cloud.rs

   1use ai_onboarding::YoungAccountBanner;
   2use anthropic::AnthropicModelMode;
   3use anyhow::{Context as _, Result, anyhow};
   4use chrono::{DateTime, Utc};
   5use client::{Client, ModelRequestUsage, UserStore, zed_urls};
   6use cloud_llm_client::{
   7    CLIENT_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, CURRENT_PLAN_HEADER_NAME, CompletionBody,
   8    CompletionEvent, CompletionRequestStatus, CountTokensBody, CountTokensResponse,
   9    EXPIRED_LLM_TOKEN_HEADER_NAME, ListModelsResponse, MODEL_REQUESTS_RESOURCE_HEADER_VALUE, Plan,
  10    PlanV1, PlanV2, SERVER_SUPPORTS_STATUS_MESSAGES_HEADER_NAME,
  11    SUBSCRIPTION_LIMIT_RESOURCE_HEADER_NAME, TOOL_USE_LIMIT_REACHED_HEADER_NAME,
  12    ZED_VERSION_HEADER_NAME,
  13};
  14use futures::{
  15    AsyncBufReadExt, FutureExt, Stream, StreamExt, future::BoxFuture, stream::BoxStream,
  16};
  17use google_ai::GoogleModelMode;
  18use gpui::{
  19    AnyElement, AnyView, App, AsyncApp, Context, Entity, SemanticVersion, Subscription, Task,
  20};
  21use http_client::http::{HeaderMap, HeaderValue};
  22use http_client::{AsyncBody, HttpClient, HttpRequestExt, Method, Response, StatusCode};
  23use language_model::{
  24    AuthenticateError, LanguageModel, LanguageModelCacheConfiguration,
  25    LanguageModelCompletionError, LanguageModelCompletionEvent, LanguageModelId, LanguageModelName,
  26    LanguageModelProvider, LanguageModelProviderId, LanguageModelProviderName,
  27    LanguageModelProviderState, LanguageModelRequest, LanguageModelToolChoice,
  28    LanguageModelToolSchemaFormat, LlmApiToken, ModelRequestLimitReachedError,
  29    PaymentRequiredError, RateLimiter, RefreshLlmTokenListener,
  30};
  31use release_channel::AppVersion;
  32use schemars::JsonSchema;
  33use serde::{Deserialize, Serialize, de::DeserializeOwned};
  34use settings::SettingsStore;
  35pub use settings::ZedDotDevAvailableModel as AvailableModel;
  36pub use settings::ZedDotDevAvailableProvider as AvailableProvider;
  37use smol::io::{AsyncReadExt, BufReader};
  38use std::pin::Pin;
  39use std::str::FromStr as _;
  40use std::sync::Arc;
  41use std::time::Duration;
  42use thiserror::Error;
  43use ui::{TintColor, prelude::*};
  44use util::{ResultExt as _, maybe};
  45
  46use crate::provider::anthropic::{AnthropicEventMapper, count_anthropic_tokens, into_anthropic};
  47use crate::provider::google::{GoogleEventMapper, into_google};
  48use crate::provider::open_ai::{OpenAiEventMapper, count_open_ai_tokens, into_open_ai};
  49
  50const PROVIDER_ID: LanguageModelProviderId = language_model::ZED_CLOUD_PROVIDER_ID;
  51const PROVIDER_NAME: LanguageModelProviderName = language_model::ZED_CLOUD_PROVIDER_NAME;
  52
  53#[derive(Default, Clone, Debug, PartialEq)]
  54pub struct ZedDotDevSettings {
  55    pub available_models: Vec<AvailableModel>,
  56}
  57#[derive(Default, Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
  58#[serde(tag = "type", rename_all = "lowercase")]
  59pub enum ModelMode {
  60    #[default]
  61    Default,
  62    Thinking {
  63        /// The maximum number of tokens to use for reasoning. Must be lower than the model's `max_output_tokens`.
  64        budget_tokens: Option<u32>,
  65    },
  66}
  67
  68impl From<ModelMode> for AnthropicModelMode {
  69    fn from(value: ModelMode) -> Self {
  70        match value {
  71            ModelMode::Default => AnthropicModelMode::Default,
  72            ModelMode::Thinking { budget_tokens } => AnthropicModelMode::Thinking { budget_tokens },
  73        }
  74    }
  75}
  76
  77pub struct CloudLanguageModelProvider {
  78    client: Arc<Client>,
  79    state: gpui::Entity<State>,
  80    _maintain_client_status: Task<()>,
  81}
  82
  83pub struct State {
  84    client: Arc<Client>,
  85    llm_api_token: LlmApiToken,
  86    user_store: Entity<UserStore>,
  87    status: client::Status,
  88    models: Vec<Arc<cloud_llm_client::LanguageModel>>,
  89    default_model: Option<Arc<cloud_llm_client::LanguageModel>>,
  90    default_fast_model: Option<Arc<cloud_llm_client::LanguageModel>>,
  91    recommended_models: Vec<Arc<cloud_llm_client::LanguageModel>>,
  92    _fetch_models_task: Task<()>,
  93    _settings_subscription: Subscription,
  94    _llm_token_subscription: Subscription,
  95}
  96
  97impl State {
  98    fn new(
  99        client: Arc<Client>,
 100        user_store: Entity<UserStore>,
 101        status: client::Status,
 102        cx: &mut Context<Self>,
 103    ) -> Self {
 104        let refresh_llm_token_listener = RefreshLlmTokenListener::global(cx);
 105        let mut current_user = user_store.read(cx).watch_current_user();
 106        Self {
 107            client: client.clone(),
 108            llm_api_token: LlmApiToken::default(),
 109            user_store,
 110            status,
 111            models: Vec::new(),
 112            default_model: None,
 113            default_fast_model: None,
 114            recommended_models: Vec::new(),
 115            _fetch_models_task: cx.spawn(async move |this, cx| {
 116                maybe!(async move {
 117                    let (client, llm_api_token) = this
 118                        .read_with(cx, |this, _cx| (client.clone(), this.llm_api_token.clone()))?;
 119
 120                    while current_user.borrow().is_none() {
 121                        current_user.next().await;
 122                    }
 123
 124                    let response =
 125                        Self::fetch_models(client.clone(), llm_api_token.clone()).await?;
 126                    this.update(cx, |this, cx| this.update_models(response, cx))?;
 127                    anyhow::Ok(())
 128                })
 129                .await
 130                .context("failed to fetch Zed models")
 131                .log_err();
 132            }),
 133            _settings_subscription: cx.observe_global::<SettingsStore>(|_, cx| {
 134                cx.notify();
 135            }),
 136            _llm_token_subscription: cx.subscribe(
 137                &refresh_llm_token_listener,
 138                move |this, _listener, _event, cx| {
 139                    let client = this.client.clone();
 140                    let llm_api_token = this.llm_api_token.clone();
 141                    cx.spawn(async move |this, cx| {
 142                        llm_api_token.refresh(&client).await?;
 143                        let response = Self::fetch_models(client, llm_api_token).await?;
 144                        this.update(cx, |this, cx| {
 145                            this.update_models(response, cx);
 146                        })
 147                    })
 148                    .detach_and_log_err(cx);
 149                },
 150            ),
 151        }
 152    }
 153
 154    fn is_signed_out(&self, cx: &App) -> bool {
 155        self.user_store.read(cx).current_user().is_none()
 156    }
 157
 158    fn authenticate(&self, cx: &mut Context<Self>) -> Task<Result<()>> {
 159        let client = self.client.clone();
 160        cx.spawn(async move |state, cx| {
 161            client.sign_in_with_optional_connect(true, cx).await?;
 162            state.update(cx, |_, cx| cx.notify())
 163        })
 164    }
 165    fn update_models(&mut self, response: ListModelsResponse, cx: &mut Context<Self>) {
 166        let mut models = Vec::new();
 167
 168        for model in response.models {
 169            models.push(Arc::new(model.clone()));
 170
 171            // Right now we represent thinking variants of models as separate models on the client,
 172            // so we need to insert variants for any model that supports thinking.
 173            if model.supports_thinking {
 174                models.push(Arc::new(cloud_llm_client::LanguageModel {
 175                    id: cloud_llm_client::LanguageModelId(format!("{}-thinking", model.id).into()),
 176                    display_name: format!("{} Thinking", model.display_name),
 177                    ..model
 178                }));
 179            }
 180        }
 181
 182        self.default_model = models
 183            .iter()
 184            .find(|model| {
 185                response
 186                    .default_model
 187                    .as_ref()
 188                    .is_some_and(|default_model_id| &model.id == default_model_id)
 189            })
 190            .cloned();
 191        self.default_fast_model = models
 192            .iter()
 193            .find(|model| {
 194                response
 195                    .default_fast_model
 196                    .as_ref()
 197                    .is_some_and(|default_fast_model_id| &model.id == default_fast_model_id)
 198            })
 199            .cloned();
 200        self.recommended_models = response
 201            .recommended_models
 202            .iter()
 203            .filter_map(|id| models.iter().find(|model| &model.id == id))
 204            .cloned()
 205            .collect();
 206        self.models = models;
 207        cx.notify();
 208    }
 209
 210    async fn fetch_models(
 211        client: Arc<Client>,
 212        llm_api_token: LlmApiToken,
 213    ) -> Result<ListModelsResponse> {
 214        let http_client = &client.http_client();
 215        let token = llm_api_token.acquire(&client).await?;
 216
 217        let request = http_client::Request::builder()
 218            .method(Method::GET)
 219            .uri(http_client.build_zed_llm_url("/models", &[])?.as_ref())
 220            .header("Authorization", format!("Bearer {token}"))
 221            .body(AsyncBody::empty())?;
 222        let mut response = http_client
 223            .send(request)
 224            .await
 225            .context("failed to send list models request")?;
 226
 227        if response.status().is_success() {
 228            let mut body = String::new();
 229            response.body_mut().read_to_string(&mut body).await?;
 230            Ok(serde_json::from_str(&body)?)
 231        } else {
 232            let mut body = String::new();
 233            response.body_mut().read_to_string(&mut body).await?;
 234            anyhow::bail!(
 235                "error listing models.\nStatus: {:?}\nBody: {body}",
 236                response.status(),
 237            );
 238        }
 239    }
 240}
 241
 242impl CloudLanguageModelProvider {
 243    pub fn new(user_store: Entity<UserStore>, client: Arc<Client>, cx: &mut App) -> Self {
 244        let mut status_rx = client.status();
 245        let status = *status_rx.borrow();
 246
 247        let state = cx.new(|cx| State::new(client.clone(), user_store.clone(), status, cx));
 248
 249        let state_ref = state.downgrade();
 250        let maintain_client_status = cx.spawn(async move |cx| {
 251            while let Some(status) = status_rx.next().await {
 252                if let Some(this) = state_ref.upgrade() {
 253                    _ = this.update(cx, |this, cx| {
 254                        if this.status != status {
 255                            this.status = status;
 256                            cx.notify();
 257                        }
 258                    });
 259                } else {
 260                    break;
 261                }
 262            }
 263        });
 264
 265        Self {
 266            client,
 267            state,
 268            _maintain_client_status: maintain_client_status,
 269        }
 270    }
 271
 272    fn create_language_model(
 273        &self,
 274        model: Arc<cloud_llm_client::LanguageModel>,
 275        llm_api_token: LlmApiToken,
 276    ) -> Arc<dyn LanguageModel> {
 277        Arc::new(CloudLanguageModel {
 278            id: LanguageModelId(SharedString::from(model.id.0.clone())),
 279            model,
 280            llm_api_token,
 281            client: self.client.clone(),
 282            request_limiter: RateLimiter::new(4),
 283        })
 284    }
 285}
 286
 287impl LanguageModelProviderState for CloudLanguageModelProvider {
 288    type ObservableEntity = State;
 289
 290    fn observable_entity(&self) -> Option<gpui::Entity<Self::ObservableEntity>> {
 291        Some(self.state.clone())
 292    }
 293}
 294
 295impl LanguageModelProvider for CloudLanguageModelProvider {
 296    fn id(&self) -> LanguageModelProviderId {
 297        PROVIDER_ID
 298    }
 299
 300    fn name(&self) -> LanguageModelProviderName {
 301        PROVIDER_NAME
 302    }
 303
 304    fn icon(&self) -> IconName {
 305        IconName::AiZed
 306    }
 307
 308    fn default_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
 309        let default_model = self.state.read(cx).default_model.clone()?;
 310        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 311        Some(self.create_language_model(default_model, llm_api_token))
 312    }
 313
 314    fn default_fast_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
 315        let default_fast_model = self.state.read(cx).default_fast_model.clone()?;
 316        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 317        Some(self.create_language_model(default_fast_model, llm_api_token))
 318    }
 319
 320    fn recommended_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 321        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 322        self.state
 323            .read(cx)
 324            .recommended_models
 325            .iter()
 326            .cloned()
 327            .map(|model| self.create_language_model(model, llm_api_token.clone()))
 328            .collect()
 329    }
 330
 331    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 332        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 333        self.state
 334            .read(cx)
 335            .models
 336            .iter()
 337            .cloned()
 338            .map(|model| self.create_language_model(model, llm_api_token.clone()))
 339            .collect()
 340    }
 341
 342    fn is_authenticated(&self, cx: &App) -> bool {
 343        let state = self.state.read(cx);
 344        !state.is_signed_out(cx)
 345    }
 346
 347    fn authenticate(&self, _cx: &mut App) -> Task<Result<(), AuthenticateError>> {
 348        Task::ready(Ok(()))
 349    }
 350
 351    fn configuration_view(
 352        &self,
 353        _target_agent: language_model::ConfigurationViewTargetAgent,
 354        _: &mut Window,
 355        cx: &mut App,
 356    ) -> AnyView {
 357        cx.new(|_| ConfigurationView::new(self.state.clone()))
 358            .into()
 359    }
 360
 361    fn reset_credentials(&self, _cx: &mut App) -> Task<Result<()>> {
 362        Task::ready(Ok(()))
 363    }
 364}
 365
 366pub struct CloudLanguageModel {
 367    id: LanguageModelId,
 368    model: Arc<cloud_llm_client::LanguageModel>,
 369    llm_api_token: LlmApiToken,
 370    client: Arc<Client>,
 371    request_limiter: RateLimiter,
 372}
 373
 374struct PerformLlmCompletionResponse {
 375    response: Response<AsyncBody>,
 376    usage: Option<ModelRequestUsage>,
 377    tool_use_limit_reached: bool,
 378    includes_status_messages: bool,
 379}
 380
 381impl CloudLanguageModel {
 382    async fn perform_llm_completion(
 383        client: Arc<Client>,
 384        llm_api_token: LlmApiToken,
 385        app_version: Option<SemanticVersion>,
 386        body: CompletionBody,
 387    ) -> Result<PerformLlmCompletionResponse> {
 388        let http_client = &client.http_client();
 389
 390        let mut token = llm_api_token.acquire(&client).await?;
 391        let mut refreshed_token = false;
 392
 393        loop {
 394            let request = http_client::Request::builder()
 395                .method(Method::POST)
 396                .uri(http_client.build_zed_llm_url("/completions", &[])?.as_ref())
 397                .when_some(app_version, |builder, app_version| {
 398                    builder.header(ZED_VERSION_HEADER_NAME, app_version.to_string())
 399                })
 400                .header("Content-Type", "application/json")
 401                .header("Authorization", format!("Bearer {token}"))
 402                .header(CLIENT_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, "true")
 403                .body(serde_json::to_string(&body)?.into())?;
 404
 405            let mut response = http_client.send(request).await?;
 406            let status = response.status();
 407            if status.is_success() {
 408                let includes_status_messages = response
 409                    .headers()
 410                    .get(SERVER_SUPPORTS_STATUS_MESSAGES_HEADER_NAME)
 411                    .is_some();
 412
 413                let tool_use_limit_reached = response
 414                    .headers()
 415                    .get(TOOL_USE_LIMIT_REACHED_HEADER_NAME)
 416                    .is_some();
 417
 418                let usage = if includes_status_messages {
 419                    None
 420                } else {
 421                    ModelRequestUsage::from_headers(response.headers()).ok()
 422                };
 423
 424                return Ok(PerformLlmCompletionResponse {
 425                    response,
 426                    usage,
 427                    includes_status_messages,
 428                    tool_use_limit_reached,
 429                });
 430            }
 431
 432            if !refreshed_token
 433                && response
 434                    .headers()
 435                    .get(EXPIRED_LLM_TOKEN_HEADER_NAME)
 436                    .is_some()
 437            {
 438                token = llm_api_token.refresh(&client).await?;
 439                refreshed_token = true;
 440                continue;
 441            }
 442
 443            if status == StatusCode::FORBIDDEN
 444                && response
 445                    .headers()
 446                    .get(SUBSCRIPTION_LIMIT_RESOURCE_HEADER_NAME)
 447                    .is_some()
 448            {
 449                if let Some(MODEL_REQUESTS_RESOURCE_HEADER_VALUE) = response
 450                    .headers()
 451                    .get(SUBSCRIPTION_LIMIT_RESOURCE_HEADER_NAME)
 452                    .and_then(|resource| resource.to_str().ok())
 453                    && let Some(plan) = response
 454                        .headers()
 455                        .get(CURRENT_PLAN_HEADER_NAME)
 456                        .and_then(|plan| plan.to_str().ok())
 457                        .and_then(|plan| cloud_llm_client::PlanV1::from_str(plan).ok())
 458                        .map(Plan::V1)
 459                {
 460                    return Err(anyhow!(ModelRequestLimitReachedError { plan }));
 461                }
 462            } else if status == StatusCode::PAYMENT_REQUIRED {
 463                return Err(anyhow!(PaymentRequiredError));
 464            }
 465
 466            let mut body = String::new();
 467            let headers = response.headers().clone();
 468            response.body_mut().read_to_string(&mut body).await?;
 469            return Err(anyhow!(ApiError {
 470                status,
 471                body,
 472                headers
 473            }));
 474        }
 475    }
 476}
 477
 478#[derive(Debug, Error)]
 479#[error("cloud language model request failed with status {status}: {body}")]
 480struct ApiError {
 481    status: StatusCode,
 482    body: String,
 483    headers: HeaderMap<HeaderValue>,
 484}
 485
 486/// Represents error responses from Zed's cloud API.
 487///
 488/// Example JSON for an upstream HTTP error:
 489/// ```json
 490/// {
 491///   "code": "upstream_http_error",
 492///   "message": "Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout",
 493///   "upstream_status": 503
 494/// }
 495/// ```
 496#[derive(Debug, serde::Deserialize)]
 497struct CloudApiError {
 498    code: String,
 499    message: String,
 500    #[serde(default)]
 501    #[serde(deserialize_with = "deserialize_optional_status_code")]
 502    upstream_status: Option<StatusCode>,
 503    #[serde(default)]
 504    retry_after: Option<f64>,
 505}
 506
 507fn deserialize_optional_status_code<'de, D>(deserializer: D) -> Result<Option<StatusCode>, D::Error>
 508where
 509    D: serde::Deserializer<'de>,
 510{
 511    let opt: Option<u16> = Option::deserialize(deserializer)?;
 512    Ok(opt.and_then(|code| StatusCode::from_u16(code).ok()))
 513}
 514
 515impl From<ApiError> for LanguageModelCompletionError {
 516    fn from(error: ApiError) -> Self {
 517        if let Ok(cloud_error) = serde_json::from_str::<CloudApiError>(&error.body) {
 518            if cloud_error.code.starts_with("upstream_http_") {
 519                let status = if let Some(status) = cloud_error.upstream_status {
 520                    status
 521                } else if cloud_error.code.ends_with("_error") {
 522                    error.status
 523                } else {
 524                    // If there's a status code in the code string (e.g. "upstream_http_429")
 525                    // then use that; otherwise, see if the JSON contains a status code.
 526                    cloud_error
 527                        .code
 528                        .strip_prefix("upstream_http_")
 529                        .and_then(|code_str| code_str.parse::<u16>().ok())
 530                        .and_then(|code| StatusCode::from_u16(code).ok())
 531                        .unwrap_or(error.status)
 532                };
 533
 534                return LanguageModelCompletionError::UpstreamProviderError {
 535                    message: cloud_error.message,
 536                    status,
 537                    retry_after: cloud_error.retry_after.map(Duration::from_secs_f64),
 538                };
 539            }
 540
 541            return LanguageModelCompletionError::from_http_status(
 542                PROVIDER_NAME,
 543                error.status,
 544                cloud_error.message,
 545                None,
 546            );
 547        }
 548
 549        let retry_after = None;
 550        LanguageModelCompletionError::from_http_status(
 551            PROVIDER_NAME,
 552            error.status,
 553            error.body,
 554            retry_after,
 555        )
 556    }
 557}
 558
 559impl LanguageModel for CloudLanguageModel {
 560    fn id(&self) -> LanguageModelId {
 561        self.id.clone()
 562    }
 563
 564    fn name(&self) -> LanguageModelName {
 565        LanguageModelName::from(self.model.display_name.clone())
 566    }
 567
 568    fn provider_id(&self) -> LanguageModelProviderId {
 569        PROVIDER_ID
 570    }
 571
 572    fn provider_name(&self) -> LanguageModelProviderName {
 573        PROVIDER_NAME
 574    }
 575
 576    fn upstream_provider_id(&self) -> LanguageModelProviderId {
 577        use cloud_llm_client::LanguageModelProvider::*;
 578        match self.model.provider {
 579            Anthropic => language_model::ANTHROPIC_PROVIDER_ID,
 580            OpenAi => language_model::OPEN_AI_PROVIDER_ID,
 581            Google => language_model::GOOGLE_PROVIDER_ID,
 582        }
 583    }
 584
 585    fn upstream_provider_name(&self) -> LanguageModelProviderName {
 586        use cloud_llm_client::LanguageModelProvider::*;
 587        match self.model.provider {
 588            Anthropic => language_model::ANTHROPIC_PROVIDER_NAME,
 589            OpenAi => language_model::OPEN_AI_PROVIDER_NAME,
 590            Google => language_model::GOOGLE_PROVIDER_NAME,
 591        }
 592    }
 593
 594    fn supports_tools(&self) -> bool {
 595        self.model.supports_tools
 596    }
 597
 598    fn supports_images(&self) -> bool {
 599        self.model.supports_images
 600    }
 601
 602    fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
 603        match choice {
 604            LanguageModelToolChoice::Auto
 605            | LanguageModelToolChoice::Any
 606            | LanguageModelToolChoice::None => true,
 607        }
 608    }
 609
 610    fn supports_burn_mode(&self) -> bool {
 611        self.model.supports_max_mode
 612    }
 613
 614    fn telemetry_id(&self) -> String {
 615        format!("zed.dev/{}", self.model.id)
 616    }
 617
 618    fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
 619        match self.model.provider {
 620            cloud_llm_client::LanguageModelProvider::Anthropic
 621            | cloud_llm_client::LanguageModelProvider::OpenAi => {
 622                LanguageModelToolSchemaFormat::JsonSchema
 623            }
 624            cloud_llm_client::LanguageModelProvider::Google => {
 625                LanguageModelToolSchemaFormat::JsonSchemaSubset
 626            }
 627        }
 628    }
 629
 630    fn max_token_count(&self) -> u64 {
 631        self.model.max_token_count as u64
 632    }
 633
 634    fn max_token_count_in_burn_mode(&self) -> Option<u64> {
 635        self.model
 636            .max_token_count_in_max_mode
 637            .filter(|_| self.model.supports_max_mode)
 638            .map(|max_token_count| max_token_count as u64)
 639    }
 640
 641    fn cache_configuration(&self) -> Option<LanguageModelCacheConfiguration> {
 642        match &self.model.provider {
 643            cloud_llm_client::LanguageModelProvider::Anthropic => {
 644                Some(LanguageModelCacheConfiguration {
 645                    min_total_token: 2_048,
 646                    should_speculate: true,
 647                    max_cache_anchors: 4,
 648                })
 649            }
 650            cloud_llm_client::LanguageModelProvider::OpenAi
 651            | cloud_llm_client::LanguageModelProvider::Google => None,
 652        }
 653    }
 654
 655    fn count_tokens(
 656        &self,
 657        request: LanguageModelRequest,
 658        cx: &App,
 659    ) -> BoxFuture<'static, Result<u64>> {
 660        match self.model.provider {
 661            cloud_llm_client::LanguageModelProvider::Anthropic => {
 662                count_anthropic_tokens(request, cx)
 663            }
 664            cloud_llm_client::LanguageModelProvider::OpenAi => {
 665                let model = match open_ai::Model::from_id(&self.model.id.0) {
 666                    Ok(model) => model,
 667                    Err(err) => return async move { Err(anyhow!(err)) }.boxed(),
 668                };
 669                count_open_ai_tokens(request, model, cx)
 670            }
 671            cloud_llm_client::LanguageModelProvider::Google => {
 672                let client = self.client.clone();
 673                let llm_api_token = self.llm_api_token.clone();
 674                let model_id = self.model.id.to_string();
 675                let generate_content_request =
 676                    into_google(request, model_id.clone(), GoogleModelMode::Default);
 677                async move {
 678                    let http_client = &client.http_client();
 679                    let token = llm_api_token.acquire(&client).await?;
 680
 681                    let request_body = CountTokensBody {
 682                        provider: cloud_llm_client::LanguageModelProvider::Google,
 683                        model: model_id,
 684                        provider_request: serde_json::to_value(&google_ai::CountTokensRequest {
 685                            generate_content_request,
 686                        })?,
 687                    };
 688                    let request = http_client::Request::builder()
 689                        .method(Method::POST)
 690                        .uri(
 691                            http_client
 692                                .build_zed_llm_url("/count_tokens", &[])?
 693                                .as_ref(),
 694                        )
 695                        .header("Content-Type", "application/json")
 696                        .header("Authorization", format!("Bearer {token}"))
 697                        .body(serde_json::to_string(&request_body)?.into())?;
 698                    let mut response = http_client.send(request).await?;
 699                    let status = response.status();
 700                    let headers = response.headers().clone();
 701                    let mut response_body = String::new();
 702                    response
 703                        .body_mut()
 704                        .read_to_string(&mut response_body)
 705                        .await?;
 706
 707                    if status.is_success() {
 708                        let response_body: CountTokensResponse =
 709                            serde_json::from_str(&response_body)?;
 710
 711                        Ok(response_body.tokens as u64)
 712                    } else {
 713                        Err(anyhow!(ApiError {
 714                            status,
 715                            body: response_body,
 716                            headers
 717                        }))
 718                    }
 719                }
 720                .boxed()
 721            }
 722        }
 723    }
 724
 725    fn stream_completion(
 726        &self,
 727        request: LanguageModelRequest,
 728        cx: &AsyncApp,
 729    ) -> BoxFuture<
 730        'static,
 731        Result<
 732            BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>,
 733            LanguageModelCompletionError,
 734        >,
 735    > {
 736        let thread_id = request.thread_id.clone();
 737        let prompt_id = request.prompt_id.clone();
 738        let intent = request.intent;
 739        let mode = request.mode;
 740        let app_version = cx.update(|cx| AppVersion::global(cx)).ok();
 741        let thinking_allowed = request.thinking_allowed;
 742        match self.model.provider {
 743            cloud_llm_client::LanguageModelProvider::Anthropic => {
 744                let request = into_anthropic(
 745                    request,
 746                    self.model.id.to_string(),
 747                    1.0,
 748                    self.model.max_output_tokens as u64,
 749                    if thinking_allowed && self.model.id.0.ends_with("-thinking") {
 750                        AnthropicModelMode::Thinking {
 751                            budget_tokens: Some(4_096),
 752                        }
 753                    } else {
 754                        AnthropicModelMode::Default
 755                    },
 756                );
 757                let client = self.client.clone();
 758                let llm_api_token = self.llm_api_token.clone();
 759                let future = self.request_limiter.stream(async move {
 760                    let PerformLlmCompletionResponse {
 761                        response,
 762                        usage,
 763                        includes_status_messages,
 764                        tool_use_limit_reached,
 765                    } = Self::perform_llm_completion(
 766                        client.clone(),
 767                        llm_api_token,
 768                        app_version,
 769                        CompletionBody {
 770                            thread_id,
 771                            prompt_id,
 772                            intent,
 773                            mode,
 774                            provider: cloud_llm_client::LanguageModelProvider::Anthropic,
 775                            model: request.model.clone(),
 776                            provider_request: serde_json::to_value(&request)
 777                                .map_err(|e| anyhow!(e))?,
 778                        },
 779                    )
 780                    .await
 781                    .map_err(|err| match err.downcast::<ApiError>() {
 782                        Ok(api_err) => anyhow!(LanguageModelCompletionError::from(api_err)),
 783                        Err(err) => anyhow!(err),
 784                    })?;
 785
 786                    let mut mapper = AnthropicEventMapper::new();
 787                    Ok(map_cloud_completion_events(
 788                        Box::pin(
 789                            response_lines(response, includes_status_messages)
 790                                .chain(usage_updated_event(usage))
 791                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)),
 792                        ),
 793                        move |event| mapper.map_event(event),
 794                    ))
 795                });
 796                async move { Ok(future.await?.boxed()) }.boxed()
 797            }
 798            cloud_llm_client::LanguageModelProvider::OpenAi => {
 799                let client = self.client.clone();
 800                let model = match open_ai::Model::from_id(&self.model.id.0) {
 801                    Ok(model) => model,
 802                    Err(err) => return async move { Err(anyhow!(err).into()) }.boxed(),
 803                };
 804                let request = into_open_ai(
 805                    request,
 806                    model.id(),
 807                    model.supports_parallel_tool_calls(),
 808                    model.supports_prompt_cache_key(),
 809                    None,
 810                    None,
 811                );
 812                let llm_api_token = self.llm_api_token.clone();
 813                let future = self.request_limiter.stream(async move {
 814                    let PerformLlmCompletionResponse {
 815                        response,
 816                        usage,
 817                        includes_status_messages,
 818                        tool_use_limit_reached,
 819                    } = Self::perform_llm_completion(
 820                        client.clone(),
 821                        llm_api_token,
 822                        app_version,
 823                        CompletionBody {
 824                            thread_id,
 825                            prompt_id,
 826                            intent,
 827                            mode,
 828                            provider: cloud_llm_client::LanguageModelProvider::OpenAi,
 829                            model: request.model.clone(),
 830                            provider_request: serde_json::to_value(&request)
 831                                .map_err(|e| anyhow!(e))?,
 832                        },
 833                    )
 834                    .await?;
 835
 836                    let mut mapper = OpenAiEventMapper::new();
 837                    Ok(map_cloud_completion_events(
 838                        Box::pin(
 839                            response_lines(response, includes_status_messages)
 840                                .chain(usage_updated_event(usage))
 841                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)),
 842                        ),
 843                        move |event| mapper.map_event(event),
 844                    ))
 845                });
 846                async move { Ok(future.await?.boxed()) }.boxed()
 847            }
 848            cloud_llm_client::LanguageModelProvider::Google => {
 849                let client = self.client.clone();
 850                let request =
 851                    into_google(request, self.model.id.to_string(), GoogleModelMode::Default);
 852                let llm_api_token = self.llm_api_token.clone();
 853                let future = self.request_limiter.stream(async move {
 854                    let PerformLlmCompletionResponse {
 855                        response,
 856                        usage,
 857                        includes_status_messages,
 858                        tool_use_limit_reached,
 859                    } = Self::perform_llm_completion(
 860                        client.clone(),
 861                        llm_api_token,
 862                        app_version,
 863                        CompletionBody {
 864                            thread_id,
 865                            prompt_id,
 866                            intent,
 867                            mode,
 868                            provider: cloud_llm_client::LanguageModelProvider::Google,
 869                            model: request.model.model_id.clone(),
 870                            provider_request: serde_json::to_value(&request)
 871                                .map_err(|e| anyhow!(e))?,
 872                        },
 873                    )
 874                    .await?;
 875
 876                    let mut mapper = GoogleEventMapper::new();
 877                    Ok(map_cloud_completion_events(
 878                        Box::pin(
 879                            response_lines(response, includes_status_messages)
 880                                .chain(usage_updated_event(usage))
 881                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)),
 882                        ),
 883                        move |event| mapper.map_event(event),
 884                    ))
 885                });
 886                async move { Ok(future.await?.boxed()) }.boxed()
 887            }
 888        }
 889    }
 890}
 891
 892fn map_cloud_completion_events<T, F>(
 893    stream: Pin<Box<dyn Stream<Item = Result<CompletionEvent<T>>> + Send>>,
 894    mut map_callback: F,
 895) -> BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 896where
 897    T: DeserializeOwned + 'static,
 898    F: FnMut(T) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 899        + Send
 900        + 'static,
 901{
 902    stream
 903        .flat_map(move |event| {
 904            futures::stream::iter(match event {
 905                Err(error) => {
 906                    vec![Err(LanguageModelCompletionError::from(error))]
 907                }
 908                Ok(CompletionEvent::Status(event)) => {
 909                    vec![Ok(LanguageModelCompletionEvent::StatusUpdate(event))]
 910                }
 911                Ok(CompletionEvent::Event(event)) => map_callback(event),
 912            })
 913        })
 914        .boxed()
 915}
 916
 917fn usage_updated_event<T>(
 918    usage: Option<ModelRequestUsage>,
 919) -> impl Stream<Item = Result<CompletionEvent<T>>> {
 920    futures::stream::iter(usage.map(|usage| {
 921        Ok(CompletionEvent::Status(
 922            CompletionRequestStatus::UsageUpdated {
 923                amount: usage.amount as usize,
 924                limit: usage.limit,
 925            },
 926        ))
 927    }))
 928}
 929
 930fn tool_use_limit_reached_event<T>(
 931    tool_use_limit_reached: bool,
 932) -> impl Stream<Item = Result<CompletionEvent<T>>> {
 933    futures::stream::iter(tool_use_limit_reached.then(|| {
 934        Ok(CompletionEvent::Status(
 935            CompletionRequestStatus::ToolUseLimitReached,
 936        ))
 937    }))
 938}
 939
 940fn response_lines<T: DeserializeOwned>(
 941    response: Response<AsyncBody>,
 942    includes_status_messages: bool,
 943) -> impl Stream<Item = Result<CompletionEvent<T>>> {
 944    futures::stream::try_unfold(
 945        (String::new(), BufReader::new(response.into_body())),
 946        move |(mut line, mut body)| async move {
 947            match body.read_line(&mut line).await {
 948                Ok(0) => Ok(None),
 949                Ok(_) => {
 950                    let event = if includes_status_messages {
 951                        serde_json::from_str::<CompletionEvent<T>>(&line)?
 952                    } else {
 953                        CompletionEvent::Event(serde_json::from_str::<T>(&line)?)
 954                    };
 955
 956                    line.clear();
 957                    Ok(Some((event, (line, body))))
 958                }
 959                Err(e) => Err(e.into()),
 960            }
 961        },
 962    )
 963}
 964
 965#[derive(IntoElement, RegisterComponent)]
 966struct ZedAiConfiguration {
 967    is_connected: bool,
 968    plan: Option<Plan>,
 969    subscription_period: Option<(DateTime<Utc>, DateTime<Utc>)>,
 970    eligible_for_trial: bool,
 971    account_too_young: bool,
 972    sign_in_callback: Arc<dyn Fn(&mut Window, &mut App) + Send + Sync>,
 973}
 974
 975impl RenderOnce for ZedAiConfiguration {
 976    fn render(self, _window: &mut Window, _cx: &mut App) -> impl IntoElement {
 977        let is_pro = self.plan.is_some_and(|plan| {
 978            matches!(plan, Plan::V1(PlanV1::ZedPro) | Plan::V2(PlanV2::ZedPro))
 979        });
 980        let subscription_text = match (self.plan, self.subscription_period) {
 981            (Some(Plan::V1(PlanV1::ZedPro) | Plan::V2(PlanV2::ZedPro)), Some(_)) => {
 982                "You have access to Zed's hosted models through your Pro subscription."
 983            }
 984            (Some(Plan::V1(PlanV1::ZedProTrial) | Plan::V2(PlanV2::ZedProTrial)), Some(_)) => {
 985                "You have access to Zed's hosted models through your Pro trial."
 986            }
 987            (Some(Plan::V1(PlanV1::ZedFree)), Some(_)) => {
 988                "You have basic access to Zed's hosted models through the Free plan."
 989            }
 990            (Some(Plan::V2(PlanV2::ZedFree)), Some(_)) => {
 991                if self.eligible_for_trial {
 992                    "Subscribe for access to Zed's hosted models. Start with a 14 day free trial."
 993                } else {
 994                    "Subscribe for access to Zed's hosted models."
 995                }
 996            }
 997            _ => {
 998                if self.eligible_for_trial {
 999                    "Subscribe for access to Zed's hosted models. Start with a 14 day free trial."
1000                } else {
1001                    "Subscribe for access to Zed's hosted models."
1002                }
1003            }
1004        };
1005
1006        let manage_subscription_buttons = if is_pro {
1007            Button::new("manage_settings", "Manage Subscription")
1008                .full_width()
1009                .style(ButtonStyle::Tinted(TintColor::Accent))
1010                .on_click(|_, _, cx| cx.open_url(&zed_urls::account_url(cx)))
1011                .into_any_element()
1012        } else if self.plan.is_none() || self.eligible_for_trial {
1013            Button::new("start_trial", "Start 14-day Free Pro Trial")
1014                .full_width()
1015                .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1016                .on_click(|_, _, cx| cx.open_url(&zed_urls::start_trial_url(cx)))
1017                .into_any_element()
1018        } else {
1019            Button::new("upgrade", "Upgrade to Pro")
1020                .full_width()
1021                .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1022                .on_click(|_, _, cx| cx.open_url(&zed_urls::upgrade_to_zed_pro_url(cx)))
1023                .into_any_element()
1024        };
1025
1026        if !self.is_connected {
1027            return v_flex()
1028                .gap_2()
1029                .child(Label::new("Sign in to have access to Zed's complete agentic experience with hosted models."))
1030                .child(
1031                    Button::new("sign_in", "Sign In to use Zed AI")
1032                        .icon_color(Color::Muted)
1033                        .icon(IconName::Github)
1034                        .icon_size(IconSize::Small)
1035                        .icon_position(IconPosition::Start)
1036                        .full_width()
1037                        .on_click({
1038                            let callback = self.sign_in_callback.clone();
1039                            move |_, window, cx| (callback)(window, cx)
1040                        }),
1041                );
1042        }
1043
1044        v_flex().gap_2().w_full().map(|this| {
1045            if self.account_too_young {
1046                this.child(YoungAccountBanner).child(
1047                    Button::new("upgrade", "Upgrade to Pro")
1048                        .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1049                        .full_width()
1050                        .on_click(|_, _, cx| cx.open_url(&zed_urls::upgrade_to_zed_pro_url(cx))),
1051                )
1052            } else {
1053                this.text_sm()
1054                    .child(subscription_text)
1055                    .child(manage_subscription_buttons)
1056            }
1057        })
1058    }
1059}
1060
1061struct ConfigurationView {
1062    state: Entity<State>,
1063    sign_in_callback: Arc<dyn Fn(&mut Window, &mut App) + Send + Sync>,
1064}
1065
1066impl ConfigurationView {
1067    fn new(state: Entity<State>) -> Self {
1068        let sign_in_callback = Arc::new({
1069            let state = state.clone();
1070            move |_window: &mut Window, cx: &mut App| {
1071                state.update(cx, |state, cx| {
1072                    state.authenticate(cx).detach_and_log_err(cx);
1073                });
1074            }
1075        });
1076
1077        Self {
1078            state,
1079            sign_in_callback,
1080        }
1081    }
1082}
1083
1084impl Render for ConfigurationView {
1085    fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
1086        let state = self.state.read(cx);
1087        let user_store = state.user_store.read(cx);
1088
1089        ZedAiConfiguration {
1090            is_connected: !state.is_signed_out(cx),
1091            plan: user_store.plan(),
1092            subscription_period: user_store.subscription_period(),
1093            eligible_for_trial: user_store.trial_started_at().is_none(),
1094            account_too_young: user_store.account_too_young(),
1095            sign_in_callback: self.sign_in_callback.clone(),
1096        }
1097    }
1098}
1099
1100impl Component for ZedAiConfiguration {
1101    fn name() -> &'static str {
1102        "AI Configuration Content"
1103    }
1104
1105    fn sort_name() -> &'static str {
1106        "AI Configuration Content"
1107    }
1108
1109    fn scope() -> ComponentScope {
1110        ComponentScope::Onboarding
1111    }
1112
1113    fn preview(_window: &mut Window, _cx: &mut App) -> Option<AnyElement> {
1114        fn configuration(
1115            is_connected: bool,
1116            plan: Option<Plan>,
1117            eligible_for_trial: bool,
1118            account_too_young: bool,
1119        ) -> AnyElement {
1120            ZedAiConfiguration {
1121                is_connected,
1122                plan,
1123                subscription_period: plan
1124                    .is_some()
1125                    .then(|| (Utc::now(), Utc::now() + chrono::Duration::days(7))),
1126                eligible_for_trial,
1127                account_too_young,
1128                sign_in_callback: Arc::new(|_, _| {}),
1129            }
1130            .into_any_element()
1131        }
1132
1133        Some(
1134            v_flex()
1135                .p_4()
1136                .gap_4()
1137                .children(vec![
1138                    single_example("Not connected", configuration(false, None, false, false)),
1139                    single_example(
1140                        "Accept Terms of Service",
1141                        configuration(true, None, true, false),
1142                    ),
1143                    single_example(
1144                        "No Plan - Not eligible for trial",
1145                        configuration(true, None, false, false),
1146                    ),
1147                    single_example(
1148                        "No Plan - Eligible for trial",
1149                        configuration(true, None, true, false),
1150                    ),
1151                    single_example(
1152                        "Free Plan",
1153                        configuration(true, Some(Plan::V1(PlanV1::ZedFree)), true, false),
1154                    ),
1155                    single_example(
1156                        "Zed Pro Trial Plan",
1157                        configuration(true, Some(Plan::V1(PlanV1::ZedProTrial)), true, false),
1158                    ),
1159                    single_example(
1160                        "Zed Pro Plan",
1161                        configuration(true, Some(Plan::V1(PlanV1::ZedPro)), true, false),
1162                    ),
1163                ])
1164                .into_any_element(),
1165        )
1166    }
1167}
1168
1169#[cfg(test)]
1170mod tests {
1171    use super::*;
1172    use http_client::http::{HeaderMap, StatusCode};
1173    use language_model::LanguageModelCompletionError;
1174
1175    #[test]
1176    fn test_api_error_conversion_with_upstream_http_error() {
1177        // upstream_http_error with 503 status should become ServerOverloaded
1178        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout","upstream_status":503}"#;
1179
1180        let api_error = ApiError {
1181            status: StatusCode::INTERNAL_SERVER_ERROR,
1182            body: error_body.to_string(),
1183            headers: HeaderMap::new(),
1184        };
1185
1186        let completion_error: LanguageModelCompletionError = api_error.into();
1187
1188        match completion_error {
1189            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1190                assert_eq!(
1191                    message,
1192                    "Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout"
1193                );
1194            }
1195            _ => panic!(
1196                "Expected UpstreamProviderError for upstream 503, got: {:?}",
1197                completion_error
1198            ),
1199        }
1200
1201        // upstream_http_error with 500 status should become ApiInternalServerError
1202        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the OpenAI API: internal server error","upstream_status":500}"#;
1203
1204        let api_error = ApiError {
1205            status: StatusCode::INTERNAL_SERVER_ERROR,
1206            body: error_body.to_string(),
1207            headers: HeaderMap::new(),
1208        };
1209
1210        let completion_error: LanguageModelCompletionError = api_error.into();
1211
1212        match completion_error {
1213            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1214                assert_eq!(
1215                    message,
1216                    "Received an error from the OpenAI API: internal server error"
1217                );
1218            }
1219            _ => panic!(
1220                "Expected UpstreamProviderError for upstream 500, got: {:?}",
1221                completion_error
1222            ),
1223        }
1224
1225        // upstream_http_error with 429 status should become RateLimitExceeded
1226        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the Google API: rate limit exceeded","upstream_status":429}"#;
1227
1228        let api_error = ApiError {
1229            status: StatusCode::INTERNAL_SERVER_ERROR,
1230            body: error_body.to_string(),
1231            headers: HeaderMap::new(),
1232        };
1233
1234        let completion_error: LanguageModelCompletionError = api_error.into();
1235
1236        match completion_error {
1237            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1238                assert_eq!(
1239                    message,
1240                    "Received an error from the Google API: rate limit exceeded"
1241                );
1242            }
1243            _ => panic!(
1244                "Expected UpstreamProviderError for upstream 429, got: {:?}",
1245                completion_error
1246            ),
1247        }
1248
1249        // Regular 500 error without upstream_http_error should remain ApiInternalServerError for Zed
1250        let error_body = "Regular internal server error";
1251
1252        let api_error = ApiError {
1253            status: StatusCode::INTERNAL_SERVER_ERROR,
1254            body: error_body.to_string(),
1255            headers: HeaderMap::new(),
1256        };
1257
1258        let completion_error: LanguageModelCompletionError = api_error.into();
1259
1260        match completion_error {
1261            LanguageModelCompletionError::ApiInternalServerError { provider, message } => {
1262                assert_eq!(provider, PROVIDER_NAME);
1263                assert_eq!(message, "Regular internal server error");
1264            }
1265            _ => panic!(
1266                "Expected ApiInternalServerError for regular 500, got: {:?}",
1267                completion_error
1268            ),
1269        }
1270
1271        // upstream_http_429 format should be converted to UpstreamProviderError
1272        let error_body = r#"{"code":"upstream_http_429","message":"Upstream Anthropic rate limit exceeded.","retry_after":30.5}"#;
1273
1274        let api_error = ApiError {
1275            status: StatusCode::INTERNAL_SERVER_ERROR,
1276            body: error_body.to_string(),
1277            headers: HeaderMap::new(),
1278        };
1279
1280        let completion_error: LanguageModelCompletionError = api_error.into();
1281
1282        match completion_error {
1283            LanguageModelCompletionError::UpstreamProviderError {
1284                message,
1285                status,
1286                retry_after,
1287            } => {
1288                assert_eq!(message, "Upstream Anthropic rate limit exceeded.");
1289                assert_eq!(status, StatusCode::TOO_MANY_REQUESTS);
1290                assert_eq!(retry_after, Some(Duration::from_secs_f64(30.5)));
1291            }
1292            _ => panic!(
1293                "Expected UpstreamProviderError for upstream_http_429, got: {:?}",
1294                completion_error
1295            ),
1296        }
1297
1298        // Invalid JSON in error body should fall back to regular error handling
1299        let error_body = "Not JSON at all";
1300
1301        let api_error = ApiError {
1302            status: StatusCode::INTERNAL_SERVER_ERROR,
1303            body: error_body.to_string(),
1304            headers: HeaderMap::new(),
1305        };
1306
1307        let completion_error: LanguageModelCompletionError = api_error.into();
1308
1309        match completion_error {
1310            LanguageModelCompletionError::ApiInternalServerError { provider, .. } => {
1311                assert_eq!(provider, PROVIDER_NAME);
1312            }
1313            _ => panic!(
1314                "Expected ApiInternalServerError for invalid JSON, got: {:?}",
1315                completion_error
1316            ),
1317        }
1318    }
1319}