1#[cfg(any(feature = "inspector", debug_assertions))]
2use crate::Inspector;
3use crate::{
4 Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
5 AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Capslock,
6 Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
7 DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
8 FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
9 KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
10 LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
11 MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
12 PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptButton, PromptLevel, Quad,
13 Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge,
14 SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS, ScaledPixels, Scene, Shadow, SharedString, Size,
15 StrikethroughStyle, Style, SubscriberSet, Subscription, TabHandles, TaffyLayoutEngine, Task,
16 TextStyle, TextStyleRefinement, TransformationMatrix, Underline, UnderlineStyle,
17 WindowAppearance, WindowBackgroundAppearance, WindowBounds, WindowControls, WindowDecorations,
18 WindowOptions, WindowParams, WindowTextSystem, point, prelude::*, px, rems, size,
19 transparent_black,
20};
21use anyhow::{Context as _, Result, anyhow};
22use collections::{FxHashMap, FxHashSet};
23#[cfg(target_os = "macos")]
24use core_video::pixel_buffer::CVPixelBuffer;
25use derive_more::{Deref, DerefMut};
26use futures::FutureExt;
27use futures::channel::oneshot;
28use itertools::FoldWhile::{Continue, Done};
29use itertools::Itertools;
30use parking_lot::RwLock;
31use raw_window_handle::{HandleError, HasDisplayHandle, HasWindowHandle};
32use refineable::Refineable;
33use slotmap::SlotMap;
34use smallvec::SmallVec;
35use std::{
36 any::{Any, TypeId},
37 borrow::Cow,
38 cell::{Cell, RefCell},
39 cmp,
40 fmt::{Debug, Display},
41 hash::{Hash, Hasher},
42 marker::PhantomData,
43 mem,
44 ops::{DerefMut, Range},
45 rc::Rc,
46 sync::{
47 Arc, Weak,
48 atomic::{AtomicUsize, Ordering::SeqCst},
49 },
50 time::{Duration, Instant},
51};
52use util::post_inc;
53use util::{ResultExt, measure};
54use uuid::Uuid;
55
56mod prompts;
57
58use crate::util::atomic_incr_if_not_zero;
59pub use prompts::*;
60
61pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1024.), px(700.));
62
63/// Represents the two different phases when dispatching events.
64#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
65pub enum DispatchPhase {
66 /// After the capture phase comes the bubble phase, in which mouse event listeners are
67 /// invoked front to back and keyboard event listeners are invoked from the focused element
68 /// to the root of the element tree. This is the phase you'll most commonly want to use when
69 /// registering event listeners.
70 #[default]
71 Bubble,
72 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
73 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
74 /// is used for special purposes such as clearing the "pressed" state for click events. If
75 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
76 /// outside of the immediate region may rely on detecting non-local events during this phase.
77 Capture,
78}
79
80impl DispatchPhase {
81 /// Returns true if this represents the "bubble" phase.
82 pub fn bubble(self) -> bool {
83 self == DispatchPhase::Bubble
84 }
85
86 /// Returns true if this represents the "capture" phase.
87 pub fn capture(self) -> bool {
88 self == DispatchPhase::Capture
89 }
90}
91
92struct WindowInvalidatorInner {
93 pub dirty: bool,
94 pub draw_phase: DrawPhase,
95 pub dirty_views: FxHashSet<EntityId>,
96}
97
98#[derive(Clone)]
99pub(crate) struct WindowInvalidator {
100 inner: Rc<RefCell<WindowInvalidatorInner>>,
101}
102
103impl WindowInvalidator {
104 pub fn new() -> Self {
105 WindowInvalidator {
106 inner: Rc::new(RefCell::new(WindowInvalidatorInner {
107 dirty: true,
108 draw_phase: DrawPhase::None,
109 dirty_views: FxHashSet::default(),
110 })),
111 }
112 }
113
114 pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
115 let mut inner = self.inner.borrow_mut();
116 inner.dirty_views.insert(entity);
117 if inner.draw_phase == DrawPhase::None {
118 inner.dirty = true;
119 cx.push_effect(Effect::Notify { emitter: entity });
120 true
121 } else {
122 false
123 }
124 }
125
126 pub fn is_dirty(&self) -> bool {
127 self.inner.borrow().dirty
128 }
129
130 pub fn set_dirty(&self, dirty: bool) {
131 self.inner.borrow_mut().dirty = dirty
132 }
133
134 pub fn set_phase(&self, phase: DrawPhase) {
135 self.inner.borrow_mut().draw_phase = phase
136 }
137
138 pub fn take_views(&self) -> FxHashSet<EntityId> {
139 mem::take(&mut self.inner.borrow_mut().dirty_views)
140 }
141
142 pub fn replace_views(&self, views: FxHashSet<EntityId>) {
143 self.inner.borrow_mut().dirty_views = views;
144 }
145
146 pub fn not_drawing(&self) -> bool {
147 self.inner.borrow().draw_phase == DrawPhase::None
148 }
149
150 #[track_caller]
151 pub fn debug_assert_paint(&self) {
152 debug_assert!(
153 matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
154 "this method can only be called during paint"
155 );
156 }
157
158 #[track_caller]
159 pub fn debug_assert_prepaint(&self) {
160 debug_assert!(
161 matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
162 "this method can only be called during request_layout, or prepaint"
163 );
164 }
165
166 #[track_caller]
167 pub fn debug_assert_paint_or_prepaint(&self) {
168 debug_assert!(
169 matches!(
170 self.inner.borrow().draw_phase,
171 DrawPhase::Paint | DrawPhase::Prepaint
172 ),
173 "this method can only be called during request_layout, prepaint, or paint"
174 );
175 }
176}
177
178type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
179
180pub(crate) type AnyWindowFocusListener =
181 Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
182
183pub(crate) struct WindowFocusEvent {
184 pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
185 pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
186}
187
188impl WindowFocusEvent {
189 pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
190 !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
191 }
192
193 pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
194 self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
195 }
196}
197
198/// This is provided when subscribing for `Context::on_focus_out` events.
199pub struct FocusOutEvent {
200 /// A weak focus handle representing what was blurred.
201 pub blurred: WeakFocusHandle,
202}
203
204slotmap::new_key_type! {
205 /// A globally unique identifier for a focusable element.
206 pub struct FocusId;
207}
208
209thread_local! {
210 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(1024 * 1024));
211}
212
213/// Returned when the element arena has been used and so must be cleared before the next draw.
214#[must_use]
215pub struct ArenaClearNeeded;
216
217impl ArenaClearNeeded {
218 /// Clear the element arena.
219 pub fn clear(self) {
220 ELEMENT_ARENA.with_borrow_mut(|element_arena| {
221 element_arena.clear();
222 });
223 }
224}
225
226pub(crate) type FocusMap = RwLock<SlotMap<FocusId, FocusRef>>;
227pub(crate) struct FocusRef {
228 pub(crate) ref_count: AtomicUsize,
229 pub(crate) tab_index: isize,
230 pub(crate) tab_stop: bool,
231}
232
233impl FocusId {
234 /// Obtains whether the element associated with this handle is currently focused.
235 pub fn is_focused(&self, window: &Window) -> bool {
236 window.focus == Some(*self)
237 }
238
239 /// Obtains whether the element associated with this handle contains the focused
240 /// element or is itself focused.
241 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
242 window
243 .focused(cx)
244 .map_or(false, |focused| self.contains(focused.id, window))
245 }
246
247 /// Obtains whether the element associated with this handle is contained within the
248 /// focused element or is itself focused.
249 pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
250 let focused = window.focused(cx);
251 focused.map_or(false, |focused| focused.id.contains(*self, window))
252 }
253
254 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
255 pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
256 window
257 .rendered_frame
258 .dispatch_tree
259 .focus_contains(*self, other)
260 }
261}
262
263/// A handle which can be used to track and manipulate the focused element in a window.
264pub struct FocusHandle {
265 pub(crate) id: FocusId,
266 handles: Arc<FocusMap>,
267 /// The index of this element in the tab order.
268 pub tab_index: isize,
269 /// Whether this element can be focused by tab navigation.
270 pub tab_stop: bool,
271}
272
273impl std::fmt::Debug for FocusHandle {
274 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
275 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
276 }
277}
278
279impl FocusHandle {
280 pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
281 let id = handles.write().insert(FocusRef {
282 ref_count: AtomicUsize::new(1),
283 tab_index: 0,
284 tab_stop: false,
285 });
286
287 Self {
288 id,
289 tab_index: 0,
290 tab_stop: false,
291 handles: handles.clone(),
292 }
293 }
294
295 pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
296 let lock = handles.read();
297 let focus = lock.get(id)?;
298 if atomic_incr_if_not_zero(&focus.ref_count) == 0 {
299 return None;
300 }
301 Some(Self {
302 id,
303 tab_index: focus.tab_index,
304 tab_stop: focus.tab_stop,
305 handles: handles.clone(),
306 })
307 }
308
309 /// Sets the tab index of the element associated with this handle.
310 pub fn tab_index(mut self, index: isize) -> Self {
311 self.tab_index = index;
312 if let Some(focus) = self.handles.write().get_mut(self.id) {
313 focus.tab_index = index;
314 }
315 self
316 }
317
318 /// Sets whether the element associated with this handle is a tab stop.
319 ///
320 /// When `false`, the element will not be included in the tab order.
321 pub fn tab_stop(mut self, tab_stop: bool) -> Self {
322 self.tab_stop = tab_stop;
323 if let Some(focus) = self.handles.write().get_mut(self.id) {
324 focus.tab_stop = tab_stop;
325 }
326 self
327 }
328
329 /// Converts this focus handle into a weak variant, which does not prevent it from being released.
330 pub fn downgrade(&self) -> WeakFocusHandle {
331 WeakFocusHandle {
332 id: self.id,
333 handles: Arc::downgrade(&self.handles),
334 }
335 }
336
337 /// Moves the focus to the element associated with this handle.
338 pub fn focus(&self, window: &mut Window) {
339 window.focus(self)
340 }
341
342 /// Obtains whether the element associated with this handle is currently focused.
343 pub fn is_focused(&self, window: &Window) -> bool {
344 self.id.is_focused(window)
345 }
346
347 /// Obtains whether the element associated with this handle contains the focused
348 /// element or is itself focused.
349 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
350 self.id.contains_focused(window, cx)
351 }
352
353 /// Obtains whether the element associated with this handle is contained within the
354 /// focused element or is itself focused.
355 pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
356 self.id.within_focused(window, cx)
357 }
358
359 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
360 pub fn contains(&self, other: &Self, window: &Window) -> bool {
361 self.id.contains(other.id, window)
362 }
363
364 /// Dispatch an action on the element that rendered this focus handle
365 pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
366 if let Some(node_id) = window
367 .rendered_frame
368 .dispatch_tree
369 .focusable_node_id(self.id)
370 {
371 window.dispatch_action_on_node(node_id, action, cx)
372 }
373 }
374}
375
376impl Clone for FocusHandle {
377 fn clone(&self) -> Self {
378 Self::for_id(self.id, &self.handles).unwrap()
379 }
380}
381
382impl PartialEq for FocusHandle {
383 fn eq(&self, other: &Self) -> bool {
384 self.id == other.id
385 }
386}
387
388impl Eq for FocusHandle {}
389
390impl Drop for FocusHandle {
391 fn drop(&mut self) {
392 self.handles
393 .read()
394 .get(self.id)
395 .unwrap()
396 .ref_count
397 .fetch_sub(1, SeqCst);
398 }
399}
400
401/// A weak reference to a focus handle.
402#[derive(Clone, Debug)]
403pub struct WeakFocusHandle {
404 pub(crate) id: FocusId,
405 pub(crate) handles: Weak<FocusMap>,
406}
407
408impl WeakFocusHandle {
409 /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
410 pub fn upgrade(&self) -> Option<FocusHandle> {
411 let handles = self.handles.upgrade()?;
412 FocusHandle::for_id(self.id, &handles)
413 }
414}
415
416impl PartialEq for WeakFocusHandle {
417 fn eq(&self, other: &WeakFocusHandle) -> bool {
418 self.id == other.id
419 }
420}
421
422impl Eq for WeakFocusHandle {}
423
424impl PartialEq<FocusHandle> for WeakFocusHandle {
425 fn eq(&self, other: &FocusHandle) -> bool {
426 self.id == other.id
427 }
428}
429
430impl PartialEq<WeakFocusHandle> for FocusHandle {
431 fn eq(&self, other: &WeakFocusHandle) -> bool {
432 self.id == other.id
433 }
434}
435
436/// Focusable allows users of your view to easily
437/// focus it (using window.focus_view(cx, view))
438pub trait Focusable: 'static {
439 /// Returns the focus handle associated with this view.
440 fn focus_handle(&self, cx: &App) -> FocusHandle;
441}
442
443impl<V: Focusable> Focusable for Entity<V> {
444 fn focus_handle(&self, cx: &App) -> FocusHandle {
445 self.read(cx).focus_handle(cx)
446 }
447}
448
449/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
450/// where the lifecycle of the view is handled by another view.
451pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
452
453impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
454
455/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
456pub struct DismissEvent;
457
458type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
459
460pub(crate) type AnyMouseListener =
461 Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
462
463#[derive(Clone)]
464pub(crate) struct CursorStyleRequest {
465 pub(crate) hitbox_id: Option<HitboxId>,
466 pub(crate) style: CursorStyle,
467}
468
469#[derive(Default, Eq, PartialEq)]
470pub(crate) struct HitTest {
471 pub(crate) ids: SmallVec<[HitboxId; 8]>,
472 pub(crate) hover_hitbox_count: usize,
473}
474
475/// A type of window control area that corresponds to the platform window.
476#[derive(Clone, Copy, Debug, Eq, PartialEq)]
477pub enum WindowControlArea {
478 /// An area that allows dragging of the platform window.
479 Drag,
480 /// An area that allows closing of the platform window.
481 Close,
482 /// An area that allows maximizing of the platform window.
483 Max,
484 /// An area that allows minimizing of the platform window.
485 Min,
486}
487
488/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
489#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
490pub struct HitboxId(u64);
491
492impl HitboxId {
493 /// Checks if the hitbox with this ID is currently hovered. Except when handling
494 /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
495 /// events or paint hover styles.
496 ///
497 /// See [`Hitbox::is_hovered`] for details.
498 pub fn is_hovered(self, window: &Window) -> bool {
499 let hit_test = &window.mouse_hit_test;
500 for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
501 if self == *id {
502 return true;
503 }
504 }
505 return false;
506 }
507
508 /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
509 /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
510 /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
511 /// this distinction.
512 pub fn should_handle_scroll(self, window: &Window) -> bool {
513 window.mouse_hit_test.ids.contains(&self)
514 }
515
516 fn next(mut self) -> HitboxId {
517 HitboxId(self.0.wrapping_add(1))
518 }
519}
520
521/// A rectangular region that potentially blocks hitboxes inserted prior.
522/// See [Window::insert_hitbox] for more details.
523#[derive(Clone, Debug, Deref)]
524pub struct Hitbox {
525 /// A unique identifier for the hitbox.
526 pub id: HitboxId,
527 /// The bounds of the hitbox.
528 #[deref]
529 pub bounds: Bounds<Pixels>,
530 /// The content mask when the hitbox was inserted.
531 pub content_mask: ContentMask<Pixels>,
532 /// Flags that specify hitbox behavior.
533 pub behavior: HitboxBehavior,
534}
535
536impl Hitbox {
537 /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
538 /// typically what you want when determining whether to handle mouse events or paint hover
539 /// styles.
540 ///
541 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
542 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
543 /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
544 ///
545 /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
546 /// Concretely, this is due to use-cases like overlays that cause the elements under to be
547 /// non-interactive while still allowing scrolling. More abstractly, this is because
548 /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
549 /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
550 /// container.
551 pub fn is_hovered(&self, window: &Window) -> bool {
552 self.id.is_hovered(window)
553 }
554
555 /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
556 /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
557 /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
558 ///
559 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
560 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
561 pub fn should_handle_scroll(&self, window: &Window) -> bool {
562 self.id.should_handle_scroll(window)
563 }
564}
565
566/// How the hitbox affects mouse behavior.
567#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
568pub enum HitboxBehavior {
569 /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
570 #[default]
571 Normal,
572
573 /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
574 /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
575 /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
576 /// [`InteractiveElement::occlude`].
577 ///
578 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
579 /// bubble-phase handler for every mouse event type:
580 ///
581 /// ```
582 /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
583 /// if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
584 /// cx.stop_propagation();
585 /// }
586 /// }
587 /// ```
588 ///
589 /// This has effects beyond event handling - any use of hitbox checking, such as hover
590 /// styles and tooltops. These other behaviors are the main point of this mechanism. An
591 /// alternative might be to not affect mouse event handling - but this would allow
592 /// inconsistent UI where clicks and moves interact with elements that are not considered to
593 /// be hovered.
594 BlockMouse,
595
596 /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
597 /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
598 /// interaction except scroll events to be ignored - see the documentation of
599 /// [`Hitbox::is_hovered`] for details. This flag is set by
600 /// [`InteractiveElement::block_mouse_except_scroll`].
601 ///
602 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
603 /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
604 ///
605 /// ```
606 /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, _cx| {
607 /// if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
608 /// cx.stop_propagation();
609 /// }
610 /// }
611 /// ```
612 ///
613 /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
614 /// handled differently than other mouse events. If also blocking these scroll events is
615 /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
616 ///
617 /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
618 /// hover styles and tooltops. These other behaviors are the main point of this mechanism.
619 /// An alternative might be to not affect mouse event handling - but this would allow
620 /// inconsistent UI where clicks and moves interact with elements that are not considered to
621 /// be hovered.
622 BlockMouseExceptScroll,
623}
624
625/// An identifier for a tooltip.
626#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
627pub struct TooltipId(usize);
628
629impl TooltipId {
630 /// Checks if the tooltip is currently hovered.
631 pub fn is_hovered(&self, window: &Window) -> bool {
632 window
633 .tooltip_bounds
634 .as_ref()
635 .map_or(false, |tooltip_bounds| {
636 tooltip_bounds.id == *self
637 && tooltip_bounds.bounds.contains(&window.mouse_position())
638 })
639 }
640}
641
642pub(crate) struct TooltipBounds {
643 id: TooltipId,
644 bounds: Bounds<Pixels>,
645}
646
647#[derive(Clone)]
648pub(crate) struct TooltipRequest {
649 id: TooltipId,
650 tooltip: AnyTooltip,
651}
652
653pub(crate) struct DeferredDraw {
654 current_view: EntityId,
655 priority: usize,
656 parent_node: DispatchNodeId,
657 element_id_stack: SmallVec<[ElementId; 32]>,
658 text_style_stack: Vec<TextStyleRefinement>,
659 element: Option<AnyElement>,
660 absolute_offset: Point<Pixels>,
661 prepaint_range: Range<PrepaintStateIndex>,
662 paint_range: Range<PaintIndex>,
663}
664
665pub(crate) struct Frame {
666 pub(crate) focus: Option<FocusId>,
667 pub(crate) window_active: bool,
668 pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
669 accessed_element_states: Vec<(GlobalElementId, TypeId)>,
670 pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
671 pub(crate) dispatch_tree: DispatchTree,
672 pub(crate) scene: Scene,
673 pub(crate) hitboxes: Vec<Hitbox>,
674 pub(crate) window_control_hitboxes: Vec<(WindowControlArea, Hitbox)>,
675 pub(crate) deferred_draws: Vec<DeferredDraw>,
676 pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
677 pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
678 pub(crate) cursor_styles: Vec<CursorStyleRequest>,
679 #[cfg(any(test, feature = "test-support"))]
680 pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
681 #[cfg(any(feature = "inspector", debug_assertions))]
682 pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
683 #[cfg(any(feature = "inspector", debug_assertions))]
684 pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
685 pub(crate) tab_handles: TabHandles,
686}
687
688#[derive(Clone, Default)]
689pub(crate) struct PrepaintStateIndex {
690 hitboxes_index: usize,
691 tooltips_index: usize,
692 deferred_draws_index: usize,
693 dispatch_tree_index: usize,
694 accessed_element_states_index: usize,
695 line_layout_index: LineLayoutIndex,
696}
697
698#[derive(Clone, Default)]
699pub(crate) struct PaintIndex {
700 scene_index: usize,
701 mouse_listeners_index: usize,
702 input_handlers_index: usize,
703 cursor_styles_index: usize,
704 accessed_element_states_index: usize,
705 tab_handle_index: usize,
706 line_layout_index: LineLayoutIndex,
707}
708
709impl Frame {
710 pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
711 Frame {
712 focus: None,
713 window_active: false,
714 element_states: FxHashMap::default(),
715 accessed_element_states: Vec::new(),
716 mouse_listeners: Vec::new(),
717 dispatch_tree,
718 scene: Scene::default(),
719 hitboxes: Vec::new(),
720 window_control_hitboxes: Vec::new(),
721 deferred_draws: Vec::new(),
722 input_handlers: Vec::new(),
723 tooltip_requests: Vec::new(),
724 cursor_styles: Vec::new(),
725
726 #[cfg(any(test, feature = "test-support"))]
727 debug_bounds: FxHashMap::default(),
728
729 #[cfg(any(feature = "inspector", debug_assertions))]
730 next_inspector_instance_ids: FxHashMap::default(),
731
732 #[cfg(any(feature = "inspector", debug_assertions))]
733 inspector_hitboxes: FxHashMap::default(),
734 tab_handles: TabHandles::default(),
735 }
736 }
737
738 pub(crate) fn clear(&mut self) {
739 self.element_states.clear();
740 self.accessed_element_states.clear();
741 self.mouse_listeners.clear();
742 self.dispatch_tree.clear();
743 self.scene.clear();
744 self.input_handlers.clear();
745 self.tooltip_requests.clear();
746 self.cursor_styles.clear();
747 self.hitboxes.clear();
748 self.window_control_hitboxes.clear();
749 self.deferred_draws.clear();
750 self.tab_handles.clear();
751 self.focus = None;
752
753 #[cfg(any(feature = "inspector", debug_assertions))]
754 {
755 self.next_inspector_instance_ids.clear();
756 self.inspector_hitboxes.clear();
757 }
758 }
759
760 pub(crate) fn cursor_style(&self, window: &Window) -> Option<CursorStyle> {
761 self.cursor_styles
762 .iter()
763 .rev()
764 .fold_while(None, |style, request| match request.hitbox_id {
765 None => Done(Some(request.style)),
766 Some(hitbox_id) => Continue(
767 style.or_else(|| hitbox_id.is_hovered(window).then_some(request.style)),
768 ),
769 })
770 .into_inner()
771 }
772
773 pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
774 let mut set_hover_hitbox_count = false;
775 let mut hit_test = HitTest::default();
776 for hitbox in self.hitboxes.iter().rev() {
777 let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
778 if bounds.contains(&position) {
779 hit_test.ids.push(hitbox.id);
780 if !set_hover_hitbox_count
781 && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
782 {
783 hit_test.hover_hitbox_count = hit_test.ids.len();
784 set_hover_hitbox_count = true;
785 }
786 if hitbox.behavior == HitboxBehavior::BlockMouse {
787 break;
788 }
789 }
790 }
791 if !set_hover_hitbox_count {
792 hit_test.hover_hitbox_count = hit_test.ids.len();
793 }
794 hit_test
795 }
796
797 pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
798 self.focus
799 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
800 .unwrap_or_default()
801 }
802
803 pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
804 for element_state_key in &self.accessed_element_states {
805 if let Some((element_state_key, element_state)) =
806 prev_frame.element_states.remove_entry(element_state_key)
807 {
808 self.element_states.insert(element_state_key, element_state);
809 }
810 }
811
812 self.scene.finish();
813 }
814}
815
816/// Holds the state for a specific window.
817pub struct Window {
818 pub(crate) handle: AnyWindowHandle,
819 pub(crate) invalidator: WindowInvalidator,
820 pub(crate) removed: bool,
821 pub(crate) platform_window: Box<dyn PlatformWindow>,
822 display_id: Option<DisplayId>,
823 sprite_atlas: Arc<dyn PlatformAtlas>,
824 text_system: Arc<WindowTextSystem>,
825 rem_size: Pixels,
826 /// The stack of override values for the window's rem size.
827 ///
828 /// This is used by `with_rem_size` to allow rendering an element tree with
829 /// a given rem size.
830 rem_size_override_stack: SmallVec<[Pixels; 8]>,
831 pub(crate) viewport_size: Size<Pixels>,
832 layout_engine: Option<TaffyLayoutEngine>,
833 pub(crate) root: Option<AnyView>,
834 pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
835 pub(crate) text_style_stack: Vec<TextStyleRefinement>,
836 pub(crate) rendered_entity_stack: Vec<EntityId>,
837 pub(crate) element_offset_stack: Vec<Point<Pixels>>,
838 pub(crate) element_opacity: Option<f32>,
839 pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
840 pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
841 pub(crate) image_cache_stack: Vec<AnyImageCache>,
842 pub(crate) rendered_frame: Frame,
843 pub(crate) next_frame: Frame,
844 next_hitbox_id: HitboxId,
845 pub(crate) next_tooltip_id: TooltipId,
846 pub(crate) tooltip_bounds: Option<TooltipBounds>,
847 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
848 pub(crate) dirty_views: FxHashSet<EntityId>,
849 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
850 pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
851 default_prevented: bool,
852 mouse_position: Point<Pixels>,
853 mouse_hit_test: HitTest,
854 modifiers: Modifiers,
855 capslock: Capslock,
856 scale_factor: f32,
857 pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
858 appearance: WindowAppearance,
859 pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
860 active: Rc<Cell<bool>>,
861 hovered: Rc<Cell<bool>>,
862 pub(crate) needs_present: Rc<Cell<bool>>,
863 pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
864 pub(crate) refreshing: bool,
865 pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
866 pub(crate) focus: Option<FocusId>,
867 focus_enabled: bool,
868 pending_input: Option<PendingInput>,
869 pending_modifier: ModifierState,
870 pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
871 prompt: Option<RenderablePromptHandle>,
872 pub(crate) client_inset: Option<Pixels>,
873 #[cfg(any(feature = "inspector", debug_assertions))]
874 inspector: Option<Entity<Inspector>>,
875}
876
877#[derive(Clone, Debug, Default)]
878struct ModifierState {
879 modifiers: Modifiers,
880 saw_keystroke: bool,
881}
882
883#[derive(Clone, Copy, Debug, Eq, PartialEq)]
884pub(crate) enum DrawPhase {
885 None,
886 Prepaint,
887 Paint,
888 Focus,
889}
890
891#[derive(Default, Debug)]
892struct PendingInput {
893 keystrokes: SmallVec<[Keystroke; 1]>,
894 focus: Option<FocusId>,
895 timer: Option<Task<()>>,
896}
897
898pub(crate) struct ElementStateBox {
899 pub(crate) inner: Box<dyn Any>,
900 #[cfg(debug_assertions)]
901 pub(crate) type_name: &'static str,
902}
903
904fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> Bounds<Pixels> {
905 const DEFAULT_WINDOW_OFFSET: Point<Pixels> = point(px(0.), px(35.));
906
907 // TODO, BUG: if you open a window with the currently active window
908 // on the stack, this will erroneously select the 'unwrap_or_else'
909 // code path
910 cx.active_window()
911 .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok())
912 .map(|mut bounds| {
913 bounds.origin += DEFAULT_WINDOW_OFFSET;
914 bounds
915 })
916 .unwrap_or_else(|| {
917 let display = display_id
918 .map(|id| cx.find_display(id))
919 .unwrap_or_else(|| cx.primary_display());
920
921 display
922 .map(|display| display.default_bounds())
923 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE))
924 })
925}
926
927impl Window {
928 pub(crate) fn new(
929 handle: AnyWindowHandle,
930 options: WindowOptions,
931 cx: &mut App,
932 ) -> Result<Self> {
933 let WindowOptions {
934 window_bounds,
935 titlebar,
936 focus,
937 show,
938 kind,
939 is_movable,
940 display_id,
941 window_background,
942 app_id,
943 window_min_size,
944 window_decorations,
945 } = options;
946
947 let bounds = window_bounds
948 .map(|bounds| bounds.get_bounds())
949 .unwrap_or_else(|| default_bounds(display_id, cx));
950 let mut platform_window = cx.platform.open_window(
951 handle,
952 WindowParams {
953 bounds,
954 titlebar,
955 kind,
956 is_movable,
957 focus,
958 show,
959 display_id,
960 window_min_size,
961 },
962 )?;
963 let display_id = platform_window.display().map(|display| display.id());
964 let sprite_atlas = platform_window.sprite_atlas();
965 let mouse_position = platform_window.mouse_position();
966 let modifiers = platform_window.modifiers();
967 let capslock = platform_window.capslock();
968 let content_size = platform_window.content_size();
969 let scale_factor = platform_window.scale_factor();
970 let appearance = platform_window.appearance();
971 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
972 let invalidator = WindowInvalidator::new();
973 let active = Rc::new(Cell::new(platform_window.is_active()));
974 let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
975 let needs_present = Rc::new(Cell::new(false));
976 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
977 let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
978
979 platform_window
980 .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
981 platform_window.set_background_appearance(window_background);
982
983 if let Some(ref window_open_state) = window_bounds {
984 match window_open_state {
985 WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
986 WindowBounds::Maximized(_) => platform_window.zoom(),
987 WindowBounds::Windowed(_) => {}
988 }
989 }
990
991 platform_window.on_close(Box::new({
992 let mut cx = cx.to_async();
993 move || {
994 let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
995 }
996 }));
997 platform_window.on_request_frame(Box::new({
998 let mut cx = cx.to_async();
999 let invalidator = invalidator.clone();
1000 let active = active.clone();
1001 let needs_present = needs_present.clone();
1002 let next_frame_callbacks = next_frame_callbacks.clone();
1003 let last_input_timestamp = last_input_timestamp.clone();
1004 move |request_frame_options| {
1005 let next_frame_callbacks = next_frame_callbacks.take();
1006 if !next_frame_callbacks.is_empty() {
1007 handle
1008 .update(&mut cx, |_, window, cx| {
1009 for callback in next_frame_callbacks {
1010 callback(window, cx);
1011 }
1012 })
1013 .log_err();
1014 }
1015
1016 // Keep presenting the current scene for 1 extra second since the
1017 // last input to prevent the display from underclocking the refresh rate.
1018 let needs_present = request_frame_options.require_presentation
1019 || needs_present.get()
1020 || (active.get()
1021 && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
1022
1023 if invalidator.is_dirty() || request_frame_options.force_render {
1024 measure("frame duration", || {
1025 handle
1026 .update(&mut cx, |_, window, cx| {
1027 let arena_clear_needed = window.draw(cx);
1028 window.present();
1029 // drop the arena elements after present to reduce latency
1030 arena_clear_needed.clear();
1031 })
1032 .log_err();
1033 })
1034 } else if needs_present {
1035 handle
1036 .update(&mut cx, |_, window, _| window.present())
1037 .log_err();
1038 }
1039
1040 handle
1041 .update(&mut cx, |_, window, _| {
1042 window.complete_frame();
1043 })
1044 .log_err();
1045 }
1046 }));
1047 platform_window.on_resize(Box::new({
1048 let mut cx = cx.to_async();
1049 move |_, _| {
1050 handle
1051 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1052 .log_err();
1053 }
1054 }));
1055 platform_window.on_moved(Box::new({
1056 let mut cx = cx.to_async();
1057 move || {
1058 handle
1059 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1060 .log_err();
1061 }
1062 }));
1063 platform_window.on_appearance_changed(Box::new({
1064 let mut cx = cx.to_async();
1065 move || {
1066 handle
1067 .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
1068 .log_err();
1069 }
1070 }));
1071 platform_window.on_active_status_change(Box::new({
1072 let mut cx = cx.to_async();
1073 move |active| {
1074 handle
1075 .update(&mut cx, |_, window, cx| {
1076 window.active.set(active);
1077 window.modifiers = window.platform_window.modifiers();
1078 window.capslock = window.platform_window.capslock();
1079 window
1080 .activation_observers
1081 .clone()
1082 .retain(&(), |callback| callback(window, cx));
1083 window.refresh();
1084 })
1085 .log_err();
1086 }
1087 }));
1088 platform_window.on_hover_status_change(Box::new({
1089 let mut cx = cx.to_async();
1090 move |active| {
1091 handle
1092 .update(&mut cx, |_, window, _| {
1093 window.hovered.set(active);
1094 window.refresh();
1095 })
1096 .log_err();
1097 }
1098 }));
1099 platform_window.on_input({
1100 let mut cx = cx.to_async();
1101 Box::new(move |event| {
1102 handle
1103 .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1104 .log_err()
1105 .unwrap_or(DispatchEventResult::default())
1106 })
1107 });
1108 platform_window.on_hit_test_window_control({
1109 let mut cx = cx.to_async();
1110 Box::new(move || {
1111 handle
1112 .update(&mut cx, |_, window, _cx| {
1113 for (area, hitbox) in &window.rendered_frame.window_control_hitboxes {
1114 if window.mouse_hit_test.ids.contains(&hitbox.id) {
1115 return Some(*area);
1116 }
1117 }
1118 None
1119 })
1120 .log_err()
1121 .unwrap_or(None)
1122 })
1123 });
1124
1125 if let Some(app_id) = app_id {
1126 platform_window.set_app_id(&app_id);
1127 }
1128
1129 platform_window.map_window().unwrap();
1130
1131 Ok(Window {
1132 handle,
1133 invalidator,
1134 removed: false,
1135 platform_window,
1136 display_id,
1137 sprite_atlas,
1138 text_system,
1139 rem_size: px(16.),
1140 rem_size_override_stack: SmallVec::new(),
1141 viewport_size: content_size,
1142 layout_engine: Some(TaffyLayoutEngine::new()),
1143 root: None,
1144 element_id_stack: SmallVec::default(),
1145 text_style_stack: Vec::new(),
1146 rendered_entity_stack: Vec::new(),
1147 element_offset_stack: Vec::new(),
1148 content_mask_stack: Vec::new(),
1149 element_opacity: None,
1150 requested_autoscroll: None,
1151 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1152 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1153 next_frame_callbacks,
1154 next_hitbox_id: HitboxId(0),
1155 next_tooltip_id: TooltipId::default(),
1156 tooltip_bounds: None,
1157 dirty_views: FxHashSet::default(),
1158 focus_listeners: SubscriberSet::new(),
1159 focus_lost_listeners: SubscriberSet::new(),
1160 default_prevented: true,
1161 mouse_position,
1162 mouse_hit_test: HitTest::default(),
1163 modifiers,
1164 capslock,
1165 scale_factor,
1166 bounds_observers: SubscriberSet::new(),
1167 appearance,
1168 appearance_observers: SubscriberSet::new(),
1169 active,
1170 hovered,
1171 needs_present,
1172 last_input_timestamp,
1173 refreshing: false,
1174 activation_observers: SubscriberSet::new(),
1175 focus: None,
1176 focus_enabled: true,
1177 pending_input: None,
1178 pending_modifier: ModifierState::default(),
1179 pending_input_observers: SubscriberSet::new(),
1180 prompt: None,
1181 client_inset: None,
1182 image_cache_stack: Vec::new(),
1183 #[cfg(any(feature = "inspector", debug_assertions))]
1184 inspector: None,
1185 })
1186 }
1187
1188 pub(crate) fn new_focus_listener(
1189 &self,
1190 value: AnyWindowFocusListener,
1191 ) -> (Subscription, impl FnOnce() + use<>) {
1192 self.focus_listeners.insert((), value)
1193 }
1194}
1195
1196#[derive(Clone, Debug, Default, PartialEq, Eq)]
1197pub(crate) struct DispatchEventResult {
1198 pub propagate: bool,
1199 pub default_prevented: bool,
1200}
1201
1202/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1203/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1204/// to leave room to support more complex shapes in the future.
1205#[derive(Clone, Debug, Default, PartialEq, Eq)]
1206#[repr(C)]
1207pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1208 /// The bounds
1209 pub bounds: Bounds<P>,
1210}
1211
1212impl ContentMask<Pixels> {
1213 /// Scale the content mask's pixel units by the given scaling factor.
1214 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1215 ContentMask {
1216 bounds: self.bounds.scale(factor),
1217 }
1218 }
1219
1220 /// Intersect the content mask with the given content mask.
1221 pub fn intersect(&self, other: &Self) -> Self {
1222 let bounds = self.bounds.intersect(&other.bounds);
1223 ContentMask { bounds }
1224 }
1225}
1226
1227impl Window {
1228 fn mark_view_dirty(&mut self, view_id: EntityId) {
1229 // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1230 // should already be dirty.
1231 for view_id in self
1232 .rendered_frame
1233 .dispatch_tree
1234 .view_path(view_id)
1235 .into_iter()
1236 .rev()
1237 {
1238 if !self.dirty_views.insert(view_id) {
1239 break;
1240 }
1241 }
1242 }
1243
1244 /// Registers a callback to be invoked when the window appearance changes.
1245 pub fn observe_window_appearance(
1246 &self,
1247 mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1248 ) -> Subscription {
1249 let (subscription, activate) = self.appearance_observers.insert(
1250 (),
1251 Box::new(move |window, cx| {
1252 callback(window, cx);
1253 true
1254 }),
1255 );
1256 activate();
1257 subscription
1258 }
1259
1260 /// Replaces the root entity of the window with a new one.
1261 pub fn replace_root<E>(
1262 &mut self,
1263 cx: &mut App,
1264 build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1265 ) -> Entity<E>
1266 where
1267 E: 'static + Render,
1268 {
1269 let view = cx.new(|cx| build_view(self, cx));
1270 self.root = Some(view.clone().into());
1271 self.refresh();
1272 view
1273 }
1274
1275 /// Returns the root entity of the window, if it has one.
1276 pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1277 where
1278 E: 'static + Render,
1279 {
1280 self.root
1281 .as_ref()
1282 .map(|view| view.clone().downcast::<E>().ok())
1283 }
1284
1285 /// Obtain a handle to the window that belongs to this context.
1286 pub fn window_handle(&self) -> AnyWindowHandle {
1287 self.handle
1288 }
1289
1290 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1291 pub fn refresh(&mut self) {
1292 if self.invalidator.not_drawing() {
1293 self.refreshing = true;
1294 self.invalidator.set_dirty(true);
1295 }
1296 }
1297
1298 /// Close this window.
1299 pub fn remove_window(&mut self) {
1300 self.removed = true;
1301 }
1302
1303 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1304 pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1305 self.focus
1306 .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1307 }
1308
1309 /// Move focus to the element associated with the given [`FocusHandle`].
1310 pub fn focus(&mut self, handle: &FocusHandle) {
1311 if !self.focus_enabled || self.focus == Some(handle.id) {
1312 return;
1313 }
1314
1315 self.focus = Some(handle.id);
1316 self.clear_pending_keystrokes();
1317 self.refresh();
1318 }
1319
1320 /// Remove focus from all elements within this context's window.
1321 pub fn blur(&mut self) {
1322 if !self.focus_enabled {
1323 return;
1324 }
1325
1326 self.focus = None;
1327 self.refresh();
1328 }
1329
1330 /// Blur the window and don't allow anything in it to be focused again.
1331 pub fn disable_focus(&mut self) {
1332 self.blur();
1333 self.focus_enabled = false;
1334 }
1335
1336 /// Move focus to next tab stop.
1337 pub fn focus_next(&mut self) {
1338 if !self.focus_enabled {
1339 return;
1340 }
1341
1342 if let Some(handle) = self.rendered_frame.tab_handles.next(self.focus.as_ref()) {
1343 self.focus(&handle)
1344 }
1345 }
1346
1347 /// Move focus to previous tab stop.
1348 pub fn focus_prev(&mut self) {
1349 if !self.focus_enabled {
1350 return;
1351 }
1352
1353 if let Some(handle) = self.rendered_frame.tab_handles.prev(self.focus.as_ref()) {
1354 self.focus(&handle)
1355 }
1356 }
1357
1358 /// Accessor for the text system.
1359 pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1360 &self.text_system
1361 }
1362
1363 /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1364 pub fn text_style(&self) -> TextStyle {
1365 let mut style = TextStyle::default();
1366 for refinement in &self.text_style_stack {
1367 style.refine(refinement);
1368 }
1369 style
1370 }
1371
1372 /// Check if the platform window is maximized
1373 /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1374 pub fn is_maximized(&self) -> bool {
1375 self.platform_window.is_maximized()
1376 }
1377
1378 /// request a certain window decoration (Wayland)
1379 pub fn request_decorations(&self, decorations: WindowDecorations) {
1380 self.platform_window.request_decorations(decorations);
1381 }
1382
1383 /// Start a window resize operation (Wayland)
1384 pub fn start_window_resize(&self, edge: ResizeEdge) {
1385 self.platform_window.start_window_resize(edge);
1386 }
1387
1388 /// Return the `WindowBounds` to indicate that how a window should be opened
1389 /// after it has been closed
1390 pub fn window_bounds(&self) -> WindowBounds {
1391 self.platform_window.window_bounds()
1392 }
1393
1394 /// Return the `WindowBounds` excluding insets (Wayland and X11)
1395 pub fn inner_window_bounds(&self) -> WindowBounds {
1396 self.platform_window.inner_window_bounds()
1397 }
1398
1399 /// Dispatch the given action on the currently focused element.
1400 pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1401 let focus_id = self.focused(cx).map(|handle| handle.id);
1402
1403 let window = self.handle;
1404 cx.defer(move |cx| {
1405 window
1406 .update(cx, |_, window, cx| {
1407 let node_id = window.focus_node_id_in_rendered_frame(focus_id);
1408 window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1409 })
1410 .log_err();
1411 })
1412 }
1413
1414 pub(crate) fn dispatch_keystroke_observers(
1415 &mut self,
1416 event: &dyn Any,
1417 action: Option<Box<dyn Action>>,
1418 context_stack: Vec<KeyContext>,
1419 cx: &mut App,
1420 ) {
1421 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1422 return;
1423 };
1424
1425 cx.keystroke_observers.clone().retain(&(), move |callback| {
1426 (callback)(
1427 &KeystrokeEvent {
1428 keystroke: key_down_event.keystroke.clone(),
1429 action: action.as_ref().map(|action| action.boxed_clone()),
1430 context_stack: context_stack.clone(),
1431 },
1432 self,
1433 cx,
1434 )
1435 });
1436 }
1437
1438 pub(crate) fn dispatch_keystroke_interceptors(
1439 &mut self,
1440 event: &dyn Any,
1441 context_stack: Vec<KeyContext>,
1442 cx: &mut App,
1443 ) {
1444 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1445 return;
1446 };
1447
1448 cx.keystroke_interceptors
1449 .clone()
1450 .retain(&(), move |callback| {
1451 (callback)(
1452 &KeystrokeEvent {
1453 keystroke: key_down_event.keystroke.clone(),
1454 action: None,
1455 context_stack: context_stack.clone(),
1456 },
1457 self,
1458 cx,
1459 )
1460 });
1461 }
1462
1463 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1464 /// that are currently on the stack to be returned to the app.
1465 pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1466 let handle = self.handle;
1467 cx.defer(move |cx| {
1468 handle.update(cx, |_, window, cx| f(window, cx)).ok();
1469 });
1470 }
1471
1472 /// Subscribe to events emitted by a entity.
1473 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1474 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1475 pub fn observe<T: 'static>(
1476 &mut self,
1477 observed: &Entity<T>,
1478 cx: &mut App,
1479 mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1480 ) -> Subscription {
1481 let entity_id = observed.entity_id();
1482 let observed = observed.downgrade();
1483 let window_handle = self.handle;
1484 cx.new_observer(
1485 entity_id,
1486 Box::new(move |cx| {
1487 window_handle
1488 .update(cx, |_, window, cx| {
1489 if let Some(handle) = observed.upgrade() {
1490 on_notify(handle, window, cx);
1491 true
1492 } else {
1493 false
1494 }
1495 })
1496 .unwrap_or(false)
1497 }),
1498 )
1499 }
1500
1501 /// Subscribe to events emitted by a entity.
1502 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1503 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1504 pub fn subscribe<Emitter, Evt>(
1505 &mut self,
1506 entity: &Entity<Emitter>,
1507 cx: &mut App,
1508 mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1509 ) -> Subscription
1510 where
1511 Emitter: EventEmitter<Evt>,
1512 Evt: 'static,
1513 {
1514 let entity_id = entity.entity_id();
1515 let handle = entity.downgrade();
1516 let window_handle = self.handle;
1517 cx.new_subscription(
1518 entity_id,
1519 (
1520 TypeId::of::<Evt>(),
1521 Box::new(move |event, cx| {
1522 window_handle
1523 .update(cx, |_, window, cx| {
1524 if let Some(entity) = handle.upgrade() {
1525 let event = event.downcast_ref().expect("invalid event type");
1526 on_event(entity, event, window, cx);
1527 true
1528 } else {
1529 false
1530 }
1531 })
1532 .unwrap_or(false)
1533 }),
1534 ),
1535 )
1536 }
1537
1538 /// Register a callback to be invoked when the given `Entity` is released.
1539 pub fn observe_release<T>(
1540 &self,
1541 entity: &Entity<T>,
1542 cx: &mut App,
1543 mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1544 ) -> Subscription
1545 where
1546 T: 'static,
1547 {
1548 let entity_id = entity.entity_id();
1549 let window_handle = self.handle;
1550 let (subscription, activate) = cx.release_listeners.insert(
1551 entity_id,
1552 Box::new(move |entity, cx| {
1553 let entity = entity.downcast_mut().expect("invalid entity type");
1554 let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1555 }),
1556 );
1557 activate();
1558 subscription
1559 }
1560
1561 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1562 /// await points in async code.
1563 pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1564 AsyncWindowContext::new_context(cx.to_async(), self.handle)
1565 }
1566
1567 /// Schedule the given closure to be run directly after the current frame is rendered.
1568 pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1569 RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1570 }
1571
1572 /// Schedule a frame to be drawn on the next animation frame.
1573 ///
1574 /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1575 /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1576 ///
1577 /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1578 pub fn request_animation_frame(&self) {
1579 let entity = self.current_view();
1580 self.on_next_frame(move |_, cx| cx.notify(entity));
1581 }
1582
1583 /// Spawn the future returned by the given closure on the application thread pool.
1584 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1585 /// use within your future.
1586 #[track_caller]
1587 pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1588 where
1589 R: 'static,
1590 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1591 {
1592 let handle = self.handle;
1593 cx.spawn(async move |app| {
1594 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1595 f(&mut async_window_cx).await
1596 })
1597 }
1598
1599 fn bounds_changed(&mut self, cx: &mut App) {
1600 self.scale_factor = self.platform_window.scale_factor();
1601 self.viewport_size = self.platform_window.content_size();
1602 self.display_id = self.platform_window.display().map(|display| display.id());
1603
1604 self.refresh();
1605
1606 self.bounds_observers
1607 .clone()
1608 .retain(&(), |callback| callback(self, cx));
1609 }
1610
1611 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1612 pub fn bounds(&self) -> Bounds<Pixels> {
1613 self.platform_window.bounds()
1614 }
1615
1616 /// Set the content size of the window.
1617 pub fn resize(&mut self, size: Size<Pixels>) {
1618 self.platform_window.resize(size);
1619 }
1620
1621 /// Returns whether or not the window is currently fullscreen
1622 pub fn is_fullscreen(&self) -> bool {
1623 self.platform_window.is_fullscreen()
1624 }
1625
1626 pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1627 self.appearance = self.platform_window.appearance();
1628
1629 self.appearance_observers
1630 .clone()
1631 .retain(&(), |callback| callback(self, cx));
1632 }
1633
1634 /// Returns the appearance of the current window.
1635 pub fn appearance(&self) -> WindowAppearance {
1636 self.appearance
1637 }
1638
1639 /// Returns the size of the drawable area within the window.
1640 pub fn viewport_size(&self) -> Size<Pixels> {
1641 self.viewport_size
1642 }
1643
1644 /// Returns whether this window is focused by the operating system (receiving key events).
1645 pub fn is_window_active(&self) -> bool {
1646 self.active.get()
1647 }
1648
1649 /// Returns whether this window is considered to be the window
1650 /// that currently owns the mouse cursor.
1651 /// On mac, this is equivalent to `is_window_active`.
1652 pub fn is_window_hovered(&self) -> bool {
1653 if cfg!(any(
1654 target_os = "windows",
1655 target_os = "linux",
1656 target_os = "freebsd"
1657 )) {
1658 self.hovered.get()
1659 } else {
1660 self.is_window_active()
1661 }
1662 }
1663
1664 /// Toggle zoom on the window.
1665 pub fn zoom_window(&self) {
1666 self.platform_window.zoom();
1667 }
1668
1669 /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1670 pub fn show_window_menu(&self, position: Point<Pixels>) {
1671 self.platform_window.show_window_menu(position)
1672 }
1673
1674 /// Tells the compositor to take control of window movement (Wayland and X11)
1675 ///
1676 /// Events may not be received during a move operation.
1677 pub fn start_window_move(&self) {
1678 self.platform_window.start_window_move()
1679 }
1680
1681 /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1682 pub fn set_client_inset(&mut self, inset: Pixels) {
1683 self.client_inset = Some(inset);
1684 self.platform_window.set_client_inset(inset);
1685 }
1686
1687 /// Returns the client_inset value by [`Self::set_client_inset`].
1688 pub fn client_inset(&self) -> Option<Pixels> {
1689 self.client_inset
1690 }
1691
1692 /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1693 pub fn window_decorations(&self) -> Decorations {
1694 self.platform_window.window_decorations()
1695 }
1696
1697 /// Returns which window controls are currently visible (Wayland)
1698 pub fn window_controls(&self) -> WindowControls {
1699 self.platform_window.window_controls()
1700 }
1701
1702 /// Updates the window's title at the platform level.
1703 pub fn set_window_title(&mut self, title: &str) {
1704 self.platform_window.set_title(title);
1705 }
1706
1707 /// Sets the application identifier.
1708 pub fn set_app_id(&mut self, app_id: &str) {
1709 self.platform_window.set_app_id(app_id);
1710 }
1711
1712 /// Sets the window background appearance.
1713 pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1714 self.platform_window
1715 .set_background_appearance(background_appearance);
1716 }
1717
1718 /// Mark the window as dirty at the platform level.
1719 pub fn set_window_edited(&mut self, edited: bool) {
1720 self.platform_window.set_edited(edited);
1721 }
1722
1723 /// Determine the display on which the window is visible.
1724 pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1725 cx.platform
1726 .displays()
1727 .into_iter()
1728 .find(|display| Some(display.id()) == self.display_id)
1729 }
1730
1731 /// Show the platform character palette.
1732 pub fn show_character_palette(&self) {
1733 self.platform_window.show_character_palette();
1734 }
1735
1736 /// The scale factor of the display associated with the window. For example, it could
1737 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1738 /// be rendered as two pixels on screen.
1739 pub fn scale_factor(&self) -> f32 {
1740 self.scale_factor
1741 }
1742
1743 /// The size of an em for the base font of the application. Adjusting this value allows the
1744 /// UI to scale, just like zooming a web page.
1745 pub fn rem_size(&self) -> Pixels {
1746 self.rem_size_override_stack
1747 .last()
1748 .copied()
1749 .unwrap_or(self.rem_size)
1750 }
1751
1752 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1753 /// UI to scale, just like zooming a web page.
1754 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1755 self.rem_size = rem_size.into();
1756 }
1757
1758 /// Acquire a globally unique identifier for the given ElementId.
1759 /// Only valid for the duration of the provided closure.
1760 pub fn with_global_id<R>(
1761 &mut self,
1762 element_id: ElementId,
1763 f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1764 ) -> R {
1765 self.element_id_stack.push(element_id);
1766 let global_id = GlobalElementId(self.element_id_stack.clone());
1767 let result = f(&global_id, self);
1768 self.element_id_stack.pop();
1769 result
1770 }
1771
1772 /// Executes the provided function with the specified rem size.
1773 ///
1774 /// This method must only be called as part of element drawing.
1775 pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1776 where
1777 F: FnOnce(&mut Self) -> R,
1778 {
1779 self.invalidator.debug_assert_paint_or_prepaint();
1780
1781 if let Some(rem_size) = rem_size {
1782 self.rem_size_override_stack.push(rem_size.into());
1783 let result = f(self);
1784 self.rem_size_override_stack.pop();
1785 result
1786 } else {
1787 f(self)
1788 }
1789 }
1790
1791 /// The line height associated with the current text style.
1792 pub fn line_height(&self) -> Pixels {
1793 self.text_style().line_height_in_pixels(self.rem_size())
1794 }
1795
1796 /// Call to prevent the default action of an event. Currently only used to prevent
1797 /// parent elements from becoming focused on mouse down.
1798 pub fn prevent_default(&mut self) {
1799 self.default_prevented = true;
1800 }
1801
1802 /// Obtain whether default has been prevented for the event currently being dispatched.
1803 pub fn default_prevented(&self) -> bool {
1804 self.default_prevented
1805 }
1806
1807 /// Determine whether the given action is available along the dispatch path to the currently focused element.
1808 pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1809 let node_id =
1810 self.focus_node_id_in_rendered_frame(self.focused(cx).map(|handle| handle.id));
1811 self.rendered_frame
1812 .dispatch_tree
1813 .is_action_available(action, node_id)
1814 }
1815
1816 /// The position of the mouse relative to the window.
1817 pub fn mouse_position(&self) -> Point<Pixels> {
1818 self.mouse_position
1819 }
1820
1821 /// The current state of the keyboard's modifiers
1822 pub fn modifiers(&self) -> Modifiers {
1823 self.modifiers
1824 }
1825
1826 /// The current state of the keyboard's capslock
1827 pub fn capslock(&self) -> Capslock {
1828 self.capslock
1829 }
1830
1831 fn complete_frame(&self) {
1832 self.platform_window.completed_frame();
1833 }
1834
1835 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1836 /// the contents of the new [Scene], use [present].
1837 #[profiling::function]
1838 pub fn draw(&mut self, cx: &mut App) -> ArenaClearNeeded {
1839 self.invalidate_entities();
1840 cx.entities.clear_accessed();
1841 debug_assert!(self.rendered_entity_stack.is_empty());
1842 self.invalidator.set_dirty(false);
1843 self.requested_autoscroll = None;
1844
1845 // Restore the previously-used input handler.
1846 if let Some(input_handler) = self.platform_window.take_input_handler() {
1847 self.rendered_frame.input_handlers.push(Some(input_handler));
1848 }
1849 self.draw_roots(cx);
1850 self.dirty_views.clear();
1851 self.next_frame.window_active = self.active.get();
1852
1853 // Register requested input handler with the platform window.
1854 if let Some(input_handler) = self.next_frame.input_handlers.pop() {
1855 self.platform_window
1856 .set_input_handler(input_handler.unwrap());
1857 }
1858
1859 self.layout_engine.as_mut().unwrap().clear();
1860 self.text_system().finish_frame();
1861 self.next_frame.finish(&mut self.rendered_frame);
1862
1863 self.invalidator.set_phase(DrawPhase::Focus);
1864 let previous_focus_path = self.rendered_frame.focus_path();
1865 let previous_window_active = self.rendered_frame.window_active;
1866 mem::swap(&mut self.rendered_frame, &mut self.next_frame);
1867 self.next_frame.clear();
1868 let current_focus_path = self.rendered_frame.focus_path();
1869 let current_window_active = self.rendered_frame.window_active;
1870
1871 if previous_focus_path != current_focus_path
1872 || previous_window_active != current_window_active
1873 {
1874 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
1875 self.focus_lost_listeners
1876 .clone()
1877 .retain(&(), |listener| listener(self, cx));
1878 }
1879
1880 let event = WindowFocusEvent {
1881 previous_focus_path: if previous_window_active {
1882 previous_focus_path
1883 } else {
1884 Default::default()
1885 },
1886 current_focus_path: if current_window_active {
1887 current_focus_path
1888 } else {
1889 Default::default()
1890 },
1891 };
1892 self.focus_listeners
1893 .clone()
1894 .retain(&(), |listener| listener(&event, self, cx));
1895 }
1896
1897 debug_assert!(self.rendered_entity_stack.is_empty());
1898 self.record_entities_accessed(cx);
1899 self.reset_cursor_style(cx);
1900 self.refreshing = false;
1901 self.invalidator.set_phase(DrawPhase::None);
1902 self.needs_present.set(true);
1903
1904 ArenaClearNeeded
1905 }
1906
1907 fn record_entities_accessed(&mut self, cx: &mut App) {
1908 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1909 let mut entities = mem::take(entities_ref.deref_mut());
1910 drop(entities_ref);
1911 let handle = self.handle;
1912 cx.record_entities_accessed(
1913 handle,
1914 // Try moving window invalidator into the Window
1915 self.invalidator.clone(),
1916 &entities,
1917 );
1918 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1919 mem::swap(&mut entities, entities_ref.deref_mut());
1920 }
1921
1922 fn invalidate_entities(&mut self) {
1923 let mut views = self.invalidator.take_views();
1924 for entity in views.drain() {
1925 self.mark_view_dirty(entity);
1926 }
1927 self.invalidator.replace_views(views);
1928 }
1929
1930 #[profiling::function]
1931 fn present(&self) {
1932 self.platform_window.draw(&self.rendered_frame.scene);
1933 self.needs_present.set(false);
1934 profiling::finish_frame!();
1935 }
1936
1937 fn draw_roots(&mut self, cx: &mut App) {
1938 self.invalidator.set_phase(DrawPhase::Prepaint);
1939 self.tooltip_bounds.take();
1940
1941 let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
1942 let root_size = {
1943 #[cfg(any(feature = "inspector", debug_assertions))]
1944 {
1945 if self.inspector.is_some() {
1946 let mut size = self.viewport_size;
1947 size.width = (size.width - _inspector_width).max(px(0.0));
1948 size
1949 } else {
1950 self.viewport_size
1951 }
1952 }
1953 #[cfg(not(any(feature = "inspector", debug_assertions)))]
1954 {
1955 self.viewport_size
1956 }
1957 };
1958
1959 // Layout all root elements.
1960 let mut root_element = self.root.as_ref().unwrap().clone().into_any();
1961 root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
1962
1963 #[cfg(any(feature = "inspector", debug_assertions))]
1964 let inspector_element = self.prepaint_inspector(_inspector_width, cx);
1965
1966 let mut sorted_deferred_draws =
1967 (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
1968 sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
1969 self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
1970
1971 let mut prompt_element = None;
1972 let mut active_drag_element = None;
1973 let mut tooltip_element = None;
1974 if let Some(prompt) = self.prompt.take() {
1975 let mut element = prompt.view.any_view().into_any();
1976 element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
1977 prompt_element = Some(element);
1978 self.prompt = Some(prompt);
1979 } else if let Some(active_drag) = cx.active_drag.take() {
1980 let mut element = active_drag.view.clone().into_any();
1981 let offset = self.mouse_position() - active_drag.cursor_offset;
1982 element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
1983 active_drag_element = Some(element);
1984 cx.active_drag = Some(active_drag);
1985 } else {
1986 tooltip_element = self.prepaint_tooltip(cx);
1987 }
1988
1989 self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
1990
1991 // Now actually paint the elements.
1992 self.invalidator.set_phase(DrawPhase::Paint);
1993 root_element.paint(self, cx);
1994
1995 #[cfg(any(feature = "inspector", debug_assertions))]
1996 self.paint_inspector(inspector_element, cx);
1997
1998 self.paint_deferred_draws(&sorted_deferred_draws, cx);
1999
2000 if let Some(mut prompt_element) = prompt_element {
2001 prompt_element.paint(self, cx);
2002 } else if let Some(mut drag_element) = active_drag_element {
2003 drag_element.paint(self, cx);
2004 } else if let Some(mut tooltip_element) = tooltip_element {
2005 tooltip_element.paint(self, cx);
2006 }
2007
2008 #[cfg(any(feature = "inspector", debug_assertions))]
2009 self.paint_inspector_hitbox(cx);
2010 }
2011
2012 fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
2013 // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
2014 for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
2015 let Some(Some(tooltip_request)) = self
2016 .next_frame
2017 .tooltip_requests
2018 .get(tooltip_request_index)
2019 .cloned()
2020 else {
2021 log::error!("Unexpectedly absent TooltipRequest");
2022 continue;
2023 };
2024 let mut element = tooltip_request.tooltip.view.clone().into_any();
2025 let mouse_position = tooltip_request.tooltip.mouse_position;
2026 let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
2027
2028 let mut tooltip_bounds =
2029 Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
2030 let window_bounds = Bounds {
2031 origin: Point::default(),
2032 size: self.viewport_size(),
2033 };
2034
2035 if tooltip_bounds.right() > window_bounds.right() {
2036 let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
2037 if new_x >= Pixels::ZERO {
2038 tooltip_bounds.origin.x = new_x;
2039 } else {
2040 tooltip_bounds.origin.x = cmp::max(
2041 Pixels::ZERO,
2042 tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
2043 );
2044 }
2045 }
2046
2047 if tooltip_bounds.bottom() > window_bounds.bottom() {
2048 let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
2049 if new_y >= Pixels::ZERO {
2050 tooltip_bounds.origin.y = new_y;
2051 } else {
2052 tooltip_bounds.origin.y = cmp::max(
2053 Pixels::ZERO,
2054 tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
2055 );
2056 }
2057 }
2058
2059 // It's possible for an element to have an active tooltip while not being painted (e.g.
2060 // via the `visible_on_hover` method). Since mouse listeners are not active in this
2061 // case, instead update the tooltip's visibility here.
2062 let is_visible =
2063 (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
2064 if !is_visible {
2065 continue;
2066 }
2067
2068 self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
2069 element.prepaint(window, cx)
2070 });
2071
2072 self.tooltip_bounds = Some(TooltipBounds {
2073 id: tooltip_request.id,
2074 bounds: tooltip_bounds,
2075 });
2076 return Some(element);
2077 }
2078 None
2079 }
2080
2081 fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2082 assert_eq!(self.element_id_stack.len(), 0);
2083
2084 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2085 for deferred_draw_ix in deferred_draw_indices {
2086 let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2087 self.element_id_stack
2088 .clone_from(&deferred_draw.element_id_stack);
2089 self.text_style_stack
2090 .clone_from(&deferred_draw.text_style_stack);
2091 self.next_frame
2092 .dispatch_tree
2093 .set_active_node(deferred_draw.parent_node);
2094
2095 let prepaint_start = self.prepaint_index();
2096 if let Some(element) = deferred_draw.element.as_mut() {
2097 self.with_rendered_view(deferred_draw.current_view, |window| {
2098 window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
2099 element.prepaint(window, cx)
2100 });
2101 })
2102 } else {
2103 self.reuse_prepaint(deferred_draw.prepaint_range.clone());
2104 }
2105 let prepaint_end = self.prepaint_index();
2106 deferred_draw.prepaint_range = prepaint_start..prepaint_end;
2107 }
2108 assert_eq!(
2109 self.next_frame.deferred_draws.len(),
2110 0,
2111 "cannot call defer_draw during deferred drawing"
2112 );
2113 self.next_frame.deferred_draws = deferred_draws;
2114 self.element_id_stack.clear();
2115 self.text_style_stack.clear();
2116 }
2117
2118 fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2119 assert_eq!(self.element_id_stack.len(), 0);
2120
2121 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2122 for deferred_draw_ix in deferred_draw_indices {
2123 let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2124 self.element_id_stack
2125 .clone_from(&deferred_draw.element_id_stack);
2126 self.next_frame
2127 .dispatch_tree
2128 .set_active_node(deferred_draw.parent_node);
2129
2130 let paint_start = self.paint_index();
2131 if let Some(element) = deferred_draw.element.as_mut() {
2132 self.with_rendered_view(deferred_draw.current_view, |window| {
2133 element.paint(window, cx);
2134 })
2135 } else {
2136 self.reuse_paint(deferred_draw.paint_range.clone());
2137 }
2138 let paint_end = self.paint_index();
2139 deferred_draw.paint_range = paint_start..paint_end;
2140 }
2141 self.next_frame.deferred_draws = deferred_draws;
2142 self.element_id_stack.clear();
2143 }
2144
2145 pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2146 PrepaintStateIndex {
2147 hitboxes_index: self.next_frame.hitboxes.len(),
2148 tooltips_index: self.next_frame.tooltip_requests.len(),
2149 deferred_draws_index: self.next_frame.deferred_draws.len(),
2150 dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2151 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2152 line_layout_index: self.text_system.layout_index(),
2153 }
2154 }
2155
2156 pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2157 self.next_frame.hitboxes.extend(
2158 self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2159 .iter()
2160 .cloned(),
2161 );
2162 self.next_frame.tooltip_requests.extend(
2163 self.rendered_frame.tooltip_requests
2164 [range.start.tooltips_index..range.end.tooltips_index]
2165 .iter_mut()
2166 .map(|request| request.take()),
2167 );
2168 self.next_frame.accessed_element_states.extend(
2169 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2170 ..range.end.accessed_element_states_index]
2171 .iter()
2172 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2173 );
2174 self.text_system
2175 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2176
2177 let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2178 range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2179 &mut self.rendered_frame.dispatch_tree,
2180 self.focus,
2181 );
2182
2183 if reused_subtree.contains_focus() {
2184 self.next_frame.focus = self.focus;
2185 }
2186
2187 self.next_frame.deferred_draws.extend(
2188 self.rendered_frame.deferred_draws
2189 [range.start.deferred_draws_index..range.end.deferred_draws_index]
2190 .iter()
2191 .map(|deferred_draw| DeferredDraw {
2192 current_view: deferred_draw.current_view,
2193 parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2194 element_id_stack: deferred_draw.element_id_stack.clone(),
2195 text_style_stack: deferred_draw.text_style_stack.clone(),
2196 priority: deferred_draw.priority,
2197 element: None,
2198 absolute_offset: deferred_draw.absolute_offset,
2199 prepaint_range: deferred_draw.prepaint_range.clone(),
2200 paint_range: deferred_draw.paint_range.clone(),
2201 }),
2202 );
2203 }
2204
2205 pub(crate) fn paint_index(&self) -> PaintIndex {
2206 PaintIndex {
2207 scene_index: self.next_frame.scene.len(),
2208 mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2209 input_handlers_index: self.next_frame.input_handlers.len(),
2210 cursor_styles_index: self.next_frame.cursor_styles.len(),
2211 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2212 tab_handle_index: self.next_frame.tab_handles.handles.len(),
2213 line_layout_index: self.text_system.layout_index(),
2214 }
2215 }
2216
2217 pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2218 self.next_frame.cursor_styles.extend(
2219 self.rendered_frame.cursor_styles
2220 [range.start.cursor_styles_index..range.end.cursor_styles_index]
2221 .iter()
2222 .cloned(),
2223 );
2224 self.next_frame.input_handlers.extend(
2225 self.rendered_frame.input_handlers
2226 [range.start.input_handlers_index..range.end.input_handlers_index]
2227 .iter_mut()
2228 .map(|handler| handler.take()),
2229 );
2230 self.next_frame.mouse_listeners.extend(
2231 self.rendered_frame.mouse_listeners
2232 [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2233 .iter_mut()
2234 .map(|listener| listener.take()),
2235 );
2236 self.next_frame.accessed_element_states.extend(
2237 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2238 ..range.end.accessed_element_states_index]
2239 .iter()
2240 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2241 );
2242 self.next_frame.tab_handles.handles.extend(
2243 self.rendered_frame.tab_handles.handles
2244 [range.start.tab_handle_index..range.end.tab_handle_index]
2245 .iter()
2246 .cloned(),
2247 );
2248
2249 self.text_system
2250 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2251 self.next_frame.scene.replay(
2252 range.start.scene_index..range.end.scene_index,
2253 &self.rendered_frame.scene,
2254 );
2255 }
2256
2257 /// Push a text style onto the stack, and call a function with that style active.
2258 /// Use [`Window::text_style`] to get the current, combined text style. This method
2259 /// should only be called as part of element drawing.
2260 pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2261 where
2262 F: FnOnce(&mut Self) -> R,
2263 {
2264 self.invalidator.debug_assert_paint_or_prepaint();
2265 if let Some(style) = style {
2266 self.text_style_stack.push(style);
2267 let result = f(self);
2268 self.text_style_stack.pop();
2269 result
2270 } else {
2271 f(self)
2272 }
2273 }
2274
2275 /// Updates the cursor style at the platform level. This method should only be called
2276 /// during the prepaint phase of element drawing.
2277 pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
2278 self.invalidator.debug_assert_paint();
2279 self.next_frame.cursor_styles.push(CursorStyleRequest {
2280 hitbox_id: Some(hitbox.id),
2281 style,
2282 });
2283 }
2284
2285 /// Updates the cursor style for the entire window at the platform level. A cursor
2286 /// style using this method will have precedence over any cursor style set using
2287 /// `set_cursor_style`. This method should only be called during the prepaint
2288 /// phase of element drawing.
2289 pub fn set_window_cursor_style(&mut self, style: CursorStyle) {
2290 self.invalidator.debug_assert_paint();
2291 self.next_frame.cursor_styles.push(CursorStyleRequest {
2292 hitbox_id: None,
2293 style,
2294 })
2295 }
2296
2297 /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2298 /// during the paint phase of element drawing.
2299 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2300 self.invalidator.debug_assert_prepaint();
2301 let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2302 self.next_frame
2303 .tooltip_requests
2304 .push(Some(TooltipRequest { id, tooltip }));
2305 id
2306 }
2307
2308 /// Invoke the given function with the given content mask after intersecting it
2309 /// with the current mask. This method should only be called during element drawing.
2310 pub fn with_content_mask<R>(
2311 &mut self,
2312 mask: Option<ContentMask<Pixels>>,
2313 f: impl FnOnce(&mut Self) -> R,
2314 ) -> R {
2315 self.invalidator.debug_assert_paint_or_prepaint();
2316 if let Some(mask) = mask {
2317 let mask = mask.intersect(&self.content_mask());
2318 self.content_mask_stack.push(mask);
2319 let result = f(self);
2320 self.content_mask_stack.pop();
2321 result
2322 } else {
2323 f(self)
2324 }
2325 }
2326
2327 /// Updates the global element offset relative to the current offset. This is used to implement
2328 /// scrolling. This method should only be called during the prepaint phase of element drawing.
2329 pub fn with_element_offset<R>(
2330 &mut self,
2331 offset: Point<Pixels>,
2332 f: impl FnOnce(&mut Self) -> R,
2333 ) -> R {
2334 self.invalidator.debug_assert_prepaint();
2335
2336 if offset.is_zero() {
2337 return f(self);
2338 };
2339
2340 let abs_offset = self.element_offset() + offset;
2341 self.with_absolute_element_offset(abs_offset, f)
2342 }
2343
2344 /// Updates the global element offset based on the given offset. This is used to implement
2345 /// drag handles and other manual painting of elements. This method should only be called during
2346 /// the prepaint phase of element drawing.
2347 pub fn with_absolute_element_offset<R>(
2348 &mut self,
2349 offset: Point<Pixels>,
2350 f: impl FnOnce(&mut Self) -> R,
2351 ) -> R {
2352 self.invalidator.debug_assert_prepaint();
2353 self.element_offset_stack.push(offset);
2354 let result = f(self);
2355 self.element_offset_stack.pop();
2356 result
2357 }
2358
2359 pub(crate) fn with_element_opacity<R>(
2360 &mut self,
2361 opacity: Option<f32>,
2362 f: impl FnOnce(&mut Self) -> R,
2363 ) -> R {
2364 if opacity.is_none() {
2365 return f(self);
2366 }
2367
2368 self.invalidator.debug_assert_paint_or_prepaint();
2369 self.element_opacity = opacity;
2370 let result = f(self);
2371 self.element_opacity = None;
2372 result
2373 }
2374
2375 /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2376 /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2377 /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2378 /// element offset and prepaint again. See [`List`] for an example. This method should only be
2379 /// called during the prepaint phase of element drawing.
2380 pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2381 self.invalidator.debug_assert_prepaint();
2382 let index = self.prepaint_index();
2383 let result = f(self);
2384 if result.is_err() {
2385 self.next_frame.hitboxes.truncate(index.hitboxes_index);
2386 self.next_frame
2387 .tooltip_requests
2388 .truncate(index.tooltips_index);
2389 self.next_frame
2390 .deferred_draws
2391 .truncate(index.deferred_draws_index);
2392 self.next_frame
2393 .dispatch_tree
2394 .truncate(index.dispatch_tree_index);
2395 self.next_frame
2396 .accessed_element_states
2397 .truncate(index.accessed_element_states_index);
2398 self.text_system.truncate_layouts(index.line_layout_index);
2399 }
2400 result
2401 }
2402
2403 /// When you call this method during [`prepaint`], containing elements will attempt to
2404 /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2405 /// [`prepaint`] again with a new set of bounds. See [`List`] for an example of an element
2406 /// that supports this method being called on the elements it contains. This method should only be
2407 /// called during the prepaint phase of element drawing.
2408 pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2409 self.invalidator.debug_assert_prepaint();
2410 self.requested_autoscroll = Some(bounds);
2411 }
2412
2413 /// This method can be called from a containing element such as [`List`] to support the autoscroll behavior
2414 /// described in [`request_autoscroll`].
2415 pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2416 self.invalidator.debug_assert_prepaint();
2417 self.requested_autoscroll.take()
2418 }
2419
2420 /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2421 /// Your view will be re-drawn once the asset has finished loading.
2422 ///
2423 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2424 /// time.
2425 pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2426 let (task, is_first) = cx.fetch_asset::<A>(source);
2427 task.clone().now_or_never().or_else(|| {
2428 if is_first {
2429 let entity_id = self.current_view();
2430 self.spawn(cx, {
2431 let task = task.clone();
2432 async move |cx| {
2433 task.await;
2434
2435 cx.on_next_frame(move |_, cx| {
2436 cx.notify(entity_id);
2437 });
2438 }
2439 })
2440 .detach();
2441 }
2442
2443 None
2444 })
2445 }
2446
2447 /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2448 /// Your view will not be re-drawn once the asset has finished loading.
2449 ///
2450 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2451 /// time.
2452 pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2453 let (task, _) = cx.fetch_asset::<A>(source);
2454 task.clone().now_or_never()
2455 }
2456 /// Obtain the current element offset. This method should only be called during the
2457 /// prepaint phase of element drawing.
2458 pub fn element_offset(&self) -> Point<Pixels> {
2459 self.invalidator.debug_assert_prepaint();
2460 self.element_offset_stack
2461 .last()
2462 .copied()
2463 .unwrap_or_default()
2464 }
2465
2466 /// Obtain the current element opacity. This method should only be called during the
2467 /// prepaint phase of element drawing.
2468 pub(crate) fn element_opacity(&self) -> f32 {
2469 self.invalidator.debug_assert_paint_or_prepaint();
2470 self.element_opacity.unwrap_or(1.0)
2471 }
2472
2473 /// Obtain the current content mask. This method should only be called during element drawing.
2474 pub fn content_mask(&self) -> ContentMask<Pixels> {
2475 self.invalidator.debug_assert_paint_or_prepaint();
2476 self.content_mask_stack
2477 .last()
2478 .cloned()
2479 .unwrap_or_else(|| ContentMask {
2480 bounds: Bounds {
2481 origin: Point::default(),
2482 size: self.viewport_size,
2483 },
2484 })
2485 }
2486
2487 /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2488 /// This can be used within a custom element to distinguish multiple sets of child elements.
2489 pub fn with_element_namespace<R>(
2490 &mut self,
2491 element_id: impl Into<ElementId>,
2492 f: impl FnOnce(&mut Self) -> R,
2493 ) -> R {
2494 self.element_id_stack.push(element_id.into());
2495 let result = f(self);
2496 self.element_id_stack.pop();
2497 result
2498 }
2499
2500 /// Use a piece of state that exists as long this element is being rendered in consecutive frames.
2501 pub fn use_keyed_state<S: 'static>(
2502 &mut self,
2503 key: impl Into<ElementId>,
2504 cx: &mut App,
2505 init: impl FnOnce(&mut Self, &mut App) -> S,
2506 ) -> Entity<S> {
2507 let current_view = self.current_view();
2508 self.with_global_id(key.into(), |global_id, window| {
2509 window.with_element_state(global_id, |state: Option<Entity<S>>, window| {
2510 if let Some(state) = state {
2511 (state.clone(), state)
2512 } else {
2513 let new_state = cx.new(|cx| init(window, cx));
2514 cx.observe(&new_state, move |_, cx| {
2515 cx.notify(current_view);
2516 })
2517 .detach();
2518 (new_state.clone(), new_state)
2519 }
2520 })
2521 })
2522 }
2523
2524 /// Immediately push an element ID onto the stack. Useful for simplifying IDs in lists
2525 pub fn with_id<R>(&mut self, id: impl Into<ElementId>, f: impl FnOnce(&mut Self) -> R) -> R {
2526 self.with_global_id(id.into(), |_, window| f(window))
2527 }
2528
2529 /// Use a piece of state that exists as long this element is being rendered in consecutive frames, without needing to specify a key
2530 ///
2531 /// NOTE: This method uses the location of the caller to generate an ID for this state.
2532 /// If this is not sufficient to identify your state (e.g. you're rendering a list item),
2533 /// you can provide a custom ElementID using the `use_keyed_state` method.
2534 #[track_caller]
2535 pub fn use_state<S: 'static>(
2536 &mut self,
2537 cx: &mut App,
2538 init: impl FnOnce(&mut Self, &mut App) -> S,
2539 ) -> Entity<S> {
2540 self.use_keyed_state(
2541 ElementId::CodeLocation(*core::panic::Location::caller()),
2542 cx,
2543 init,
2544 )
2545 }
2546
2547 /// Updates or initializes state for an element with the given id that lives across multiple
2548 /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2549 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2550 /// when drawing the next frame. This method should only be called as part of element drawing.
2551 pub fn with_element_state<S, R>(
2552 &mut self,
2553 global_id: &GlobalElementId,
2554 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2555 ) -> R
2556 where
2557 S: 'static,
2558 {
2559 self.invalidator.debug_assert_paint_or_prepaint();
2560
2561 let key = (GlobalElementId(global_id.0.clone()), TypeId::of::<S>());
2562 self.next_frame
2563 .accessed_element_states
2564 .push((GlobalElementId(key.0.clone()), TypeId::of::<S>()));
2565
2566 if let Some(any) = self
2567 .next_frame
2568 .element_states
2569 .remove(&key)
2570 .or_else(|| self.rendered_frame.element_states.remove(&key))
2571 {
2572 let ElementStateBox {
2573 inner,
2574 #[cfg(debug_assertions)]
2575 type_name,
2576 } = any;
2577 // Using the extra inner option to avoid needing to reallocate a new box.
2578 let mut state_box = inner
2579 .downcast::<Option<S>>()
2580 .map_err(|_| {
2581 #[cfg(debug_assertions)]
2582 {
2583 anyhow::anyhow!(
2584 "invalid element state type for id, requested {:?}, actual: {:?}",
2585 std::any::type_name::<S>(),
2586 type_name
2587 )
2588 }
2589
2590 #[cfg(not(debug_assertions))]
2591 {
2592 anyhow::anyhow!(
2593 "invalid element state type for id, requested {:?}",
2594 std::any::type_name::<S>(),
2595 )
2596 }
2597 })
2598 .unwrap();
2599
2600 let state = state_box.take().expect(
2601 "reentrant call to with_element_state for the same state type and element id",
2602 );
2603 let (result, state) = f(Some(state), self);
2604 state_box.replace(state);
2605 self.next_frame.element_states.insert(
2606 key,
2607 ElementStateBox {
2608 inner: state_box,
2609 #[cfg(debug_assertions)]
2610 type_name,
2611 },
2612 );
2613 result
2614 } else {
2615 let (result, state) = f(None, self);
2616 self.next_frame.element_states.insert(
2617 key,
2618 ElementStateBox {
2619 inner: Box::new(Some(state)),
2620 #[cfg(debug_assertions)]
2621 type_name: std::any::type_name::<S>(),
2622 },
2623 );
2624 result
2625 }
2626 }
2627
2628 /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2629 /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2630 /// when the element is guaranteed to have an id.
2631 ///
2632 /// The first option means 'no ID provided'
2633 /// The second option means 'not yet initialized'
2634 pub fn with_optional_element_state<S, R>(
2635 &mut self,
2636 global_id: Option<&GlobalElementId>,
2637 f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2638 ) -> R
2639 where
2640 S: 'static,
2641 {
2642 self.invalidator.debug_assert_paint_or_prepaint();
2643
2644 if let Some(global_id) = global_id {
2645 self.with_element_state(global_id, |state, cx| {
2646 let (result, state) = f(Some(state), cx);
2647 let state =
2648 state.expect("you must return some state when you pass some element id");
2649 (result, state)
2650 })
2651 } else {
2652 let (result, state) = f(None, self);
2653 debug_assert!(
2654 state.is_none(),
2655 "you must not return an element state when passing None for the global id"
2656 );
2657 result
2658 }
2659 }
2660
2661 /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2662 /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2663 /// with higher values being drawn on top.
2664 ///
2665 /// This method should only be called as part of the prepaint phase of element drawing.
2666 pub fn defer_draw(
2667 &mut self,
2668 element: AnyElement,
2669 absolute_offset: Point<Pixels>,
2670 priority: usize,
2671 ) {
2672 self.invalidator.debug_assert_prepaint();
2673 let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2674 self.next_frame.deferred_draws.push(DeferredDraw {
2675 current_view: self.current_view(),
2676 parent_node,
2677 element_id_stack: self.element_id_stack.clone(),
2678 text_style_stack: self.text_style_stack.clone(),
2679 priority,
2680 element: Some(element),
2681 absolute_offset,
2682 prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2683 paint_range: PaintIndex::default()..PaintIndex::default(),
2684 });
2685 }
2686
2687 /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2688 /// of geometry that are non-overlapping and have the same draw order. This is typically used
2689 /// for performance reasons.
2690 ///
2691 /// This method should only be called as part of the paint phase of element drawing.
2692 pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2693 self.invalidator.debug_assert_paint();
2694
2695 let scale_factor = self.scale_factor();
2696 let content_mask = self.content_mask();
2697 let clipped_bounds = bounds.intersect(&content_mask.bounds);
2698 if !clipped_bounds.is_empty() {
2699 self.next_frame
2700 .scene
2701 .push_layer(clipped_bounds.scale(scale_factor));
2702 }
2703
2704 let result = f(self);
2705
2706 if !clipped_bounds.is_empty() {
2707 self.next_frame.scene.pop_layer();
2708 }
2709
2710 result
2711 }
2712
2713 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2714 ///
2715 /// This method should only be called as part of the paint phase of element drawing.
2716 pub fn paint_shadows(
2717 &mut self,
2718 bounds: Bounds<Pixels>,
2719 corner_radii: Corners<Pixels>,
2720 shadows: &[BoxShadow],
2721 ) {
2722 self.invalidator.debug_assert_paint();
2723
2724 let scale_factor = self.scale_factor();
2725 let content_mask = self.content_mask();
2726 let opacity = self.element_opacity();
2727 for shadow in shadows {
2728 let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2729 self.next_frame.scene.insert_primitive(Shadow {
2730 order: 0,
2731 blur_radius: shadow.blur_radius.scale(scale_factor),
2732 bounds: shadow_bounds.scale(scale_factor),
2733 content_mask: content_mask.scale(scale_factor),
2734 corner_radii: corner_radii.scale(scale_factor),
2735 color: shadow.color.opacity(opacity),
2736 });
2737 }
2738 }
2739
2740 /// Paint one or more quads into the scene for the next frame at the current stacking context.
2741 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2742 /// see [`fill`](crate::fill), [`outline`](crate::outline), and [`quad`](crate::quad) to construct this type.
2743 ///
2744 /// This method should only be called as part of the paint phase of element drawing.
2745 ///
2746 /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2747 /// where the circular arcs meet. This will not display well when combined with dashed borders.
2748 /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2749 pub fn paint_quad(&mut self, quad: PaintQuad) {
2750 self.invalidator.debug_assert_paint();
2751
2752 let scale_factor = self.scale_factor();
2753 let content_mask = self.content_mask();
2754 let opacity = self.element_opacity();
2755 self.next_frame.scene.insert_primitive(Quad {
2756 order: 0,
2757 bounds: quad.bounds.scale(scale_factor),
2758 content_mask: content_mask.scale(scale_factor),
2759 background: quad.background.opacity(opacity),
2760 border_color: quad.border_color.opacity(opacity),
2761 corner_radii: quad.corner_radii.scale(scale_factor),
2762 border_widths: quad.border_widths.scale(scale_factor),
2763 border_style: quad.border_style,
2764 });
2765 }
2766
2767 /// Paint the given `Path` into the scene for the next frame at the current z-index.
2768 ///
2769 /// This method should only be called as part of the paint phase of element drawing.
2770 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2771 self.invalidator.debug_assert_paint();
2772
2773 let scale_factor = self.scale_factor();
2774 let content_mask = self.content_mask();
2775 let opacity = self.element_opacity();
2776 path.content_mask = content_mask;
2777 let color: Background = color.into();
2778 path.color = color.opacity(opacity);
2779 self.next_frame
2780 .scene
2781 .insert_primitive(path.scale(scale_factor));
2782 }
2783
2784 /// Paint an underline into the scene for the next frame at the current z-index.
2785 ///
2786 /// This method should only be called as part of the paint phase of element drawing.
2787 pub fn paint_underline(
2788 &mut self,
2789 origin: Point<Pixels>,
2790 width: Pixels,
2791 style: &UnderlineStyle,
2792 ) {
2793 self.invalidator.debug_assert_paint();
2794
2795 let scale_factor = self.scale_factor();
2796 let height = if style.wavy {
2797 style.thickness * 3.
2798 } else {
2799 style.thickness
2800 };
2801 let bounds = Bounds {
2802 origin,
2803 size: size(width, height),
2804 };
2805 let content_mask = self.content_mask();
2806 let element_opacity = self.element_opacity();
2807
2808 self.next_frame.scene.insert_primitive(Underline {
2809 order: 0,
2810 pad: 0,
2811 bounds: bounds.scale(scale_factor),
2812 content_mask: content_mask.scale(scale_factor),
2813 color: style.color.unwrap_or_default().opacity(element_opacity),
2814 thickness: style.thickness.scale(scale_factor),
2815 wavy: style.wavy,
2816 });
2817 }
2818
2819 /// Paint a strikethrough into the scene for the next frame at the current z-index.
2820 ///
2821 /// This method should only be called as part of the paint phase of element drawing.
2822 pub fn paint_strikethrough(
2823 &mut self,
2824 origin: Point<Pixels>,
2825 width: Pixels,
2826 style: &StrikethroughStyle,
2827 ) {
2828 self.invalidator.debug_assert_paint();
2829
2830 let scale_factor = self.scale_factor();
2831 let height = style.thickness;
2832 let bounds = Bounds {
2833 origin,
2834 size: size(width, height),
2835 };
2836 let content_mask = self.content_mask();
2837 let opacity = self.element_opacity();
2838
2839 self.next_frame.scene.insert_primitive(Underline {
2840 order: 0,
2841 pad: 0,
2842 bounds: bounds.scale(scale_factor),
2843 content_mask: content_mask.scale(scale_factor),
2844 thickness: style.thickness.scale(scale_factor),
2845 color: style.color.unwrap_or_default().opacity(opacity),
2846 wavy: false,
2847 });
2848 }
2849
2850 /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
2851 ///
2852 /// The y component of the origin is the baseline of the glyph.
2853 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2854 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2855 /// This method is only useful if you need to paint a single glyph that has already been shaped.
2856 ///
2857 /// This method should only be called as part of the paint phase of element drawing.
2858 pub fn paint_glyph(
2859 &mut self,
2860 origin: Point<Pixels>,
2861 font_id: FontId,
2862 glyph_id: GlyphId,
2863 font_size: Pixels,
2864 color: Hsla,
2865 ) -> Result<()> {
2866 self.invalidator.debug_assert_paint();
2867
2868 let element_opacity = self.element_opacity();
2869 let scale_factor = self.scale_factor();
2870 let glyph_origin = origin.scale(scale_factor);
2871 let subpixel_variant = Point {
2872 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2873 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2874 };
2875 let params = RenderGlyphParams {
2876 font_id,
2877 glyph_id,
2878 font_size,
2879 subpixel_variant,
2880 scale_factor,
2881 is_emoji: false,
2882 };
2883
2884 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2885 if !raster_bounds.is_zero() {
2886 let tile = self
2887 .sprite_atlas
2888 .get_or_insert_with(¶ms.clone().into(), &mut || {
2889 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2890 Ok(Some((size, Cow::Owned(bytes))))
2891 })?
2892 .expect("Callback above only errors or returns Some");
2893 let bounds = Bounds {
2894 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2895 size: tile.bounds.size.map(Into::into),
2896 };
2897 let content_mask = self.content_mask().scale(scale_factor);
2898 self.next_frame.scene.insert_primitive(MonochromeSprite {
2899 order: 0,
2900 pad: 0,
2901 bounds,
2902 content_mask,
2903 color: color.opacity(element_opacity),
2904 tile,
2905 transformation: TransformationMatrix::unit(),
2906 });
2907 }
2908 Ok(())
2909 }
2910
2911 /// Paints an emoji glyph into the scene for the next frame at the current z-index.
2912 ///
2913 /// The y component of the origin is the baseline of the glyph.
2914 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2915 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2916 /// This method is only useful if you need to paint a single emoji that has already been shaped.
2917 ///
2918 /// This method should only be called as part of the paint phase of element drawing.
2919 pub fn paint_emoji(
2920 &mut self,
2921 origin: Point<Pixels>,
2922 font_id: FontId,
2923 glyph_id: GlyphId,
2924 font_size: Pixels,
2925 ) -> Result<()> {
2926 self.invalidator.debug_assert_paint();
2927
2928 let scale_factor = self.scale_factor();
2929 let glyph_origin = origin.scale(scale_factor);
2930 let params = RenderGlyphParams {
2931 font_id,
2932 glyph_id,
2933 font_size,
2934 // We don't render emojis with subpixel variants.
2935 subpixel_variant: Default::default(),
2936 scale_factor,
2937 is_emoji: true,
2938 };
2939
2940 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2941 if !raster_bounds.is_zero() {
2942 let tile = self
2943 .sprite_atlas
2944 .get_or_insert_with(¶ms.clone().into(), &mut || {
2945 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2946 Ok(Some((size, Cow::Owned(bytes))))
2947 })?
2948 .expect("Callback above only errors or returns Some");
2949
2950 let bounds = Bounds {
2951 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2952 size: tile.bounds.size.map(Into::into),
2953 };
2954 let content_mask = self.content_mask().scale(scale_factor);
2955 let opacity = self.element_opacity();
2956
2957 self.next_frame.scene.insert_primitive(PolychromeSprite {
2958 order: 0,
2959 pad: 0,
2960 grayscale: false,
2961 bounds,
2962 corner_radii: Default::default(),
2963 content_mask,
2964 tile,
2965 opacity,
2966 });
2967 }
2968 Ok(())
2969 }
2970
2971 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
2972 ///
2973 /// This method should only be called as part of the paint phase of element drawing.
2974 pub fn paint_svg(
2975 &mut self,
2976 bounds: Bounds<Pixels>,
2977 path: SharedString,
2978 transformation: TransformationMatrix,
2979 color: Hsla,
2980 cx: &App,
2981 ) -> Result<()> {
2982 self.invalidator.debug_assert_paint();
2983
2984 let element_opacity = self.element_opacity();
2985 let scale_factor = self.scale_factor();
2986 let bounds = bounds.scale(scale_factor);
2987 let params = RenderSvgParams {
2988 path,
2989 size: bounds.size.map(|pixels| {
2990 DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
2991 }),
2992 };
2993
2994 let Some(tile) =
2995 self.sprite_atlas
2996 .get_or_insert_with(¶ms.clone().into(), &mut || {
2997 let Some(bytes) = cx.svg_renderer.render(¶ms)? else {
2998 return Ok(None);
2999 };
3000 Ok(Some((params.size, Cow::Owned(bytes))))
3001 })?
3002 else {
3003 return Ok(());
3004 };
3005 let content_mask = self.content_mask().scale(scale_factor);
3006
3007 self.next_frame.scene.insert_primitive(MonochromeSprite {
3008 order: 0,
3009 pad: 0,
3010 bounds: bounds
3011 .map_origin(|origin| origin.floor())
3012 .map_size(|size| size.ceil()),
3013 content_mask,
3014 color: color.opacity(element_opacity),
3015 tile,
3016 transformation,
3017 });
3018
3019 Ok(())
3020 }
3021
3022 /// Paint an image into the scene for the next frame at the current z-index.
3023 /// This method will panic if the frame_index is not valid
3024 ///
3025 /// This method should only be called as part of the paint phase of element drawing.
3026 pub fn paint_image(
3027 &mut self,
3028 bounds: Bounds<Pixels>,
3029 corner_radii: Corners<Pixels>,
3030 data: Arc<RenderImage>,
3031 frame_index: usize,
3032 grayscale: bool,
3033 ) -> Result<()> {
3034 self.invalidator.debug_assert_paint();
3035
3036 let scale_factor = self.scale_factor();
3037 let bounds = bounds.scale(scale_factor);
3038 let params = RenderImageParams {
3039 image_id: data.id,
3040 frame_index,
3041 };
3042
3043 let tile = self
3044 .sprite_atlas
3045 .get_or_insert_with(¶ms.clone().into(), &mut || {
3046 Ok(Some((
3047 data.size(frame_index),
3048 Cow::Borrowed(
3049 data.as_bytes(frame_index)
3050 .expect("It's the caller's job to pass a valid frame index"),
3051 ),
3052 )))
3053 })?
3054 .expect("Callback above only returns Some");
3055 let content_mask = self.content_mask().scale(scale_factor);
3056 let corner_radii = corner_radii.scale(scale_factor);
3057 let opacity = self.element_opacity();
3058
3059 self.next_frame.scene.insert_primitive(PolychromeSprite {
3060 order: 0,
3061 pad: 0,
3062 grayscale,
3063 bounds: bounds
3064 .map_origin(|origin| origin.floor())
3065 .map_size(|size| size.ceil()),
3066 content_mask,
3067 corner_radii,
3068 tile,
3069 opacity,
3070 });
3071 Ok(())
3072 }
3073
3074 /// Paint a surface into the scene for the next frame at the current z-index.
3075 ///
3076 /// This method should only be called as part of the paint phase of element drawing.
3077 #[cfg(target_os = "macos")]
3078 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
3079 use crate::PaintSurface;
3080
3081 self.invalidator.debug_assert_paint();
3082
3083 let scale_factor = self.scale_factor();
3084 let bounds = bounds.scale(scale_factor);
3085 let content_mask = self.content_mask().scale(scale_factor);
3086 self.next_frame.scene.insert_primitive(PaintSurface {
3087 order: 0,
3088 bounds,
3089 content_mask,
3090 image_buffer,
3091 });
3092 }
3093
3094 /// Removes an image from the sprite atlas.
3095 pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
3096 for frame_index in 0..data.frame_count() {
3097 let params = RenderImageParams {
3098 image_id: data.id,
3099 frame_index,
3100 };
3101
3102 self.sprite_atlas.remove(¶ms.clone().into());
3103 }
3104
3105 Ok(())
3106 }
3107
3108 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
3109 /// layout is being requested, along with the layout ids of any children. This method is called during
3110 /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
3111 ///
3112 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3113 #[must_use]
3114 pub fn request_layout(
3115 &mut self,
3116 style: Style,
3117 children: impl IntoIterator<Item = LayoutId>,
3118 cx: &mut App,
3119 ) -> LayoutId {
3120 self.invalidator.debug_assert_prepaint();
3121
3122 cx.layout_id_buffer.clear();
3123 cx.layout_id_buffer.extend(children);
3124 let rem_size = self.rem_size();
3125
3126 self.layout_engine
3127 .as_mut()
3128 .unwrap()
3129 .request_layout(style, rem_size, &cx.layout_id_buffer)
3130 }
3131
3132 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
3133 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
3134 /// determine the element's size. One place this is used internally is when measuring text.
3135 ///
3136 /// The given closure is invoked at layout time with the known dimensions and available space and
3137 /// returns a `Size`.
3138 ///
3139 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3140 pub fn request_measured_layout<
3141 F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
3142 + 'static,
3143 >(
3144 &mut self,
3145 style: Style,
3146 measure: F,
3147 ) -> LayoutId {
3148 self.invalidator.debug_assert_prepaint();
3149
3150 let rem_size = self.rem_size();
3151 self.layout_engine
3152 .as_mut()
3153 .unwrap()
3154 .request_measured_layout(style, rem_size, measure)
3155 }
3156
3157 /// Compute the layout for the given id within the given available space.
3158 /// This method is called for its side effect, typically by the framework prior to painting.
3159 /// After calling it, you can request the bounds of the given layout node id or any descendant.
3160 ///
3161 /// This method should only be called as part of the prepaint phase of element drawing.
3162 pub fn compute_layout(
3163 &mut self,
3164 layout_id: LayoutId,
3165 available_space: Size<AvailableSpace>,
3166 cx: &mut App,
3167 ) {
3168 self.invalidator.debug_assert_prepaint();
3169
3170 let mut layout_engine = self.layout_engine.take().unwrap();
3171 layout_engine.compute_layout(layout_id, available_space, self, cx);
3172 self.layout_engine = Some(layout_engine);
3173 }
3174
3175 /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
3176 /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
3177 ///
3178 /// This method should only be called as part of element drawing.
3179 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
3180 self.invalidator.debug_assert_prepaint();
3181
3182 let mut bounds = self
3183 .layout_engine
3184 .as_mut()
3185 .unwrap()
3186 .layout_bounds(layout_id)
3187 .map(Into::into);
3188 bounds.origin += self.element_offset();
3189 bounds
3190 }
3191
3192 /// This method should be called during `prepaint`. You can use
3193 /// the returned [Hitbox] during `paint` or in an event handler
3194 /// to determine whether the inserted hitbox was the topmost.
3195 ///
3196 /// This method should only be called as part of the prepaint phase of element drawing.
3197 pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
3198 self.invalidator.debug_assert_prepaint();
3199
3200 let content_mask = self.content_mask();
3201 let mut id = self.next_hitbox_id;
3202 self.next_hitbox_id = self.next_hitbox_id.next();
3203 let hitbox = Hitbox {
3204 id,
3205 bounds,
3206 content_mask,
3207 behavior,
3208 };
3209 self.next_frame.hitboxes.push(hitbox.clone());
3210 hitbox
3211 }
3212
3213 /// Set a hitbox which will act as a control area of the platform window.
3214 ///
3215 /// This method should only be called as part of the paint phase of element drawing.
3216 pub fn insert_window_control_hitbox(&mut self, area: WindowControlArea, hitbox: Hitbox) {
3217 self.invalidator.debug_assert_paint();
3218 self.next_frame.window_control_hitboxes.push((area, hitbox));
3219 }
3220
3221 /// Sets the key context for the current element. This context will be used to translate
3222 /// keybindings into actions.
3223 ///
3224 /// This method should only be called as part of the paint phase of element drawing.
3225 pub fn set_key_context(&mut self, context: KeyContext) {
3226 self.invalidator.debug_assert_paint();
3227 self.next_frame.dispatch_tree.set_key_context(context);
3228 }
3229
3230 /// Sets the focus handle for the current element. This handle will be used to manage focus state
3231 /// and keyboard event dispatch for the element.
3232 ///
3233 /// This method should only be called as part of the prepaint phase of element drawing.
3234 pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3235 self.invalidator.debug_assert_prepaint();
3236 if focus_handle.is_focused(self) {
3237 self.next_frame.focus = Some(focus_handle.id);
3238 }
3239 self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3240 }
3241
3242 /// Sets the view id for the current element, which will be used to manage view caching.
3243 ///
3244 /// This method should only be called as part of element prepaint. We plan on removing this
3245 /// method eventually when we solve some issues that require us to construct editor elements
3246 /// directly instead of always using editors via views.
3247 pub fn set_view_id(&mut self, view_id: EntityId) {
3248 self.invalidator.debug_assert_prepaint();
3249 self.next_frame.dispatch_tree.set_view_id(view_id);
3250 }
3251
3252 /// Get the entity ID for the currently rendering view
3253 pub fn current_view(&self) -> EntityId {
3254 self.invalidator.debug_assert_paint_or_prepaint();
3255 self.rendered_entity_stack.last().copied().unwrap()
3256 }
3257
3258 pub(crate) fn with_rendered_view<R>(
3259 &mut self,
3260 id: EntityId,
3261 f: impl FnOnce(&mut Self) -> R,
3262 ) -> R {
3263 self.rendered_entity_stack.push(id);
3264 let result = f(self);
3265 self.rendered_entity_stack.pop();
3266 result
3267 }
3268
3269 /// Executes the provided function with the specified image cache.
3270 pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3271 where
3272 F: FnOnce(&mut Self) -> R,
3273 {
3274 if let Some(image_cache) = image_cache {
3275 self.image_cache_stack.push(image_cache);
3276 let result = f(self);
3277 self.image_cache_stack.pop();
3278 result
3279 } else {
3280 f(self)
3281 }
3282 }
3283
3284 /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3285 /// platform to receive textual input with proper integration with concerns such
3286 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3287 /// rendered.
3288 ///
3289 /// This method should only be called as part of the paint phase of element drawing.
3290 ///
3291 /// [element_input_handler]: crate::ElementInputHandler
3292 pub fn handle_input(
3293 &mut self,
3294 focus_handle: &FocusHandle,
3295 input_handler: impl InputHandler,
3296 cx: &App,
3297 ) {
3298 self.invalidator.debug_assert_paint();
3299
3300 if focus_handle.is_focused(self) {
3301 let cx = self.to_async(cx);
3302 self.next_frame
3303 .input_handlers
3304 .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3305 }
3306 }
3307
3308 /// Register a mouse event listener on the window for the next frame. The type of event
3309 /// is determined by the first parameter of the given listener. When the next frame is rendered
3310 /// the listener will be cleared.
3311 ///
3312 /// This method should only be called as part of the paint phase of element drawing.
3313 pub fn on_mouse_event<Event: MouseEvent>(
3314 &mut self,
3315 mut handler: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3316 ) {
3317 self.invalidator.debug_assert_paint();
3318
3319 self.next_frame.mouse_listeners.push(Some(Box::new(
3320 move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3321 if let Some(event) = event.downcast_ref() {
3322 handler(event, phase, window, cx)
3323 }
3324 },
3325 )));
3326 }
3327
3328 /// Register a key event listener on the window for the next frame. The type of event
3329 /// is determined by the first parameter of the given listener. When the next frame is rendered
3330 /// the listener will be cleared.
3331 ///
3332 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3333 /// a specific need to register a global listener.
3334 ///
3335 /// This method should only be called as part of the paint phase of element drawing.
3336 pub fn on_key_event<Event: KeyEvent>(
3337 &mut self,
3338 listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3339 ) {
3340 self.invalidator.debug_assert_paint();
3341
3342 self.next_frame.dispatch_tree.on_key_event(Rc::new(
3343 move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3344 if let Some(event) = event.downcast_ref::<Event>() {
3345 listener(event, phase, window, cx)
3346 }
3347 },
3348 ));
3349 }
3350
3351 /// Register a modifiers changed event listener on the window for the next frame.
3352 ///
3353 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3354 /// a specific need to register a global listener.
3355 ///
3356 /// This method should only be called as part of the paint phase of element drawing.
3357 pub fn on_modifiers_changed(
3358 &mut self,
3359 listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3360 ) {
3361 self.invalidator.debug_assert_paint();
3362
3363 self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3364 move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3365 listener(event, window, cx)
3366 },
3367 ));
3368 }
3369
3370 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3371 /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3372 /// Returns a subscription and persists until the subscription is dropped.
3373 pub fn on_focus_in(
3374 &mut self,
3375 handle: &FocusHandle,
3376 cx: &mut App,
3377 mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3378 ) -> Subscription {
3379 let focus_id = handle.id;
3380 let (subscription, activate) =
3381 self.new_focus_listener(Box::new(move |event, window, cx| {
3382 if event.is_focus_in(focus_id) {
3383 listener(window, cx);
3384 }
3385 true
3386 }));
3387 cx.defer(move |_| activate());
3388 subscription
3389 }
3390
3391 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3392 /// Returns a subscription and persists until the subscription is dropped.
3393 pub fn on_focus_out(
3394 &mut self,
3395 handle: &FocusHandle,
3396 cx: &mut App,
3397 mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3398 ) -> Subscription {
3399 let focus_id = handle.id;
3400 let (subscription, activate) =
3401 self.new_focus_listener(Box::new(move |event, window, cx| {
3402 if let Some(blurred_id) = event.previous_focus_path.last().copied() {
3403 if event.is_focus_out(focus_id) {
3404 let event = FocusOutEvent {
3405 blurred: WeakFocusHandle {
3406 id: blurred_id,
3407 handles: Arc::downgrade(&cx.focus_handles),
3408 },
3409 };
3410 listener(event, window, cx)
3411 }
3412 }
3413 true
3414 }));
3415 cx.defer(move |_| activate());
3416 subscription
3417 }
3418
3419 fn reset_cursor_style(&self, cx: &mut App) {
3420 // Set the cursor only if we're the active window.
3421 if self.is_window_hovered() {
3422 let style = self
3423 .rendered_frame
3424 .cursor_style(self)
3425 .unwrap_or(CursorStyle::Arrow);
3426 cx.platform.set_cursor_style(style);
3427 }
3428 }
3429
3430 /// Dispatch a given keystroke as though the user had typed it.
3431 /// You can create a keystroke with Keystroke::parse("").
3432 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3433 let keystroke = keystroke.with_simulated_ime();
3434 let result = self.dispatch_event(
3435 PlatformInput::KeyDown(KeyDownEvent {
3436 keystroke: keystroke.clone(),
3437 is_held: false,
3438 }),
3439 cx,
3440 );
3441 if !result.propagate {
3442 return true;
3443 }
3444
3445 if let Some(input) = keystroke.key_char {
3446 if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3447 input_handler.dispatch_input(&input, self, cx);
3448 self.platform_window.set_input_handler(input_handler);
3449 return true;
3450 }
3451 }
3452
3453 false
3454 }
3455
3456 /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3457 /// binding for the action (last binding added to the keymap).
3458 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3459 self.highest_precedence_binding_for_action(action)
3460 .map(|binding| {
3461 binding
3462 .keystrokes()
3463 .iter()
3464 .map(ToString::to_string)
3465 .collect::<Vec<_>>()
3466 .join(" ")
3467 })
3468 .unwrap_or_else(|| action.name().to_string())
3469 }
3470
3471 /// Dispatch a mouse or keyboard event on the window.
3472 #[profiling::function]
3473 pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3474 self.last_input_timestamp.set(Instant::now());
3475 // Handlers may set this to false by calling `stop_propagation`.
3476 cx.propagate_event = true;
3477 // Handlers may set this to true by calling `prevent_default`.
3478 self.default_prevented = false;
3479
3480 let event = match event {
3481 // Track the mouse position with our own state, since accessing the platform
3482 // API for the mouse position can only occur on the main thread.
3483 PlatformInput::MouseMove(mouse_move) => {
3484 self.mouse_position = mouse_move.position;
3485 self.modifiers = mouse_move.modifiers;
3486 PlatformInput::MouseMove(mouse_move)
3487 }
3488 PlatformInput::MouseDown(mouse_down) => {
3489 self.mouse_position = mouse_down.position;
3490 self.modifiers = mouse_down.modifiers;
3491 PlatformInput::MouseDown(mouse_down)
3492 }
3493 PlatformInput::MouseUp(mouse_up) => {
3494 self.mouse_position = mouse_up.position;
3495 self.modifiers = mouse_up.modifiers;
3496 PlatformInput::MouseUp(mouse_up)
3497 }
3498 PlatformInput::MouseExited(mouse_exited) => {
3499 self.modifiers = mouse_exited.modifiers;
3500 PlatformInput::MouseExited(mouse_exited)
3501 }
3502 PlatformInput::ModifiersChanged(modifiers_changed) => {
3503 self.modifiers = modifiers_changed.modifiers;
3504 self.capslock = modifiers_changed.capslock;
3505 PlatformInput::ModifiersChanged(modifiers_changed)
3506 }
3507 PlatformInput::ScrollWheel(scroll_wheel) => {
3508 self.mouse_position = scroll_wheel.position;
3509 self.modifiers = scroll_wheel.modifiers;
3510 PlatformInput::ScrollWheel(scroll_wheel)
3511 }
3512 // Translate dragging and dropping of external files from the operating system
3513 // to internal drag and drop events.
3514 PlatformInput::FileDrop(file_drop) => match file_drop {
3515 FileDropEvent::Entered { position, paths } => {
3516 self.mouse_position = position;
3517 if cx.active_drag.is_none() {
3518 cx.active_drag = Some(AnyDrag {
3519 value: Arc::new(paths.clone()),
3520 view: cx.new(|_| paths).into(),
3521 cursor_offset: position,
3522 cursor_style: None,
3523 });
3524 }
3525 PlatformInput::MouseMove(MouseMoveEvent {
3526 position,
3527 pressed_button: Some(MouseButton::Left),
3528 modifiers: Modifiers::default(),
3529 })
3530 }
3531 FileDropEvent::Pending { position } => {
3532 self.mouse_position = position;
3533 PlatformInput::MouseMove(MouseMoveEvent {
3534 position,
3535 pressed_button: Some(MouseButton::Left),
3536 modifiers: Modifiers::default(),
3537 })
3538 }
3539 FileDropEvent::Submit { position } => {
3540 cx.activate(true);
3541 self.mouse_position = position;
3542 PlatformInput::MouseUp(MouseUpEvent {
3543 button: MouseButton::Left,
3544 position,
3545 modifiers: Modifiers::default(),
3546 click_count: 1,
3547 })
3548 }
3549 FileDropEvent::Exited => {
3550 cx.active_drag.take();
3551 PlatformInput::FileDrop(FileDropEvent::Exited)
3552 }
3553 },
3554 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3555 };
3556
3557 if let Some(any_mouse_event) = event.mouse_event() {
3558 self.dispatch_mouse_event(any_mouse_event, cx);
3559 } else if let Some(any_key_event) = event.keyboard_event() {
3560 self.dispatch_key_event(any_key_event, cx);
3561 }
3562
3563 DispatchEventResult {
3564 propagate: cx.propagate_event,
3565 default_prevented: self.default_prevented,
3566 }
3567 }
3568
3569 fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3570 let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3571 if hit_test != self.mouse_hit_test {
3572 self.mouse_hit_test = hit_test;
3573 self.reset_cursor_style(cx);
3574 }
3575
3576 #[cfg(any(feature = "inspector", debug_assertions))]
3577 if self.is_inspector_picking(cx) {
3578 self.handle_inspector_mouse_event(event, cx);
3579 // When inspector is picking, all other mouse handling is skipped.
3580 return;
3581 }
3582
3583 let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3584
3585 // Capture phase, events bubble from back to front. Handlers for this phase are used for
3586 // special purposes, such as detecting events outside of a given Bounds.
3587 for listener in &mut mouse_listeners {
3588 let listener = listener.as_mut().unwrap();
3589 listener(event, DispatchPhase::Capture, self, cx);
3590 if !cx.propagate_event {
3591 break;
3592 }
3593 }
3594
3595 // Bubble phase, where most normal handlers do their work.
3596 if cx.propagate_event {
3597 for listener in mouse_listeners.iter_mut().rev() {
3598 let listener = listener.as_mut().unwrap();
3599 listener(event, DispatchPhase::Bubble, self, cx);
3600 if !cx.propagate_event {
3601 break;
3602 }
3603 }
3604 }
3605
3606 self.rendered_frame.mouse_listeners = mouse_listeners;
3607
3608 if cx.has_active_drag() {
3609 if event.is::<MouseMoveEvent>() {
3610 // If this was a mouse move event, redraw the window so that the
3611 // active drag can follow the mouse cursor.
3612 self.refresh();
3613 } else if event.is::<MouseUpEvent>() {
3614 // If this was a mouse up event, cancel the active drag and redraw
3615 // the window.
3616 cx.active_drag = None;
3617 self.refresh();
3618 }
3619 }
3620 }
3621
3622 fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3623 if self.invalidator.is_dirty() {
3624 self.draw(cx).clear();
3625 }
3626
3627 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3628 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3629
3630 let mut keystroke: Option<Keystroke> = None;
3631
3632 if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3633 if event.modifiers.number_of_modifiers() == 0
3634 && self.pending_modifier.modifiers.number_of_modifiers() == 1
3635 && !self.pending_modifier.saw_keystroke
3636 {
3637 let key = match self.pending_modifier.modifiers {
3638 modifiers if modifiers.shift => Some("shift"),
3639 modifiers if modifiers.control => Some("control"),
3640 modifiers if modifiers.alt => Some("alt"),
3641 modifiers if modifiers.platform => Some("platform"),
3642 modifiers if modifiers.function => Some("function"),
3643 _ => None,
3644 };
3645 if let Some(key) = key {
3646 keystroke = Some(Keystroke {
3647 key: key.to_string(),
3648 key_char: None,
3649 modifiers: Modifiers::default(),
3650 });
3651 }
3652 }
3653
3654 if self.pending_modifier.modifiers.number_of_modifiers() == 0
3655 && event.modifiers.number_of_modifiers() == 1
3656 {
3657 self.pending_modifier.saw_keystroke = false
3658 }
3659 self.pending_modifier.modifiers = event.modifiers
3660 } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3661 self.pending_modifier.saw_keystroke = true;
3662 keystroke = Some(key_down_event.keystroke.clone());
3663 }
3664
3665 let Some(keystroke) = keystroke else {
3666 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3667 return;
3668 };
3669
3670 cx.propagate_event = true;
3671 self.dispatch_keystroke_interceptors(event, self.context_stack(), cx);
3672 if !cx.propagate_event {
3673 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3674 return;
3675 }
3676
3677 let mut currently_pending = self.pending_input.take().unwrap_or_default();
3678 if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3679 currently_pending = PendingInput::default();
3680 }
3681
3682 let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3683 currently_pending.keystrokes,
3684 keystroke,
3685 &dispatch_path,
3686 );
3687
3688 if !match_result.to_replay.is_empty() {
3689 self.replay_pending_input(match_result.to_replay, cx)
3690 }
3691
3692 if !match_result.pending.is_empty() {
3693 currently_pending.keystrokes = match_result.pending;
3694 currently_pending.focus = self.focus;
3695 currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3696 cx.background_executor.timer(Duration::from_secs(1)).await;
3697 cx.update(move |window, cx| {
3698 let Some(currently_pending) = window
3699 .pending_input
3700 .take()
3701 .filter(|pending| pending.focus == window.focus)
3702 else {
3703 return;
3704 };
3705
3706 let node_id = window.focus_node_id_in_rendered_frame(window.focus);
3707 let dispatch_path = window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3708
3709 let to_replay = window
3710 .rendered_frame
3711 .dispatch_tree
3712 .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3713
3714 window.pending_input_changed(cx);
3715 window.replay_pending_input(to_replay, cx)
3716 })
3717 .log_err();
3718 }));
3719 self.pending_input = Some(currently_pending);
3720 self.pending_input_changed(cx);
3721 cx.propagate_event = false;
3722 return;
3723 }
3724
3725 for binding in match_result.bindings {
3726 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3727 if !cx.propagate_event {
3728 self.dispatch_keystroke_observers(
3729 event,
3730 Some(binding.action),
3731 match_result.context_stack.clone(),
3732 cx,
3733 );
3734 self.pending_input_changed(cx);
3735 return;
3736 }
3737 }
3738
3739 self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
3740 self.pending_input_changed(cx);
3741 }
3742
3743 fn finish_dispatch_key_event(
3744 &mut self,
3745 event: &dyn Any,
3746 dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3747 context_stack: Vec<KeyContext>,
3748 cx: &mut App,
3749 ) {
3750 self.dispatch_key_down_up_event(event, &dispatch_path, cx);
3751 if !cx.propagate_event {
3752 return;
3753 }
3754
3755 self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
3756 if !cx.propagate_event {
3757 return;
3758 }
3759
3760 self.dispatch_keystroke_observers(event, None, context_stack, cx);
3761 }
3762
3763 fn pending_input_changed(&mut self, cx: &mut App) {
3764 self.pending_input_observers
3765 .clone()
3766 .retain(&(), |callback| callback(self, cx));
3767 }
3768
3769 fn dispatch_key_down_up_event(
3770 &mut self,
3771 event: &dyn Any,
3772 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3773 cx: &mut App,
3774 ) {
3775 // Capture phase
3776 for node_id in dispatch_path {
3777 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3778
3779 for key_listener in node.key_listeners.clone() {
3780 key_listener(event, DispatchPhase::Capture, self, cx);
3781 if !cx.propagate_event {
3782 return;
3783 }
3784 }
3785 }
3786
3787 // Bubble phase
3788 for node_id in dispatch_path.iter().rev() {
3789 // Handle low level key events
3790 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3791 for key_listener in node.key_listeners.clone() {
3792 key_listener(event, DispatchPhase::Bubble, self, cx);
3793 if !cx.propagate_event {
3794 return;
3795 }
3796 }
3797 }
3798 }
3799
3800 fn dispatch_modifiers_changed_event(
3801 &mut self,
3802 event: &dyn Any,
3803 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3804 cx: &mut App,
3805 ) {
3806 let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
3807 return;
3808 };
3809 for node_id in dispatch_path.iter().rev() {
3810 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3811 for listener in node.modifiers_changed_listeners.clone() {
3812 listener(event, self, cx);
3813 if !cx.propagate_event {
3814 return;
3815 }
3816 }
3817 }
3818 }
3819
3820 /// Determine whether a potential multi-stroke key binding is in progress on this window.
3821 pub fn has_pending_keystrokes(&self) -> bool {
3822 self.pending_input.is_some()
3823 }
3824
3825 pub(crate) fn clear_pending_keystrokes(&mut self) {
3826 self.pending_input.take();
3827 }
3828
3829 /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
3830 pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
3831 self.pending_input
3832 .as_ref()
3833 .map(|pending_input| pending_input.keystrokes.as_slice())
3834 }
3835
3836 fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
3837 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3838 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3839
3840 'replay: for replay in replays {
3841 let event = KeyDownEvent {
3842 keystroke: replay.keystroke.clone(),
3843 is_held: false,
3844 };
3845
3846 cx.propagate_event = true;
3847 for binding in replay.bindings {
3848 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3849 if !cx.propagate_event {
3850 self.dispatch_keystroke_observers(
3851 &event,
3852 Some(binding.action),
3853 Vec::default(),
3854 cx,
3855 );
3856 continue 'replay;
3857 }
3858 }
3859
3860 self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
3861 if !cx.propagate_event {
3862 continue 'replay;
3863 }
3864 if let Some(input) = replay.keystroke.key_char.as_ref().cloned() {
3865 if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3866 input_handler.dispatch_input(&input, self, cx);
3867 self.platform_window.set_input_handler(input_handler)
3868 }
3869 }
3870 }
3871 }
3872
3873 fn focus_node_id_in_rendered_frame(&self, focus_id: Option<FocusId>) -> DispatchNodeId {
3874 focus_id
3875 .and_then(|focus_id| {
3876 self.rendered_frame
3877 .dispatch_tree
3878 .focusable_node_id(focus_id)
3879 })
3880 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id())
3881 }
3882
3883 fn dispatch_action_on_node(
3884 &mut self,
3885 node_id: DispatchNodeId,
3886 action: &dyn Action,
3887 cx: &mut App,
3888 ) {
3889 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3890
3891 // Capture phase for global actions.
3892 cx.propagate_event = true;
3893 if let Some(mut global_listeners) = cx
3894 .global_action_listeners
3895 .remove(&action.as_any().type_id())
3896 {
3897 for listener in &global_listeners {
3898 listener(action.as_any(), DispatchPhase::Capture, cx);
3899 if !cx.propagate_event {
3900 break;
3901 }
3902 }
3903
3904 global_listeners.extend(
3905 cx.global_action_listeners
3906 .remove(&action.as_any().type_id())
3907 .unwrap_or_default(),
3908 );
3909
3910 cx.global_action_listeners
3911 .insert(action.as_any().type_id(), global_listeners);
3912 }
3913
3914 if !cx.propagate_event {
3915 return;
3916 }
3917
3918 // Capture phase for window actions.
3919 for node_id in &dispatch_path {
3920 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3921 for DispatchActionListener {
3922 action_type,
3923 listener,
3924 } in node.action_listeners.clone()
3925 {
3926 let any_action = action.as_any();
3927 if action_type == any_action.type_id() {
3928 listener(any_action, DispatchPhase::Capture, self, cx);
3929
3930 if !cx.propagate_event {
3931 return;
3932 }
3933 }
3934 }
3935 }
3936
3937 // Bubble phase for window actions.
3938 for node_id in dispatch_path.iter().rev() {
3939 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3940 for DispatchActionListener {
3941 action_type,
3942 listener,
3943 } in node.action_listeners.clone()
3944 {
3945 let any_action = action.as_any();
3946 if action_type == any_action.type_id() {
3947 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3948 listener(any_action, DispatchPhase::Bubble, self, cx);
3949
3950 if !cx.propagate_event {
3951 return;
3952 }
3953 }
3954 }
3955 }
3956
3957 // Bubble phase for global actions.
3958 if let Some(mut global_listeners) = cx
3959 .global_action_listeners
3960 .remove(&action.as_any().type_id())
3961 {
3962 for listener in global_listeners.iter().rev() {
3963 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3964
3965 listener(action.as_any(), DispatchPhase::Bubble, cx);
3966 if !cx.propagate_event {
3967 break;
3968 }
3969 }
3970
3971 global_listeners.extend(
3972 cx.global_action_listeners
3973 .remove(&action.as_any().type_id())
3974 .unwrap_or_default(),
3975 );
3976
3977 cx.global_action_listeners
3978 .insert(action.as_any().type_id(), global_listeners);
3979 }
3980 }
3981
3982 /// Register the given handler to be invoked whenever the global of the given type
3983 /// is updated.
3984 pub fn observe_global<G: Global>(
3985 &mut self,
3986 cx: &mut App,
3987 f: impl Fn(&mut Window, &mut App) + 'static,
3988 ) -> Subscription {
3989 let window_handle = self.handle;
3990 let (subscription, activate) = cx.global_observers.insert(
3991 TypeId::of::<G>(),
3992 Box::new(move |cx| {
3993 window_handle
3994 .update(cx, |_, window, cx| f(window, cx))
3995 .is_ok()
3996 }),
3997 );
3998 cx.defer(move |_| activate());
3999 subscription
4000 }
4001
4002 /// Focus the current window and bring it to the foreground at the platform level.
4003 pub fn activate_window(&self) {
4004 self.platform_window.activate();
4005 }
4006
4007 /// Minimize the current window at the platform level.
4008 pub fn minimize_window(&self) {
4009 self.platform_window.minimize();
4010 }
4011
4012 /// Toggle full screen status on the current window at the platform level.
4013 pub fn toggle_fullscreen(&self) {
4014 self.platform_window.toggle_fullscreen();
4015 }
4016
4017 /// Updates the IME panel position suggestions for languages like japanese, chinese.
4018 pub fn invalidate_character_coordinates(&self) {
4019 self.on_next_frame(|window, cx| {
4020 if let Some(mut input_handler) = window.platform_window.take_input_handler() {
4021 if let Some(bounds) = input_handler.selected_bounds(window, cx) {
4022 window
4023 .platform_window
4024 .update_ime_position(bounds.scale(window.scale_factor()));
4025 }
4026 window.platform_window.set_input_handler(input_handler);
4027 }
4028 });
4029 }
4030
4031 /// Present a platform dialog.
4032 /// The provided message will be presented, along with buttons for each answer.
4033 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
4034 pub fn prompt<T>(
4035 &mut self,
4036 level: PromptLevel,
4037 message: &str,
4038 detail: Option<&str>,
4039 answers: &[T],
4040 cx: &mut App,
4041 ) -> oneshot::Receiver<usize>
4042 where
4043 T: Clone + Into<PromptButton>,
4044 {
4045 let prompt_builder = cx.prompt_builder.take();
4046 let Some(prompt_builder) = prompt_builder else {
4047 unreachable!("Re-entrant window prompting is not supported by GPUI");
4048 };
4049
4050 let answers = answers
4051 .iter()
4052 .map(|answer| answer.clone().into())
4053 .collect::<Vec<_>>();
4054
4055 let receiver = match &prompt_builder {
4056 PromptBuilder::Default => self
4057 .platform_window
4058 .prompt(level, message, detail, &answers)
4059 .unwrap_or_else(|| {
4060 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4061 }),
4062 PromptBuilder::Custom(_) => {
4063 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4064 }
4065 };
4066
4067 cx.prompt_builder = Some(prompt_builder);
4068
4069 receiver
4070 }
4071
4072 fn build_custom_prompt(
4073 &mut self,
4074 prompt_builder: &PromptBuilder,
4075 level: PromptLevel,
4076 message: &str,
4077 detail: Option<&str>,
4078 answers: &[PromptButton],
4079 cx: &mut App,
4080 ) -> oneshot::Receiver<usize> {
4081 let (sender, receiver) = oneshot::channel();
4082 let handle = PromptHandle::new(sender);
4083 let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
4084 self.prompt = Some(handle);
4085 receiver
4086 }
4087
4088 /// Returns the current context stack.
4089 pub fn context_stack(&self) -> Vec<KeyContext> {
4090 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4091 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4092 dispatch_tree
4093 .dispatch_path(node_id)
4094 .iter()
4095 .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
4096 .collect()
4097 }
4098
4099 /// Returns all available actions for the focused element.
4100 pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
4101 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4102 let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
4103 for action_type in cx.global_action_listeners.keys() {
4104 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
4105 let action = cx.actions.build_action_type(action_type).ok();
4106 if let Some(action) = action {
4107 actions.insert(ix, action);
4108 }
4109 }
4110 }
4111 actions
4112 }
4113
4114 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
4115 /// returned in the order they were added. For display, the last binding should take precedence.
4116 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
4117 self.rendered_frame
4118 .dispatch_tree
4119 .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
4120 }
4121
4122 /// Returns the highest precedence key binding that invokes an action on the currently focused
4123 /// element. This is more efficient than getting the last result of `bindings_for_action`.
4124 pub fn highest_precedence_binding_for_action(&self, action: &dyn Action) -> Option<KeyBinding> {
4125 self.rendered_frame
4126 .dispatch_tree
4127 .highest_precedence_binding_for_action(
4128 action,
4129 &self.rendered_frame.dispatch_tree.context_stack,
4130 )
4131 }
4132
4133 /// Returns the key bindings for an action in a context.
4134 pub fn bindings_for_action_in_context(
4135 &self,
4136 action: &dyn Action,
4137 context: KeyContext,
4138 ) -> Vec<KeyBinding> {
4139 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4140 dispatch_tree.bindings_for_action(action, &[context])
4141 }
4142
4143 /// Returns the highest precedence key binding for an action in a context. This is more
4144 /// efficient than getting the last result of `bindings_for_action_in_context`.
4145 pub fn highest_precedence_binding_for_action_in_context(
4146 &self,
4147 action: &dyn Action,
4148 context: KeyContext,
4149 ) -> Option<KeyBinding> {
4150 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4151 dispatch_tree.highest_precedence_binding_for_action(action, &[context])
4152 }
4153
4154 /// Returns any bindings that would invoke an action on the given focus handle if it were
4155 /// focused. Bindings are returned in the order they were added. For display, the last binding
4156 /// should take precedence.
4157 pub fn bindings_for_action_in(
4158 &self,
4159 action: &dyn Action,
4160 focus_handle: &FocusHandle,
4161 ) -> Vec<KeyBinding> {
4162 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4163 let Some(context_stack) = self.context_stack_for_focus_handle(focus_handle) else {
4164 return vec![];
4165 };
4166 dispatch_tree.bindings_for_action(action, &context_stack)
4167 }
4168
4169 /// Returns the highest precedence key binding that would invoke an action on the given focus
4170 /// handle if it were focused. This is more efficient than getting the last result of
4171 /// `bindings_for_action_in`.
4172 pub fn highest_precedence_binding_for_action_in(
4173 &self,
4174 action: &dyn Action,
4175 focus_handle: &FocusHandle,
4176 ) -> Option<KeyBinding> {
4177 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4178 let context_stack = self.context_stack_for_focus_handle(focus_handle)?;
4179 dispatch_tree.highest_precedence_binding_for_action(action, &context_stack)
4180 }
4181
4182 fn context_stack_for_focus_handle(
4183 &self,
4184 focus_handle: &FocusHandle,
4185 ) -> Option<Vec<KeyContext>> {
4186 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4187 let node_id = dispatch_tree.focusable_node_id(focus_handle.id)?;
4188 let context_stack: Vec<_> = dispatch_tree
4189 .dispatch_path(node_id)
4190 .into_iter()
4191 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
4192 .collect();
4193 Some(context_stack)
4194 }
4195
4196 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
4197 pub fn listener_for<V: Render, E>(
4198 &self,
4199 view: &Entity<V>,
4200 f: impl Fn(&mut V, &E, &mut Window, &mut Context<V>) + 'static,
4201 ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
4202 let view = view.downgrade();
4203 move |e: &E, window: &mut Window, cx: &mut App| {
4204 view.update(cx, |view, cx| f(view, e, window, cx)).ok();
4205 }
4206 }
4207
4208 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
4209 pub fn handler_for<V: Render, Callback: Fn(&mut V, &mut Window, &mut Context<V>) + 'static>(
4210 &self,
4211 view: &Entity<V>,
4212 f: Callback,
4213 ) -> impl Fn(&mut Window, &mut App) + use<V, Callback> {
4214 let view = view.downgrade();
4215 move |window: &mut Window, cx: &mut App| {
4216 view.update(cx, |view, cx| f(view, window, cx)).ok();
4217 }
4218 }
4219
4220 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
4221 /// If the callback returns false, the window won't be closed.
4222 pub fn on_window_should_close(
4223 &self,
4224 cx: &App,
4225 f: impl Fn(&mut Window, &mut App) -> bool + 'static,
4226 ) {
4227 let mut cx = self.to_async(cx);
4228 self.platform_window.on_should_close(Box::new(move || {
4229 cx.update(|window, cx| f(window, cx)).unwrap_or(true)
4230 }))
4231 }
4232
4233 /// Register an action listener on the window for the next frame. The type of action
4234 /// is determined by the first parameter of the given listener. When the next frame is rendered
4235 /// the listener will be cleared.
4236 ///
4237 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4238 /// a specific need to register a global listener.
4239 pub fn on_action(
4240 &mut self,
4241 action_type: TypeId,
4242 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4243 ) {
4244 self.next_frame
4245 .dispatch_tree
4246 .on_action(action_type, Rc::new(listener));
4247 }
4248
4249 /// Read information about the GPU backing this window.
4250 /// Currently returns None on Mac and Windows.
4251 pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4252 self.platform_window.gpu_specs()
4253 }
4254
4255 /// Perform titlebar double-click action.
4256 /// This is MacOS specific.
4257 pub fn titlebar_double_click(&self) {
4258 self.platform_window.titlebar_double_click();
4259 }
4260
4261 /// Toggles the inspector mode on this window.
4262 #[cfg(any(feature = "inspector", debug_assertions))]
4263 pub fn toggle_inspector(&mut self, cx: &mut App) {
4264 self.inspector = match self.inspector {
4265 None => Some(cx.new(|_| Inspector::new())),
4266 Some(_) => None,
4267 };
4268 self.refresh();
4269 }
4270
4271 /// Returns true if the window is in inspector mode.
4272 pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4273 #[cfg(any(feature = "inspector", debug_assertions))]
4274 {
4275 if let Some(inspector) = &self.inspector {
4276 return inspector.read(_cx).is_picking();
4277 }
4278 }
4279 false
4280 }
4281
4282 /// Executes the provided function with mutable access to an inspector state.
4283 #[cfg(any(feature = "inspector", debug_assertions))]
4284 pub fn with_inspector_state<T: 'static, R>(
4285 &mut self,
4286 _inspector_id: Option<&crate::InspectorElementId>,
4287 cx: &mut App,
4288 f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4289 ) -> R {
4290 if let Some(inspector_id) = _inspector_id {
4291 if let Some(inspector) = &self.inspector {
4292 let inspector = inspector.clone();
4293 let active_element_id = inspector.read(cx).active_element_id();
4294 if Some(inspector_id) == active_element_id {
4295 return inspector.update(cx, |inspector, _cx| {
4296 inspector.with_active_element_state(self, f)
4297 });
4298 }
4299 }
4300 }
4301 f(&mut None, self)
4302 }
4303
4304 #[cfg(any(feature = "inspector", debug_assertions))]
4305 pub(crate) fn build_inspector_element_id(
4306 &mut self,
4307 path: crate::InspectorElementPath,
4308 ) -> crate::InspectorElementId {
4309 self.invalidator.debug_assert_paint_or_prepaint();
4310 let path = Rc::new(path);
4311 let next_instance_id = self
4312 .next_frame
4313 .next_inspector_instance_ids
4314 .entry(path.clone())
4315 .or_insert(0);
4316 let instance_id = *next_instance_id;
4317 *next_instance_id += 1;
4318 crate::InspectorElementId { path, instance_id }
4319 }
4320
4321 #[cfg(any(feature = "inspector", debug_assertions))]
4322 fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4323 if let Some(inspector) = self.inspector.take() {
4324 let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4325 inspector_element.prepaint_as_root(
4326 point(self.viewport_size.width - inspector_width, px(0.0)),
4327 size(inspector_width, self.viewport_size.height).into(),
4328 self,
4329 cx,
4330 );
4331 self.inspector = Some(inspector);
4332 Some(inspector_element)
4333 } else {
4334 None
4335 }
4336 }
4337
4338 #[cfg(any(feature = "inspector", debug_assertions))]
4339 fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4340 if let Some(mut inspector_element) = inspector_element {
4341 inspector_element.paint(self, cx);
4342 };
4343 }
4344
4345 /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4346 /// inspect UI elements by clicking on them.
4347 #[cfg(any(feature = "inspector", debug_assertions))]
4348 pub fn insert_inspector_hitbox(
4349 &mut self,
4350 hitbox_id: HitboxId,
4351 inspector_id: Option<&crate::InspectorElementId>,
4352 cx: &App,
4353 ) {
4354 self.invalidator.debug_assert_paint_or_prepaint();
4355 if !self.is_inspector_picking(cx) {
4356 return;
4357 }
4358 if let Some(inspector_id) = inspector_id {
4359 self.next_frame
4360 .inspector_hitboxes
4361 .insert(hitbox_id, inspector_id.clone());
4362 }
4363 }
4364
4365 #[cfg(any(feature = "inspector", debug_assertions))]
4366 fn paint_inspector_hitbox(&mut self, cx: &App) {
4367 if let Some(inspector) = self.inspector.as_ref() {
4368 let inspector = inspector.read(cx);
4369 if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
4370 {
4371 if let Some(hitbox) = self
4372 .next_frame
4373 .hitboxes
4374 .iter()
4375 .find(|hitbox| hitbox.id == hitbox_id)
4376 {
4377 self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4378 }
4379 }
4380 }
4381 }
4382
4383 #[cfg(any(feature = "inspector", debug_assertions))]
4384 fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4385 let Some(inspector) = self.inspector.clone() else {
4386 return;
4387 };
4388 if event.downcast_ref::<MouseMoveEvent>().is_some() {
4389 inspector.update(cx, |inspector, _cx| {
4390 if let Some((_, inspector_id)) =
4391 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4392 {
4393 inspector.hover(inspector_id, self);
4394 }
4395 });
4396 } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4397 inspector.update(cx, |inspector, _cx| {
4398 if let Some((_, inspector_id)) =
4399 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4400 {
4401 inspector.select(inspector_id, self);
4402 }
4403 });
4404 } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4405 // This should be kept in sync with SCROLL_LINES in x11 platform.
4406 const SCROLL_LINES: f32 = 3.0;
4407 const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4408 let delta_y = event
4409 .delta
4410 .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4411 .y;
4412 if let Some(inspector) = self.inspector.clone() {
4413 inspector.update(cx, |inspector, _cx| {
4414 if let Some(depth) = inspector.pick_depth.as_mut() {
4415 *depth += delta_y.0 / SCROLL_PIXELS_PER_LAYER;
4416 let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4417 if *depth < 0.0 {
4418 *depth = 0.0;
4419 } else if *depth > max_depth {
4420 *depth = max_depth;
4421 }
4422 if let Some((_, inspector_id)) =
4423 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4424 {
4425 inspector.set_active_element_id(inspector_id.clone(), self);
4426 }
4427 }
4428 });
4429 }
4430 }
4431 }
4432
4433 #[cfg(any(feature = "inspector", debug_assertions))]
4434 fn hovered_inspector_hitbox(
4435 &self,
4436 inspector: &Inspector,
4437 frame: &Frame,
4438 ) -> Option<(HitboxId, crate::InspectorElementId)> {
4439 if let Some(pick_depth) = inspector.pick_depth {
4440 let depth = (pick_depth as i64).try_into().unwrap_or(0);
4441 let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4442 let skip_count = (depth as usize).min(max_skipped);
4443 for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4444 if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4445 return Some((*hitbox_id, inspector_id.clone()));
4446 }
4447 }
4448 }
4449 return None;
4450 }
4451}
4452
4453// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4454slotmap::new_key_type! {
4455 /// A unique identifier for a window.
4456 pub struct WindowId;
4457}
4458
4459impl WindowId {
4460 /// Converts this window ID to a `u64`.
4461 pub fn as_u64(&self) -> u64 {
4462 self.0.as_ffi()
4463 }
4464}
4465
4466impl From<u64> for WindowId {
4467 fn from(value: u64) -> Self {
4468 WindowId(slotmap::KeyData::from_ffi(value))
4469 }
4470}
4471
4472/// A handle to a window with a specific root view type.
4473/// Note that this does not keep the window alive on its own.
4474#[derive(Deref, DerefMut)]
4475pub struct WindowHandle<V> {
4476 #[deref]
4477 #[deref_mut]
4478 pub(crate) any_handle: AnyWindowHandle,
4479 state_type: PhantomData<V>,
4480}
4481
4482impl<V: 'static + Render> WindowHandle<V> {
4483 /// Creates a new handle from a window ID.
4484 /// This does not check if the root type of the window is `V`.
4485 pub fn new(id: WindowId) -> Self {
4486 WindowHandle {
4487 any_handle: AnyWindowHandle {
4488 id,
4489 state_type: TypeId::of::<V>(),
4490 },
4491 state_type: PhantomData,
4492 }
4493 }
4494
4495 /// Get the root view out of this window.
4496 ///
4497 /// This will fail if the window is closed or if the root view's type does not match `V`.
4498 #[cfg(any(test, feature = "test-support"))]
4499 pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4500 where
4501 C: AppContext,
4502 {
4503 crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4504 root_view
4505 .downcast::<V>()
4506 .map_err(|_| anyhow!("the type of the window's root view has changed"))
4507 }))
4508 }
4509
4510 /// Updates the root view of this window.
4511 ///
4512 /// This will fail if the window has been closed or if the root view's type does not match
4513 pub fn update<C, R>(
4514 &self,
4515 cx: &mut C,
4516 update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4517 ) -> Result<R>
4518 where
4519 C: AppContext,
4520 {
4521 cx.update_window(self.any_handle, |root_view, window, cx| {
4522 let view = root_view
4523 .downcast::<V>()
4524 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4525
4526 Ok(view.update(cx, |view, cx| update(view, window, cx)))
4527 })?
4528 }
4529
4530 /// Read the root view out of this window.
4531 ///
4532 /// This will fail if the window is closed or if the root view's type does not match `V`.
4533 pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
4534 let x = cx
4535 .windows
4536 .get(self.id)
4537 .and_then(|window| {
4538 window
4539 .as_ref()
4540 .and_then(|window| window.root.clone())
4541 .map(|root_view| root_view.downcast::<V>())
4542 })
4543 .context("window not found")?
4544 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4545
4546 Ok(x.read(cx))
4547 }
4548
4549 /// Read the root view out of this window, with a callback
4550 ///
4551 /// This will fail if the window is closed or if the root view's type does not match `V`.
4552 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4553 where
4554 C: AppContext,
4555 {
4556 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
4557 }
4558
4559 /// Read the root view pointer off of this window.
4560 ///
4561 /// This will fail if the window is closed or if the root view's type does not match `V`.
4562 pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4563 where
4564 C: AppContext,
4565 {
4566 cx.read_window(self, |root_view, _cx| root_view.clone())
4567 }
4568
4569 /// Check if this window is 'active'.
4570 ///
4571 /// Will return `None` if the window is closed or currently
4572 /// borrowed.
4573 pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4574 cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4575 .ok()
4576 }
4577}
4578
4579impl<V> Copy for WindowHandle<V> {}
4580
4581impl<V> Clone for WindowHandle<V> {
4582 fn clone(&self) -> Self {
4583 *self
4584 }
4585}
4586
4587impl<V> PartialEq for WindowHandle<V> {
4588 fn eq(&self, other: &Self) -> bool {
4589 self.any_handle == other.any_handle
4590 }
4591}
4592
4593impl<V> Eq for WindowHandle<V> {}
4594
4595impl<V> Hash for WindowHandle<V> {
4596 fn hash<H: Hasher>(&self, state: &mut H) {
4597 self.any_handle.hash(state);
4598 }
4599}
4600
4601impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
4602 fn from(val: WindowHandle<V>) -> Self {
4603 val.any_handle
4604 }
4605}
4606
4607unsafe impl<V> Send for WindowHandle<V> {}
4608unsafe impl<V> Sync for WindowHandle<V> {}
4609
4610/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
4611#[derive(Copy, Clone, PartialEq, Eq, Hash)]
4612pub struct AnyWindowHandle {
4613 pub(crate) id: WindowId,
4614 state_type: TypeId,
4615}
4616
4617impl AnyWindowHandle {
4618 /// Get the ID of this window.
4619 pub fn window_id(&self) -> WindowId {
4620 self.id
4621 }
4622
4623 /// Attempt to convert this handle to a window handle with a specific root view type.
4624 /// If the types do not match, this will return `None`.
4625 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
4626 if TypeId::of::<T>() == self.state_type {
4627 Some(WindowHandle {
4628 any_handle: *self,
4629 state_type: PhantomData,
4630 })
4631 } else {
4632 None
4633 }
4634 }
4635
4636 /// Updates the state of the root view of this window.
4637 ///
4638 /// This will fail if the window has been closed.
4639 pub fn update<C, R>(
4640 self,
4641 cx: &mut C,
4642 update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
4643 ) -> Result<R>
4644 where
4645 C: AppContext,
4646 {
4647 cx.update_window(self, update)
4648 }
4649
4650 /// Read the state of the root view of this window.
4651 ///
4652 /// This will fail if the window has been closed.
4653 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
4654 where
4655 C: AppContext,
4656 T: 'static,
4657 {
4658 let view = self
4659 .downcast::<T>()
4660 .context("the type of the window's root view has changed")?;
4661
4662 cx.read_window(&view, read)
4663 }
4664}
4665
4666impl HasWindowHandle for Window {
4667 fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
4668 self.platform_window.window_handle()
4669 }
4670}
4671
4672impl HasDisplayHandle for Window {
4673 fn display_handle(
4674 &self,
4675 ) -> std::result::Result<raw_window_handle::DisplayHandle<'_>, HandleError> {
4676 self.platform_window.display_handle()
4677 }
4678}
4679
4680/// An identifier for an [`Element`](crate::Element).
4681///
4682/// Can be constructed with a string, a number, or both, as well
4683/// as other internal representations.
4684#[derive(Clone, Debug, Eq, PartialEq, Hash)]
4685pub enum ElementId {
4686 /// The ID of a View element
4687 View(EntityId),
4688 /// An integer ID.
4689 Integer(u64),
4690 /// A string based ID.
4691 Name(SharedString),
4692 /// A UUID.
4693 Uuid(Uuid),
4694 /// An ID that's equated with a focus handle.
4695 FocusHandle(FocusId),
4696 /// A combination of a name and an integer.
4697 NamedInteger(SharedString, u64),
4698 /// A path.
4699 Path(Arc<std::path::Path>),
4700 /// A code location.
4701 CodeLocation(core::panic::Location<'static>),
4702}
4703
4704impl ElementId {
4705 /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
4706 pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
4707 Self::NamedInteger(name.into(), integer as u64)
4708 }
4709}
4710
4711impl Display for ElementId {
4712 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4713 match self {
4714 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
4715 ElementId::Integer(ix) => write!(f, "{}", ix)?,
4716 ElementId::Name(name) => write!(f, "{}", name)?,
4717 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
4718 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
4719 ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
4720 ElementId::Path(path) => write!(f, "{}", path.display())?,
4721 ElementId::CodeLocation(location) => write!(f, "{}", location)?,
4722 }
4723
4724 Ok(())
4725 }
4726}
4727
4728impl TryInto<SharedString> for ElementId {
4729 type Error = anyhow::Error;
4730
4731 fn try_into(self) -> anyhow::Result<SharedString> {
4732 if let ElementId::Name(name) = self {
4733 Ok(name)
4734 } else {
4735 anyhow::bail!("element id is not string")
4736 }
4737 }
4738}
4739
4740impl From<usize> for ElementId {
4741 fn from(id: usize) -> Self {
4742 ElementId::Integer(id as u64)
4743 }
4744}
4745
4746impl From<i32> for ElementId {
4747 fn from(id: i32) -> Self {
4748 Self::Integer(id as u64)
4749 }
4750}
4751
4752impl From<SharedString> for ElementId {
4753 fn from(name: SharedString) -> Self {
4754 ElementId::Name(name)
4755 }
4756}
4757
4758impl From<Arc<std::path::Path>> for ElementId {
4759 fn from(path: Arc<std::path::Path>) -> Self {
4760 ElementId::Path(path)
4761 }
4762}
4763
4764impl From<&'static str> for ElementId {
4765 fn from(name: &'static str) -> Self {
4766 ElementId::Name(name.into())
4767 }
4768}
4769
4770impl<'a> From<&'a FocusHandle> for ElementId {
4771 fn from(handle: &'a FocusHandle) -> Self {
4772 ElementId::FocusHandle(handle.id)
4773 }
4774}
4775
4776impl From<(&'static str, EntityId)> for ElementId {
4777 fn from((name, id): (&'static str, EntityId)) -> Self {
4778 ElementId::NamedInteger(name.into(), id.as_u64())
4779 }
4780}
4781
4782impl From<(&'static str, usize)> for ElementId {
4783 fn from((name, id): (&'static str, usize)) -> Self {
4784 ElementId::NamedInteger(name.into(), id as u64)
4785 }
4786}
4787
4788impl From<(SharedString, usize)> for ElementId {
4789 fn from((name, id): (SharedString, usize)) -> Self {
4790 ElementId::NamedInteger(name, id as u64)
4791 }
4792}
4793
4794impl From<(&'static str, u64)> for ElementId {
4795 fn from((name, id): (&'static str, u64)) -> Self {
4796 ElementId::NamedInteger(name.into(), id)
4797 }
4798}
4799
4800impl From<Uuid> for ElementId {
4801 fn from(value: Uuid) -> Self {
4802 Self::Uuid(value)
4803 }
4804}
4805
4806impl From<(&'static str, u32)> for ElementId {
4807 fn from((name, id): (&'static str, u32)) -> Self {
4808 ElementId::NamedInteger(name.into(), id.into())
4809 }
4810}
4811
4812/// A rectangle to be rendered in the window at the given position and size.
4813/// Passed as an argument [`Window::paint_quad`].
4814#[derive(Clone)]
4815pub struct PaintQuad {
4816 /// The bounds of the quad within the window.
4817 pub bounds: Bounds<Pixels>,
4818 /// The radii of the quad's corners.
4819 pub corner_radii: Corners<Pixels>,
4820 /// The background color of the quad.
4821 pub background: Background,
4822 /// The widths of the quad's borders.
4823 pub border_widths: Edges<Pixels>,
4824 /// The color of the quad's borders.
4825 pub border_color: Hsla,
4826 /// The style of the quad's borders.
4827 pub border_style: BorderStyle,
4828}
4829
4830impl PaintQuad {
4831 /// Sets the corner radii of the quad.
4832 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
4833 PaintQuad {
4834 corner_radii: corner_radii.into(),
4835 ..self
4836 }
4837 }
4838
4839 /// Sets the border widths of the quad.
4840 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
4841 PaintQuad {
4842 border_widths: border_widths.into(),
4843 ..self
4844 }
4845 }
4846
4847 /// Sets the border color of the quad.
4848 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
4849 PaintQuad {
4850 border_color: border_color.into(),
4851 ..self
4852 }
4853 }
4854
4855 /// Sets the background color of the quad.
4856 pub fn background(self, background: impl Into<Background>) -> Self {
4857 PaintQuad {
4858 background: background.into(),
4859 ..self
4860 }
4861 }
4862}
4863
4864/// Creates a quad with the given parameters.
4865pub fn quad(
4866 bounds: Bounds<Pixels>,
4867 corner_radii: impl Into<Corners<Pixels>>,
4868 background: impl Into<Background>,
4869 border_widths: impl Into<Edges<Pixels>>,
4870 border_color: impl Into<Hsla>,
4871 border_style: BorderStyle,
4872) -> PaintQuad {
4873 PaintQuad {
4874 bounds,
4875 corner_radii: corner_radii.into(),
4876 background: background.into(),
4877 border_widths: border_widths.into(),
4878 border_color: border_color.into(),
4879 border_style,
4880 }
4881}
4882
4883/// Creates a filled quad with the given bounds and background color.
4884pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
4885 PaintQuad {
4886 bounds: bounds.into(),
4887 corner_radii: (0.).into(),
4888 background: background.into(),
4889 border_widths: (0.).into(),
4890 border_color: transparent_black(),
4891 border_style: BorderStyle::default(),
4892 }
4893}
4894
4895/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
4896pub fn outline(
4897 bounds: impl Into<Bounds<Pixels>>,
4898 border_color: impl Into<Hsla>,
4899 border_style: BorderStyle,
4900) -> PaintQuad {
4901 PaintQuad {
4902 bounds: bounds.into(),
4903 corner_radii: (0.).into(),
4904 background: transparent_black().into(),
4905 border_widths: (1.).into(),
4906 border_color: border_color.into(),
4907 border_style,
4908 }
4909}