286 let mut layout_engine = self.layout_engine.take().unwrap();
3287 layout_engine.compute_layout(layout_id, available_space, self, cx);
3288 self.layout_engine = Some(layout_engine);
3289 }
3290
3291 /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
3292 /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
3293 ///
3294 /// This method should only be called as part of element drawing.
3295 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
3296 self.invalidator.debug_assert_prepaint();
3297
3298 let scale_factor = self.scale_factor();
3299 let mut bounds = self
3300 .layout_engine
3301 .as_mut()
3302 .unwrap()
3303 .layout_bounds(layout_id, scale_factor)
3304 .map(Into::into);
3305 bounds.origin += self.element_offset();
3306 bounds
3307 }
3308
3309 /// This method should be called during `prepaint`. You can use
3310 /// the returned [Hitbox] during `paint` or in an event handler
3311 /// to determine whether the inserted hitbox was the topmost.
3312 ///
3313 /// This method should only be called as part of the prepaint phase of element drawing.
3314 pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
3315 self.invalidator.debug_assert_prepaint();
3316
3317 let content_mask = self.content_mask();
3318 let mut id = self.next_hitbox_id;
3319 self.next_hitbox_id = self.next_hitbox_id.next();
3320 let hitbox = Hitbox {
3321 id,
3322 bounds,
3323 content_mask,
3324 behavior,
3325 };
3326 self.next_frame.hitboxes.push(hitbox.clone());
3327 hitbox
3328 }
3329
3330 /// Set a hitbox which will act as a control area of the platform window.
3331 ///
3332 /// This method should only be called as part of the paint phase of element drawing.
3333 pub fn insert_window_control_hitbox(&mut self, area: WindowControlArea, hitbox: Hitbox) {
3334 self.invalidator.debug_assert_paint();
3335 self.next_frame.window_control_hitboxes.push((area, hitbox));
3336 }
3337
3338 /// Sets the key context for the current element. This context will be used to translate
3339 /// keybindings into actions.
3340 ///
3341 /// This method should only be called as part of the paint phase of element drawing.
3342 pub fn set_key_context(&mut self, context: KeyContext) {
3343 self.invalidator.debug_assert_paint();
3344 self.next_frame.dispatch_tree.set_key_context(context);
3345 }
3346
3347 /// Sets the focus handle for the current element. This handle will be used to manage focus state
3348 /// and keyboard event dispatch for the element.
3349 ///
3350 /// This method should only be called as part of the prepaint phase of element drawing.
3351 pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3352 self.invalidator.debug_assert_prepaint();
3353 if focus_handle.is_focused(self) {
3354 self.next_frame.focus = Some(focus_handle.id);
3355 }
3356 self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3357 }
3358
3359 /// Sets the view id for the current element, which will be used to manage view caching.
3360 ///
3361 /// This method should only be called as part of element prepaint. We plan on removing this
3362 /// method eventually when we solve some issues that require us to construct editor elements
3363 /// directly instead of always using editors via views.
3364 pub fn set_view_id(&mut self, view_id: EntityId) {
3365 self.invalidator.debug_assert_prepaint();
3366 self.next_frame.dispatch_tree.set_view_id(view_id);
3367 }
3368
3369 /// Get the entity ID for the currently rendering view
3370 pub fn current_view(&self) -> EntityId {
3371 self.invalidator.debug_assert_paint_or_prepaint();
3372 self.rendered_entity_stack.last().copied().unwrap()
3373 }
3374
3375 pub(crate) fn with_rendered_view<R>(
3376 &mut self,
3377 id: EntityId,
3378 f: impl FnOnce(&mut Self) -> R,
3379 ) -> R {
3380 self.rendered_entity_stack.push(id);
3381 let result = f(self);
3382 self.rendered_entity_stack.pop();
3383 result
3384 }
3385
3386 /// Executes the provided function with the specified image cache.
3387 pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3388 where
3389 F: FnOnce(&mut Self) -> R,
3390 {
3391 if let Some(image_cache) = image_cache {
3392 self.image_cache_stack.push(image_cache);
3393 let result = f(self);
3394 self.image_cache_stack.pop();
3395 result
3396 } else {
3397 f(self)
3398 }
3399 }
3400
3401 /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3402 /// platform to receive textual input with proper integration with concerns such
3403 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3404 /// rendered.
3405 ///
3406 /// This method should only be called as part of the paint phase of element drawing.
3407 ///
3408 /// [element_input_handler]: crate::ElementInputHandler
3409 pub fn handle_input(
3410 &mut self,
3411 focus_handle: &FocusHandle,
3412 input_handler: impl InputHandler,
3413 cx: &App,
3414 ) {
3415 self.invalidator.debug_assert_paint();
3416
3417 if focus_handle.is_focused(self) {
3418 let cx = self.to_async(cx);
3419 self.next_frame
3420 .input_handlers
3421 .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3422 }
3423 }
3424
3425 /// Register a mouse event listener on the window for the next frame. The type of event
3426 /// is determined by the first parameter of the given listener. When the next frame is rendered
3427 /// the listener will be cleared.
3428 ///
3429 /// This method should only be called as part of the paint phase of element drawing.
3430 pub fn on_mouse_event<Event: MouseEvent>(
3431 &mut self,
3432 mut handler: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3433 ) {
3434 self.invalidator.debug_assert_paint();
3435
3436 self.next_frame.mouse_listeners.push(Some(Box::new(
3437 move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3438 if let Some(event) = event.downcast_ref() {
3439 handler(event, phase, window, cx)
3440 }
3441 },
3442 )));
3443 }
3444
3445 /// Register a key event listener on the window for the next frame. The type of event
3446 /// is determined by the first parameter of the given listener. When the next frame is rendered
3447 /// the listener will be cleared.
3448 ///
3449 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3450 /// a specific need to register a global listener.
3451 ///
3452 /// This method should only be called as part of the paint phase of element drawing.
3453 pub fn on_key_event<Event: KeyEvent>(
3454 &mut self,
3455 listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3456 ) {
3457 self.invalidator.debug_assert_paint();
3458
3459 self.next_frame.dispatch_tree.on_key_event(Rc::new(
3460 move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3461 if let Some(event) = event.downcast_ref::<Event>() {
3462 listener(event, phase, window, cx)
3463 }
3464 },
3465 ));
3466 }
3467
3468 /// Register a modifiers changed event listener on the window for the next frame.
3469 ///
3470 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3471 /// a specific need to register a global listener.
3472 ///
3473 /// This method should only be called as part of the paint phase of element drawing.
3474 pub fn on_modifiers_changed(
3475 &mut self,
3476 listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3477 ) {
3478 self.invalidator.debug_assert_paint();
3479
3480 self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3481 move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3482 listener(event, window, cx)
3483 },
3484 ));
3485 }
3486
3487 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3488 /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3489 /// Returns a subscription and persists until the subscription is dropped.
3490 pub fn on_focus_in(
3491 &mut self,
3492 handle: &FocusHandle,
3493 cx: &mut App,
3494 mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3495 ) -> Subscription {
3496 let focus_id = handle.id;
3497 let (subscription, activate) =
3498 self.new_focus_listener(Box::new(move |event, window, cx| {
3499 if event.is_focus_in(focus_id) {
3500 listener(window, cx);
3501 }
3502 true
3503 }));
3504 cx.defer(move |_| activate());
3505 subscription
3506 }
3507
3508 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3509 /// Returns a subscription and persists until the subscription is dropped.
3510 pub fn on_focus_out(
3511 &mut self,
3512 handle: &FocusHandle,
3513 cx: &mut App,
3514 mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3515 ) -> Subscription {
3516 let focus_id = handle.id;
3517 let (subscription, activate) =
3518 self.new_focus_listener(Box::new(move |event, window, cx| {
3519 if let Some(blurred_id) = event.previous_focus_path.last().copied()
3520 && event.is_focus_out(focus_id)
3521 {
3522 let event = FocusOutEvent {
3523 blurred: WeakFocusHandle {
3524 id: blurred_id,
3525 handles: Arc::downgrade(&cx.focus_handles),
3526 },
3527 };
3528 listener(event, window, cx)
3529 }
3530 true
3531 }));
3532 cx.defer(move |_| activate());
3533 subscription
3534 }
3535
3536 fn reset_cursor_style(&self, cx: &mut App) {
3537 // Set the cursor only if we're the active window.
3538 if self.is_window_hovered() {
3539 let style = self
3540 .rendered_frame
3541 .cursor_style(self)
3542 .unwrap_or(CursorStyle::Arrow);
3543 cx.platform.set_cursor_style(style);
3544 }
3545 }
3546
3547 /// Dispatch a given keystroke as though the user had typed it.
3548 /// You can create a keystroke with Keystroke::parse("").
3549 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3550 let keystroke = keystroke.with_simulated_ime();
3551 let result = self.dispatch_event(
3552 PlatformInput::KeyDown(KeyDownEvent {
3553 keystroke: keystroke.clone(),
3554 is_held: false,
3555 }),
3556 cx,
3557 );
3558 if !result.propagate {
3559 return true;
3560 }
3561
3562 if let Some(input) = keystroke.key_char
3563 && let Some(mut input_handler) = self.platform_window.take_input_handler()
3564 {
3565 input_handler.dispatch_input(&input, self, cx);
3566 self.platform_window.set_input_handler(input_handler);
3567 return true;
3568 }
3569
3570 false
3571 }
3572
3573 /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3574 /// binding for the action (last binding added to the keymap).
3575 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3576 self.highest_precedence_binding_for_action(action)
3577 .map(|binding| {
3578 binding
3579 .keystrokes()
3580 .iter()
3581 .map(ToString::to_string)
3582 .collect::<Vec<_>>()
3583 .join(" ")
3584 })
3585 .unwrap_or_else(|| action.name().to_string())
3586 }
3587
3588 /// Dispatch a mouse or keyboard event on the window.
3589 #[profiling::function]
3590 pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3591 self.last_input_timestamp.set(Instant::now());
3592
3593 // Track whether this input was keyboard-based for focus-visible styling
3594 self.last_input_was_keyboard = matches!(
3595 event,
3596 PlatformInput::KeyDown(_)
3597 | PlatformInput::KeyUp(_)
3598 | PlatformInput::ModifiersChanged(_)
3599 );
3600
3601 // Handlers may set this to false by calling `stop_propagation`.
3602 cx.propagate_event = true;
3603 // Handlers may set this to true by calling `prevent_default`.
3604 self.default_prevented = false;
3605
3606 let event = match event {
3607 // Track the mouse position with our own state, since accessing the platform
3608 // API for the mouse position can only occur on the main thread.
3609 PlatformInput::MouseMove(mouse_move) => {
3610 self.mouse_position = mouse_move.position;
3611 self.modifiers = mouse_move.modifiers;
3612 PlatformInput::MouseMove(mouse_move)
3613 }
3614 PlatformInput::MouseDown(mouse_down) => {
3615 self.mouse_position = mouse_down.position;
3616 self.modifiers = mouse_down.modifiers;
3617 PlatformInput::MouseDown(mouse_down)
3618 }
3619 PlatformInput::MouseUp(mouse_up) => {
3620 self.mouse_position = mouse_up.position;
3621 self.modifiers = mouse_up.modifiers;
3622 PlatformInput::MouseUp(mouse_up)
3623 }
3624 PlatformInput::MouseExited(mouse_exited) => {
3625 self.modifiers = mouse_exited.modifiers;
3626 PlatformInput::MouseExited(mouse_exited)
3627 }
3628 PlatformInput::ModifiersChanged(modifiers_changed) => {
3629 self.modifiers = modifiers_changed.modifiers;
3630 self.capslock = modifiers_changed.capslock;
3631 PlatformInput::ModifiersChanged(modifiers_changed)
3632 }
3633 PlatformInput::ScrollWheel(scroll_wheel) => {
3634 self.mouse_position = scroll_wheel.position;
3635 self.modifiers = scroll_wheel.modifiers;
3636 PlatformInput::ScrollWheel(scroll_wheel)
3637 }
3638 // Translate dragging and dropping of external files from the operating system
3639 // to internal drag and drop events.
3640 PlatformInput::FileDrop(file_drop) => match file_drop {
3641 FileDropEvent::Entered { position, paths } => {
3642 self.mouse_position = position;
3643 if cx.active_drag.is_none() {
3644 cx.active_drag = Some(AnyDrag {
3645 value: Arc::new(paths.clone()),
3646 view: cx.new(|_| paths).into(),
3647 cursor_offset: position,
3648 cursor_style: None,
3649 });
3650 }
3651 PlatformInput::MouseMove(MouseMoveEvent {
3652 position,
3653 pressed_button: Some(MouseButton::Left),
3654 modifiers: Modifiers::default(),
3655 })
3656 }
3657 FileDropEvent::Pending { position } => {
3658 self.mouse_position = position;
3659 PlatformInput::MouseMove(MouseMoveEvent {
3660 position,
3661 pressed_button: Some(MouseButton::Left),
3662 modifiers: Modifiers::default(),
3663 })
3664 }
3665 FileDropEvent::Submit { position } => {
3666 cx.activate(true);
3667 self.mouse_position = position;
3668 PlatformInput::MouseUp(MouseUpEvent {
3669 button: MouseButton::Left,
3670 position,
3671 modifiers: Modifiers::default(),
3672 click_count: 1,
3673 })
3674 }
3675 FileDropEvent::Exited => {
3676 cx.active_drag.take();
3677 PlatformInput::FileDrop(FileDropEvent::Exited)
3678 }
3679 },
3680 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3681 };
3682
3683 if let Some(any_mouse_event) = event.mouse_event() {
3684 self.dispatch_mouse_event(any_mouse_event, cx);
3685 } else if let Some(any_key_event) = event.keyboard_event() {
3686 self.dispatch_key_event(any_key_event, cx);
3687 }
3688
3689 DispatchEventResult {
3690 propagate: cx.propagate_event,
3691 default_prevented: self.default_prevented,
3692 }
3693 }
3694
3695 fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3696 let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3697 if hit_test != self.mouse_hit_test {
3698 self.mouse_hit_test = hit_test;
3699 self.reset_cursor_style(cx);
3700 }
3701
3702 #[cfg(any(feature = "inspector", debug_assertions))]
3703 if self.is_inspector_picking(cx) {
3704 self.handle_inspector_mouse_event(event, cx);
3705 // When inspector is picking, all other mouse handling is skipped.
3706 return;
3707 }
3708
3709 let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3710
3711 // Capture phase, events bubble from back to front. Handlers for this phase are used for
3712 // special purposes, such as detecting events outside of a given Bounds.
3713 for listener in &mut mouse_listeners {
3714 let listener = listener.as_mut().unwrap();
3715 listener(event, DispatchPhase::Capture, self, cx);
3716 if !cx.propagate_event {
3717 break;
3718 }
3719 }
3720
3721 // Bubble phase, where most normal handlers do their work.
3722 if cx.propagate_event {
3723 for listener in mouse_listeners.iter_mut().rev() {
3724 let listener = listener.as_mut().unwrap();
3725 listener(event, DispatchPhase::Bubble, self, cx);
3726 if !cx.propagate_event {
3727 break;
3728 }
3729 }
3730 }
3731
3732 self.rendered_frame.mouse_listeners = mouse_listeners;
3733
3734 if cx.has_active_drag() {
3735 if event.is::<MouseMoveEvent>() {
3736 // If this was a mouse move event, redraw the window so that the
3737 // active drag can follow the mouse cursor.
3738 self.refresh();
3739 } else if event.is::<MouseUpEvent>() {
3740 // If this was a mouse up event, cancel the active drag and redraw
3741 // the window.
3742 cx.active_drag = None;
3743 self.refresh();
3744 }
3745 }
3746 }
3747
3748 fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3749 if self.invalidator.is_dirty() {
3750 self.draw(cx).clear();
3751 }
3752
3753 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3754 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3755
3756 let mut keystroke: Option<Keystroke> = None;
3757
3758 if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3759 if event.modifiers.number_of_modifiers() == 0
3760 && self.pending_modifier.modifiers.number_of_modifiers() == 1
3761 && !self.pending_modifier.saw_keystroke
3762 {
3763 let key = match self.pending_modifier.modifiers {
3764 modifiers if modifiers.shift => Some("shift"),
3765 modifiers if modifiers.control => Some("control"),
3766 modifiers if modifiers.alt => Some("alt"),
3767 modifiers if modifiers.platform => Some("platform"),
3768 modifiers if modifiers.function => Some("function"),
3769 _ => None,
3770 };
3771 if let Some(key) = key {
3772 keystroke = Some(Keystroke {
3773 key: key.to_string(),
3774 key_char: None,
3775 modifiers: Modifiers::default(),
3776 });
3777 }
3778 }
3779
3780 if self.pending_modifier.modifiers.number_of_modifiers() == 0
3781 && event.modifiers.number_of_modifiers() == 1
3782 {
3783 self.pending_modifier.saw_keystroke = false
3784 }
3785 self.pending_modifier.modifiers = event.modifiers
3786 } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3787 self.pending_modifier.saw_keystroke = true;
3788 keystroke = Some(key_down_event.keystroke.clone());
3789 }
3790
3791 let Some(keystroke) = keystroke else {
3792 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3793 return;
3794 };
3795
3796 cx.propagate_event = true;
3797 self.dispatch_keystroke_interceptors(event, self.context_stack(), cx);
3798 if !cx.propagate_event {
3799 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3800 return;
3801 }
3802
3803 let mut currently_pending = self.pending_input.take().unwrap_or_default();
3804 if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3805 currently_pending = PendingInput::default();
3806 }
3807
3808 let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3809 currently_pending.keystrokes,
3810 keystroke,
3811 &dispatch_path,
3812 );
3813
3814 if !match_result.to_replay.is_empty() {
3815 self.replay_pending_input(match_result.to_replay, cx);
3816 cx.propagate_event = true;
3817 }
3818
3819 if !match_result.pending.is_empty() {
3820 currently_pending.keystrokes = match_result.pending;
3821 currently_pending.focus = self.focus;
3822 currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3823 cx.background_executor.timer(Duration::from_secs(1)).await;
3824 cx.update(move |window, cx| {
3825 let Some(currently_pending) = window
3826 .pending_input
3827 .take()
3828 .filter(|pending| pending.focus == window.focus)
3829 else {
3830 return;
3831 };
3832
3833 let node_id = window.focus_node_id_in_rendered_frame(window.focus);
3834 let dispatch_path = window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3835
3836 let to_replay = window
3837 .rendered_frame
3838 .dispatch_tree
3839 .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3840
3841 window.pending_input_changed(cx);
3842 window.replay_pending_input(to_replay, cx)
3843 })
3844 .log_err();
3845 }));
3846 self.pending_input = Some(currently_pending);
3847 self.pending_input_changed(cx);
3848 cx.propagate_event = false;
3849 return;
3850 }
3851
3852 for binding in match_result.bindings {
3853 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3854 if !cx.propagate_event {
3855 self.dispatch_keystroke_observers(
3856 event,
3857 Some(binding.action),
3858 match_result.context_stack,
3859 cx,
3860 );
3861 self.pending_input_changed(cx);
3862 return;
3863 }
3864 }
3865
3866 self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
3867 self.pending_input_changed(cx);
3868 }
3869
3870 fn finish_dispatch_key_event(
3871 &mut self,
3872 event: &dyn Any,
3873 dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3874 context_stack: Vec<KeyContext>,
3875 cx: &mut App,
3876 ) {
3877 self.dispatch_key_down_up_event(event, &dispatch_path, cx);
3878 if !cx.propagate_event {
3879 return;
3880 }
3881
3882 self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
3883 if !cx.propagate_event {
3884 return;
3885 }
3886
3887 self.dispatch_keystroke_observers(event, None, context_stack, cx);
3888 }
3889
3890 fn pending_input_changed(&mut self, cx: &mut App) {
3891 self.pending_input_observers
3892 .clone()
3893 .retain(&(), |callback| callback(self, cx));
3894 }
3895
3896 fn dispatch_key_down_up_event(
3897 &mut self,
3898 event: &dyn Any,
3899 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3900 cx: &mut App,
3901 ) {
3902 // Capture phase
3903 for node_id in dispatch_path {
3904 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3905
3906 for key_listener in node.key_listeners.clone() {
3907 key_listener(event, DispatchPhase::Capture, self, cx);
3908 if !cx.propagate_event {
3909 return;
3910 }
3911 }
3912 }
3913
3914 // Bubble phase
3915 for node_id in dispatch_path.iter().rev() {
3916 // Handle low level key events
3917 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3918 for key_listener in node.key_listeners.clone() {
3919 key_listener(event, DispatchPhase::Bubble, self, cx);
3920 if !cx.propagate_event {
3921 return;
3922 }
3923 }
3924 }
3925 }
3926
3927 fn dispatch_modifiers_changed_event(
3928 &mut self,
3929 event: &dyn Any,
3930 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3931 cx: &mut App,
3932 ) {
3933 let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
3934 return;
3935 };
3936 for node_id in dispatch_path.iter().rev() {
3937 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3938 for listener in node.modifiers_changed_listeners.clone() {
3939 listener(event, self, cx);
3940 if !cx.propagate_event {
3941 return;
3942 }
3943 }
3944 }
3945 }
3946
3947 /// Determine whether a potential multi-stroke key binding is in progress on this window.
3948 pub fn has_pending_keystrokes(&self) -> bool {
3949 self.pending_input.is_some()
3950 }
3951
3952 pub(crate) fn clear_pending_keystrokes(&mut self) {
3953 self.pending_input.take();
3954 }
3955
3956 /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
3957 pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
3958 self.pending_input
3959 .as_ref()
3960 .map(|pending_input| pending_input.keystrokes.as_slice())
3961 }
3962
3963 fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
3964 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3965 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3966
3967 'replay: for replay in replays {
3968 let event = KeyDownEvent {
3969 keystroke: replay.keystroke.clone(),
3970 is_held: false,
3971 };
3972
3973 cx.propagate_event = true;
3974 for binding in replay.bindings {
3975 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3976 if !cx.propagate_event {
3977 self.dispatch_keystroke_observers(
3978 &event,
3979 Some(binding.action),
3980 Vec::default(),
3981 cx,
3982 );
3983 continue 'replay;
3984 }
3985 }
3986
3987 self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
3988 if !cx.propagate_event {
3989 continue 'replay;
3990 }
3991 if let Some(input) = replay.keystroke.key_char.as_ref().cloned()
3992 && let Some(mut input_handler) = self.platform_window.take_input_handler()
3993 {
3994 input_handler.dispatch_input(&input, self, cx);
3995 self.platform_window.set_input_handler(input_handler)
3996 }
3997 }
3998 }
3999
4000 fn focus_node_id_in_rendered_frame(&self, focus_id: Option<FocusId>) -> DispatchNodeId {
4001 focus_id
4002 .and_then(|focus_id| {
4003 self.rendered_frame
4004 .dispatch_tree
4005 .focusable_node_id(focus_id)
4006 })
4007 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id())
4008 }
4009
4010 fn dispatch_action_on_node(
4011 &mut self,
4012 node_id: DispatchNodeId,
4013 action: &dyn Action,
4014 cx: &mut App,
4015 ) {
4016 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
4017
4018 // Capture phase for global actions.
4019 cx.propagate_event = true;
4020 if let Some(mut global_listeners) = cx
4021 .global_action_listeners
4022 .remove(&action.as_any().type_id())
4023 {
4024 for listener in &global_listeners {
4025 listener(action.as_any(), DispatchPhase::Capture, cx);
4026 if !cx.propagate_event {
4027 break;
4028 }
4029 }
4030
4031 global_listeners.extend(
4032 cx.global_action_listeners
4033 .remove(&action.as_any().type_id())
4034 .unwrap_or_default(),
4035 );
4036
4037 cx.global_action_listeners
4038 .insert(action.as_any().type_id(), global_listeners);
4039 }
4040
4041 if !cx.propagate_event {
4042 return;
4043 }
4044
4045 // Capture phase for window actions.
4046 for node_id in &dispatch_path {
4047 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4048 for DispatchActionListener {
4049 action_type,
4050 listener,
4051 } in node.action_listeners.clone()
4052 {
4053 let any_action = action.as_any();
4054 if action_type == any_action.type_id() {
4055 listener(any_action, DispatchPhase::Capture, self, cx);
4056
4057 if !cx.propagate_event {
4058 return;
4059 }
4060 }
4061 }
4062 }
4063
4064 // Bubble phase for window actions.
4065 for node_id in dispatch_path.iter().rev() {
4066 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4067 for DispatchActionListener {
4068 action_type,
4069 listener,
4070 } in node.action_listeners.clone()
4071 {
4072 let any_action = action.as_any();
4073 if action_type == any_action.type_id() {
4074 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4075 listener(any_action, DispatchPhase::Bubble, self, cx);
4076
4077 if !cx.propagate_event {
4078 return;
4079 }
4080 }
4081 }
4082 }
4083
4084 // Bubble phase for global actions.
4085 if let Some(mut global_listeners) = cx
4086 .global_action_listeners
4087 .remove(&action.as_any().type_id())
4088 {
4089 for listener in global_listeners.iter().rev() {
4090 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4091
4092 listener(action.as_any(), DispatchPhase::Bubble, cx);
4093 if !cx.propagate_event {
4094 break;
4095 }
4096 }
4097
4098 global_listeners.extend(
4099 cx.global_action_listeners
4100 .remove(&action.as_any().type_id())
4101 .unwrap_or_default(),
4102 );
4103
4104 cx.global_action_listeners
4105 .insert(action.as_any().type_id(), global_listeners);
4106 }
4107 }
4108
4109 /// Register the given handler to be invoked whenever the global of the given type
4110 /// is updated.
4111 pub fn observe_global<G: Global>(
4112 &mut self,
4113 cx: &mut App,
4114 f: impl Fn(&mut Window, &mut App) + 'static,
4115 ) -> Subscription {
4116 let window_handle = self.handle;
4117 let (subscription, activate) = cx.global_observers.insert(
4118 TypeId::of::<G>(),
4119 Box::new(move |cx| {
4120 window_handle
4121 .update(cx, |_, window, cx| f(window, cx))
4122 .is_ok()
4123 }),
4124 );
4125 cx.defer(move |_| activate());
4126 subscription
4127 }
4128
4129 /// Focus the current window and bring it to the foreground at the platform level.
4130 pub fn activate_window(&self) {
4131 self.platform_window.activate();
4132 }
4133
4134 /// Minimize the current window at the platform level.
4135 pub fn minimize_window(&self) {
4136 self.platform_window.minimize();
4137 }
4138
4139 /// Toggle full screen status on the current window at the platform level.
4140 pub fn toggle_fullscreen(&self) {
4141 self.platform_window.toggle_fullscreen();
4142 }
4143
4144 /// Updates the IME panel position suggestions for languages like japanese, chinese.
4145 pub fn invalidate_character_coordinates(&self) {
4146 self.on_next_frame(|window, cx| {
4147 if let Some(mut input_handler) = window.platform_window.take_input_handler() {
4148 if let Some(bounds) = input_handler.selected_bounds(window, cx) {
4149 window.platform_window.update_ime_position(bounds);
4150 }
4151 window.platform_window.set_input_handler(input_handler);
4152 }
4153 });
4154 }
4155
4156 /// Present a platform dialog.
4157 /// The provided message will be presented, along with buttons for each answer.
4158 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
4159 pub fn prompt<T>(
4160 &mut self,
4161 level: PromptLevel,
4162 message: &str,
4163 detail: Option<&str>,
4164 answers: &[T],
4165 cx: &mut App,
4166 ) -> oneshot::Receiver<usize>
4167 where
4168 T: Clone + Into<PromptButton>,
4169 {
4170 let prompt_builder = cx.prompt_builder.take();
4171 let Some(prompt_builder) = prompt_builder else {
4172 unreachable!("Re-entrant window prompting is not supported by GPUI");
4173 };
4174
4175 let answers = answers
4176 .iter()
4177 .map(|answer| answer.clone().into())
4178 .collect::<Vec<_>>();
4179
4180 let receiver = match &prompt_builder {
4181 PromptBuilder::Default => self
4182 .platform_window
4183 .prompt(level, message, detail, &answers)
4184 .unwrap_or_else(|| {
4185 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4186 }),
4187 PromptBuilder::Custom(_) => {
4188 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4189 }
4190 };
4191
4192 cx.prompt_builder = Some(prompt_builder);
4193
4194 receiver
4195 }
4196
4197 fn build_custom_prompt(
4198 &mut self,
4199 prompt_builder: &PromptBuilder,
4200 level: PromptLevel,
4201 message: &str,
4202 detail: Option<&str>,
4203 answers: &[PromptButton],
4204 cx: &mut App,
4205 ) -> oneshot::Receiver<usize> {
4206 let (sender, receiver) = oneshot::channel();
4207 let handle = PromptHandle::new(sender);
4208 let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
4209 self.prompt = Some(handle);
4210 receiver
4211 }
4212
4213 /// Returns the current context stack.
4214 pub fn context_stack(&self) -> Vec<KeyContext> {
4215 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4216 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4217 dispatch_tree
4218 .dispatch_path(node_id)
4219 .iter()
4220 .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
4221 .collect()
4222 }
4223
4224 /// Returns all available actions for the focused element.
4225 pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
4226 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4227 let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
4228 for action_type in cx.global_action_listeners.keys() {
4229 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
4230 let action = cx.actions.build_action_type(action_type).ok();
4231 if let Some(action) = action {
4232 actions.insert(ix, action);
4233 }
4234 }
4235 }
4236 actions
4237 }
4238
4239 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
4240 /// returned in the order they were added. For display, the last binding should take precedence.
4241 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
4242 self.rendered_frame
4243 .dispatch_tree
4244 .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
4245 }
4246
4247 /// Returns the highest precedence key binding that invokes an action on the currently focused
4248 /// element. This is more efficient than getting the last result of `bindings_for_action`.
4249 pub fn highest_precedence_binding_for_action(&self, action: &dyn Action) -> Option<KeyBinding> {
4250 self.rendered_frame
4251 .dispatch_tree
4252 .highest_precedence_binding_for_action(
4253 action,
4254 &self.rendered_frame.dispatch_tree.context_stack,
4255 )
4256 }
4257
4258 /// Returns the key bindings for an action in a context.
4259 pub fn bindings_for_action_in_context(
4260 &self,
4261 action: &dyn Action,
4262 context: KeyContext,
4263 ) -> Vec<KeyBinding> {
4264 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4265 dispatch_tree.bindings_for_action(action, &[context])
4266 }
4267
4268 /// Returns the highest precedence key binding for an action in a context. This is more
4269 /// efficient than getting the last result of `bindings_for_action_in_context`.
4270 pub fn highest_precedence_binding_for_action_in_context(
4271 &self,
4272 action: &dyn Action,
4273 context: KeyContext,
4274 ) -> Option<KeyBinding> {
4275 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4276 dispatch_tree.highest_precedence_binding_for_action(action, &[context])
4277 }
4278
4279 /// Returns any bindings that would invoke an action on the given focus handle if it were
4280 /// focused. Bindings are returned in the order they were added. For display, the last binding
4281 /// should take precedence.
4282 pub fn bindings_for_action_in(
4283 &self,
4284 action: &dyn Action,
4285 focus_handle: &FocusHandle,
4286 ) -> Vec<KeyBinding> {
4287 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4288 let Some(context_stack) = self.context_stack_for_focus_handle(focus_handle) else {
4289 return vec![];
4290 };
4291 dispatch_tree.bindings_for_action(action, &context_stack)
4292 }
4293
4294 /// Returns the highest precedence key binding that would invoke an action on the given focus
4295 /// handle if it were focused. This is more efficient than getting the last result of
4296 /// `bindings_for_action_in`.
4297 pub fn highest_precedence_binding_for_action_in(
4298 &self,
4299 action: &dyn Action,
4300 focus_handle: &FocusHandle,
4301 ) -> Option<KeyBinding> {
4302 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4303 let context_stack = self.context_stack_for_focus_handle(focus_handle)?;
4304 dispatch_tree.highest_precedence_binding_for_action(action, &context_stack)
4305 }
4306
4307 fn context_stack_for_focus_handle(
4308 &self,
4309 focus_handle: &FocusHandle,
4310 ) -> Option<Vec<KeyContext>> {
4311 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4312 let node_id = dispatch_tree.focusable_node_id(focus_handle.id)?;
4313 let context_stack: Vec<_> = dispatch_tree
4314 .dispatch_path(node_id)
4315 .into_iter()
4316 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
4317 .collect();
4318 Some(context_stack)
4319 }
4320
4321 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
4322 pub fn listener_for<V: Render, E>(
4323 &self,
4324 view: &Entity<V>,
4325 f: impl Fn(&mut V, &E, &mut Window, &mut Context<V>) + 'static,
4326 ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
4327 let view = view.downgrade();
4328 move |e: &E, window: &mut Window, cx: &mut App| {
4329 view.update(cx, |view, cx| f(view, e, window, cx)).ok();
4330 }
4331 }
4332
4333 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
4334 pub fn handler_for<E: 'static, Callback: Fn(&mut E, &mut Window, &mut Context<E>) + 'static>(
4335 &self,
4336 entity: &Entity<E>,
4337 f: Callback,
4338 ) -> impl Fn(&mut Window, &mut App) + 'static {
4339 let entity = entity.downgrade();
4340 move |window: &mut Window, cx: &mut App| {
4341 entity.update(cx, |entity, cx| f(entity, window, cx)).ok();
4342 }
4343 }
4344
4345 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
4346 /// If the callback returns false, the window won't be closed.
4347 pub fn on_window_should_close(
4348 &self,
4349 cx: &App,
4350 f: impl Fn(&mut Window, &mut App) -> bool + 'static,
4351 ) {
4352 let mut cx = self.to_async(cx);
4353 self.platform_window.on_should_close(Box::new(move || {
4354 cx.update(|window, cx| f(window, cx)).unwrap_or(true)
4355 }))
4356 }
4357
4358 /// Register an action listener on the window for the next frame. The type of action
4359 /// is determined by the first parameter of the given listener. When the next frame is rendered
4360 /// the listener will be cleared.
4361 ///
4362 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4363 /// a specific need to register a global listener.
4364 pub fn on_action(
4365 &mut self,
4366 action_type: TypeId,
4367 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4368 ) {
4369 self.next_frame
4370 .dispatch_tree
4371 .on_action(action_type, Rc::new(listener));
4372 }
4373
4374 /// Register an action listener on the window for the next frame if the condition is true.
4375 /// The type of action is determined by the first parameter of the given listener.
4376 /// When the next frame is rendered the listener will be cleared.
4377 ///
4378 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4379 /// a specific need to register a global listener.
4380 pub fn on_action_when(
4381 &mut self,
4382 condition: bool,
4383 action_type: TypeId,
4384 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4385 ) {
4386 if condition {
4387 self.next_frame
4388 .dispatch_tree
4389 .on_action(action_type, Rc::new(listener));
4390 }
4391 }
4392
4393 /// Read information about the GPU backing this window.
4394 /// Currently returns None on Mac and Windows.
4395 pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4396 self.platform_window.gpu_specs()
4397 }
4398
4399 /// Perform titlebar double-click action.
4400 /// This is macOS specific.
4401 pub fn titlebar_double_click(&self) {
4402 self.platform_window.titlebar_double_click();
4403 }
4404
4405 /// Gets the window's title at the platform level.
4406 /// This is macOS specific.
4407 pub fn window_title(&self) -> String {
4408 self.platform_window.get_title()
4409 }
4410
4411 /// Returns a list of all tabbed windows and their titles.
4412 /// This is macOS specific.
4413 pub fn tabbed_windows(&self) -> Option<Vec<SystemWindowTab>> {
4414 self.platform_window.tabbed_windows()
4415 }
4416
4417 /// Returns the tab bar visibility.
4418 /// This is macOS specific.
4419 pub fn tab_bar_visible(&self) -> bool {
4420 self.platform_window.tab_bar_visible()
4421 }
4422
4423 /// Merges all open windows into a single tabbed window.
4424 /// This is macOS specific.
4425 pub fn merge_all_windows(&self) {
4426 self.platform_window.merge_all_windows()
4427 }
4428
4429 /// Moves the tab to a new containing window.
4430 /// This is macOS specific.
4431 pub fn move_tab_to_new_window(&self) {
4432 self.platform_window.move_tab_to_new_window()
4433 }
4434
4435 /// Shows or hides the window tab overview.
4436 /// This is macOS specific.
4437 pub fn toggle_window_tab_overview(&self) {
4438 self.platform_window.toggle_window_tab_overview()
4439 }
4440
4441 /// Sets the tabbing identifier for the window.
4442 /// This is macOS specific.
4443 pub fn set_tabbing_identifier(&self, tabbing_identifier: Option<String>) {
4444 self.platform_window
4445 .set_tabbing_identifier(tabbing_identifier)
4446 }
4447
4448 /// Toggles the inspector mode on this window.
4449 #[cfg(any(feature = "inspector", debug_assertions))]
4450 pub fn toggle_inspector(&mut self, cx: &mut App) {
4451 self.inspector = match self.inspector {
4452 None => Some(cx.new(|_| Inspector::new())),
4453 Some(_) => None,
4454 };
4455 self.refresh();
4456 }
4457
4458 /// Returns true if the window is in inspector mode.
4459 pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4460 #[cfg(any(feature = "inspector", debug_assertions))]
4461 {
4462 if let Some(inspector) = &self.inspector {
4463 return inspector.read(_cx).is_picking();
4464 }
4465 }
4466 false
4467 }
4468
4469 /// Executes the provided function with mutable access to an inspector state.
4470 #[cfg(any(feature = "inspector", debug_assertions))]
4471 pub fn with_inspector_state<T: 'static, R>(
4472 &mut self,
4473 _inspector_id: Option<&crate::InspectorElementId>,
4474 cx: &mut App,
4475 f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4476 ) -> R {
4477 if let Some(inspector_id) = _inspector_id
4478 && let Some(inspector) = &self.inspector
4479 {
4480 let inspector = inspector.clone();
4481 let active_element_id = inspector.read(cx).active_element_id();
4482 if Some(inspector_id) == active_element_id {
4483 return inspector.update(cx, |inspector, _cx| {
4484 inspector.with_active_element_state(self, f)
4485 });
4486 }
4487 }
4488 f(&mut None, self)
4489 }
4490
4491 #[cfg(any(feature = "inspector", debug_assertions))]
4492 pub(crate) fn build_inspector_element_id(
4493 &mut self,
4494 path: crate::InspectorElementPath,
4495 ) -> crate::InspectorElementId {
4496 self.invalidator.debug_assert_paint_or_prepaint();
4497 let path = Rc::new(path);
4498 let next_instance_id = self
4499 .next_frame
4500 .next_inspector_instance_ids
4501 .entry(path.clone())
4502 .or_insert(0);
4503 let instance_id = *next_instance_id;
4504 *next_instance_id += 1;
4505 crate::InspectorElementId { path, instance_id }
4506 }
4507
4508 #[cfg(any(feature = "inspector", debug_assertions))]
4509 fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4510 if let Some(inspector) = self.inspector.take() {
4511 let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4512 inspector_element.prepaint_as_root(
4513 point(self.viewport_size.width - inspector_width, px(0.0)),
4514 size(inspector_width, self.viewport_size.height).into(),
4515 self,
4516 cx,
4517 );
4518 self.inspector = Some(inspector);
4519 Some(inspector_element)
4520 } else {
4521 None
4522 }
4523 }
4524
4525 #[cfg(any(feature = "inspector", debug_assertions))]
4526 fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4527 if let Some(mut inspector_element) = inspector_element {
4528 inspector_element.paint(self, cx);
4529 };
4530 }
4531
4532 /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4533 /// inspect UI elements by clicking on them.
4534 #[cfg(any(feature = "inspector", debug_assertions))]
4535 pub fn insert_inspector_hitbox(
4536 &mut self,
4537 hitbox_id: HitboxId,
4538 inspector_id: Option<&crate::InspectorElementId>,
4539 cx: &App,
4540 ) {
4541 self.invalidator.debug_assert_paint_or_prepaint();
4542 if !self.is_inspector_picking(cx) {
4543 return;
4544 }
4545 if let Some(inspector_id) = inspector_id {
4546 self.next_frame
4547 .inspector_hitboxes
4548 .insert(hitbox_id, inspector_id.clone());
4549 }
4550 }
4551
4552 #[cfg(any(feature = "inspector", debug_assertions))]
4553 fn paint_inspector_hitbox(&mut self, cx: &App) {
4554 if let Some(inspector) = self.inspector.as_ref() {
4555 let inspector = inspector.read(cx);
4556 if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
4557 && let Some(hitbox) = self
4558 .next_frame
4559 .hitboxes
4560 .iter()
4561 .find(|hitbox| hitbox.id == hitbox_id)
4562 {
4563 self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4564 }
4565 }
4566 }
4567
4568 #[cfg(any(feature = "inspector", debug_assertions))]
4569 fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4570 let Some(inspector) = self.inspector.clone() else {
4571 return;
4572 };
4573 if event.downcast_ref::<MouseMoveEvent>().is_some() {
4574 inspector.update(cx, |inspector, _cx| {
4575 if let Some((_, inspector_id)) =
4576 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4577 {
4578 inspector.hover(inspector_id, self);
4579 }
4580 });
4581 } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4582 inspector.update(cx, |inspector, _cx| {
4583 if let Some((_, inspector_id)) =
4584 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4585 {
4586 inspector.select(inspector_id, self);
4587 }
4588 });
4589 } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4590 // This should be kept in sync with SCROLL_LINES in x11 platform.
4591 const SCROLL_LINES: f32 = 3.0;
4592 const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4593 let delta_y = event
4594 .delta
4595 .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4596 .y;
4597 if let Some(inspector) = self.inspector.clone() {
4598 inspector.update(cx, |inspector, _cx| {
4599 if let Some(depth) = inspector.pick_depth.as_mut() {
4600 *depth += f32::from(delta_y) / SCROLL_PIXELS_PER_LAYER;
4601 let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4602 if *depth < 0.0 {
4603 *depth = 0.0;
4604 } else if *depth > max_depth {
4605 *depth = max_depth;
4606 }
4607 if let Some((_, inspector_id)) =
4608 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4609 {
4610 inspector.set_active_element_id(inspector_id, self);
4611 }
4612 }
4613 });
4614 }
4615 }
4616 }
4617
4618 #[cfg(any(feature = "inspector", debug_assertions))]
4619 fn hovered_inspector_hitbox(
4620 &self,
4621 inspector: &Inspector,
4622 frame: &Frame,
4623 ) -> Option<(HitboxId, crate::InspectorElementId)> {
4624 if let Some(pick_depth) = inspector.pick_depth {
4625 let depth = (pick_depth as i64).try_into().unwrap_or(0);
4626 let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4627 let skip_count = (depth as usize).min(max_skipped);
4628 for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4629 if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4630 return Some((*hitbox_id, inspector_id.clone()));
4631 }
4632 }
4633 }
4634 None
4635 }
4636
4637 /// For testing: set the current modifier keys state.
4638 /// This does not generate any events.
4639 #[cfg(any(test, feature = "test-support"))]
4640 pub fn set_modifiers(&mut self, modifiers: Modifiers) {
4641 self.modifiers = modifiers;
4642 }
4643}
4644
4645// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4646slotmap::new_key_type! {
4647 /// A unique identifier for a window.
4648 pub struct WindowId;
4649}
4650
4651impl WindowId {
4652 /// Converts this window ID to a `u64`.
4653 pub fn as_u64(&self) -> u64 {
4654 self.0.as_ffi()
4655 }
4656}
4657
4658impl From<u64> for WindowId {
4659 fn from(value: u64) -> Self {
4660 WindowId(slotmap::KeyData::from_ffi(value))
4661 }
4662}
4663
4664/// A handle to a window with a specific root view type.
4665/// Note that this does not keep the window alive on its own.
4666#[derive(Deref, DerefMut)]
4667pub struct WindowHandle<V> {
4668 #[deref]
4669 #[deref_mut]
4670 pub(crate) any_handle: AnyWindowHandle,
4671 state_type: PhantomData<fn(V) -> V>,
4672}
4673
4674impl<V> Debug for WindowHandle<V> {
4675 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4676 f.debug_struct("WindowHandle")
4677 .field("any_handle", &self.any_handle.id.as_u64())
4678 .finish()
4679 }
4680}
4681
4682impl<V: 'static + Render> WindowHandle<V> {
4683 /// Creates a new handle from a window ID.
4684 /// This does not check if the root type of the window is `V`.
4685 pub fn new(id: WindowId) -> Self {
4686 WindowHandle {
4687 any_handle: AnyWindowHandle {
4688 id,
4689 state_type: TypeId::of::<V>(),
4690 },
4691 state_type: PhantomData,
4692 }
4693 }
4694
4695 /// Get the root view out of this window.
4696 ///
4697 /// This will fail if the window is closed or if the root view's type does not match `V`.
4698 #[cfg(any(test, feature = "test-support"))]
4699 pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4700 where
4701 C: AppContext,
4702 {
4703 crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4704 root_view
4705 .downcast::<V>()
4706 .map_err(|_| anyhow!("the type of the window's root view has changed"))
4707 }))
4708 }
4709
4710 /// Updates the root view of this window.
4711 ///
4712 /// This will fail if the window has been closed or if the root view's type does not match
4713 pub fn update<C, R>(
4714 &self,
4715 cx: &mut C,
4716 update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4717 ) -> Result<R>
4718 where
4719 C: AppContext,
4720 {
4721 cx.update_window(self.any_handle, |root_view, window, cx| {
4722 let view = root_view
4723 .downcast::<V>()
4724 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4725
4726 Ok(view.update(cx, |view, cx| update(view, window, cx)))
4727 })?
4728 }
4729
4730 /// Read the root view out of this window.
4731 ///
4732 /// This will fail if the window is closed or if the root view's type does not match `V`.
4733 pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
4734 let x = cx
4735 .windows
4736 .get(self.id)
4737 .and_then(|window| {
4738 window
4739 .as_deref()
4740 .and_then(|window| window.root.clone())
4741 .map(|root_view| root_view.downcast::<V>())
4742 })
4743 .context("window not found")?
4744 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4745
4746 Ok(x.read(cx))
4747 }
4748
4749 /// Read the root view out of this window, with a callback
4750 ///
4751 /// This will fail if the window is closed or if the root view's type does not match `V`.
4752 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4753 where
4754 C: AppContext,
4755 {
4756 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
4757 }
4758
4759 /// Read the root view pointer off of this window.
4760 ///
4761 /// This will fail if the window is closed or if the root view's type does not match `V`.
4762 pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4763 where
4764 C: AppContext,
4765 {
4766 cx.read_window(self, |root_view, _cx| root_view)
4767 }
4768
4769 /// Check if this window is 'active'.
4770 ///
4771 /// Will return `None` if the window is closed or currently
4772 /// borrowed.
4773 pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4774 cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4775 .ok()
4776 }
4777}
4778
4779impl<V> Copy for WindowHandle<V> {}
4780
4781impl<V> Clone for WindowHandle<V> {
4782 fn clone(&self) -> Self {
4783 *self
4784 }
4785}
4786
4787impl<V> PartialEq for WindowHandle<V> {
4788 fn eq(&self, other: &Self) -> bool {
4789 self.any_handle == other.any_handle
4790 }
4791}
4792
4793impl<V> Eq for WindowHandle<V> {}
4794
4795impl<V> Hash for WindowHandle<V> {
4796 fn hash<H: Hasher>(&self, state: &mut H) {
4797 self.any_handle.hash(state);
4798 }
4799}
4800
4801impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
4802 fn from(val: WindowHandle<V>) -> Self {
4803 val.any_handle
4804 }
4805}
4806
4807/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
4808#[derive(Copy, Clone, PartialEq, Eq, Hash)]
4809pub struct AnyWindowHandle {
4810 pub(crate) id: WindowId,
4811 state_type: TypeId,
4812}
4813
4814impl AnyWindowHandle {
4815 /// Get the ID of this window.
4816 pub fn window_id(&self) -> WindowId {
4817 self.id
4818 }
4819
4820 /// Attempt to convert this handle to a window handle with a specific root view type.
4821 /// If the types do not match, this will return `None`.
4822 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
4823 if TypeId::of::<T>() == self.state_type {
4824 Some(WindowHandle {
4825 any_handle: *self,
4826 state_type: PhantomData,
4827 })
4828 } else {
4829 None
4830 }
4831 }
4832
4833 /// Updates the state of the root view of this window.
4834 ///
4835 /// This will fail if the window has been closed.
4836 pub fn update<C, R>(
4837 self,
4838 cx: &mut C,
4839 update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
4840 ) -> Result<R>
4841 where
4842 C: AppContext,
4843 {
4844 cx.update_window(self, update)
4845 }
4846
4847 /// Read the state of the root view of this window.
4848 ///
4849 /// This will fail if the window has been closed.
4850 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
4851 where
4852 C: AppContext,
4853 T: 'static,
4854 {
4855 let view = self
4856 .downcast::<T>()
4857 .context("the type of the window's root view has changed")?;
4858
4859 cx.read_window(&view, read)
4860 }
4861}
4862
4863impl HasWindowHandle for Window {
4864 fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
4865 self.platform_window.window_handle()
4866 }
4867}
4868
4869impl HasDisplayHandle for Window {
4870 fn display_handle(
4871 &self,
4872 ) -> std::result::Result<raw_window_handle::DisplayHandle<'_>, HandleError> {
4873 self.platform_window.display_handle()
4874 }
4875}
4876
4877/// An identifier for an [`Element`].
4878///
4879/// Can be constructed with a string, a number, or both, as well
4880/// as other internal representations.
4881#[derive(Clone, Debug, Eq, PartialEq, Hash)]
4882pub enum ElementId {
4883 /// The ID of a View element
4884 View(EntityId),
4885 /// An integer ID.
4886 Integer(u64),
4887 /// A string based ID.
4888 Name(SharedString),
4889 /// A UUID.
4890 Uuid(Uuid),
4891 /// An ID that's equated with a focus handle.
4892 FocusHandle(FocusId),
4893 /// A combination of a name and an integer.
4894 NamedInteger(SharedString, u64),
4895 /// A path.
4896 Path(Arc<std::path::Path>),
4897 /// A code location.
4898 CodeLocation(core::panic::Location<'static>),
4899 /// A labeled child of an element.
4900 NamedChild(Arc<ElementId>, SharedString),
4901}
4902
4903impl ElementId {
4904 /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
4905 pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
4906 Self::NamedInteger(name.into(), integer as u64)
4907 }
4908}
4909
4910impl Display for ElementId {
4911 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4912 match self {
4913 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
4914 ElementId::Integer(ix) => write!(f, "{}", ix)?,
4915 ElementId::Name(name) => write!(f, "{}", name)?,
4916 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
4917 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
4918 ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
4919 ElementId::Path(path) => write!(f, "{}", path.display())?,
4920 ElementId::CodeLocation(location) => write!(f, "{}", location)?,
4921 ElementId::NamedChild(id, name) => write!(f, "{}-{}", id, name)?,
4922 }
4923
4924 Ok(())
4925 }
4926}
4927
4928impl TryInto<SharedString> for ElementId {
4929 type Error = anyhow::Error;
4930
4931 fn try_into(self) -> anyhow::Result<SharedString> {
4932 if let ElementId::Name(name) = self {
4933 Ok(name)
4934 } else {
4935 anyhow::bail!("element id is not string")
4936 }
4937 }
4938}
4939
4940impl From<usize> for ElementId {
4941 fn from(id: usize) -> Self {
4942 ElementId::Integer(id as u64)
4943 }
4944}
4945
4946impl From<i32> for ElementId {
4947 fn from(id: i32) -> Self {
4948 Self::Integer(id as u64)
4949 }
4950}
4951
4952impl From<SharedString> for ElementId {
4953 fn from(name: SharedString) -> Self {
4954 ElementId::Name(name)
4955 }
4956}
4957
4958impl From<Arc<std::path::Path>> for ElementId {
4959 fn from(path: Arc<std::path::Path>) -> Self {
4960 ElementId::Path(path)
4961 }
4962}
4963
4964impl From<&'static str> for ElementId {
4965 fn from(name: &'static str) -> Self {
4966 ElementId::Name(name.into())
4967 }
4968}
4969
4970impl<'a> From<&'a FocusHandle> for ElementId {
4971 fn from(handle: &'a FocusHandle) -> Self {
4972 ElementId::FocusHandle(handle.id)
4973 }
4974}
4975
4976impl From<(&'static str, EntityId)> for ElementId {
4977 fn from((name, id): (&'static str, EntityId)) -> Self {
4978 ElementId::NamedInteger(name.into(), id.as_u64())
4979 }
4980}
4981
4982impl From<(&'static str, usize)> for ElementId {
4983 fn from((name, id): (&'static str, usize)) -> Self {
4984 ElementId::NamedInteger(name.into(), id as u64)
4985 }
4986}
4987
4988impl From<(SharedString, usize)> for ElementId {
4989 fn from((name, id): (SharedString, usize)) -> Self {
4990 ElementId::NamedInteger(name, id as u64)
4991 }
4992}
4993
4994impl From<(&'static str, u64)> for ElementId {
4995 fn from((name, id): (&'static str, u64)) -> Self {
4996 ElementId::NamedInteger(name.into(), id)
4997 }
4998}
4999
5000impl From<Uuid> for ElementId {
5001 fn from(value: Uuid) -> Self {
5002 Self::Uuid(value)
5003 }
5004}
5005
5006impl From<(&'static str, u32)> for ElementId {
5007 fn from((name, id): (&'static str, u32)) -> Self {
5008 ElementId::NamedInteger(name.into(), id.into())
5009 }
5010}
5011
5012impl<T: Into<SharedString>> From<(ElementId, T)> for ElementId {
5013 fn from((id, name): (ElementId, T)) -> Self {
5014 ElementId::NamedChild(Arc::new(id), name.into())
5015 }
5016}
5017
5018impl From<&'static core::panic::Location<'static>> for ElementId {
5019 fn from(location: &'static core::panic::Location<'static>) -> Self {
5020 ElementId::CodeLocation(*location)
5021 }
5022}
5023
5024/// A rectangle to be rendered in the window at the given position and size.
5025/// Passed as an argument [`Window::paint_quad`].
5026#[derive(Clone)]
5027pub struct PaintQuad {
5028 /// The bounds of the quad within the window.
5029 pub bounds: Bounds<Pixels>,
5030 /// The radii of the quad's corners.
5031 pub corner_radii: Corners<Pixels>,
5032 /// The background color of the quad.
5033 pub background: Background,
5034 /// The widths of the quad's borders.
5035 pub border_widths: Edges<Pixels>,
5036 /// The color of the quad's borders.
5037 pub border_color: Hsla,
5038 /// The style of the quad's borders.
5039 pub border_style: BorderStyle,
5040}
5041
5042impl PaintQuad {
5043 /// Sets the corner radii of the quad.
5044 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
5045 PaintQuad {
5046 corner_radii: corner_radii.into(),
5047 ..self
5048 }
5049 }
5050
5051 /// Sets the border widths of the quad.
5052 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
5053 PaintQuad {
5054 border_widths: border_widths.into(),
5055 ..self
5056 }
5057 }
5058
5059 /// Sets the border color of the quad.
5060 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
5061 PaintQuad {
5062 border_color: border_color.into(),
5063 ..self
5064 }
5065 }
5066
5067 /// Sets the background color of the quad.
5068 pub fn background(self, background: impl Into<Background>) -> Self {
5069 PaintQuad {
5070 background: background.into(),
5071 ..self
5072 }
5073 }
5074}
5075
5076/// Creates a quad with the given parameters.
5077pub fn quad(
5078 bounds: Bounds<Pixels>,
5079 corner_radii: impl Into<Corners<Pixels>>,
5080 background: impl Into<Background>,
5081 border_widths: impl Into<Edges<Pixels>>,
5082 border_color: impl Into<Hsla>,
5083 border_style: BorderStyle,
5084) -> PaintQuad {
5085 PaintQuad {
5086 bounds,
5087 corner_radii: corner_radii.into(),
5088 background: background.into(),
5089 border_widths: border_widths.into(),
5090 border_color: border_color.into(),
5091 border_style,
5092 }
5093}
5094
5095/// Creates a filled quad with the given bounds and background color.
5096pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
5097 PaintQuad {
5098 bounds: bounds.into(),
5099 corner_radii: (0.).into(),
5100 background: background.into(),
5101 border_widths: (0.).into(),
5102 border_color: transparent_black(),
5103 border_style: BorderStyle::default(),
5104 }
5105}
5106
5107/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
5108pub fn outline(
5109 bounds: impl Into<Bounds<Pixels>>,
5110 border_color: impl Into<Hsla>,
5111 border_style: BorderStyle,
5112) -> PaintQuad {
5113 PaintQuad {
5114 bounds: bounds.into(),
5115 corner_radii: (0.).into(),
5116 background: transparent_black().into(),
5117 border_widths: (1.).into(),
5118 border_color: border_color.into(),
5119 border_style,
5120 }
5121}