1#[cfg(any(feature = "inspector", debug_assertions))]
2use crate::Inspector;
3use crate::{
4 Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
5 AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Capslock,
6 Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
7 DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
8 FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
9 KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
10 LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
11 MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
12 PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptButton, PromptLevel, Quad,
13 Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge,
14 SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS_X, SUBPIXEL_VARIANTS_Y, ScaledPixels, Scene, Shadow,
15 SharedString, Size, StrikethroughStyle, Style, SubscriberSet, Subscription, SystemWindowTab,
16 SystemWindowTabController, TabStopMap, TaffyLayoutEngine, Task, TextStyle, TextStyleRefinement,
17 TransformationMatrix, Underline, UnderlineStyle, WindowAppearance, WindowBackgroundAppearance,
18 WindowBounds, WindowControls, WindowDecorations, WindowOptions, WindowParams, WindowTextSystem,
19 point, prelude::*, px, rems, size, transparent_black,
20};
21use anyhow::{Context as _, Result, anyhow};
22use collections::{FxHashMap, FxHashSet};
23#[cfg(target_os = "macos")]
24use core_video::pixel_buffer::CVPixelBuffer;
25use derive_more::{Deref, DerefMut};
26use futures::FutureExt;
27use futures::channel::oneshot;
28use itertools::FoldWhile::{Continue, Done};
29use itertools::Itertools;
30use parking_lot::RwLock;
31use raw_window_handle::{HandleError, HasDisplayHandle, HasWindowHandle};
32use refineable::Refineable;
33use slotmap::SlotMap;
34use smallvec::SmallVec;
35use std::{
36 any::{Any, TypeId},
37 borrow::Cow,
38 cell::{Cell, RefCell},
39 cmp,
40 fmt::{Debug, Display},
41 hash::{Hash, Hasher},
42 marker::PhantomData,
43 mem,
44 ops::{DerefMut, Range},
45 rc::Rc,
46 sync::{
47 Arc, Weak,
48 atomic::{AtomicUsize, Ordering::SeqCst},
49 },
50 time::{Duration, Instant},
51};
52use util::post_inc;
53use util::{ResultExt, measure};
54use uuid::Uuid;
55
56mod prompts;
57
58use crate::util::atomic_incr_if_not_zero;
59pub use prompts::*;
60
61pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1536.), px(864.));
62
63/// A 6:5 aspect ratio minimum window size to be used for functional,
64/// additional-to-main-Zed windows, like the settings and rules library windows.
65pub const DEFAULT_ADDITIONAL_WINDOW_SIZE: Size<Pixels> = Size {
66 width: Pixels(900.),
67 height: Pixels(750.),
68};
69
70/// Represents the two different phases when dispatching events.
71#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
72pub enum DispatchPhase {
73 /// After the capture phase comes the bubble phase, in which mouse event listeners are
74 /// invoked front to back and keyboard event listeners are invoked from the focused element
75 /// to the root of the element tree. This is the phase you'll most commonly want to use when
76 /// registering event listeners.
77 #[default]
78 Bubble,
79 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
80 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
81 /// is used for special purposes such as clearing the "pressed" state for click events. If
82 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
83 /// outside of the immediate region may rely on detecting non-local events during this phase.
84 Capture,
85}
86
87impl DispatchPhase {
88 /// Returns true if this represents the "bubble" phase.
89 #[inline]
90 pub fn bubble(self) -> bool {
91 self == DispatchPhase::Bubble
92 }
93
94 /// Returns true if this represents the "capture" phase.
95 #[inline]
96 pub fn capture(self) -> bool {
97 self == DispatchPhase::Capture
98 }
99}
100
101struct WindowInvalidatorInner {
102 pub dirty: bool,
103 pub draw_phase: DrawPhase,
104 pub dirty_views: FxHashSet<EntityId>,
105}
106
107#[derive(Clone)]
108pub(crate) struct WindowInvalidator {
109 inner: Rc<RefCell<WindowInvalidatorInner>>,
110}
111
112impl WindowInvalidator {
113 pub fn new() -> Self {
114 WindowInvalidator {
115 inner: Rc::new(RefCell::new(WindowInvalidatorInner {
116 dirty: true,
117 draw_phase: DrawPhase::None,
118 dirty_views: FxHashSet::default(),
119 })),
120 }
121 }
122
123 pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
124 let mut inner = self.inner.borrow_mut();
125 inner.dirty_views.insert(entity);
126 if inner.draw_phase == DrawPhase::None {
127 inner.dirty = true;
128 cx.push_effect(Effect::Notify { emitter: entity });
129 true
130 } else {
131 false
132 }
133 }
134
135 pub fn is_dirty(&self) -> bool {
136 self.inner.borrow().dirty
137 }
138
139 pub fn set_dirty(&self, dirty: bool) {
140 self.inner.borrow_mut().dirty = dirty
141 }
142
143 pub fn set_phase(&self, phase: DrawPhase) {
144 self.inner.borrow_mut().draw_phase = phase
145 }
146
147 pub fn take_views(&self) -> FxHashSet<EntityId> {
148 mem::take(&mut self.inner.borrow_mut().dirty_views)
149 }
150
151 pub fn replace_views(&self, views: FxHashSet<EntityId>) {
152 self.inner.borrow_mut().dirty_views = views;
153 }
154
155 pub fn not_drawing(&self) -> bool {
156 self.inner.borrow().draw_phase == DrawPhase::None
157 }
158
159 #[track_caller]
160 pub fn debug_assert_paint(&self) {
161 debug_assert!(
162 matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
163 "this method can only be called during paint"
164 );
165 }
166
167 #[track_caller]
168 pub fn debug_assert_prepaint(&self) {
169 debug_assert!(
170 matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
171 "this method can only be called during request_layout, or prepaint"
172 );
173 }
174
175 #[track_caller]
176 pub fn debug_assert_paint_or_prepaint(&self) {
177 debug_assert!(
178 matches!(
179 self.inner.borrow().draw_phase,
180 DrawPhase::Paint | DrawPhase::Prepaint
181 ),
182 "this method can only be called during request_layout, prepaint, or paint"
183 );
184 }
185}
186
187type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
188
189pub(crate) type AnyWindowFocusListener =
190 Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
191
192pub(crate) struct WindowFocusEvent {
193 pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
194 pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
195}
196
197impl WindowFocusEvent {
198 pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
199 !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
200 }
201
202 pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
203 self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
204 }
205}
206
207/// This is provided when subscribing for `Context::on_focus_out` events.
208pub struct FocusOutEvent {
209 /// A weak focus handle representing what was blurred.
210 pub blurred: WeakFocusHandle,
211}
212
213slotmap::new_key_type! {
214 /// A globally unique identifier for a focusable element.
215 pub struct FocusId;
216}
217
218thread_local! {
219 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(1024 * 1024));
220}
221
222/// Returned when the element arena has been used and so must be cleared before the next draw.
223#[must_use]
224pub struct ArenaClearNeeded;
225
226impl ArenaClearNeeded {
227 /// Clear the element arena.
228 pub fn clear(self) {
229 ELEMENT_ARENA.with_borrow_mut(|element_arena| {
230 element_arena.clear();
231 });
232 }
233}
234
235pub(crate) type FocusMap = RwLock<SlotMap<FocusId, FocusRef>>;
236pub(crate) struct FocusRef {
237 pub(crate) ref_count: AtomicUsize,
238 pub(crate) tab_index: isize,
239 pub(crate) tab_stop: bool,
240}
241
242impl FocusId {
243 /// Obtains whether the element associated with this handle is currently focused.
244 pub fn is_focused(&self, window: &Window) -> bool {
245 window.focus == Some(*self)
246 }
247
248 /// Obtains whether the element associated with this handle contains the focused
249 /// element or is itself focused.
250 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
251 window
252 .focused(cx)
253 .is_some_and(|focused| self.contains(focused.id, window))
254 }
255
256 /// Obtains whether the element associated with this handle is contained within the
257 /// focused element or is itself focused.
258 pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
259 let focused = window.focused(cx);
260 focused.is_some_and(|focused| focused.id.contains(*self, window))
261 }
262
263 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
264 pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
265 window
266 .rendered_frame
267 .dispatch_tree
268 .focus_contains(*self, other)
269 }
270}
271
272/// A handle which can be used to track and manipulate the focused element in a window.
273pub struct FocusHandle {
274 pub(crate) id: FocusId,
275 handles: Arc<FocusMap>,
276 /// The index of this element in the tab order.
277 pub tab_index: isize,
278 /// Whether this element can be focused by tab navigation.
279 pub tab_stop: bool,
280}
281
282impl std::fmt::Debug for FocusHandle {
283 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
284 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
285 }
286}
287
288impl FocusHandle {
289 pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
290 let id = handles.write().insert(FocusRef {
291 ref_count: AtomicUsize::new(1),
292 tab_index: 0,
293 tab_stop: false,
294 });
295
296 Self {
297 id,
298 tab_index: 0,
299 tab_stop: false,
300 handles: handles.clone(),
301 }
302 }
303
304 pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
305 let lock = handles.read();
306 let focus = lock.get(id)?;
307 if atomic_incr_if_not_zero(&focus.ref_count) == 0 {
308 return None;
309 }
310 Some(Self {
311 id,
312 tab_index: focus.tab_index,
313 tab_stop: focus.tab_stop,
314 handles: handles.clone(),
315 })
316 }
317
318 /// Sets the tab index of the element associated with this handle.
319 pub fn tab_index(mut self, index: isize) -> Self {
320 self.tab_index = index;
321 if let Some(focus) = self.handles.write().get_mut(self.id) {
322 focus.tab_index = index;
323 }
324 self
325 }
326
327 /// Sets whether the element associated with this handle is a tab stop.
328 ///
329 /// When `false`, the element will not be included in the tab order.
330 pub fn tab_stop(mut self, tab_stop: bool) -> Self {
331 self.tab_stop = tab_stop;
332 if let Some(focus) = self.handles.write().get_mut(self.id) {
333 focus.tab_stop = tab_stop;
334 }
335 self
336 }
337
338 /// Converts this focus handle into a weak variant, which does not prevent it from being released.
339 pub fn downgrade(&self) -> WeakFocusHandle {
340 WeakFocusHandle {
341 id: self.id,
342 handles: Arc::downgrade(&self.handles),
343 }
344 }
345
346 /// Moves the focus to the element associated with this handle.
347 pub fn focus(&self, window: &mut Window) {
348 window.focus(self)
349 }
350
351 /// Obtains whether the element associated with this handle is currently focused.
352 pub fn is_focused(&self, window: &Window) -> bool {
353 self.id.is_focused(window)
354 }
355
356 /// Obtains whether the element associated with this handle contains the focused
357 /// element or is itself focused.
358 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
359 self.id.contains_focused(window, cx)
360 }
361
362 /// Obtains whether the element associated with this handle is contained within the
363 /// focused element or is itself focused.
364 pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
365 self.id.within_focused(window, cx)
366 }
367
368 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
369 pub fn contains(&self, other: &Self, window: &Window) -> bool {
370 self.id.contains(other.id, window)
371 }
372
373 /// Dispatch an action on the element that rendered this focus handle
374 pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
375 if let Some(node_id) = window
376 .rendered_frame
377 .dispatch_tree
378 .focusable_node_id(self.id)
379 {
380 window.dispatch_action_on_node(node_id, action, cx)
381 }
382 }
383}
384
385impl Clone for FocusHandle {
386 fn clone(&self) -> Self {
387 Self::for_id(self.id, &self.handles).unwrap()
388 }
389}
390
391impl PartialEq for FocusHandle {
392 fn eq(&self, other: &Self) -> bool {
393 self.id == other.id
394 }
395}
396
397impl Eq for FocusHandle {}
398
399impl Drop for FocusHandle {
400 fn drop(&mut self) {
401 self.handles
402 .read()
403 .get(self.id)
404 .unwrap()
405 .ref_count
406 .fetch_sub(1, SeqCst);
407 }
408}
409
410/// A weak reference to a focus handle.
411#[derive(Clone, Debug)]
412pub struct WeakFocusHandle {
413 pub(crate) id: FocusId,
414 pub(crate) handles: Weak<FocusMap>,
415}
416
417impl WeakFocusHandle {
418 /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
419 pub fn upgrade(&self) -> Option<FocusHandle> {
420 let handles = self.handles.upgrade()?;
421 FocusHandle::for_id(self.id, &handles)
422 }
423}
424
425impl PartialEq for WeakFocusHandle {
426 fn eq(&self, other: &WeakFocusHandle) -> bool {
427 self.id == other.id
428 }
429}
430
431impl Eq for WeakFocusHandle {}
432
433impl PartialEq<FocusHandle> for WeakFocusHandle {
434 fn eq(&self, other: &FocusHandle) -> bool {
435 self.id == other.id
436 }
437}
438
439impl PartialEq<WeakFocusHandle> for FocusHandle {
440 fn eq(&self, other: &WeakFocusHandle) -> bool {
441 self.id == other.id
442 }
443}
444
445/// Focusable allows users of your view to easily
446/// focus it (using window.focus_view(cx, view))
447pub trait Focusable: 'static {
448 /// Returns the focus handle associated with this view.
449 fn focus_handle(&self, cx: &App) -> FocusHandle;
450}
451
452impl<V: Focusable> Focusable for Entity<V> {
453 fn focus_handle(&self, cx: &App) -> FocusHandle {
454 self.read(cx).focus_handle(cx)
455 }
456}
457
458/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
459/// where the lifecycle of the view is handled by another view.
460pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
461
462impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
463
464/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
465pub struct DismissEvent;
466
467type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
468
469pub(crate) type AnyMouseListener =
470 Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
471
472#[derive(Clone)]
473pub(crate) struct CursorStyleRequest {
474 pub(crate) hitbox_id: Option<HitboxId>,
475 pub(crate) style: CursorStyle,
476}
477
478#[derive(Default, Eq, PartialEq)]
479pub(crate) struct HitTest {
480 pub(crate) ids: SmallVec<[HitboxId; 8]>,
481 pub(crate) hover_hitbox_count: usize,
482}
483
484/// A type of window control area that corresponds to the platform window.
485#[derive(Clone, Copy, Debug, Eq, PartialEq)]
486pub enum WindowControlArea {
487 /// An area that allows dragging of the platform window.
488 Drag,
489 /// An area that allows closing of the platform window.
490 Close,
491 /// An area that allows maximizing of the platform window.
492 Max,
493 /// An area that allows minimizing of the platform window.
494 Min,
495}
496
497/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
498#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
499pub struct HitboxId(u64);
500
501impl HitboxId {
502 /// Checks if the hitbox with this ID is currently hovered. Except when handling
503 /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
504 /// events or paint hover styles.
505 ///
506 /// See [`Hitbox::is_hovered`] for details.
507 pub fn is_hovered(self, window: &Window) -> bool {
508 let hit_test = &window.mouse_hit_test;
509 for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
510 if self == *id {
511 return true;
512 }
513 }
514 false
515 }
516
517 /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
518 /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
519 /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
520 /// this distinction.
521 pub fn should_handle_scroll(self, window: &Window) -> bool {
522 window.mouse_hit_test.ids.contains(&self)
523 }
524
525 fn next(mut self) -> HitboxId {
526 HitboxId(self.0.wrapping_add(1))
527 }
528}
529
530/// A rectangular region that potentially blocks hitboxes inserted prior.
531/// See [Window::insert_hitbox] for more details.
532#[derive(Clone, Debug, Deref)]
533pub struct Hitbox {
534 /// A unique identifier for the hitbox.
535 pub id: HitboxId,
536 /// The bounds of the hitbox.
537 #[deref]
538 pub bounds: Bounds<Pixels>,
539 /// The content mask when the hitbox was inserted.
540 pub content_mask: ContentMask<Pixels>,
541 /// Flags that specify hitbox behavior.
542 pub behavior: HitboxBehavior,
543}
544
545impl Hitbox {
546 /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
547 /// typically what you want when determining whether to handle mouse events or paint hover
548 /// styles.
549 ///
550 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
551 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
552 /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
553 ///
554 /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
555 /// Concretely, this is due to use-cases like overlays that cause the elements under to be
556 /// non-interactive while still allowing scrolling. More abstractly, this is because
557 /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
558 /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
559 /// container.
560 pub fn is_hovered(&self, window: &Window) -> bool {
561 self.id.is_hovered(window)
562 }
563
564 /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
565 /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
566 /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
567 ///
568 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
569 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
570 pub fn should_handle_scroll(&self, window: &Window) -> bool {
571 self.id.should_handle_scroll(window)
572 }
573}
574
575/// How the hitbox affects mouse behavior.
576#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
577pub enum HitboxBehavior {
578 /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
579 #[default]
580 Normal,
581
582 /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
583 /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
584 /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
585 /// [`InteractiveElement::occlude`].
586 ///
587 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
588 /// bubble-phase handler for every mouse event type:
589 ///
590 /// ```ignore
591 /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
592 /// if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
593 /// cx.stop_propagation();
594 /// }
595 /// })
596 /// ```
597 ///
598 /// This has effects beyond event handling - any use of hitbox checking, such as hover
599 /// styles and tooltops. These other behaviors are the main point of this mechanism. An
600 /// alternative might be to not affect mouse event handling - but this would allow
601 /// inconsistent UI where clicks and moves interact with elements that are not considered to
602 /// be hovered.
603 BlockMouse,
604
605 /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
606 /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
607 /// interaction except scroll events to be ignored - see the documentation of
608 /// [`Hitbox::is_hovered`] for details. This flag is set by
609 /// [`InteractiveElement::block_mouse_except_scroll`].
610 ///
611 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
612 /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
613 ///
614 /// ```ignore
615 /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, cx| {
616 /// if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
617 /// cx.stop_propagation();
618 /// }
619 /// })
620 /// ```
621 ///
622 /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
623 /// handled differently than other mouse events. If also blocking these scroll events is
624 /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
625 ///
626 /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
627 /// hover styles and tooltops. These other behaviors are the main point of this mechanism.
628 /// An alternative might be to not affect mouse event handling - but this would allow
629 /// inconsistent UI where clicks and moves interact with elements that are not considered to
630 /// be hovered.
631 BlockMouseExceptScroll,
632}
633
634/// An identifier for a tooltip.
635#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
636pub struct TooltipId(usize);
637
638impl TooltipId {
639 /// Checks if the tooltip is currently hovered.
640 pub fn is_hovered(&self, window: &Window) -> bool {
641 window
642 .tooltip_bounds
643 .as_ref()
644 .is_some_and(|tooltip_bounds| {
645 tooltip_bounds.id == *self
646 && tooltip_bounds.bounds.contains(&window.mouse_position())
647 })
648 }
649}
650
651pub(crate) struct TooltipBounds {
652 id: TooltipId,
653 bounds: Bounds<Pixels>,
654}
655
656#[derive(Clone)]
657pub(crate) struct TooltipRequest {
658 id: TooltipId,
659 tooltip: AnyTooltip,
660}
661
662pub(crate) struct DeferredDraw {
663 current_view: EntityId,
664 priority: usize,
665 parent_node: DispatchNodeId,
666 element_id_stack: SmallVec<[ElementId; 32]>,
667 text_style_stack: Vec<TextStyleRefinement>,
668 element: Option<AnyElement>,
669 absolute_offset: Point<Pixels>,
670 prepaint_range: Range<PrepaintStateIndex>,
671 paint_range: Range<PaintIndex>,
672}
673
674pub(crate) struct Frame {
675 pub(crate) focus: Option<FocusId>,
676 pub(crate) window_active: bool,
677 pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
678 accessed_element_states: Vec<(GlobalElementId, TypeId)>,
679 pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
680 pub(crate) dispatch_tree: DispatchTree,
681 pub(crate) scene: Scene,
682 pub(crate) hitboxes: Vec<Hitbox>,
683 pub(crate) window_control_hitboxes: Vec<(WindowControlArea, Hitbox)>,
684 pub(crate) deferred_draws: Vec<DeferredDraw>,
685 pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
686 pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
687 pub(crate) cursor_styles: Vec<CursorStyleRequest>,
688 #[cfg(any(test, feature = "test-support"))]
689 pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
690 #[cfg(any(feature = "inspector", debug_assertions))]
691 pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
692 #[cfg(any(feature = "inspector", debug_assertions))]
693 pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
694 pub(crate) tab_stops: TabStopMap,
695}
696
697#[derive(Clone, Default)]
698pub(crate) struct PrepaintStateIndex {
699 hitboxes_index: usize,
700 tooltips_index: usize,
701 deferred_draws_index: usize,
702 dispatch_tree_index: usize,
703 accessed_element_states_index: usize,
704 line_layout_index: LineLayoutIndex,
705}
706
707#[derive(Clone, Default)]
708pub(crate) struct PaintIndex {
709 scene_index: usize,
710 mouse_listeners_index: usize,
711 input_handlers_index: usize,
712 cursor_styles_index: usize,
713 accessed_element_states_index: usize,
714 tab_handle_index: usize,
715 line_layout_index: LineLayoutIndex,
716}
717
718impl Frame {
719 pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
720 Frame {
721 focus: None,
722 window_active: false,
723 element_states: FxHashMap::default(),
724 accessed_element_states: Vec::new(),
725 mouse_listeners: Vec::new(),
726 dispatch_tree,
727 scene: Scene::default(),
728 hitboxes: Vec::new(),
729 window_control_hitboxes: Vec::new(),
730 deferred_draws: Vec::new(),
731 input_handlers: Vec::new(),
732 tooltip_requests: Vec::new(),
733 cursor_styles: Vec::new(),
734
735 #[cfg(any(test, feature = "test-support"))]
736 debug_bounds: FxHashMap::default(),
737
738 #[cfg(any(feature = "inspector", debug_assertions))]
739 next_inspector_instance_ids: FxHashMap::default(),
740
741 #[cfg(any(feature = "inspector", debug_assertions))]
742 inspector_hitboxes: FxHashMap::default(),
743 tab_stops: TabStopMap::default(),
744 }
745 }
746
747 pub(crate) fn clear(&mut self) {
748 self.element_states.clear();
749 self.accessed_element_states.clear();
750 self.mouse_listeners.clear();
751 self.dispatch_tree.clear();
752 self.scene.clear();
753 self.input_handlers.clear();
754 self.tooltip_requests.clear();
755 self.cursor_styles.clear();
756 self.hitboxes.clear();
757 self.window_control_hitboxes.clear();
758 self.deferred_draws.clear();
759 self.tab_stops.clear();
760 self.focus = None;
761
762 #[cfg(any(feature = "inspector", debug_assertions))]
763 {
764 self.next_inspector_instance_ids.clear();
765 self.inspector_hitboxes.clear();
766 }
767 }
768
769 pub(crate) fn cursor_style(&self, window: &Window) -> Option<CursorStyle> {
770 self.cursor_styles
771 .iter()
772 .rev()
773 .fold_while(None, |style, request| match request.hitbox_id {
774 None => Done(Some(request.style)),
775 Some(hitbox_id) => Continue(
776 style.or_else(|| hitbox_id.is_hovered(window).then_some(request.style)),
777 ),
778 })
779 .into_inner()
780 }
781
782 pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
783 let mut set_hover_hitbox_count = false;
784 let mut hit_test = HitTest::default();
785 for hitbox in self.hitboxes.iter().rev() {
786 let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
787 if bounds.contains(&position) {
788 hit_test.ids.push(hitbox.id);
789 if !set_hover_hitbox_count
790 && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
791 {
792 hit_test.hover_hitbox_count = hit_test.ids.len();
793 set_hover_hitbox_count = true;
794 }
795 if hitbox.behavior == HitboxBehavior::BlockMouse {
796 break;
797 }
798 }
799 }
800 if !set_hover_hitbox_count {
801 hit_test.hover_hitbox_count = hit_test.ids.len();
802 }
803 hit_test
804 }
805
806 pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
807 self.focus
808 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
809 .unwrap_or_default()
810 }
811
812 pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
813 for element_state_key in &self.accessed_element_states {
814 if let Some((element_state_key, element_state)) =
815 prev_frame.element_states.remove_entry(element_state_key)
816 {
817 self.element_states.insert(element_state_key, element_state);
818 }
819 }
820
821 self.scene.finish();
822 }
823}
824
825#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Ord, PartialOrd)]
826enum InputModality {
827 Mouse,
828 Keyboard,
829}
830
831/// Holds the state for a specific window.
832pub struct Window {
833 pub(crate) handle: AnyWindowHandle,
834 pub(crate) invalidator: WindowInvalidator,
835 pub(crate) removed: bool,
836 pub(crate) platform_window: Box<dyn PlatformWindow>,
837 display_id: Option<DisplayId>,
838 sprite_atlas: Arc<dyn PlatformAtlas>,
839 text_system: Arc<WindowTextSystem>,
840 rem_size: Pixels,
841 /// The stack of override values for the window's rem size.
842 ///
843 /// This is used by `with_rem_size` to allow rendering an element tree with
844 /// a given rem size.
845 rem_size_override_stack: SmallVec<[Pixels; 8]>,
846 pub(crate) viewport_size: Size<Pixels>,
847 layout_engine: Option<TaffyLayoutEngine>,
848 pub(crate) root: Option<AnyView>,
849 pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
850 pub(crate) text_style_stack: Vec<TextStyleRefinement>,
851 pub(crate) rendered_entity_stack: Vec<EntityId>,
852 pub(crate) element_offset_stack: Vec<Point<Pixels>>,
853 pub(crate) element_opacity: f32,
854 pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
855 pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
856 pub(crate) image_cache_stack: Vec<AnyImageCache>,
857 pub(crate) rendered_frame: Frame,
858 pub(crate) next_frame: Frame,
859 next_hitbox_id: HitboxId,
860 pub(crate) next_tooltip_id: TooltipId,
861 pub(crate) tooltip_bounds: Option<TooltipBounds>,
862 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
863 pub(crate) dirty_views: FxHashSet<EntityId>,
864 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
865 pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
866 default_prevented: bool,
867 mouse_position: Point<Pixels>,
868 mouse_hit_test: HitTest,
869 modifiers: Modifiers,
870 capslock: Capslock,
871 scale_factor: f32,
872 pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
873 appearance: WindowAppearance,
874 pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
875 active: Rc<Cell<bool>>,
876 hovered: Rc<Cell<bool>>,
877 pub(crate) needs_present: Rc<Cell<bool>>,
878 pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
879 last_input_modality: InputModality,
880 pub(crate) refreshing: bool,
881 pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
882 pub(crate) focus: Option<FocusId>,
883 focus_enabled: bool,
884 pending_input: Option<PendingInput>,
885 pending_modifier: ModifierState,
886 pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
887 prompt: Option<RenderablePromptHandle>,
888 pub(crate) client_inset: Option<Pixels>,
889 #[cfg(any(feature = "inspector", debug_assertions))]
890 inspector: Option<Entity<Inspector>>,
891}
892
893#[derive(Clone, Debug, Default)]
894struct ModifierState {
895 modifiers: Modifiers,
896 saw_keystroke: bool,
897}
898
899#[derive(Clone, Copy, Debug, Eq, PartialEq)]
900pub(crate) enum DrawPhase {
901 None,
902 Prepaint,
903 Paint,
904 Focus,
905}
906
907#[derive(Default, Debug)]
908struct PendingInput {
909 keystrokes: SmallVec<[Keystroke; 1]>,
910 focus: Option<FocusId>,
911 timer: Option<Task<()>>,
912}
913
914pub(crate) struct ElementStateBox {
915 pub(crate) inner: Box<dyn Any>,
916 #[cfg(debug_assertions)]
917 pub(crate) type_name: &'static str,
918}
919
920fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> Bounds<Pixels> {
921 #[cfg(target_os = "macos")]
922 {
923 const CASCADE_OFFSET: f32 = 25.0;
924
925 let display = display_id
926 .map(|id| cx.find_display(id))
927 .unwrap_or_else(|| cx.primary_display());
928
929 let display_bounds = display
930 .as_ref()
931 .map(|d| d.bounds())
932 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE));
933
934 // TODO, BUG: if you open a window with the currently active window
935 // on the stack, this will erroneously select the 'unwrap_or_else'
936 // code path
937 let (base_origin, base_size) = cx
938 .active_window()
939 .and_then(|w| {
940 w.update(cx, |_, window, _| {
941 let bounds = window.bounds();
942 (bounds.origin, bounds.size)
943 })
944 .ok()
945 })
946 .unwrap_or_else(|| {
947 let default_bounds = display
948 .as_ref()
949 .map(|d| d.default_bounds())
950 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE));
951 (default_bounds.origin, default_bounds.size)
952 });
953
954 let cascade_offset = point(px(CASCADE_OFFSET), px(CASCADE_OFFSET));
955 let proposed_origin = base_origin + cascade_offset;
956 let proposed_bounds = Bounds::new(proposed_origin, base_size);
957
958 let display_right = display_bounds.origin.x + display_bounds.size.width;
959 let display_bottom = display_bounds.origin.y + display_bounds.size.height;
960 let window_right = proposed_bounds.origin.x + proposed_bounds.size.width;
961 let window_bottom = proposed_bounds.origin.y + proposed_bounds.size.height;
962
963 let fits_horizontally = window_right <= display_right;
964 let fits_vertically = window_bottom <= display_bottom;
965
966 let final_origin = match (fits_horizontally, fits_vertically) {
967 (true, true) => proposed_origin,
968 (false, true) => point(display_bounds.origin.x, base_origin.y),
969 (true, false) => point(base_origin.x, display_bounds.origin.y),
970 (false, false) => display_bounds.origin,
971 };
972
973 Bounds::new(final_origin, base_size)
974 }
975
976 #[cfg(not(target_os = "macos"))]
977 {
978 const DEFAULT_WINDOW_OFFSET: Point<Pixels> = point(px(0.), px(35.));
979
980 // TODO, BUG: if you open a window with the currently active window
981 // on the stack, this will erroneously select the 'unwrap_or_else'
982 // code path
983 cx.active_window()
984 .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok())
985 .map(|mut bounds| {
986 bounds.origin += DEFAULT_WINDOW_OFFSET;
987 bounds
988 })
989 .unwrap_or_else(|| {
990 let display = display_id
991 .map(|id| cx.find_display(id))
992 .unwrap_or_else(|| cx.primary_display());
993
994 display
995 .as_ref()
996 .map(|display| display.default_bounds())
997 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE))
998 })
999 }
1000}
1001
1002impl Window {
1003 pub(crate) fn new(
1004 handle: AnyWindowHandle,
1005 options: WindowOptions,
1006 cx: &mut App,
1007 ) -> Result<Self> {
1008 let WindowOptions {
1009 window_bounds,
1010 titlebar,
1011 focus,
1012 show,
1013 kind,
1014 is_movable,
1015 is_resizable,
1016 is_minimizable,
1017 display_id,
1018 window_background,
1019 app_id,
1020 window_min_size,
1021 window_decorations,
1022 #[cfg_attr(not(target_os = "macos"), allow(unused_variables))]
1023 tabbing_identifier,
1024 } = options;
1025
1026 let bounds = window_bounds
1027 .map(|bounds| bounds.get_bounds())
1028 .unwrap_or_else(|| default_bounds(display_id, cx));
1029 let mut platform_window = cx.platform.open_window(
1030 handle,
1031 WindowParams {
1032 bounds,
1033 titlebar,
1034 kind,
1035 is_movable,
1036 is_resizable,
1037 is_minimizable,
1038 focus,
1039 show,
1040 display_id,
1041 window_min_size,
1042 #[cfg(target_os = "macos")]
1043 tabbing_identifier,
1044 },
1045 )?;
1046
1047 let tab_bar_visible = platform_window.tab_bar_visible();
1048 SystemWindowTabController::init_visible(cx, tab_bar_visible);
1049 if let Some(tabs) = platform_window.tabbed_windows() {
1050 SystemWindowTabController::add_tab(cx, handle.window_id(), tabs);
1051 }
1052
1053 let display_id = platform_window.display().map(|display| display.id());
1054 let sprite_atlas = platform_window.sprite_atlas();
1055 let mouse_position = platform_window.mouse_position();
1056 let modifiers = platform_window.modifiers();
1057 let capslock = platform_window.capslock();
1058 let content_size = platform_window.content_size();
1059 let scale_factor = platform_window.scale_factor();
1060 let appearance = platform_window.appearance();
1061 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
1062 let invalidator = WindowInvalidator::new();
1063 let active = Rc::new(Cell::new(platform_window.is_active()));
1064 let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
1065 let needs_present = Rc::new(Cell::new(false));
1066 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
1067 let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
1068
1069 platform_window
1070 .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
1071 platform_window.set_background_appearance(window_background);
1072
1073 if let Some(ref window_open_state) = window_bounds {
1074 match window_open_state {
1075 WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
1076 WindowBounds::Maximized(_) => platform_window.zoom(),
1077 WindowBounds::Windowed(_) => {}
1078 }
1079 }
1080
1081 platform_window.on_close(Box::new({
1082 let window_id = handle.window_id();
1083 let mut cx = cx.to_async();
1084 move || {
1085 let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
1086 let _ = cx.update(|cx| {
1087 SystemWindowTabController::remove_tab(cx, window_id);
1088 });
1089 }
1090 }));
1091 platform_window.on_request_frame(Box::new({
1092 let mut cx = cx.to_async();
1093 let invalidator = invalidator.clone();
1094 let active = active.clone();
1095 let needs_present = needs_present.clone();
1096 let next_frame_callbacks = next_frame_callbacks.clone();
1097 let last_input_timestamp = last_input_timestamp.clone();
1098 move |request_frame_options| {
1099 let next_frame_callbacks = next_frame_callbacks.take();
1100 if !next_frame_callbacks.is_empty() {
1101 handle
1102 .update(&mut cx, |_, window, cx| {
1103 for callback in next_frame_callbacks {
1104 callback(window, cx);
1105 }
1106 })
1107 .log_err();
1108 }
1109
1110 // Keep presenting the current scene for 1 extra second since the
1111 // last input to prevent the display from underclocking the refresh rate.
1112 let needs_present = request_frame_options.require_presentation
1113 || needs_present.get()
1114 || (active.get()
1115 && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
1116
1117 if invalidator.is_dirty() || request_frame_options.force_render {
1118 measure("frame duration", || {
1119 handle
1120 .update(&mut cx, |_, window, cx| {
1121 let arena_clear_needed = window.draw(cx);
1122 window.present();
1123 // drop the arena elements after present to reduce latency
1124 arena_clear_needed.clear();
1125 })
1126 .log_err();
1127 })
1128 } else if needs_present {
1129 handle
1130 .update(&mut cx, |_, window, _| window.present())
1131 .log_err();
1132 }
1133
1134 handle
1135 .update(&mut cx, |_, window, _| {
1136 window.complete_frame();
1137 })
1138 .log_err();
1139 }
1140 }));
1141 platform_window.on_resize(Box::new({
1142 let mut cx = cx.to_async();
1143 move |_, _| {
1144 handle
1145 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1146 .log_err();
1147 }
1148 }));
1149 platform_window.on_moved(Box::new({
1150 let mut cx = cx.to_async();
1151 move || {
1152 handle
1153 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1154 .log_err();
1155 }
1156 }));
1157 platform_window.on_appearance_changed(Box::new({
1158 let mut cx = cx.to_async();
1159 move || {
1160 handle
1161 .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
1162 .log_err();
1163 }
1164 }));
1165 platform_window.on_active_status_change(Box::new({
1166 let mut cx = cx.to_async();
1167 move |active| {
1168 handle
1169 .update(&mut cx, |_, window, cx| {
1170 window.active.set(active);
1171 window.modifiers = window.platform_window.modifiers();
1172 window.capslock = window.platform_window.capslock();
1173 window
1174 .activation_observers
1175 .clone()
1176 .retain(&(), |callback| callback(window, cx));
1177
1178 window.bounds_changed(cx);
1179 window.refresh();
1180
1181 SystemWindowTabController::update_last_active(cx, window.handle.id);
1182 })
1183 .log_err();
1184 }
1185 }));
1186 platform_window.on_hover_status_change(Box::new({
1187 let mut cx = cx.to_async();
1188 move |active| {
1189 handle
1190 .update(&mut cx, |_, window, _| {
1191 window.hovered.set(active);
1192 window.refresh();
1193 })
1194 .log_err();
1195 }
1196 }));
1197 platform_window.on_input({
1198 let mut cx = cx.to_async();
1199 Box::new(move |event| {
1200 handle
1201 .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1202 .log_err()
1203 .unwrap_or(DispatchEventResult::default())
1204 })
1205 });
1206 platform_window.on_hit_test_window_control({
1207 let mut cx = cx.to_async();
1208 Box::new(move || {
1209 handle
1210 .update(&mut cx, |_, window, _cx| {
1211 for (area, hitbox) in &window.rendered_frame.window_control_hitboxes {
1212 if window.mouse_hit_test.ids.contains(&hitbox.id) {
1213 return Some(*area);
1214 }
1215 }
1216 None
1217 })
1218 .log_err()
1219 .unwrap_or(None)
1220 })
1221 });
1222 platform_window.on_move_tab_to_new_window({
1223 let mut cx = cx.to_async();
1224 Box::new(move || {
1225 handle
1226 .update(&mut cx, |_, _window, cx| {
1227 SystemWindowTabController::move_tab_to_new_window(cx, handle.window_id());
1228 })
1229 .log_err();
1230 })
1231 });
1232 platform_window.on_merge_all_windows({
1233 let mut cx = cx.to_async();
1234 Box::new(move || {
1235 handle
1236 .update(&mut cx, |_, _window, cx| {
1237 SystemWindowTabController::merge_all_windows(cx, handle.window_id());
1238 })
1239 .log_err();
1240 })
1241 });
1242 platform_window.on_select_next_tab({
1243 let mut cx = cx.to_async();
1244 Box::new(move || {
1245 handle
1246 .update(&mut cx, |_, _window, cx| {
1247 SystemWindowTabController::select_next_tab(cx, handle.window_id());
1248 })
1249 .log_err();
1250 })
1251 });
1252 platform_window.on_select_previous_tab({
1253 let mut cx = cx.to_async();
1254 Box::new(move || {
1255 handle
1256 .update(&mut cx, |_, _window, cx| {
1257 SystemWindowTabController::select_previous_tab(cx, handle.window_id())
1258 })
1259 .log_err();
1260 })
1261 });
1262 platform_window.on_toggle_tab_bar({
1263 let mut cx = cx.to_async();
1264 Box::new(move || {
1265 handle
1266 .update(&mut cx, |_, window, cx| {
1267 let tab_bar_visible = window.platform_window.tab_bar_visible();
1268 SystemWindowTabController::set_visible(cx, tab_bar_visible);
1269 })
1270 .log_err();
1271 })
1272 });
1273
1274 if let Some(app_id) = app_id {
1275 platform_window.set_app_id(&app_id);
1276 }
1277
1278 platform_window.map_window().unwrap();
1279
1280 Ok(Window {
1281 handle,
1282 invalidator,
1283 removed: false,
1284 platform_window,
1285 display_id,
1286 sprite_atlas,
1287 text_system,
1288 rem_size: px(16.),
1289 rem_size_override_stack: SmallVec::new(),
1290 viewport_size: content_size,
1291 layout_engine: Some(TaffyLayoutEngine::new()),
1292 root: None,
1293 element_id_stack: SmallVec::default(),
1294 text_style_stack: Vec::new(),
1295 rendered_entity_stack: Vec::new(),
1296 element_offset_stack: Vec::new(),
1297 content_mask_stack: Vec::new(),
1298 element_opacity: 1.0,
1299 requested_autoscroll: None,
1300 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1301 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1302 next_frame_callbacks,
1303 next_hitbox_id: HitboxId(0),
1304 next_tooltip_id: TooltipId::default(),
1305 tooltip_bounds: None,
1306 dirty_views: FxHashSet::default(),
1307 focus_listeners: SubscriberSet::new(),
1308 focus_lost_listeners: SubscriberSet::new(),
1309 default_prevented: true,
1310 mouse_position,
1311 mouse_hit_test: HitTest::default(),
1312 modifiers,
1313 capslock,
1314 scale_factor,
1315 bounds_observers: SubscriberSet::new(),
1316 appearance,
1317 appearance_observers: SubscriberSet::new(),
1318 active,
1319 hovered,
1320 needs_present,
1321 last_input_timestamp,
1322 last_input_modality: InputModality::Mouse,
1323 refreshing: false,
1324 activation_observers: SubscriberSet::new(),
1325 focus: None,
1326 focus_enabled: true,
1327 pending_input: None,
1328 pending_modifier: ModifierState::default(),
1329 pending_input_observers: SubscriberSet::new(),
1330 prompt: None,
1331 client_inset: None,
1332 image_cache_stack: Vec::new(),
1333 #[cfg(any(feature = "inspector", debug_assertions))]
1334 inspector: None,
1335 })
1336 }
1337
1338 pub(crate) fn new_focus_listener(
1339 &self,
1340 value: AnyWindowFocusListener,
1341 ) -> (Subscription, impl FnOnce() + use<>) {
1342 self.focus_listeners.insert((), value)
1343 }
1344}
1345
1346#[derive(Clone, Debug, Default, PartialEq, Eq)]
1347pub(crate) struct DispatchEventResult {
1348 pub propagate: bool,
1349 pub default_prevented: bool,
1350}
1351
1352/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1353/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1354/// to leave room to support more complex shapes in the future.
1355#[derive(Clone, Debug, Default, PartialEq, Eq)]
1356#[repr(C)]
1357pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1358 /// The bounds
1359 pub bounds: Bounds<P>,
1360}
1361
1362impl ContentMask<Pixels> {
1363 /// Scale the content mask's pixel units by the given scaling factor.
1364 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1365 ContentMask {
1366 bounds: self.bounds.scale(factor),
1367 }
1368 }
1369
1370 /// Intersect the content mask with the given content mask.
1371 pub fn intersect(&self, other: &Self) -> Self {
1372 let bounds = self.bounds.intersect(&other.bounds);
1373 ContentMask { bounds }
1374 }
1375}
1376
1377impl Window {
1378 fn mark_view_dirty(&mut self, view_id: EntityId) {
1379 // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1380 // should already be dirty.
1381 for view_id in self
1382 .rendered_frame
1383 .dispatch_tree
1384 .view_path_reversed(view_id)
1385 {
1386 if !self.dirty_views.insert(view_id) {
1387 break;
1388 }
1389 }
1390 }
1391
1392 /// Registers a callback to be invoked when the window appearance changes.
1393 pub fn observe_window_appearance(
1394 &self,
1395 mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1396 ) -> Subscription {
1397 let (subscription, activate) = self.appearance_observers.insert(
1398 (),
1399 Box::new(move |window, cx| {
1400 callback(window, cx);
1401 true
1402 }),
1403 );
1404 activate();
1405 subscription
1406 }
1407
1408 /// Replaces the root entity of the window with a new one.
1409 pub fn replace_root<E>(
1410 &mut self,
1411 cx: &mut App,
1412 build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1413 ) -> Entity<E>
1414 where
1415 E: 'static + Render,
1416 {
1417 let view = cx.new(|cx| build_view(self, cx));
1418 self.root = Some(view.clone().into());
1419 self.refresh();
1420 view
1421 }
1422
1423 /// Returns the root entity of the window, if it has one.
1424 pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1425 where
1426 E: 'static + Render,
1427 {
1428 self.root
1429 .as_ref()
1430 .map(|view| view.clone().downcast::<E>().ok())
1431 }
1432
1433 /// Obtain a handle to the window that belongs to this context.
1434 pub fn window_handle(&self) -> AnyWindowHandle {
1435 self.handle
1436 }
1437
1438 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1439 pub fn refresh(&mut self) {
1440 if self.invalidator.not_drawing() {
1441 self.refreshing = true;
1442 self.invalidator.set_dirty(true);
1443 }
1444 }
1445
1446 /// Close this window.
1447 pub fn remove_window(&mut self) {
1448 self.removed = true;
1449 }
1450
1451 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1452 pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1453 self.focus
1454 .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1455 }
1456
1457 /// Move focus to the element associated with the given [`FocusHandle`].
1458 pub fn focus(&mut self, handle: &FocusHandle) {
1459 if !self.focus_enabled || self.focus == Some(handle.id) {
1460 return;
1461 }
1462
1463 self.focus = Some(handle.id);
1464 self.clear_pending_keystrokes();
1465 self.refresh();
1466 }
1467
1468 /// Remove focus from all elements within this context's window.
1469 pub fn blur(&mut self) {
1470 if !self.focus_enabled {
1471 return;
1472 }
1473
1474 self.focus = None;
1475 self.refresh();
1476 }
1477
1478 /// Blur the window and don't allow anything in it to be focused again.
1479 pub fn disable_focus(&mut self) {
1480 self.blur();
1481 self.focus_enabled = false;
1482 }
1483
1484 /// Move focus to next tab stop.
1485 pub fn focus_next(&mut self) {
1486 if !self.focus_enabled {
1487 return;
1488 }
1489
1490 if let Some(handle) = self.rendered_frame.tab_stops.next(self.focus.as_ref()) {
1491 self.focus(&handle)
1492 }
1493 }
1494
1495 /// Move focus to previous tab stop.
1496 pub fn focus_prev(&mut self) {
1497 if !self.focus_enabled {
1498 return;
1499 }
1500
1501 if let Some(handle) = self.rendered_frame.tab_stops.prev(self.focus.as_ref()) {
1502 self.focus(&handle)
1503 }
1504 }
1505
1506 /// Accessor for the text system.
1507 pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1508 &self.text_system
1509 }
1510
1511 /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1512 pub fn text_style(&self) -> TextStyle {
1513 let mut style = TextStyle::default();
1514 for refinement in &self.text_style_stack {
1515 style.refine(refinement);
1516 }
1517 style
1518 }
1519
1520 /// Check if the platform window is maximized
1521 /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1522 pub fn is_maximized(&self) -> bool {
1523 self.platform_window.is_maximized()
1524 }
1525
1526 /// request a certain window decoration (Wayland)
1527 pub fn request_decorations(&self, decorations: WindowDecorations) {
1528 self.platform_window.request_decorations(decorations);
1529 }
1530
1531 /// Start a window resize operation (Wayland)
1532 pub fn start_window_resize(&self, edge: ResizeEdge) {
1533 self.platform_window.start_window_resize(edge);
1534 }
1535
1536 /// Return the `WindowBounds` to indicate that how a window should be opened
1537 /// after it has been closed
1538 pub fn window_bounds(&self) -> WindowBounds {
1539 self.platform_window.window_bounds()
1540 }
1541
1542 /// Return the `WindowBounds` excluding insets (Wayland and X11)
1543 pub fn inner_window_bounds(&self) -> WindowBounds {
1544 self.platform_window.inner_window_bounds()
1545 }
1546
1547 /// Dispatch the given action on the currently focused element.
1548 pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1549 let focus_id = self.focused(cx).map(|handle| handle.id);
1550
1551 let window = self.handle;
1552 cx.defer(move |cx| {
1553 window
1554 .update(cx, |_, window, cx| {
1555 let node_id = window.focus_node_id_in_rendered_frame(focus_id);
1556 window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1557 })
1558 .log_err();
1559 })
1560 }
1561
1562 pub(crate) fn dispatch_keystroke_observers(
1563 &mut self,
1564 event: &dyn Any,
1565 action: Option<Box<dyn Action>>,
1566 context_stack: Vec<KeyContext>,
1567 cx: &mut App,
1568 ) {
1569 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1570 return;
1571 };
1572
1573 cx.keystroke_observers.clone().retain(&(), move |callback| {
1574 (callback)(
1575 &KeystrokeEvent {
1576 keystroke: key_down_event.keystroke.clone(),
1577 action: action.as_ref().map(|action| action.boxed_clone()),
1578 context_stack: context_stack.clone(),
1579 },
1580 self,
1581 cx,
1582 )
1583 });
1584 }
1585
1586 pub(crate) fn dispatch_keystroke_interceptors(
1587 &mut self,
1588 event: &dyn Any,
1589 context_stack: Vec<KeyContext>,
1590 cx: &mut App,
1591 ) {
1592 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1593 return;
1594 };
1595
1596 cx.keystroke_interceptors
1597 .clone()
1598 .retain(&(), move |callback| {
1599 (callback)(
1600 &KeystrokeEvent {
1601 keystroke: key_down_event.keystroke.clone(),
1602 action: None,
1603 context_stack: context_stack.clone(),
1604 },
1605 self,
1606 cx,
1607 )
1608 });
1609 }
1610
1611 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1612 /// that are currently on the stack to be returned to the app.
1613 pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1614 let handle = self.handle;
1615 cx.defer(move |cx| {
1616 handle.update(cx, |_, window, cx| f(window, cx)).ok();
1617 });
1618 }
1619
1620 /// Subscribe to events emitted by a entity.
1621 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1622 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1623 pub fn observe<T: 'static>(
1624 &mut self,
1625 observed: &Entity<T>,
1626 cx: &mut App,
1627 mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1628 ) -> Subscription {
1629 let entity_id = observed.entity_id();
1630 let observed = observed.downgrade();
1631 let window_handle = self.handle;
1632 cx.new_observer(
1633 entity_id,
1634 Box::new(move |cx| {
1635 window_handle
1636 .update(cx, |_, window, cx| {
1637 if let Some(handle) = observed.upgrade() {
1638 on_notify(handle, window, cx);
1639 true
1640 } else {
1641 false
1642 }
1643 })
1644 .unwrap_or(false)
1645 }),
1646 )
1647 }
1648
1649 /// Subscribe to events emitted by a entity.
1650 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1651 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1652 pub fn subscribe<Emitter, Evt>(
1653 &mut self,
1654 entity: &Entity<Emitter>,
1655 cx: &mut App,
1656 mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1657 ) -> Subscription
1658 where
1659 Emitter: EventEmitter<Evt>,
1660 Evt: 'static,
1661 {
1662 let entity_id = entity.entity_id();
1663 let handle = entity.downgrade();
1664 let window_handle = self.handle;
1665 cx.new_subscription(
1666 entity_id,
1667 (
1668 TypeId::of::<Evt>(),
1669 Box::new(move |event, cx| {
1670 window_handle
1671 .update(cx, |_, window, cx| {
1672 if let Some(entity) = handle.upgrade() {
1673 let event = event.downcast_ref().expect("invalid event type");
1674 on_event(entity, event, window, cx);
1675 true
1676 } else {
1677 false
1678 }
1679 })
1680 .unwrap_or(false)
1681 }),
1682 ),
1683 )
1684 }
1685
1686 /// Register a callback to be invoked when the given `Entity` is released.
1687 pub fn observe_release<T>(
1688 &self,
1689 entity: &Entity<T>,
1690 cx: &mut App,
1691 mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1692 ) -> Subscription
1693 where
1694 T: 'static,
1695 {
1696 let entity_id = entity.entity_id();
1697 let window_handle = self.handle;
1698 let (subscription, activate) = cx.release_listeners.insert(
1699 entity_id,
1700 Box::new(move |entity, cx| {
1701 let entity = entity.downcast_mut().expect("invalid entity type");
1702 let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1703 }),
1704 );
1705 activate();
1706 subscription
1707 }
1708
1709 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1710 /// await points in async code.
1711 pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1712 AsyncWindowContext::new_context(cx.to_async(), self.handle)
1713 }
1714
1715 /// Schedule the given closure to be run directly after the current frame is rendered.
1716 pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1717 RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1718 }
1719
1720 /// Schedule a frame to be drawn on the next animation frame.
1721 ///
1722 /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1723 /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1724 ///
1725 /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1726 pub fn request_animation_frame(&self) {
1727 let entity = self.current_view();
1728 self.on_next_frame(move |_, cx| cx.notify(entity));
1729 }
1730
1731 /// Spawn the future returned by the given closure on the application thread pool.
1732 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1733 /// use within your future.
1734 #[track_caller]
1735 pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1736 where
1737 R: 'static,
1738 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1739 {
1740 let handle = self.handle;
1741 cx.spawn(async move |app| {
1742 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1743 f(&mut async_window_cx).await
1744 })
1745 }
1746
1747 fn bounds_changed(&mut self, cx: &mut App) {
1748 self.scale_factor = self.platform_window.scale_factor();
1749 self.viewport_size = self.platform_window.content_size();
1750 self.display_id = self.platform_window.display().map(|display| display.id());
1751
1752 self.refresh();
1753
1754 self.bounds_observers
1755 .clone()
1756 .retain(&(), |callback| callback(self, cx));
1757 }
1758
1759 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1760 pub fn bounds(&self) -> Bounds<Pixels> {
1761 self.platform_window.bounds()
1762 }
1763
1764 /// Set the content size of the window.
1765 pub fn resize(&mut self, size: Size<Pixels>) {
1766 self.platform_window.resize(size);
1767 }
1768
1769 /// Returns whether or not the window is currently fullscreen
1770 pub fn is_fullscreen(&self) -> bool {
1771 self.platform_window.is_fullscreen()
1772 }
1773
1774 pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1775 self.appearance = self.platform_window.appearance();
1776
1777 self.appearance_observers
1778 .clone()
1779 .retain(&(), |callback| callback(self, cx));
1780 }
1781
1782 /// Returns the appearance of the current window.
1783 pub fn appearance(&self) -> WindowAppearance {
1784 self.appearance
1785 }
1786
1787 /// Returns the size of the drawable area within the window.
1788 pub fn viewport_size(&self) -> Size<Pixels> {
1789 self.viewport_size
1790 }
1791
1792 /// Returns whether this window is focused by the operating system (receiving key events).
1793 pub fn is_window_active(&self) -> bool {
1794 self.active.get()
1795 }
1796
1797 /// Returns whether this window is considered to be the window
1798 /// that currently owns the mouse cursor.
1799 /// On mac, this is equivalent to `is_window_active`.
1800 pub fn is_window_hovered(&self) -> bool {
1801 if cfg!(any(
1802 target_os = "windows",
1803 target_os = "linux",
1804 target_os = "freebsd"
1805 )) {
1806 self.hovered.get()
1807 } else {
1808 self.is_window_active()
1809 }
1810 }
1811
1812 /// Toggle zoom on the window.
1813 pub fn zoom_window(&self) {
1814 self.platform_window.zoom();
1815 }
1816
1817 /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1818 pub fn show_window_menu(&self, position: Point<Pixels>) {
1819 self.platform_window.show_window_menu(position)
1820 }
1821
1822 /// Tells the compositor to take control of window movement (Wayland and X11)
1823 ///
1824 /// Events may not be received during a move operation.
1825 pub fn start_window_move(&self) {
1826 self.platform_window.start_window_move()
1827 }
1828
1829 /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1830 pub fn set_client_inset(&mut self, inset: Pixels) {
1831 self.client_inset = Some(inset);
1832 self.platform_window.set_client_inset(inset);
1833 }
1834
1835 /// Returns the client_inset value by [`Self::set_client_inset`].
1836 pub fn client_inset(&self) -> Option<Pixels> {
1837 self.client_inset
1838 }
1839
1840 /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1841 pub fn window_decorations(&self) -> Decorations {
1842 self.platform_window.window_decorations()
1843 }
1844
1845 /// Returns which window controls are currently visible (Wayland)
1846 pub fn window_controls(&self) -> WindowControls {
1847 self.platform_window.window_controls()
1848 }
1849
1850 /// Updates the window's title at the platform level.
1851 pub fn set_window_title(&mut self, title: &str) {
1852 self.platform_window.set_title(title);
1853 }
1854
1855 /// Sets the application identifier.
1856 pub fn set_app_id(&mut self, app_id: &str) {
1857 self.platform_window.set_app_id(app_id);
1858 }
1859
1860 /// Sets the window background appearance.
1861 pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1862 self.platform_window
1863 .set_background_appearance(background_appearance);
1864 }
1865
1866 /// Mark the window as dirty at the platform level.
1867 pub fn set_window_edited(&mut self, edited: bool) {
1868 self.platform_window.set_edited(edited);
1869 }
1870
1871 /// Determine the display on which the window is visible.
1872 pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1873 cx.platform
1874 .displays()
1875 .into_iter()
1876 .find(|display| Some(display.id()) == self.display_id)
1877 }
1878
1879 /// Show the platform character palette.
1880 pub fn show_character_palette(&self) {
1881 self.platform_window.show_character_palette();
1882 }
1883
1884 /// The scale factor of the display associated with the window. For example, it could
1885 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1886 /// be rendered as two pixels on screen.
1887 pub fn scale_factor(&self) -> f32 {
1888 self.scale_factor
1889 }
1890
1891 /// The size of an em for the base font of the application. Adjusting this value allows the
1892 /// UI to scale, just like zooming a web page.
1893 pub fn rem_size(&self) -> Pixels {
1894 self.rem_size_override_stack
1895 .last()
1896 .copied()
1897 .unwrap_or(self.rem_size)
1898 }
1899
1900 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1901 /// UI to scale, just like zooming a web page.
1902 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1903 self.rem_size = rem_size.into();
1904 }
1905
1906 /// Acquire a globally unique identifier for the given ElementId.
1907 /// Only valid for the duration of the provided closure.
1908 pub fn with_global_id<R>(
1909 &mut self,
1910 element_id: ElementId,
1911 f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1912 ) -> R {
1913 self.element_id_stack.push(element_id);
1914 let global_id = GlobalElementId(Arc::from(&*self.element_id_stack));
1915
1916 let result = f(&global_id, self);
1917 self.element_id_stack.pop();
1918 result
1919 }
1920
1921 /// Executes the provided function with the specified rem size.
1922 ///
1923 /// This method must only be called as part of element drawing.
1924 pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1925 where
1926 F: FnOnce(&mut Self) -> R,
1927 {
1928 self.invalidator.debug_assert_paint_or_prepaint();
1929
1930 if let Some(rem_size) = rem_size {
1931 self.rem_size_override_stack.push(rem_size.into());
1932 let result = f(self);
1933 self.rem_size_override_stack.pop();
1934 result
1935 } else {
1936 f(self)
1937 }
1938 }
1939
1940 /// The line height associated with the current text style.
1941 pub fn line_height(&self) -> Pixels {
1942 self.text_style().line_height_in_pixels(self.rem_size())
1943 }
1944
1945 /// Call to prevent the default action of an event. Currently only used to prevent
1946 /// parent elements from becoming focused on mouse down.
1947 pub fn prevent_default(&mut self) {
1948 self.default_prevented = true;
1949 }
1950
1951 /// Obtain whether default has been prevented for the event currently being dispatched.
1952 pub fn default_prevented(&self) -> bool {
1953 self.default_prevented
1954 }
1955
1956 /// Determine whether the given action is available along the dispatch path to the currently focused element.
1957 pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1958 let node_id =
1959 self.focus_node_id_in_rendered_frame(self.focused(cx).map(|handle| handle.id));
1960 self.rendered_frame
1961 .dispatch_tree
1962 .is_action_available(action, node_id)
1963 }
1964
1965 /// The position of the mouse relative to the window.
1966 pub fn mouse_position(&self) -> Point<Pixels> {
1967 self.mouse_position
1968 }
1969
1970 /// The current state of the keyboard's modifiers
1971 pub fn modifiers(&self) -> Modifiers {
1972 self.modifiers
1973 }
1974
1975 /// Returns true if the last input event was keyboard-based (key press, tab navigation, etc.)
1976 /// This is used for focus-visible styling to show focus indicators only for keyboard navigation.
1977 pub fn last_input_was_keyboard(&self) -> bool {
1978 self.last_input_modality == InputModality::Keyboard
1979 }
1980
1981 /// The current state of the keyboard's capslock
1982 pub fn capslock(&self) -> Capslock {
1983 self.capslock
1984 }
1985
1986 fn complete_frame(&self) {
1987 self.platform_window.completed_frame();
1988 }
1989
1990 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1991 /// the contents of the new [`Scene`], use [`Self::present`].
1992 #[profiling::function]
1993 pub fn draw(&mut self, cx: &mut App) -> ArenaClearNeeded {
1994 self.invalidate_entities();
1995 cx.entities.clear_accessed();
1996 debug_assert!(self.rendered_entity_stack.is_empty());
1997 self.invalidator.set_dirty(false);
1998 self.requested_autoscroll = None;
1999
2000 // Restore the previously-used input handler.
2001 if let Some(input_handler) = self.platform_window.take_input_handler() {
2002 self.rendered_frame.input_handlers.push(Some(input_handler));
2003 }
2004 self.draw_roots(cx);
2005 self.dirty_views.clear();
2006 self.next_frame.window_active = self.active.get();
2007
2008 // Register requested input handler with the platform window.
2009 if let Some(input_handler) = self.next_frame.input_handlers.pop() {
2010 self.platform_window
2011 .set_input_handler(input_handler.unwrap());
2012 }
2013
2014 self.layout_engine.as_mut().unwrap().clear();
2015 self.text_system().finish_frame();
2016 self.next_frame.finish(&mut self.rendered_frame);
2017
2018 self.invalidator.set_phase(DrawPhase::Focus);
2019 let previous_focus_path = self.rendered_frame.focus_path();
2020 let previous_window_active = self.rendered_frame.window_active;
2021 mem::swap(&mut self.rendered_frame, &mut self.next_frame);
2022 self.next_frame.clear();
2023 let current_focus_path = self.rendered_frame.focus_path();
2024 let current_window_active = self.rendered_frame.window_active;
2025
2026 if previous_focus_path != current_focus_path
2027 || previous_window_active != current_window_active
2028 {
2029 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
2030 self.focus_lost_listeners
2031 .clone()
2032 .retain(&(), |listener| listener(self, cx));
2033 }
2034
2035 let event = WindowFocusEvent {
2036 previous_focus_path: if previous_window_active {
2037 previous_focus_path
2038 } else {
2039 Default::default()
2040 },
2041 current_focus_path: if current_window_active {
2042 current_focus_path
2043 } else {
2044 Default::default()
2045 },
2046 };
2047 self.focus_listeners
2048 .clone()
2049 .retain(&(), |listener| listener(&event, self, cx));
2050 }
2051
2052 debug_assert!(self.rendered_entity_stack.is_empty());
2053 self.record_entities_accessed(cx);
2054 self.reset_cursor_style(cx);
2055 self.refreshing = false;
2056 self.invalidator.set_phase(DrawPhase::None);
2057 self.needs_present.set(true);
2058
2059 ArenaClearNeeded
2060 }
2061
2062 fn record_entities_accessed(&mut self, cx: &mut App) {
2063 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2064 let mut entities = mem::take(entities_ref.deref_mut());
2065 drop(entities_ref);
2066 let handle = self.handle;
2067 cx.record_entities_accessed(
2068 handle,
2069 // Try moving window invalidator into the Window
2070 self.invalidator.clone(),
2071 &entities,
2072 );
2073 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2074 mem::swap(&mut entities, entities_ref.deref_mut());
2075 }
2076
2077 fn invalidate_entities(&mut self) {
2078 let mut views = self.invalidator.take_views();
2079 for entity in views.drain() {
2080 self.mark_view_dirty(entity);
2081 }
2082 self.invalidator.replace_views(views);
2083 }
2084
2085 #[profiling::function]
2086 fn present(&self) {
2087 self.platform_window.draw(&self.rendered_frame.scene);
2088 self.needs_present.set(false);
2089 profiling::finish_frame!();
2090 }
2091
2092 fn draw_roots(&mut self, cx: &mut App) {
2093 self.invalidator.set_phase(DrawPhase::Prepaint);
2094 self.tooltip_bounds.take();
2095
2096 let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
2097 let root_size = {
2098 #[cfg(any(feature = "inspector", debug_assertions))]
2099 {
2100 if self.inspector.is_some() {
2101 let mut size = self.viewport_size;
2102 size.width = (size.width - _inspector_width).max(px(0.0));
2103 size
2104 } else {
2105 self.viewport_size
2106 }
2107 }
2108 #[cfg(not(any(feature = "inspector", debug_assertions)))]
2109 {
2110 self.viewport_size
2111 }
2112 };
2113
2114 // Layout all root elements.
2115 let mut root_element = self.root.as_ref().unwrap().clone().into_any();
2116 root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2117
2118 #[cfg(any(feature = "inspector", debug_assertions))]
2119 let inspector_element = self.prepaint_inspector(_inspector_width, cx);
2120
2121 let mut sorted_deferred_draws =
2122 (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
2123 sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
2124 self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
2125
2126 let mut prompt_element = None;
2127 let mut active_drag_element = None;
2128 let mut tooltip_element = None;
2129 if let Some(prompt) = self.prompt.take() {
2130 let mut element = prompt.view.any_view().into_any();
2131 element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2132 prompt_element = Some(element);
2133 self.prompt = Some(prompt);
2134 } else if let Some(active_drag) = cx.active_drag.take() {
2135 let mut element = active_drag.view.clone().into_any();
2136 let offset = self.mouse_position() - active_drag.cursor_offset;
2137 element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
2138 active_drag_element = Some(element);
2139 cx.active_drag = Some(active_drag);
2140 } else {
2141 tooltip_element = self.prepaint_tooltip(cx);
2142 }
2143
2144 self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
2145
2146 // Now actually paint the elements.
2147 self.invalidator.set_phase(DrawPhase::Paint);
2148 root_element.paint(self, cx);
2149
2150 #[cfg(any(feature = "inspector", debug_assertions))]
2151 self.paint_inspector(inspector_element, cx);
2152
2153 self.paint_deferred_draws(&sorted_deferred_draws, cx);
2154
2155 if let Some(mut prompt_element) = prompt_element {
2156 prompt_element.paint(self, cx);
2157 } else if let Some(mut drag_element) = active_drag_element {
2158 drag_element.paint(self, cx);
2159 } else if let Some(mut tooltip_element) = tooltip_element {
2160 tooltip_element.paint(self, cx);
2161 }
2162
2163 #[cfg(any(feature = "inspector", debug_assertions))]
2164 self.paint_inspector_hitbox(cx);
2165 }
2166
2167 fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
2168 // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
2169 for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
2170 let Some(Some(tooltip_request)) = self
2171 .next_frame
2172 .tooltip_requests
2173 .get(tooltip_request_index)
2174 .cloned()
2175 else {
2176 log::error!("Unexpectedly absent TooltipRequest");
2177 continue;
2178 };
2179 let mut element = tooltip_request.tooltip.view.clone().into_any();
2180 let mouse_position = tooltip_request.tooltip.mouse_position;
2181 let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
2182
2183 let mut tooltip_bounds =
2184 Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
2185 let window_bounds = Bounds {
2186 origin: Point::default(),
2187 size: self.viewport_size(),
2188 };
2189
2190 if tooltip_bounds.right() > window_bounds.right() {
2191 let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
2192 if new_x >= Pixels::ZERO {
2193 tooltip_bounds.origin.x = new_x;
2194 } else {
2195 tooltip_bounds.origin.x = cmp::max(
2196 Pixels::ZERO,
2197 tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
2198 );
2199 }
2200 }
2201
2202 if tooltip_bounds.bottom() > window_bounds.bottom() {
2203 let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
2204 if new_y >= Pixels::ZERO {
2205 tooltip_bounds.origin.y = new_y;
2206 } else {
2207 tooltip_bounds.origin.y = cmp::max(
2208 Pixels::ZERO,
2209 tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
2210 );
2211 }
2212 }
2213
2214 // It's possible for an element to have an active tooltip while not being painted (e.g.
2215 // via the `visible_on_hover` method). Since mouse listeners are not active in this
2216 // case, instead update the tooltip's visibility here.
2217 let is_visible =
2218 (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
2219 if !is_visible {
2220 continue;
2221 }
2222
2223 self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
2224 element.prepaint(window, cx)
2225 });
2226
2227 self.tooltip_bounds = Some(TooltipBounds {
2228 id: tooltip_request.id,
2229 bounds: tooltip_bounds,
2230 });
2231 return Some(element);
2232 }
2233 None
2234 }
2235
2236 fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2237 assert_eq!(self.element_id_stack.len(), 0);
2238
2239 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2240 for deferred_draw_ix in deferred_draw_indices {
2241 let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2242 self.element_id_stack
2243 .clone_from(&deferred_draw.element_id_stack);
2244 self.text_style_stack
2245 .clone_from(&deferred_draw.text_style_stack);
2246 self.next_frame
2247 .dispatch_tree
2248 .set_active_node(deferred_draw.parent_node);
2249
2250 let prepaint_start = self.prepaint_index();
2251 if let Some(element) = deferred_draw.element.as_mut() {
2252 self.with_rendered_view(deferred_draw.current_view, |window| {
2253 window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
2254 element.prepaint(window, cx)
2255 });
2256 })
2257 } else {
2258 self.reuse_prepaint(deferred_draw.prepaint_range.clone());
2259 }
2260 let prepaint_end = self.prepaint_index();
2261 deferred_draw.prepaint_range = prepaint_start..prepaint_end;
2262 }
2263 assert_eq!(
2264 self.next_frame.deferred_draws.len(),
2265 0,
2266 "cannot call defer_draw during deferred drawing"
2267 );
2268 self.next_frame.deferred_draws = deferred_draws;
2269 self.element_id_stack.clear();
2270 self.text_style_stack.clear();
2271 }
2272
2273 fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2274 assert_eq!(self.element_id_stack.len(), 0);
2275
2276 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2277 for deferred_draw_ix in deferred_draw_indices {
2278 let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2279 self.element_id_stack
2280 .clone_from(&deferred_draw.element_id_stack);
2281 self.next_frame
2282 .dispatch_tree
2283 .set_active_node(deferred_draw.parent_node);
2284
2285 let paint_start = self.paint_index();
2286 if let Some(element) = deferred_draw.element.as_mut() {
2287 self.with_rendered_view(deferred_draw.current_view, |window| {
2288 element.paint(window, cx);
2289 })
2290 } else {
2291 self.reuse_paint(deferred_draw.paint_range.clone());
2292 }
2293 let paint_end = self.paint_index();
2294 deferred_draw.paint_range = paint_start..paint_end;
2295 }
2296 self.next_frame.deferred_draws = deferred_draws;
2297 self.element_id_stack.clear();
2298 }
2299
2300 pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2301 PrepaintStateIndex {
2302 hitboxes_index: self.next_frame.hitboxes.len(),
2303 tooltips_index: self.next_frame.tooltip_requests.len(),
2304 deferred_draws_index: self.next_frame.deferred_draws.len(),
2305 dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2306 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2307 line_layout_index: self.text_system.layout_index(),
2308 }
2309 }
2310
2311 pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2312 self.next_frame.hitboxes.extend(
2313 self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2314 .iter()
2315 .cloned(),
2316 );
2317 self.next_frame.tooltip_requests.extend(
2318 self.rendered_frame.tooltip_requests
2319 [range.start.tooltips_index..range.end.tooltips_index]
2320 .iter_mut()
2321 .map(|request| request.take()),
2322 );
2323 self.next_frame.accessed_element_states.extend(
2324 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2325 ..range.end.accessed_element_states_index]
2326 .iter()
2327 .map(|(id, type_id)| (id.clone(), *type_id)),
2328 );
2329 self.text_system
2330 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2331
2332 let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2333 range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2334 &mut self.rendered_frame.dispatch_tree,
2335 self.focus,
2336 );
2337
2338 if reused_subtree.contains_focus() {
2339 self.next_frame.focus = self.focus;
2340 }
2341
2342 self.next_frame.deferred_draws.extend(
2343 self.rendered_frame.deferred_draws
2344 [range.start.deferred_draws_index..range.end.deferred_draws_index]
2345 .iter()
2346 .map(|deferred_draw| DeferredDraw {
2347 current_view: deferred_draw.current_view,
2348 parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2349 element_id_stack: deferred_draw.element_id_stack.clone(),
2350 text_style_stack: deferred_draw.text_style_stack.clone(),
2351 priority: deferred_draw.priority,
2352 element: None,
2353 absolute_offset: deferred_draw.absolute_offset,
2354 prepaint_range: deferred_draw.prepaint_range.clone(),
2355 paint_range: deferred_draw.paint_range.clone(),
2356 }),
2357 );
2358 }
2359
2360 pub(crate) fn paint_index(&self) -> PaintIndex {
2361 PaintIndex {
2362 scene_index: self.next_frame.scene.len(),
2363 mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2364 input_handlers_index: self.next_frame.input_handlers.len(),
2365 cursor_styles_index: self.next_frame.cursor_styles.len(),
2366 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2367 tab_handle_index: self.next_frame.tab_stops.paint_index(),
2368 line_layout_index: self.text_system.layout_index(),
2369 }
2370 }
2371
2372 pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2373 self.next_frame.cursor_styles.extend(
2374 self.rendered_frame.cursor_styles
2375 [range.start.cursor_styles_index..range.end.cursor_styles_index]
2376 .iter()
2377 .cloned(),
2378 );
2379 self.next_frame.input_handlers.extend(
2380 self.rendered_frame.input_handlers
2381 [range.start.input_handlers_index..range.end.input_handlers_index]
2382 .iter_mut()
2383 .map(|handler| handler.take()),
2384 );
2385 self.next_frame.mouse_listeners.extend(
2386 self.rendered_frame.mouse_listeners
2387 [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2388 .iter_mut()
2389 .map(|listener| listener.take()),
2390 );
2391 self.next_frame.accessed_element_states.extend(
2392 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2393 ..range.end.accessed_element_states_index]
2394 .iter()
2395 .map(|(id, type_id)| (id.clone(), *type_id)),
2396 );
2397 self.next_frame.tab_stops.replay(
2398 &self.rendered_frame.tab_stops.insertion_history
2399 [range.start.tab_handle_index..range.end.tab_handle_index],
2400 );
2401
2402 self.text_system
2403 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2404 self.next_frame.scene.replay(
2405 range.start.scene_index..range.end.scene_index,
2406 &self.rendered_frame.scene,
2407 );
2408 }
2409
2410 /// Push a text style onto the stack, and call a function with that style active.
2411 /// Use [`Window::text_style`] to get the current, combined text style. This method
2412 /// should only be called as part of element drawing.
2413 pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2414 where
2415 F: FnOnce(&mut Self) -> R,
2416 {
2417 self.invalidator.debug_assert_paint_or_prepaint();
2418 if let Some(style) = style {
2419 self.text_style_stack.push(style);
2420 let result = f(self);
2421 self.text_style_stack.pop();
2422 result
2423 } else {
2424 f(self)
2425 }
2426 }
2427
2428 /// Updates the cursor style at the platform level. This method should only be called
2429 /// during the prepaint phase of element drawing.
2430 pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
2431 self.invalidator.debug_assert_paint();
2432 self.next_frame.cursor_styles.push(CursorStyleRequest {
2433 hitbox_id: Some(hitbox.id),
2434 style,
2435 });
2436 }
2437
2438 /// Updates the cursor style for the entire window at the platform level. A cursor
2439 /// style using this method will have precedence over any cursor style set using
2440 /// `set_cursor_style`. This method should only be called during the prepaint
2441 /// phase of element drawing.
2442 pub fn set_window_cursor_style(&mut self, style: CursorStyle) {
2443 self.invalidator.debug_assert_paint();
2444 self.next_frame.cursor_styles.push(CursorStyleRequest {
2445 hitbox_id: None,
2446 style,
2447 })
2448 }
2449
2450 /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2451 /// during the paint phase of element drawing.
2452 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2453 self.invalidator.debug_assert_prepaint();
2454 let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2455 self.next_frame
2456 .tooltip_requests
2457 .push(Some(TooltipRequest { id, tooltip }));
2458 id
2459 }
2460
2461 /// Invoke the given function with the given content mask after intersecting it
2462 /// with the current mask. This method should only be called during element drawing.
2463 pub fn with_content_mask<R>(
2464 &mut self,
2465 mask: Option<ContentMask<Pixels>>,
2466 f: impl FnOnce(&mut Self) -> R,
2467 ) -> R {
2468 self.invalidator.debug_assert_paint_or_prepaint();
2469 if let Some(mask) = mask {
2470 let mask = mask.intersect(&self.content_mask());
2471 self.content_mask_stack.push(mask);
2472 let result = f(self);
2473 self.content_mask_stack.pop();
2474 result
2475 } else {
2476 f(self)
2477 }
2478 }
2479
2480 /// Updates the global element offset relative to the current offset. This is used to implement
2481 /// scrolling. This method should only be called during the prepaint phase of element drawing.
2482 pub fn with_element_offset<R>(
2483 &mut self,
2484 offset: Point<Pixels>,
2485 f: impl FnOnce(&mut Self) -> R,
2486 ) -> R {
2487 self.invalidator.debug_assert_prepaint();
2488
2489 if offset.is_zero() {
2490 return f(self);
2491 };
2492
2493 let abs_offset = self.element_offset() + offset;
2494 self.with_absolute_element_offset(abs_offset, f)
2495 }
2496
2497 /// Updates the global element offset based on the given offset. This is used to implement
2498 /// drag handles and other manual painting of elements. This method should only be called during
2499 /// the prepaint phase of element drawing.
2500 pub fn with_absolute_element_offset<R>(
2501 &mut self,
2502 offset: Point<Pixels>,
2503 f: impl FnOnce(&mut Self) -> R,
2504 ) -> R {
2505 self.invalidator.debug_assert_prepaint();
2506 self.element_offset_stack.push(offset);
2507 let result = f(self);
2508 self.element_offset_stack.pop();
2509 result
2510 }
2511
2512 pub(crate) fn with_element_opacity<R>(
2513 &mut self,
2514 opacity: Option<f32>,
2515 f: impl FnOnce(&mut Self) -> R,
2516 ) -> R {
2517 self.invalidator.debug_assert_paint_or_prepaint();
2518
2519 let Some(opacity) = opacity else {
2520 return f(self);
2521 };
2522
2523 let previous_opacity = self.element_opacity;
2524 self.element_opacity = previous_opacity * opacity;
2525 let result = f(self);
2526 self.element_opacity = previous_opacity;
2527 result
2528 }
2529
2530 /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2531 /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2532 /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2533 /// element offset and prepaint again. See [`crate::List`] for an example. This method should only be
2534 /// called during the prepaint phase of element drawing.
2535 pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2536 self.invalidator.debug_assert_prepaint();
2537 let index = self.prepaint_index();
2538 let result = f(self);
2539 if result.is_err() {
2540 self.next_frame.hitboxes.truncate(index.hitboxes_index);
2541 self.next_frame
2542 .tooltip_requests
2543 .truncate(index.tooltips_index);
2544 self.next_frame
2545 .deferred_draws
2546 .truncate(index.deferred_draws_index);
2547 self.next_frame
2548 .dispatch_tree
2549 .truncate(index.dispatch_tree_index);
2550 self.next_frame
2551 .accessed_element_states
2552 .truncate(index.accessed_element_states_index);
2553 self.text_system.truncate_layouts(index.line_layout_index);
2554 }
2555 result
2556 }
2557
2558 /// When you call this method during [`Element::prepaint`], containing elements will attempt to
2559 /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2560 /// [`Element::prepaint`] again with a new set of bounds. See [`crate::List`] for an example of an element
2561 /// that supports this method being called on the elements it contains. This method should only be
2562 /// called during the prepaint phase of element drawing.
2563 pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2564 self.invalidator.debug_assert_prepaint();
2565 self.requested_autoscroll = Some(bounds);
2566 }
2567
2568 /// This method can be called from a containing element such as [`crate::List`] to support the autoscroll behavior
2569 /// described in [`Self::request_autoscroll`].
2570 pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2571 self.invalidator.debug_assert_prepaint();
2572 self.requested_autoscroll.take()
2573 }
2574
2575 /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2576 /// Your view will be re-drawn once the asset has finished loading.
2577 ///
2578 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2579 /// time.
2580 pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2581 let (task, is_first) = cx.fetch_asset::<A>(source);
2582 task.clone().now_or_never().or_else(|| {
2583 if is_first {
2584 let entity_id = self.current_view();
2585 self.spawn(cx, {
2586 let task = task.clone();
2587 async move |cx| {
2588 task.await;
2589
2590 cx.on_next_frame(move |_, cx| {
2591 cx.notify(entity_id);
2592 });
2593 }
2594 })
2595 .detach();
2596 }
2597
2598 None
2599 })
2600 }
2601
2602 /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2603 /// Your view will not be re-drawn once the asset has finished loading.
2604 ///
2605 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2606 /// time.
2607 pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2608 let (task, _) = cx.fetch_asset::<A>(source);
2609 task.now_or_never()
2610 }
2611 /// Obtain the current element offset. This method should only be called during the
2612 /// prepaint phase of element drawing.
2613 pub fn element_offset(&self) -> Point<Pixels> {
2614 self.invalidator.debug_assert_prepaint();
2615 self.element_offset_stack
2616 .last()
2617 .copied()
2618 .unwrap_or_default()
2619 }
2620
2621 /// Obtain the current element opacity. This method should only be called during the
2622 /// prepaint phase of element drawing.
2623 #[inline]
2624 pub(crate) fn element_opacity(&self) -> f32 {
2625 self.invalidator.debug_assert_paint_or_prepaint();
2626 self.element_opacity
2627 }
2628
2629 /// Obtain the current content mask. This method should only be called during element drawing.
2630 pub fn content_mask(&self) -> ContentMask<Pixels> {
2631 self.invalidator.debug_assert_paint_or_prepaint();
2632 self.content_mask_stack
2633 .last()
2634 .cloned()
2635 .unwrap_or_else(|| ContentMask {
2636 bounds: Bounds {
2637 origin: Point::default(),
2638 size: self.viewport_size,
2639 },
2640 })
2641 }
2642
2643 /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2644 /// This can be used within a custom element to distinguish multiple sets of child elements.
2645 pub fn with_element_namespace<R>(
2646 &mut self,
2647 element_id: impl Into<ElementId>,
2648 f: impl FnOnce(&mut Self) -> R,
2649 ) -> R {
2650 self.element_id_stack.push(element_id.into());
2651 let result = f(self);
2652 self.element_id_stack.pop();
2653 result
2654 }
2655
2656 /// Use a piece of state that exists as long this element is being rendered in consecutive frames.
2657 pub fn use_keyed_state<S: 'static>(
2658 &mut self,
2659 key: impl Into<ElementId>,
2660 cx: &mut App,
2661 init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2662 ) -> Entity<S> {
2663 let current_view = self.current_view();
2664 self.with_global_id(key.into(), |global_id, window| {
2665 window.with_element_state(global_id, |state: Option<Entity<S>>, window| {
2666 if let Some(state) = state {
2667 (state.clone(), state)
2668 } else {
2669 let new_state = cx.new(|cx| init(window, cx));
2670 cx.observe(&new_state, move |_, cx| {
2671 cx.notify(current_view);
2672 })
2673 .detach();
2674 (new_state.clone(), new_state)
2675 }
2676 })
2677 })
2678 }
2679
2680 /// Immediately push an element ID onto the stack. Useful for simplifying IDs in lists
2681 pub fn with_id<R>(&mut self, id: impl Into<ElementId>, f: impl FnOnce(&mut Self) -> R) -> R {
2682 self.with_global_id(id.into(), |_, window| f(window))
2683 }
2684
2685 /// Use a piece of state that exists as long this element is being rendered in consecutive frames, without needing to specify a key
2686 ///
2687 /// NOTE: This method uses the location of the caller to generate an ID for this state.
2688 /// If this is not sufficient to identify your state (e.g. you're rendering a list item),
2689 /// you can provide a custom ElementID using the `use_keyed_state` method.
2690 #[track_caller]
2691 pub fn use_state<S: 'static>(
2692 &mut self,
2693 cx: &mut App,
2694 init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2695 ) -> Entity<S> {
2696 self.use_keyed_state(
2697 ElementId::CodeLocation(*core::panic::Location::caller()),
2698 cx,
2699 init,
2700 )
2701 }
2702
2703 /// Updates or initializes state for an element with the given id that lives across multiple
2704 /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2705 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2706 /// when drawing the next frame. This method should only be called as part of element drawing.
2707 pub fn with_element_state<S, R>(
2708 &mut self,
2709 global_id: &GlobalElementId,
2710 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2711 ) -> R
2712 where
2713 S: 'static,
2714 {
2715 self.invalidator.debug_assert_paint_or_prepaint();
2716
2717 let key = (global_id.clone(), TypeId::of::<S>());
2718 self.next_frame.accessed_element_states.push(key.clone());
2719
2720 if let Some(any) = self
2721 .next_frame
2722 .element_states
2723 .remove(&key)
2724 .or_else(|| self.rendered_frame.element_states.remove(&key))
2725 {
2726 let ElementStateBox {
2727 inner,
2728 #[cfg(debug_assertions)]
2729 type_name,
2730 } = any;
2731 // Using the extra inner option to avoid needing to reallocate a new box.
2732 let mut state_box = inner
2733 .downcast::<Option<S>>()
2734 .map_err(|_| {
2735 #[cfg(debug_assertions)]
2736 {
2737 anyhow::anyhow!(
2738 "invalid element state type for id, requested {:?}, actual: {:?}",
2739 std::any::type_name::<S>(),
2740 type_name
2741 )
2742 }
2743
2744 #[cfg(not(debug_assertions))]
2745 {
2746 anyhow::anyhow!(
2747 "invalid element state type for id, requested {:?}",
2748 std::any::type_name::<S>(),
2749 )
2750 }
2751 })
2752 .unwrap();
2753
2754 let state = state_box.take().expect(
2755 "reentrant call to with_element_state for the same state type and element id",
2756 );
2757 let (result, state) = f(Some(state), self);
2758 state_box.replace(state);
2759 self.next_frame.element_states.insert(
2760 key,
2761 ElementStateBox {
2762 inner: state_box,
2763 #[cfg(debug_assertions)]
2764 type_name,
2765 },
2766 );
2767 result
2768 } else {
2769 let (result, state) = f(None, self);
2770 self.next_frame.element_states.insert(
2771 key,
2772 ElementStateBox {
2773 inner: Box::new(Some(state)),
2774 #[cfg(debug_assertions)]
2775 type_name: std::any::type_name::<S>(),
2776 },
2777 );
2778 result
2779 }
2780 }
2781
2782 /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2783 /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2784 /// when the element is guaranteed to have an id.
2785 ///
2786 /// The first option means 'no ID provided'
2787 /// The second option means 'not yet initialized'
2788 pub fn with_optional_element_state<S, R>(
2789 &mut self,
2790 global_id: Option<&GlobalElementId>,
2791 f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2792 ) -> R
2793 where
2794 S: 'static,
2795 {
2796 self.invalidator.debug_assert_paint_or_prepaint();
2797
2798 if let Some(global_id) = global_id {
2799 self.with_element_state(global_id, |state, cx| {
2800 let (result, state) = f(Some(state), cx);
2801 let state =
2802 state.expect("you must return some state when you pass some element id");
2803 (result, state)
2804 })
2805 } else {
2806 let (result, state) = f(None, self);
2807 debug_assert!(
2808 state.is_none(),
2809 "you must not return an element state when passing None for the global id"
2810 );
2811 result
2812 }
2813 }
2814
2815 /// Executes the given closure within the context of a tab group.
2816 #[inline]
2817 pub fn with_tab_group<R>(&mut self, index: Option<isize>, f: impl FnOnce(&mut Self) -> R) -> R {
2818 if let Some(index) = index {
2819 self.next_frame.tab_stops.begin_group(index);
2820 let result = f(self);
2821 self.next_frame.tab_stops.end_group();
2822 result
2823 } else {
2824 f(self)
2825 }
2826 }
2827
2828 /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2829 /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2830 /// with higher values being drawn on top.
2831 ///
2832 /// This method should only be called as part of the prepaint phase of element drawing.
2833 pub fn defer_draw(
2834 &mut self,
2835 element: AnyElement,
2836 absolute_offset: Point<Pixels>,
2837 priority: usize,
2838 ) {
2839 self.invalidator.debug_assert_prepaint();
2840 let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2841 self.next_frame.deferred_draws.push(DeferredDraw {
2842 current_view: self.current_view(),
2843 parent_node,
2844 element_id_stack: self.element_id_stack.clone(),
2845 text_style_stack: self.text_style_stack.clone(),
2846 priority,
2847 element: Some(element),
2848 absolute_offset,
2849 prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2850 paint_range: PaintIndex::default()..PaintIndex::default(),
2851 });
2852 }
2853
2854 /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2855 /// of geometry that are non-overlapping and have the same draw order. This is typically used
2856 /// for performance reasons.
2857 ///
2858 /// This method should only be called as part of the paint phase of element drawing.
2859 pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2860 self.invalidator.debug_assert_paint();
2861
2862 let scale_factor = self.scale_factor();
2863 let content_mask = self.content_mask();
2864 let clipped_bounds = bounds.intersect(&content_mask.bounds);
2865 if !clipped_bounds.is_empty() {
2866 self.next_frame
2867 .scene
2868 .push_layer(clipped_bounds.scale(scale_factor));
2869 }
2870
2871 let result = f(self);
2872
2873 if !clipped_bounds.is_empty() {
2874 self.next_frame.scene.pop_layer();
2875 }
2876
2877 result
2878 }
2879
2880 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2881 ///
2882 /// This method should only be called as part of the paint phase of element drawing.
2883 pub fn paint_shadows(
2884 &mut self,
2885 bounds: Bounds<Pixels>,
2886 corner_radii: Corners<Pixels>,
2887 shadows: &[BoxShadow],
2888 ) {
2889 self.invalidator.debug_assert_paint();
2890
2891 let scale_factor = self.scale_factor();
2892 let content_mask = self.content_mask();
2893 let opacity = self.element_opacity();
2894 for shadow in shadows {
2895 let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2896 self.next_frame.scene.insert_primitive(Shadow {
2897 order: 0,
2898 blur_radius: shadow.blur_radius.scale(scale_factor),
2899 bounds: shadow_bounds.scale(scale_factor),
2900 content_mask: content_mask.scale(scale_factor),
2901 corner_radii: corner_radii.scale(scale_factor),
2902 color: shadow.color.opacity(opacity),
2903 });
2904 }
2905 }
2906
2907 /// Paint one or more quads into the scene for the next frame at the current stacking context.
2908 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2909 /// see [`fill`], [`outline`], and [`quad`] to construct this type.
2910 ///
2911 /// This method should only be called as part of the paint phase of element drawing.
2912 ///
2913 /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2914 /// where the circular arcs meet. This will not display well when combined with dashed borders.
2915 /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2916 pub fn paint_quad(&mut self, quad: PaintQuad) {
2917 self.invalidator.debug_assert_paint();
2918
2919 let scale_factor = self.scale_factor();
2920 let content_mask = self.content_mask();
2921 let opacity = self.element_opacity();
2922 self.next_frame.scene.insert_primitive(Quad {
2923 order: 0,
2924 bounds: quad.bounds.scale(scale_factor),
2925 content_mask: content_mask.scale(scale_factor),
2926 background: quad.background.opacity(opacity),
2927 border_color: quad.border_color.opacity(opacity),
2928 corner_radii: quad.corner_radii.scale(scale_factor),
2929 border_widths: quad.border_widths.scale(scale_factor),
2930 border_style: quad.border_style,
2931 });
2932 }
2933
2934 /// Paint the given `Path` into the scene for the next frame at the current z-index.
2935 ///
2936 /// This method should only be called as part of the paint phase of element drawing.
2937 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2938 self.invalidator.debug_assert_paint();
2939
2940 let scale_factor = self.scale_factor();
2941 let content_mask = self.content_mask();
2942 let opacity = self.element_opacity();
2943 path.content_mask = content_mask;
2944 let color: Background = color.into();
2945 path.color = color.opacity(opacity);
2946 self.next_frame
2947 .scene
2948 .insert_primitive(path.scale(scale_factor));
2949 }
2950
2951 /// Paint an underline into the scene for the next frame at the current z-index.
2952 ///
2953 /// This method should only be called as part of the paint phase of element drawing.
2954 pub fn paint_underline(
2955 &mut self,
2956 origin: Point<Pixels>,
2957 width: Pixels,
2958 style: &UnderlineStyle,
2959 ) {
2960 self.invalidator.debug_assert_paint();
2961
2962 let scale_factor = self.scale_factor();
2963 let height = if style.wavy {
2964 style.thickness * 3.
2965 } else {
2966 style.thickness
2967 };
2968 let bounds = Bounds {
2969 origin,
2970 size: size(width, height),
2971 };
2972 let content_mask = self.content_mask();
2973 let element_opacity = self.element_opacity();
2974
2975 self.next_frame.scene.insert_primitive(Underline {
2976 order: 0,
2977 pad: 0,
2978 bounds: bounds.scale(scale_factor),
2979 content_mask: content_mask.scale(scale_factor),
2980 color: style.color.unwrap_or_default().opacity(element_opacity),
2981 thickness: style.thickness.scale(scale_factor),
2982 wavy: if style.wavy { 1 } else { 0 },
2983 });
2984 }
2985
2986 /// Paint a strikethrough into the scene for the next frame at the current z-index.
2987 ///
2988 /// This method should only be called as part of the paint phase of element drawing.
2989 pub fn paint_strikethrough(
2990 &mut self,
2991 origin: Point<Pixels>,
2992 width: Pixels,
2993 style: &StrikethroughStyle,
2994 ) {
2995 self.invalidator.debug_assert_paint();
2996
2997 let scale_factor = self.scale_factor();
2998 let height = style.thickness;
2999 let bounds = Bounds {
3000 origin,
3001 size: size(width, height),
3002 };
3003 let content_mask = self.content_mask();
3004 let opacity = self.element_opacity();
3005
3006 self.next_frame.scene.insert_primitive(Underline {
3007 order: 0,
3008 pad: 0,
3009 bounds: bounds.scale(scale_factor),
3010 content_mask: content_mask.scale(scale_factor),
3011 thickness: style.thickness.scale(scale_factor),
3012 color: style.color.unwrap_or_default().opacity(opacity),
3013 wavy: 0,
3014 });
3015 }
3016
3017 /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
3018 ///
3019 /// The y component of the origin is the baseline of the glyph.
3020 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3021 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3022 /// This method is only useful if you need to paint a single glyph that has already been shaped.
3023 ///
3024 /// This method should only be called as part of the paint phase of element drawing.
3025 pub fn paint_glyph(
3026 &mut self,
3027 origin: Point<Pixels>,
3028 font_id: FontId,
3029 glyph_id: GlyphId,
3030 font_size: Pixels,
3031 color: Hsla,
3032 ) -> Result<()> {
3033 self.invalidator.debug_assert_paint();
3034
3035 let element_opacity = self.element_opacity();
3036 let scale_factor = self.scale_factor();
3037 let glyph_origin = origin.scale(scale_factor);
3038
3039 let subpixel_variant = Point {
3040 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS_X as f32).floor() as u8,
3041 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS_Y as f32).floor() as u8,
3042 };
3043 let params = RenderGlyphParams {
3044 font_id,
3045 glyph_id,
3046 font_size,
3047 subpixel_variant,
3048 scale_factor,
3049 is_emoji: false,
3050 };
3051
3052 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
3053 if !raster_bounds.is_zero() {
3054 let tile = self
3055 .sprite_atlas
3056 .get_or_insert_with(¶ms.clone().into(), &mut || {
3057 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
3058 Ok(Some((size, Cow::Owned(bytes))))
3059 })?
3060 .expect("Callback above only errors or returns Some");
3061 let bounds = Bounds {
3062 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3063 size: tile.bounds.size.map(Into::into),
3064 };
3065 let content_mask = self.content_mask().scale(scale_factor);
3066 self.next_frame.scene.insert_primitive(MonochromeSprite {
3067 order: 0,
3068 pad: 0,
3069 bounds,
3070 content_mask,
3071 color: color.opacity(element_opacity),
3072 tile,
3073 transformation: TransformationMatrix::unit(),
3074 });
3075 }
3076 Ok(())
3077 }
3078
3079 /// Paints an emoji glyph into the scene for the next frame at the current z-index.
3080 ///
3081 /// The y component of the origin is the baseline of the glyph.
3082 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3083 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3084 /// This method is only useful if you need to paint a single emoji that has already been shaped.
3085 ///
3086 /// This method should only be called as part of the paint phase of element drawing.
3087 pub fn paint_emoji(
3088 &mut self,
3089 origin: Point<Pixels>,
3090 font_id: FontId,
3091 glyph_id: GlyphId,
3092 font_size: Pixels,
3093 ) -> Result<()> {
3094 self.invalidator.debug_assert_paint();
3095
3096 let scale_factor = self.scale_factor();
3097 let glyph_origin = origin.scale(scale_factor);
3098 let params = RenderGlyphParams {
3099 font_id,
3100 glyph_id,
3101 font_size,
3102 // We don't render emojis with subpixel variants.
3103 subpixel_variant: Default::default(),
3104 scale_factor,
3105 is_emoji: true,
3106 };
3107
3108 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
3109 if !raster_bounds.is_zero() {
3110 let tile = self
3111 .sprite_atlas
3112 .get_or_insert_with(¶ms.clone().into(), &mut || {
3113 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
3114 Ok(Some((size, Cow::Owned(bytes))))
3115 })?
3116 .expect("Callback above only errors or returns Some");
3117
3118 let bounds = Bounds {
3119 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3120 size: tile.bounds.size.map(Into::into),
3121 };
3122 let content_mask = self.content_mask().scale(scale_factor);
3123 let opacity = self.element_opacity();
3124
3125 self.next_frame.scene.insert_primitive(PolychromeSprite {
3126 order: 0,
3127 pad: 0,
3128 grayscale: false,
3129 bounds,
3130 corner_radii: Default::default(),
3131 content_mask,
3132 tile,
3133 opacity,
3134 });
3135 }
3136 Ok(())
3137 }
3138
3139 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
3140 ///
3141 /// This method should only be called as part of the paint phase of element drawing.
3142 pub fn paint_svg(
3143 &mut self,
3144 bounds: Bounds<Pixels>,
3145 path: SharedString,
3146 mut data: Option<&[u8]>,
3147 transformation: TransformationMatrix,
3148 color: Hsla,
3149 cx: &App,
3150 ) -> Result<()> {
3151 self.invalidator.debug_assert_paint();
3152
3153 let element_opacity = self.element_opacity();
3154 let scale_factor = self.scale_factor();
3155
3156 let bounds = bounds.scale(scale_factor);
3157 let params = RenderSvgParams {
3158 path,
3159 size: bounds.size.map(|pixels| {
3160 DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
3161 }),
3162 };
3163
3164 let Some(tile) =
3165 self.sprite_atlas
3166 .get_or_insert_with(¶ms.clone().into(), &mut || {
3167 let Some((size, bytes)) = cx.svg_renderer.render_alpha_mask(¶ms, data)?
3168 else {
3169 return Ok(None);
3170 };
3171 Ok(Some((size, Cow::Owned(bytes))))
3172 })?
3173 else {
3174 return Ok(());
3175 };
3176 let content_mask = self.content_mask().scale(scale_factor);
3177 let svg_bounds = Bounds {
3178 origin: bounds.center()
3179 - Point::new(
3180 ScaledPixels(tile.bounds.size.width.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3181 ScaledPixels(tile.bounds.size.height.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3182 ),
3183 size: tile
3184 .bounds
3185 .size
3186 .map(|value| ScaledPixels(value.0 as f32 / SMOOTH_SVG_SCALE_FACTOR)),
3187 };
3188
3189 self.next_frame.scene.insert_primitive(MonochromeSprite {
3190 order: 0,
3191 pad: 0,
3192 bounds: svg_bounds
3193 .map_origin(|origin| origin.round())
3194 .map_size(|size| size.ceil()),
3195 content_mask,
3196 color: color.opacity(element_opacity),
3197 tile,
3198 transformation,
3199 });
3200
3201 Ok(())
3202 }
3203
3204 /// Paint an image into the scene for the next frame at the current z-index.
3205 /// This method will panic if the frame_index is not valid
3206 ///
3207 /// This method should only be called as part of the paint phase of element drawing.
3208 pub fn paint_image(
3209 &mut self,
3210 bounds: Bounds<Pixels>,
3211 corner_radii: Corners<Pixels>,
3212 data: Arc<RenderImage>,
3213 frame_index: usize,
3214 grayscale: bool,
3215 ) -> Result<()> {
3216 self.invalidator.debug_assert_paint();
3217
3218 let scale_factor = self.scale_factor();
3219 let bounds = bounds.scale(scale_factor);
3220 let params = RenderImageParams {
3221 image_id: data.id,
3222 frame_index,
3223 };
3224
3225 let tile = self
3226 .sprite_atlas
3227 .get_or_insert_with(¶ms.into(), &mut || {
3228 Ok(Some((
3229 data.size(frame_index),
3230 Cow::Borrowed(
3231 data.as_bytes(frame_index)
3232 .expect("It's the caller's job to pass a valid frame index"),
3233 ),
3234 )))
3235 })?
3236 .expect("Callback above only returns Some");
3237 let content_mask = self.content_mask().scale(scale_factor);
3238 let corner_radii = corner_radii.scale(scale_factor);
3239 let opacity = self.element_opacity();
3240
3241 self.next_frame.scene.insert_primitive(PolychromeSprite {
3242 order: 0,
3243 pad: 0,
3244 grayscale,
3245 bounds: bounds
3246 .map_origin(|origin| origin.floor())
3247 .map_size(|size| size.ceil()),
3248 content_mask,
3249 corner_radii,
3250 tile,
3251 opacity,
3252 });
3253 Ok(())
3254 }
3255
3256 /// Paint a surface into the scene for the next frame at the current z-index.
3257 ///
3258 /// This method should only be called as part of the paint phase of element drawing.
3259 #[cfg(target_os = "macos")]
3260 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
3261 use crate::PaintSurface;
3262
3263 self.invalidator.debug_assert_paint();
3264
3265 let scale_factor = self.scale_factor();
3266 let bounds = bounds.scale(scale_factor);
3267 let content_mask = self.content_mask().scale(scale_factor);
3268 self.next_frame.scene.insert_primitive(PaintSurface {
3269 order: 0,
3270 bounds,
3271 content_mask,
3272 image_buffer,
3273 });
3274 }
3275
3276 /// Removes an image from the sprite atlas.
3277 pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
3278 for frame_index in 0..data.frame_count() {
3279 let params = RenderImageParams {
3280 image_id: data.id,
3281 frame_index,
3282 };
3283
3284 self.sprite_atlas.remove(¶ms.clone().into());
3285 }
3286
3287 Ok(())
3288 }
3289
3290 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
3291 /// layout is being requested, along with the layout ids of any children. This method is called during
3292 /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
3293 ///
3294 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3295 #[must_use]
3296 pub fn request_layout(
3297 &mut self,
3298 style: Style,
3299 children: impl IntoIterator<Item = LayoutId>,
3300 cx: &mut App,
3301 ) -> LayoutId {
3302 self.invalidator.debug_assert_prepaint();
3303
3304 cx.layout_id_buffer.clear();
3305 cx.layout_id_buffer.extend(children);
3306 let rem_size = self.rem_size();
3307 let scale_factor = self.scale_factor();
3308
3309 self.layout_engine.as_mut().unwrap().request_layout(
3310 style,
3311 rem_size,
3312 scale_factor,
3313 &cx.layout_id_buffer,
3314 )
3315 }
3316
3317 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
3318 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
3319 /// determine the element's size. One place this is used internally is when measuring text.
3320 ///
3321 /// The given closure is invoked at layout time with the known dimensions and available space and
3322 /// returns a `Size`.
3323 ///
3324 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3325 pub fn request_measured_layout<F>(&mut self, style: Style, measure: F) -> LayoutId
3326 where
3327 F: Fn(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
3328 + 'static,
3329 {
3330 self.invalidator.debug_assert_prepaint();
3331
3332 let rem_size = self.rem_size();
3333 let scale_factor = self.scale_factor();
3334 self.layout_engine
3335 .as_mut()
3336 .unwrap()
3337 .request_measured_layout(style, rem_size, scale_factor, measure)
3338 }
3339
3340 /// Compute the layout for the given id within the given available space.
3341 /// This method is called for its side effect, typically by the framework prior to painting.
3342 /// After calling it, you can request the bounds of the given layout node id or any descendant.
3343 ///
3344 /// This method should only be called as part of the prepaint phase of element drawing.
3345 pub fn compute_layout(
3346 &mut self,
3347 layout_id: LayoutId,
3348 available_space: Size<AvailableSpace>,
3349 cx: &mut App,
3350 ) {
3351 self.invalidator.debug_assert_prepaint();
3352
3353 let mut layout_engine = self.layout_engine.take().unwrap();
3354 layout_engine.compute_layout(layout_id, available_space, self, cx);
3355 self.layout_engine = Some(layout_engine);
3356 }
3357
3358 /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
3359 /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
3360 ///
3361 /// This method should only be called as part of element drawing.
3362 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
3363 self.invalidator.debug_assert_prepaint();
3364
3365 let scale_factor = self.scale_factor();
3366 let mut bounds = self
3367 .layout_engine
3368 .as_mut()
3369 .unwrap()
3370 .layout_bounds(layout_id, scale_factor)
3371 .map(Into::into);
3372 bounds.origin += self.element_offset();
3373 bounds
3374 }
3375
3376 /// This method should be called during `prepaint`. You can use
3377 /// the returned [Hitbox] during `paint` or in an event handler
3378 /// to determine whether the inserted hitbox was the topmost.
3379 ///
3380 /// This method should only be called as part of the prepaint phase of element drawing.
3381 pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
3382 self.invalidator.debug_assert_prepaint();
3383
3384 let content_mask = self.content_mask();
3385 let mut id = self.next_hitbox_id;
3386 self.next_hitbox_id = self.next_hitbox_id.next();
3387 let hitbox = Hitbox {
3388 id,
3389 bounds,
3390 content_mask,
3391 behavior,
3392 };
3393 self.next_frame.hitboxes.push(hitbox.clone());
3394 hitbox
3395 }
3396
3397 /// Set a hitbox which will act as a control area of the platform window.
3398 ///
3399 /// This method should only be called as part of the paint phase of element drawing.
3400 pub fn insert_window_control_hitbox(&mut self, area: WindowControlArea, hitbox: Hitbox) {
3401 self.invalidator.debug_assert_paint();
3402 self.next_frame.window_control_hitboxes.push((area, hitbox));
3403 }
3404
3405 /// Sets the key context for the current element. This context will be used to translate
3406 /// keybindings into actions.
3407 ///
3408 /// This method should only be called as part of the paint phase of element drawing.
3409 pub fn set_key_context(&mut self, context: KeyContext) {
3410 self.invalidator.debug_assert_paint();
3411 self.next_frame.dispatch_tree.set_key_context(context);
3412 }
3413
3414 /// Sets the focus handle for the current element. This handle will be used to manage focus state
3415 /// and keyboard event dispatch for the element.
3416 ///
3417 /// This method should only be called as part of the prepaint phase of element drawing.
3418 pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3419 self.invalidator.debug_assert_prepaint();
3420 if focus_handle.is_focused(self) {
3421 self.next_frame.focus = Some(focus_handle.id);
3422 }
3423 self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3424 }
3425
3426 /// Sets the view id for the current element, which will be used to manage view caching.
3427 ///
3428 /// This method should only be called as part of element prepaint. We plan on removing this
3429 /// method eventually when we solve some issues that require us to construct editor elements
3430 /// directly instead of always using editors via views.
3431 pub fn set_view_id(&mut self, view_id: EntityId) {
3432 self.invalidator.debug_assert_prepaint();
3433 self.next_frame.dispatch_tree.set_view_id(view_id);
3434 }
3435
3436 /// Get the entity ID for the currently rendering view
3437 pub fn current_view(&self) -> EntityId {
3438 self.invalidator.debug_assert_paint_or_prepaint();
3439 self.rendered_entity_stack.last().copied().unwrap()
3440 }
3441
3442 pub(crate) fn with_rendered_view<R>(
3443 &mut self,
3444 id: EntityId,
3445 f: impl FnOnce(&mut Self) -> R,
3446 ) -> R {
3447 self.rendered_entity_stack.push(id);
3448 let result = f(self);
3449 self.rendered_entity_stack.pop();
3450 result
3451 }
3452
3453 /// Executes the provided function with the specified image cache.
3454 pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3455 where
3456 F: FnOnce(&mut Self) -> R,
3457 {
3458 if let Some(image_cache) = image_cache {
3459 self.image_cache_stack.push(image_cache);
3460 let result = f(self);
3461 self.image_cache_stack.pop();
3462 result
3463 } else {
3464 f(self)
3465 }
3466 }
3467
3468 /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3469 /// platform to receive textual input with proper integration with concerns such
3470 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3471 /// rendered.
3472 ///
3473 /// This method should only be called as part of the paint phase of element drawing.
3474 ///
3475 /// [element_input_handler]: crate::ElementInputHandler
3476 pub fn handle_input(
3477 &mut self,
3478 focus_handle: &FocusHandle,
3479 input_handler: impl InputHandler,
3480 cx: &App,
3481 ) {
3482 self.invalidator.debug_assert_paint();
3483
3484 if focus_handle.is_focused(self) {
3485 let cx = self.to_async(cx);
3486 self.next_frame
3487 .input_handlers
3488 .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3489 }
3490 }
3491
3492 /// Register a mouse event listener on the window for the next frame. The type of event
3493 /// is determined by the first parameter of the given listener. When the next frame is rendered
3494 /// the listener will be cleared.
3495 ///
3496 /// This method should only be called as part of the paint phase of element drawing.
3497 pub fn on_mouse_event<Event: MouseEvent>(
3498 &mut self,
3499 mut listener: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3500 ) {
3501 self.invalidator.debug_assert_paint();
3502
3503 self.next_frame.mouse_listeners.push(Some(Box::new(
3504 move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3505 if let Some(event) = event.downcast_ref() {
3506 listener(event, phase, window, cx)
3507 }
3508 },
3509 )));
3510 }
3511
3512 /// Register a key event listener on this node for the next frame. The type of event
3513 /// is determined by the first parameter of the given listener. When the next frame is rendered
3514 /// the listener will be cleared.
3515 ///
3516 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3517 /// a specific need to register a listener yourself.
3518 ///
3519 /// This method should only be called as part of the paint phase of element drawing.
3520 pub fn on_key_event<Event: KeyEvent>(
3521 &mut self,
3522 listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3523 ) {
3524 self.invalidator.debug_assert_paint();
3525
3526 self.next_frame.dispatch_tree.on_key_event(Rc::new(
3527 move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3528 if let Some(event) = event.downcast_ref::<Event>() {
3529 listener(event, phase, window, cx)
3530 }
3531 },
3532 ));
3533 }
3534
3535 /// Register a modifiers changed event listener on the window for the next frame.
3536 ///
3537 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3538 /// a specific need to register a global listener.
3539 ///
3540 /// This method should only be called as part of the paint phase of element drawing.
3541 pub fn on_modifiers_changed(
3542 &mut self,
3543 listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3544 ) {
3545 self.invalidator.debug_assert_paint();
3546
3547 self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3548 move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3549 listener(event, window, cx)
3550 },
3551 ));
3552 }
3553
3554 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3555 /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3556 /// Returns a subscription and persists until the subscription is dropped.
3557 pub fn on_focus_in(
3558 &mut self,
3559 handle: &FocusHandle,
3560 cx: &mut App,
3561 mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3562 ) -> Subscription {
3563 let focus_id = handle.id;
3564 let (subscription, activate) =
3565 self.new_focus_listener(Box::new(move |event, window, cx| {
3566 if event.is_focus_in(focus_id) {
3567 listener(window, cx);
3568 }
3569 true
3570 }));
3571 cx.defer(move |_| activate());
3572 subscription
3573 }
3574
3575 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3576 /// Returns a subscription and persists until the subscription is dropped.
3577 pub fn on_focus_out(
3578 &mut self,
3579 handle: &FocusHandle,
3580 cx: &mut App,
3581 mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3582 ) -> Subscription {
3583 let focus_id = handle.id;
3584 let (subscription, activate) =
3585 self.new_focus_listener(Box::new(move |event, window, cx| {
3586 if let Some(blurred_id) = event.previous_focus_path.last().copied()
3587 && event.is_focus_out(focus_id)
3588 {
3589 let event = FocusOutEvent {
3590 blurred: WeakFocusHandle {
3591 id: blurred_id,
3592 handles: Arc::downgrade(&cx.focus_handles),
3593 },
3594 };
3595 listener(event, window, cx)
3596 }
3597 true
3598 }));
3599 cx.defer(move |_| activate());
3600 subscription
3601 }
3602
3603 fn reset_cursor_style(&self, cx: &mut App) {
3604 // Set the cursor only if we're the active window.
3605 if self.is_window_hovered() {
3606 let style = self
3607 .rendered_frame
3608 .cursor_style(self)
3609 .unwrap_or(CursorStyle::Arrow);
3610 cx.platform.set_cursor_style(style);
3611 }
3612 }
3613
3614 /// Dispatch a given keystroke as though the user had typed it.
3615 /// You can create a keystroke with Keystroke::parse("").
3616 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3617 let keystroke = keystroke.with_simulated_ime();
3618 let result = self.dispatch_event(
3619 PlatformInput::KeyDown(KeyDownEvent {
3620 keystroke: keystroke.clone(),
3621 is_held: false,
3622 prefer_character_input: false,
3623 }),
3624 cx,
3625 );
3626 if !result.propagate {
3627 return true;
3628 }
3629
3630 if let Some(input) = keystroke.key_char
3631 && let Some(mut input_handler) = self.platform_window.take_input_handler()
3632 {
3633 input_handler.dispatch_input(&input, self, cx);
3634 self.platform_window.set_input_handler(input_handler);
3635 return true;
3636 }
3637
3638 false
3639 }
3640
3641 /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3642 /// binding for the action (last binding added to the keymap).
3643 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3644 self.highest_precedence_binding_for_action(action)
3645 .map(|binding| {
3646 binding
3647 .keystrokes()
3648 .iter()
3649 .map(ToString::to_string)
3650 .collect::<Vec<_>>()
3651 .join(" ")
3652 })
3653 .unwrap_or_else(|| action.name().to_string())
3654 }
3655
3656 /// Dispatch a mouse or keyboard event on the window.
3657 #[profiling::function]
3658 pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3659 self.last_input_timestamp.set(Instant::now());
3660
3661 // Track whether this input was keyboard-based for focus-visible styling
3662 self.last_input_modality = match &event {
3663 PlatformInput::KeyDown(_) | PlatformInput::ModifiersChanged(_) => {
3664 InputModality::Keyboard
3665 }
3666 PlatformInput::MouseDown(e) if e.is_focusing() => InputModality::Mouse,
3667 _ => self.last_input_modality,
3668 };
3669
3670 // Handlers may set this to false by calling `stop_propagation`.
3671 cx.propagate_event = true;
3672 // Handlers may set this to true by calling `prevent_default`.
3673 self.default_prevented = false;
3674
3675 let event = match event {
3676 // Track the mouse position with our own state, since accessing the platform
3677 // API for the mouse position can only occur on the main thread.
3678 PlatformInput::MouseMove(mouse_move) => {
3679 self.mouse_position = mouse_move.position;
3680 self.modifiers = mouse_move.modifiers;
3681 PlatformInput::MouseMove(mouse_move)
3682 }
3683 PlatformInput::MouseDown(mouse_down) => {
3684 self.mouse_position = mouse_down.position;
3685 self.modifiers = mouse_down.modifiers;
3686 PlatformInput::MouseDown(mouse_down)
3687 }
3688 PlatformInput::MouseUp(mouse_up) => {
3689 self.mouse_position = mouse_up.position;
3690 self.modifiers = mouse_up.modifiers;
3691 PlatformInput::MouseUp(mouse_up)
3692 }
3693 PlatformInput::MouseExited(mouse_exited) => {
3694 self.modifiers = mouse_exited.modifiers;
3695 PlatformInput::MouseExited(mouse_exited)
3696 }
3697 PlatformInput::ModifiersChanged(modifiers_changed) => {
3698 self.modifiers = modifiers_changed.modifiers;
3699 self.capslock = modifiers_changed.capslock;
3700 PlatformInput::ModifiersChanged(modifiers_changed)
3701 }
3702 PlatformInput::ScrollWheel(scroll_wheel) => {
3703 self.mouse_position = scroll_wheel.position;
3704 self.modifiers = scroll_wheel.modifiers;
3705 PlatformInput::ScrollWheel(scroll_wheel)
3706 }
3707 // Translate dragging and dropping of external files from the operating system
3708 // to internal drag and drop events.
3709 PlatformInput::FileDrop(file_drop) => match file_drop {
3710 FileDropEvent::Entered { position, paths } => {
3711 self.mouse_position = position;
3712 if cx.active_drag.is_none() {
3713 cx.active_drag = Some(AnyDrag {
3714 value: Arc::new(paths.clone()),
3715 view: cx.new(|_| paths).into(),
3716 cursor_offset: position,
3717 cursor_style: None,
3718 });
3719 }
3720 PlatformInput::MouseMove(MouseMoveEvent {
3721 position,
3722 pressed_button: Some(MouseButton::Left),
3723 modifiers: Modifiers::default(),
3724 })
3725 }
3726 FileDropEvent::Pending { position } => {
3727 self.mouse_position = position;
3728 PlatformInput::MouseMove(MouseMoveEvent {
3729 position,
3730 pressed_button: Some(MouseButton::Left),
3731 modifiers: Modifiers::default(),
3732 })
3733 }
3734 FileDropEvent::Submit { position } => {
3735 cx.activate(true);
3736 self.mouse_position = position;
3737 PlatformInput::MouseUp(MouseUpEvent {
3738 button: MouseButton::Left,
3739 position,
3740 modifiers: Modifiers::default(),
3741 click_count: 1,
3742 })
3743 }
3744 FileDropEvent::Exited => {
3745 cx.active_drag.take();
3746 PlatformInput::FileDrop(FileDropEvent::Exited)
3747 }
3748 },
3749 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3750 };
3751
3752 if let Some(any_mouse_event) = event.mouse_event() {
3753 self.dispatch_mouse_event(any_mouse_event, cx);
3754 } else if let Some(any_key_event) = event.keyboard_event() {
3755 self.dispatch_key_event(any_key_event, cx);
3756 }
3757
3758 DispatchEventResult {
3759 propagate: cx.propagate_event,
3760 default_prevented: self.default_prevented,
3761 }
3762 }
3763
3764 fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3765 let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3766 if hit_test != self.mouse_hit_test {
3767 self.mouse_hit_test = hit_test;
3768 self.reset_cursor_style(cx);
3769 }
3770
3771 #[cfg(any(feature = "inspector", debug_assertions))]
3772 if self.is_inspector_picking(cx) {
3773 self.handle_inspector_mouse_event(event, cx);
3774 // When inspector is picking, all other mouse handling is skipped.
3775 return;
3776 }
3777
3778 let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3779
3780 // Capture phase, events bubble from back to front. Handlers for this phase are used for
3781 // special purposes, such as detecting events outside of a given Bounds.
3782 for listener in &mut mouse_listeners {
3783 let listener = listener.as_mut().unwrap();
3784 listener(event, DispatchPhase::Capture, self, cx);
3785 if !cx.propagate_event {
3786 break;
3787 }
3788 }
3789
3790 // Bubble phase, where most normal handlers do their work.
3791 if cx.propagate_event {
3792 for listener in mouse_listeners.iter_mut().rev() {
3793 let listener = listener.as_mut().unwrap();
3794 listener(event, DispatchPhase::Bubble, self, cx);
3795 if !cx.propagate_event {
3796 break;
3797 }
3798 }
3799 }
3800
3801 self.rendered_frame.mouse_listeners = mouse_listeners;
3802
3803 if cx.has_active_drag() {
3804 if event.is::<MouseMoveEvent>() {
3805 // If this was a mouse move event, redraw the window so that the
3806 // active drag can follow the mouse cursor.
3807 self.refresh();
3808 } else if event.is::<MouseUpEvent>() {
3809 // If this was a mouse up event, cancel the active drag and redraw
3810 // the window.
3811 cx.active_drag = None;
3812 self.refresh();
3813 }
3814 }
3815 }
3816
3817 fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3818 if self.invalidator.is_dirty() {
3819 self.draw(cx).clear();
3820 }
3821
3822 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3823 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3824
3825 let mut keystroke: Option<Keystroke> = None;
3826
3827 if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3828 if event.modifiers.number_of_modifiers() == 0
3829 && self.pending_modifier.modifiers.number_of_modifiers() == 1
3830 && !self.pending_modifier.saw_keystroke
3831 {
3832 let key = match self.pending_modifier.modifiers {
3833 modifiers if modifiers.shift => Some("shift"),
3834 modifiers if modifiers.control => Some("control"),
3835 modifiers if modifiers.alt => Some("alt"),
3836 modifiers if modifiers.platform => Some("platform"),
3837 modifiers if modifiers.function => Some("function"),
3838 _ => None,
3839 };
3840 if let Some(key) = key {
3841 keystroke = Some(Keystroke {
3842 key: key.to_string(),
3843 key_char: None,
3844 modifiers: Modifiers::default(),
3845 });
3846 }
3847 }
3848
3849 if self.pending_modifier.modifiers.number_of_modifiers() == 0
3850 && event.modifiers.number_of_modifiers() == 1
3851 {
3852 self.pending_modifier.saw_keystroke = false
3853 }
3854 self.pending_modifier.modifiers = event.modifiers
3855 } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3856 self.pending_modifier.saw_keystroke = true;
3857 keystroke = Some(key_down_event.keystroke.clone());
3858 }
3859
3860 let Some(keystroke) = keystroke else {
3861 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3862 return;
3863 };
3864
3865 cx.propagate_event = true;
3866 self.dispatch_keystroke_interceptors(event, self.context_stack(), cx);
3867 if !cx.propagate_event {
3868 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3869 return;
3870 }
3871
3872 let mut currently_pending = self.pending_input.take().unwrap_or_default();
3873 if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3874 currently_pending = PendingInput::default();
3875 }
3876
3877 let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3878 currently_pending.keystrokes,
3879 keystroke,
3880 &dispatch_path,
3881 );
3882
3883 if !match_result.to_replay.is_empty() {
3884 self.replay_pending_input(match_result.to_replay, cx);
3885 cx.propagate_event = true;
3886 }
3887
3888 if !match_result.pending.is_empty() {
3889 currently_pending.keystrokes = match_result.pending;
3890 currently_pending.focus = self.focus;
3891 currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3892 cx.background_executor.timer(Duration::from_secs(1)).await;
3893 cx.update(move |window, cx| {
3894 let Some(currently_pending) = window
3895 .pending_input
3896 .take()
3897 .filter(|pending| pending.focus == window.focus)
3898 else {
3899 return;
3900 };
3901
3902 let node_id = window.focus_node_id_in_rendered_frame(window.focus);
3903 let dispatch_path = window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3904
3905 let to_replay = window
3906 .rendered_frame
3907 .dispatch_tree
3908 .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3909
3910 window.pending_input_changed(cx);
3911 window.replay_pending_input(to_replay, cx)
3912 })
3913 .log_err();
3914 }));
3915 self.pending_input = Some(currently_pending);
3916 self.pending_input_changed(cx);
3917 cx.propagate_event = false;
3918 return;
3919 }
3920
3921 let skip_bindings = event
3922 .downcast_ref::<KeyDownEvent>()
3923 .filter(|key_down_event| key_down_event.prefer_character_input)
3924 .map(|_| {
3925 self.platform_window
3926 .take_input_handler()
3927 .map_or(false, |mut input_handler| {
3928 let accepts = input_handler.accepts_text_input(self, cx);
3929 self.platform_window.set_input_handler(input_handler);
3930 // If modifiers are not excessive (e.g. AltGr), and the input handler is accepting text input,
3931 // we prefer the text input over bindings.
3932 accepts
3933 })
3934 })
3935 .unwrap_or(false);
3936
3937 if !skip_bindings {
3938 for binding in match_result.bindings {
3939 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3940 if !cx.propagate_event {
3941 self.dispatch_keystroke_observers(
3942 event,
3943 Some(binding.action),
3944 match_result.context_stack,
3945 cx,
3946 );
3947 self.pending_input_changed(cx);
3948 return;
3949 }
3950 }
3951 }
3952
3953 self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
3954 self.pending_input_changed(cx);
3955 }
3956
3957 fn finish_dispatch_key_event(
3958 &mut self,
3959 event: &dyn Any,
3960 dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3961 context_stack: Vec<KeyContext>,
3962 cx: &mut App,
3963 ) {
3964 self.dispatch_key_down_up_event(event, &dispatch_path, cx);
3965 if !cx.propagate_event {
3966 return;
3967 }
3968
3969 self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
3970 if !cx.propagate_event {
3971 return;
3972 }
3973
3974 self.dispatch_keystroke_observers(event, None, context_stack, cx);
3975 }
3976
3977 fn pending_input_changed(&mut self, cx: &mut App) {
3978 self.pending_input_observers
3979 .clone()
3980 .retain(&(), |callback| callback(self, cx));
3981 }
3982
3983 fn dispatch_key_down_up_event(
3984 &mut self,
3985 event: &dyn Any,
3986 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3987 cx: &mut App,
3988 ) {
3989 // Capture phase
3990 for node_id in dispatch_path {
3991 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3992
3993 for key_listener in node.key_listeners.clone() {
3994 key_listener(event, DispatchPhase::Capture, self, cx);
3995 if !cx.propagate_event {
3996 return;
3997 }
3998 }
3999 }
4000
4001 // Bubble phase
4002 for node_id in dispatch_path.iter().rev() {
4003 // Handle low level key events
4004 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4005 for key_listener in node.key_listeners.clone() {
4006 key_listener(event, DispatchPhase::Bubble, self, cx);
4007 if !cx.propagate_event {
4008 return;
4009 }
4010 }
4011 }
4012 }
4013
4014 fn dispatch_modifiers_changed_event(
4015 &mut self,
4016 event: &dyn Any,
4017 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
4018 cx: &mut App,
4019 ) {
4020 let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
4021 return;
4022 };
4023 for node_id in dispatch_path.iter().rev() {
4024 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4025 for listener in node.modifiers_changed_listeners.clone() {
4026 listener(event, self, cx);
4027 if !cx.propagate_event {
4028 return;
4029 }
4030 }
4031 }
4032 }
4033
4034 /// Determine whether a potential multi-stroke key binding is in progress on this window.
4035 pub fn has_pending_keystrokes(&self) -> bool {
4036 self.pending_input.is_some()
4037 }
4038
4039 pub(crate) fn clear_pending_keystrokes(&mut self) {
4040 self.pending_input.take();
4041 }
4042
4043 /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
4044 pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
4045 self.pending_input
4046 .as_ref()
4047 .map(|pending_input| pending_input.keystrokes.as_slice())
4048 }
4049
4050 fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
4051 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4052 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
4053
4054 'replay: for replay in replays {
4055 let event = KeyDownEvent {
4056 keystroke: replay.keystroke.clone(),
4057 is_held: false,
4058 prefer_character_input: true,
4059 };
4060
4061 cx.propagate_event = true;
4062 for binding in replay.bindings {
4063 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
4064 if !cx.propagate_event {
4065 self.dispatch_keystroke_observers(
4066 &event,
4067 Some(binding.action),
4068 Vec::default(),
4069 cx,
4070 );
4071 continue 'replay;
4072 }
4073 }
4074
4075 self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
4076 if !cx.propagate_event {
4077 continue 'replay;
4078 }
4079 if let Some(input) = replay.keystroke.key_char.as_ref().cloned()
4080 && let Some(mut input_handler) = self.platform_window.take_input_handler()
4081 {
4082 input_handler.dispatch_input(&input, self, cx);
4083 self.platform_window.set_input_handler(input_handler)
4084 }
4085 }
4086 }
4087
4088 fn focus_node_id_in_rendered_frame(&self, focus_id: Option<FocusId>) -> DispatchNodeId {
4089 focus_id
4090 .and_then(|focus_id| {
4091 self.rendered_frame
4092 .dispatch_tree
4093 .focusable_node_id(focus_id)
4094 })
4095 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id())
4096 }
4097
4098 fn dispatch_action_on_node(
4099 &mut self,
4100 node_id: DispatchNodeId,
4101 action: &dyn Action,
4102 cx: &mut App,
4103 ) {
4104 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
4105
4106 // Capture phase for global actions.
4107 cx.propagate_event = true;
4108 if let Some(mut global_listeners) = cx
4109 .global_action_listeners
4110 .remove(&action.as_any().type_id())
4111 {
4112 for listener in &global_listeners {
4113 listener(action.as_any(), DispatchPhase::Capture, cx);
4114 if !cx.propagate_event {
4115 break;
4116 }
4117 }
4118
4119 global_listeners.extend(
4120 cx.global_action_listeners
4121 .remove(&action.as_any().type_id())
4122 .unwrap_or_default(),
4123 );
4124
4125 cx.global_action_listeners
4126 .insert(action.as_any().type_id(), global_listeners);
4127 }
4128
4129 if !cx.propagate_event {
4130 return;
4131 }
4132
4133 // Capture phase for window actions.
4134 for node_id in &dispatch_path {
4135 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4136 for DispatchActionListener {
4137 action_type,
4138 listener,
4139 } in node.action_listeners.clone()
4140 {
4141 let any_action = action.as_any();
4142 if action_type == any_action.type_id() {
4143 listener(any_action, DispatchPhase::Capture, self, cx);
4144
4145 if !cx.propagate_event {
4146 return;
4147 }
4148 }
4149 }
4150 }
4151
4152 // Bubble phase for window actions.
4153 for node_id in dispatch_path.iter().rev() {
4154 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4155 for DispatchActionListener {
4156 action_type,
4157 listener,
4158 } in node.action_listeners.clone()
4159 {
4160 let any_action = action.as_any();
4161 if action_type == any_action.type_id() {
4162 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4163 listener(any_action, DispatchPhase::Bubble, self, cx);
4164
4165 if !cx.propagate_event {
4166 return;
4167 }
4168 }
4169 }
4170 }
4171
4172 // Bubble phase for global actions.
4173 if let Some(mut global_listeners) = cx
4174 .global_action_listeners
4175 .remove(&action.as_any().type_id())
4176 {
4177 for listener in global_listeners.iter().rev() {
4178 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4179
4180 listener(action.as_any(), DispatchPhase::Bubble, cx);
4181 if !cx.propagate_event {
4182 break;
4183 }
4184 }
4185
4186 global_listeners.extend(
4187 cx.global_action_listeners
4188 .remove(&action.as_any().type_id())
4189 .unwrap_or_default(),
4190 );
4191
4192 cx.global_action_listeners
4193 .insert(action.as_any().type_id(), global_listeners);
4194 }
4195 }
4196
4197 /// Register the given handler to be invoked whenever the global of the given type
4198 /// is updated.
4199 pub fn observe_global<G: Global>(
4200 &mut self,
4201 cx: &mut App,
4202 f: impl Fn(&mut Window, &mut App) + 'static,
4203 ) -> Subscription {
4204 let window_handle = self.handle;
4205 let (subscription, activate) = cx.global_observers.insert(
4206 TypeId::of::<G>(),
4207 Box::new(move |cx| {
4208 window_handle
4209 .update(cx, |_, window, cx| f(window, cx))
4210 .is_ok()
4211 }),
4212 );
4213 cx.defer(move |_| activate());
4214 subscription
4215 }
4216
4217 /// Focus the current window and bring it to the foreground at the platform level.
4218 pub fn activate_window(&self) {
4219 self.platform_window.activate();
4220 }
4221
4222 /// Minimize the current window at the platform level.
4223 pub fn minimize_window(&self) {
4224 self.platform_window.minimize();
4225 }
4226
4227 /// Toggle full screen status on the current window at the platform level.
4228 pub fn toggle_fullscreen(&self) {
4229 self.platform_window.toggle_fullscreen();
4230 }
4231
4232 /// Updates the IME panel position suggestions for languages like japanese, chinese.
4233 pub fn invalidate_character_coordinates(&self) {
4234 self.on_next_frame(|window, cx| {
4235 if let Some(mut input_handler) = window.platform_window.take_input_handler() {
4236 if let Some(bounds) = input_handler.selected_bounds(window, cx) {
4237 window.platform_window.update_ime_position(bounds);
4238 }
4239 window.platform_window.set_input_handler(input_handler);
4240 }
4241 });
4242 }
4243
4244 /// Present a platform dialog.
4245 /// The provided message will be presented, along with buttons for each answer.
4246 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
4247 pub fn prompt<T>(
4248 &mut self,
4249 level: PromptLevel,
4250 message: &str,
4251 detail: Option<&str>,
4252 answers: &[T],
4253 cx: &mut App,
4254 ) -> oneshot::Receiver<usize>
4255 where
4256 T: Clone + Into<PromptButton>,
4257 {
4258 let prompt_builder = cx.prompt_builder.take();
4259 let Some(prompt_builder) = prompt_builder else {
4260 unreachable!("Re-entrant window prompting is not supported by GPUI");
4261 };
4262
4263 let answers = answers
4264 .iter()
4265 .map(|answer| answer.clone().into())
4266 .collect::<Vec<_>>();
4267
4268 let receiver = match &prompt_builder {
4269 PromptBuilder::Default => self
4270 .platform_window
4271 .prompt(level, message, detail, &answers)
4272 .unwrap_or_else(|| {
4273 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4274 }),
4275 PromptBuilder::Custom(_) => {
4276 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4277 }
4278 };
4279
4280 cx.prompt_builder = Some(prompt_builder);
4281
4282 receiver
4283 }
4284
4285 fn build_custom_prompt(
4286 &mut self,
4287 prompt_builder: &PromptBuilder,
4288 level: PromptLevel,
4289 message: &str,
4290 detail: Option<&str>,
4291 answers: &[PromptButton],
4292 cx: &mut App,
4293 ) -> oneshot::Receiver<usize> {
4294 let (sender, receiver) = oneshot::channel();
4295 let handle = PromptHandle::new(sender);
4296 let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
4297 self.prompt = Some(handle);
4298 receiver
4299 }
4300
4301 /// Returns the current context stack.
4302 pub fn context_stack(&self) -> Vec<KeyContext> {
4303 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4304 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4305 dispatch_tree
4306 .dispatch_path(node_id)
4307 .iter()
4308 .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
4309 .collect()
4310 }
4311
4312 /// Returns all available actions for the focused element.
4313 pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
4314 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4315 let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
4316 for action_type in cx.global_action_listeners.keys() {
4317 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
4318 let action = cx.actions.build_action_type(action_type).ok();
4319 if let Some(action) = action {
4320 actions.insert(ix, action);
4321 }
4322 }
4323 }
4324 actions
4325 }
4326
4327 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
4328 /// returned in the order they were added. For display, the last binding should take precedence.
4329 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
4330 self.rendered_frame
4331 .dispatch_tree
4332 .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
4333 }
4334
4335 /// Returns the highest precedence key binding that invokes an action on the currently focused
4336 /// element. This is more efficient than getting the last result of `bindings_for_action`.
4337 pub fn highest_precedence_binding_for_action(&self, action: &dyn Action) -> Option<KeyBinding> {
4338 self.rendered_frame
4339 .dispatch_tree
4340 .highest_precedence_binding_for_action(
4341 action,
4342 &self.rendered_frame.dispatch_tree.context_stack,
4343 )
4344 }
4345
4346 /// Returns the key bindings for an action in a context.
4347 pub fn bindings_for_action_in_context(
4348 &self,
4349 action: &dyn Action,
4350 context: KeyContext,
4351 ) -> Vec<KeyBinding> {
4352 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4353 dispatch_tree.bindings_for_action(action, &[context])
4354 }
4355
4356 /// Returns the highest precedence key binding for an action in a context. This is more
4357 /// efficient than getting the last result of `bindings_for_action_in_context`.
4358 pub fn highest_precedence_binding_for_action_in_context(
4359 &self,
4360 action: &dyn Action,
4361 context: KeyContext,
4362 ) -> Option<KeyBinding> {
4363 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4364 dispatch_tree.highest_precedence_binding_for_action(action, &[context])
4365 }
4366
4367 /// Returns any bindings that would invoke an action on the given focus handle if it were
4368 /// focused. Bindings are returned in the order they were added. For display, the last binding
4369 /// should take precedence.
4370 pub fn bindings_for_action_in(
4371 &self,
4372 action: &dyn Action,
4373 focus_handle: &FocusHandle,
4374 ) -> Vec<KeyBinding> {
4375 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4376 let Some(context_stack) = self.context_stack_for_focus_handle(focus_handle) else {
4377 return vec![];
4378 };
4379 dispatch_tree.bindings_for_action(action, &context_stack)
4380 }
4381
4382 /// Returns the highest precedence key binding that would invoke an action on the given focus
4383 /// handle if it were focused. This is more efficient than getting the last result of
4384 /// `bindings_for_action_in`.
4385 pub fn highest_precedence_binding_for_action_in(
4386 &self,
4387 action: &dyn Action,
4388 focus_handle: &FocusHandle,
4389 ) -> Option<KeyBinding> {
4390 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4391 let context_stack = self.context_stack_for_focus_handle(focus_handle)?;
4392 dispatch_tree.highest_precedence_binding_for_action(action, &context_stack)
4393 }
4394
4395 fn context_stack_for_focus_handle(
4396 &self,
4397 focus_handle: &FocusHandle,
4398 ) -> Option<Vec<KeyContext>> {
4399 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4400 let node_id = dispatch_tree.focusable_node_id(focus_handle.id)?;
4401 let context_stack: Vec<_> = dispatch_tree
4402 .dispatch_path(node_id)
4403 .into_iter()
4404 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
4405 .collect();
4406 Some(context_stack)
4407 }
4408
4409 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
4410 pub fn listener_for<T: 'static, E>(
4411 &self,
4412 view: &Entity<T>,
4413 f: impl Fn(&mut T, &E, &mut Window, &mut Context<T>) + 'static,
4414 ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
4415 let view = view.downgrade();
4416 move |e: &E, window: &mut Window, cx: &mut App| {
4417 view.update(cx, |view, cx| f(view, e, window, cx)).ok();
4418 }
4419 }
4420
4421 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
4422 pub fn handler_for<E: 'static, Callback: Fn(&mut E, &mut Window, &mut Context<E>) + 'static>(
4423 &self,
4424 entity: &Entity<E>,
4425 f: Callback,
4426 ) -> impl Fn(&mut Window, &mut App) + 'static {
4427 let entity = entity.downgrade();
4428 move |window: &mut Window, cx: &mut App| {
4429 entity.update(cx, |entity, cx| f(entity, window, cx)).ok();
4430 }
4431 }
4432
4433 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
4434 /// If the callback returns false, the window won't be closed.
4435 pub fn on_window_should_close(
4436 &self,
4437 cx: &App,
4438 f: impl Fn(&mut Window, &mut App) -> bool + 'static,
4439 ) {
4440 let mut cx = self.to_async(cx);
4441 self.platform_window.on_should_close(Box::new(move || {
4442 cx.update(|window, cx| f(window, cx)).unwrap_or(true)
4443 }))
4444 }
4445
4446 /// Register an action listener on this node for the next frame. The type of action
4447 /// is determined by the first parameter of the given listener. When the next frame is rendered
4448 /// the listener will be cleared.
4449 ///
4450 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4451 /// a specific need to register a listener yourself.
4452 ///
4453 /// This method should only be called as part of the paint phase of element drawing.
4454 pub fn on_action(
4455 &mut self,
4456 action_type: TypeId,
4457 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4458 ) {
4459 self.invalidator.debug_assert_paint();
4460
4461 self.next_frame
4462 .dispatch_tree
4463 .on_action(action_type, Rc::new(listener));
4464 }
4465
4466 /// Register a capturing action listener on this node for the next frame if the condition is true.
4467 /// The type of action is determined by the first parameter of the given listener. When the next
4468 /// frame is rendered the listener will be cleared.
4469 ///
4470 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4471 /// a specific need to register a listener yourself.
4472 ///
4473 /// This method should only be called as part of the paint phase of element drawing.
4474 pub fn on_action_when(
4475 &mut self,
4476 condition: bool,
4477 action_type: TypeId,
4478 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4479 ) {
4480 self.invalidator.debug_assert_paint();
4481
4482 if condition {
4483 self.next_frame
4484 .dispatch_tree
4485 .on_action(action_type, Rc::new(listener));
4486 }
4487 }
4488
4489 /// Read information about the GPU backing this window.
4490 /// Currently returns None on Mac and Windows.
4491 pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4492 self.platform_window.gpu_specs()
4493 }
4494
4495 /// Perform titlebar double-click action.
4496 /// This is macOS specific.
4497 pub fn titlebar_double_click(&self) {
4498 self.platform_window.titlebar_double_click();
4499 }
4500
4501 /// Gets the window's title at the platform level.
4502 /// This is macOS specific.
4503 pub fn window_title(&self) -> String {
4504 self.platform_window.get_title()
4505 }
4506
4507 /// Returns a list of all tabbed windows and their titles.
4508 /// This is macOS specific.
4509 pub fn tabbed_windows(&self) -> Option<Vec<SystemWindowTab>> {
4510 self.platform_window.tabbed_windows()
4511 }
4512
4513 /// Returns the tab bar visibility.
4514 /// This is macOS specific.
4515 pub fn tab_bar_visible(&self) -> bool {
4516 self.platform_window.tab_bar_visible()
4517 }
4518
4519 /// Merges all open windows into a single tabbed window.
4520 /// This is macOS specific.
4521 pub fn merge_all_windows(&self) {
4522 self.platform_window.merge_all_windows()
4523 }
4524
4525 /// Moves the tab to a new containing window.
4526 /// This is macOS specific.
4527 pub fn move_tab_to_new_window(&self) {
4528 self.platform_window.move_tab_to_new_window()
4529 }
4530
4531 /// Shows or hides the window tab overview.
4532 /// This is macOS specific.
4533 pub fn toggle_window_tab_overview(&self) {
4534 self.platform_window.toggle_window_tab_overview()
4535 }
4536
4537 /// Sets the tabbing identifier for the window.
4538 /// This is macOS specific.
4539 pub fn set_tabbing_identifier(&self, tabbing_identifier: Option<String>) {
4540 self.platform_window
4541 .set_tabbing_identifier(tabbing_identifier)
4542 }
4543
4544 /// Toggles the inspector mode on this window.
4545 #[cfg(any(feature = "inspector", debug_assertions))]
4546 pub fn toggle_inspector(&mut self, cx: &mut App) {
4547 self.inspector = match self.inspector {
4548 None => Some(cx.new(|_| Inspector::new())),
4549 Some(_) => None,
4550 };
4551 self.refresh();
4552 }
4553
4554 /// Returns true if the window is in inspector mode.
4555 pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4556 #[cfg(any(feature = "inspector", debug_assertions))]
4557 {
4558 if let Some(inspector) = &self.inspector {
4559 return inspector.read(_cx).is_picking();
4560 }
4561 }
4562 false
4563 }
4564
4565 /// Executes the provided function with mutable access to an inspector state.
4566 #[cfg(any(feature = "inspector", debug_assertions))]
4567 pub fn with_inspector_state<T: 'static, R>(
4568 &mut self,
4569 _inspector_id: Option<&crate::InspectorElementId>,
4570 cx: &mut App,
4571 f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4572 ) -> R {
4573 if let Some(inspector_id) = _inspector_id
4574 && let Some(inspector) = &self.inspector
4575 {
4576 let inspector = inspector.clone();
4577 let active_element_id = inspector.read(cx).active_element_id();
4578 if Some(inspector_id) == active_element_id {
4579 return inspector.update(cx, |inspector, _cx| {
4580 inspector.with_active_element_state(self, f)
4581 });
4582 }
4583 }
4584 f(&mut None, self)
4585 }
4586
4587 #[cfg(any(feature = "inspector", debug_assertions))]
4588 pub(crate) fn build_inspector_element_id(
4589 &mut self,
4590 path: crate::InspectorElementPath,
4591 ) -> crate::InspectorElementId {
4592 self.invalidator.debug_assert_paint_or_prepaint();
4593 let path = Rc::new(path);
4594 let next_instance_id = self
4595 .next_frame
4596 .next_inspector_instance_ids
4597 .entry(path.clone())
4598 .or_insert(0);
4599 let instance_id = *next_instance_id;
4600 *next_instance_id += 1;
4601 crate::InspectorElementId { path, instance_id }
4602 }
4603
4604 #[cfg(any(feature = "inspector", debug_assertions))]
4605 fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4606 if let Some(inspector) = self.inspector.take() {
4607 let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4608 inspector_element.prepaint_as_root(
4609 point(self.viewport_size.width - inspector_width, px(0.0)),
4610 size(inspector_width, self.viewport_size.height).into(),
4611 self,
4612 cx,
4613 );
4614 self.inspector = Some(inspector);
4615 Some(inspector_element)
4616 } else {
4617 None
4618 }
4619 }
4620
4621 #[cfg(any(feature = "inspector", debug_assertions))]
4622 fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4623 if let Some(mut inspector_element) = inspector_element {
4624 inspector_element.paint(self, cx);
4625 };
4626 }
4627
4628 /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4629 /// inspect UI elements by clicking on them.
4630 #[cfg(any(feature = "inspector", debug_assertions))]
4631 pub fn insert_inspector_hitbox(
4632 &mut self,
4633 hitbox_id: HitboxId,
4634 inspector_id: Option<&crate::InspectorElementId>,
4635 cx: &App,
4636 ) {
4637 self.invalidator.debug_assert_paint_or_prepaint();
4638 if !self.is_inspector_picking(cx) {
4639 return;
4640 }
4641 if let Some(inspector_id) = inspector_id {
4642 self.next_frame
4643 .inspector_hitboxes
4644 .insert(hitbox_id, inspector_id.clone());
4645 }
4646 }
4647
4648 #[cfg(any(feature = "inspector", debug_assertions))]
4649 fn paint_inspector_hitbox(&mut self, cx: &App) {
4650 if let Some(inspector) = self.inspector.as_ref() {
4651 let inspector = inspector.read(cx);
4652 if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
4653 && let Some(hitbox) = self
4654 .next_frame
4655 .hitboxes
4656 .iter()
4657 .find(|hitbox| hitbox.id == hitbox_id)
4658 {
4659 self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4660 }
4661 }
4662 }
4663
4664 #[cfg(any(feature = "inspector", debug_assertions))]
4665 fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4666 let Some(inspector) = self.inspector.clone() else {
4667 return;
4668 };
4669 if event.downcast_ref::<MouseMoveEvent>().is_some() {
4670 inspector.update(cx, |inspector, _cx| {
4671 if let Some((_, inspector_id)) =
4672 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4673 {
4674 inspector.hover(inspector_id, self);
4675 }
4676 });
4677 } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4678 inspector.update(cx, |inspector, _cx| {
4679 if let Some((_, inspector_id)) =
4680 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4681 {
4682 inspector.select(inspector_id, self);
4683 }
4684 });
4685 } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4686 // This should be kept in sync with SCROLL_LINES in x11 platform.
4687 const SCROLL_LINES: f32 = 3.0;
4688 const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4689 let delta_y = event
4690 .delta
4691 .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4692 .y;
4693 if let Some(inspector) = self.inspector.clone() {
4694 inspector.update(cx, |inspector, _cx| {
4695 if let Some(depth) = inspector.pick_depth.as_mut() {
4696 *depth += f32::from(delta_y) / SCROLL_PIXELS_PER_LAYER;
4697 let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4698 if *depth < 0.0 {
4699 *depth = 0.0;
4700 } else if *depth > max_depth {
4701 *depth = max_depth;
4702 }
4703 if let Some((_, inspector_id)) =
4704 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4705 {
4706 inspector.set_active_element_id(inspector_id, self);
4707 }
4708 }
4709 });
4710 }
4711 }
4712 }
4713
4714 #[cfg(any(feature = "inspector", debug_assertions))]
4715 fn hovered_inspector_hitbox(
4716 &self,
4717 inspector: &Inspector,
4718 frame: &Frame,
4719 ) -> Option<(HitboxId, crate::InspectorElementId)> {
4720 if let Some(pick_depth) = inspector.pick_depth {
4721 let depth = (pick_depth as i64).try_into().unwrap_or(0);
4722 let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4723 let skip_count = (depth as usize).min(max_skipped);
4724 for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4725 if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4726 return Some((*hitbox_id, inspector_id.clone()));
4727 }
4728 }
4729 }
4730 None
4731 }
4732
4733 /// For testing: set the current modifier keys state.
4734 /// This does not generate any events.
4735 #[cfg(any(test, feature = "test-support"))]
4736 pub fn set_modifiers(&mut self, modifiers: Modifiers) {
4737 self.modifiers = modifiers;
4738 }
4739}
4740
4741// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4742slotmap::new_key_type! {
4743 /// A unique identifier for a window.
4744 pub struct WindowId;
4745}
4746
4747impl WindowId {
4748 /// Converts this window ID to a `u64`.
4749 pub fn as_u64(&self) -> u64 {
4750 self.0.as_ffi()
4751 }
4752}
4753
4754impl From<u64> for WindowId {
4755 fn from(value: u64) -> Self {
4756 WindowId(slotmap::KeyData::from_ffi(value))
4757 }
4758}
4759
4760/// A handle to a window with a specific root view type.
4761/// Note that this does not keep the window alive on its own.
4762#[derive(Deref, DerefMut)]
4763pub struct WindowHandle<V> {
4764 #[deref]
4765 #[deref_mut]
4766 pub(crate) any_handle: AnyWindowHandle,
4767 state_type: PhantomData<fn(V) -> V>,
4768}
4769
4770impl<V> Debug for WindowHandle<V> {
4771 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4772 f.debug_struct("WindowHandle")
4773 .field("any_handle", &self.any_handle.id.as_u64())
4774 .finish()
4775 }
4776}
4777
4778impl<V: 'static + Render> WindowHandle<V> {
4779 /// Creates a new handle from a window ID.
4780 /// This does not check if the root type of the window is `V`.
4781 pub fn new(id: WindowId) -> Self {
4782 WindowHandle {
4783 any_handle: AnyWindowHandle {
4784 id,
4785 state_type: TypeId::of::<V>(),
4786 },
4787 state_type: PhantomData,
4788 }
4789 }
4790
4791 /// Get the root view out of this window.
4792 ///
4793 /// This will fail if the window is closed or if the root view's type does not match `V`.
4794 #[cfg(any(test, feature = "test-support"))]
4795 pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4796 where
4797 C: AppContext,
4798 {
4799 crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4800 root_view
4801 .downcast::<V>()
4802 .map_err(|_| anyhow!("the type of the window's root view has changed"))
4803 }))
4804 }
4805
4806 /// Updates the root view of this window.
4807 ///
4808 /// This will fail if the window has been closed or if the root view's type does not match
4809 pub fn update<C, R>(
4810 &self,
4811 cx: &mut C,
4812 update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4813 ) -> Result<R>
4814 where
4815 C: AppContext,
4816 {
4817 cx.update_window(self.any_handle, |root_view, window, cx| {
4818 let view = root_view
4819 .downcast::<V>()
4820 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4821
4822 Ok(view.update(cx, |view, cx| update(view, window, cx)))
4823 })?
4824 }
4825
4826 /// Read the root view out of this window.
4827 ///
4828 /// This will fail if the window is closed or if the root view's type does not match `V`.
4829 pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
4830 let x = cx
4831 .windows
4832 .get(self.id)
4833 .and_then(|window| {
4834 window
4835 .as_deref()
4836 .and_then(|window| window.root.clone())
4837 .map(|root_view| root_view.downcast::<V>())
4838 })
4839 .context("window not found")?
4840 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4841
4842 Ok(x.read(cx))
4843 }
4844
4845 /// Read the root view out of this window, with a callback
4846 ///
4847 /// This will fail if the window is closed or if the root view's type does not match `V`.
4848 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4849 where
4850 C: AppContext,
4851 {
4852 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
4853 }
4854
4855 /// Read the root view pointer off of this window.
4856 ///
4857 /// This will fail if the window is closed or if the root view's type does not match `V`.
4858 pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4859 where
4860 C: AppContext,
4861 {
4862 cx.read_window(self, |root_view, _cx| root_view)
4863 }
4864
4865 /// Check if this window is 'active'.
4866 ///
4867 /// Will return `None` if the window is closed or currently
4868 /// borrowed.
4869 pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4870 cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4871 .ok()
4872 }
4873}
4874
4875impl<V> Copy for WindowHandle<V> {}
4876
4877impl<V> Clone for WindowHandle<V> {
4878 fn clone(&self) -> Self {
4879 *self
4880 }
4881}
4882
4883impl<V> PartialEq for WindowHandle<V> {
4884 fn eq(&self, other: &Self) -> bool {
4885 self.any_handle == other.any_handle
4886 }
4887}
4888
4889impl<V> Eq for WindowHandle<V> {}
4890
4891impl<V> Hash for WindowHandle<V> {
4892 fn hash<H: Hasher>(&self, state: &mut H) {
4893 self.any_handle.hash(state);
4894 }
4895}
4896
4897impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
4898 fn from(val: WindowHandle<V>) -> Self {
4899 val.any_handle
4900 }
4901}
4902
4903/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
4904#[derive(Copy, Clone, PartialEq, Eq, Hash)]
4905pub struct AnyWindowHandle {
4906 pub(crate) id: WindowId,
4907 state_type: TypeId,
4908}
4909
4910impl AnyWindowHandle {
4911 /// Get the ID of this window.
4912 pub fn window_id(&self) -> WindowId {
4913 self.id
4914 }
4915
4916 /// Attempt to convert this handle to a window handle with a specific root view type.
4917 /// If the types do not match, this will return `None`.
4918 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
4919 if TypeId::of::<T>() == self.state_type {
4920 Some(WindowHandle {
4921 any_handle: *self,
4922 state_type: PhantomData,
4923 })
4924 } else {
4925 None
4926 }
4927 }
4928
4929 /// Updates the state of the root view of this window.
4930 ///
4931 /// This will fail if the window has been closed.
4932 pub fn update<C, R>(
4933 self,
4934 cx: &mut C,
4935 update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
4936 ) -> Result<R>
4937 where
4938 C: AppContext,
4939 {
4940 cx.update_window(self, update)
4941 }
4942
4943 /// Read the state of the root view of this window.
4944 ///
4945 /// This will fail if the window has been closed.
4946 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
4947 where
4948 C: AppContext,
4949 T: 'static,
4950 {
4951 let view = self
4952 .downcast::<T>()
4953 .context("the type of the window's root view has changed")?;
4954
4955 cx.read_window(&view, read)
4956 }
4957}
4958
4959impl HasWindowHandle for Window {
4960 fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
4961 self.platform_window.window_handle()
4962 }
4963}
4964
4965impl HasDisplayHandle for Window {
4966 fn display_handle(
4967 &self,
4968 ) -> std::result::Result<raw_window_handle::DisplayHandle<'_>, HandleError> {
4969 self.platform_window.display_handle()
4970 }
4971}
4972
4973/// An identifier for an [`Element`].
4974///
4975/// Can be constructed with a string, a number, or both, as well
4976/// as other internal representations.
4977#[derive(Clone, Debug, Eq, PartialEq, Hash)]
4978pub enum ElementId {
4979 /// The ID of a View element
4980 View(EntityId),
4981 /// An integer ID.
4982 Integer(u64),
4983 /// A string based ID.
4984 Name(SharedString),
4985 /// A UUID.
4986 Uuid(Uuid),
4987 /// An ID that's equated with a focus handle.
4988 FocusHandle(FocusId),
4989 /// A combination of a name and an integer.
4990 NamedInteger(SharedString, u64),
4991 /// A path.
4992 Path(Arc<std::path::Path>),
4993 /// A code location.
4994 CodeLocation(core::panic::Location<'static>),
4995 /// A labeled child of an element.
4996 NamedChild(Arc<ElementId>, SharedString),
4997}
4998
4999impl ElementId {
5000 /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
5001 pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
5002 Self::NamedInteger(name.into(), integer as u64)
5003 }
5004}
5005
5006impl Display for ElementId {
5007 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
5008 match self {
5009 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
5010 ElementId::Integer(ix) => write!(f, "{}", ix)?,
5011 ElementId::Name(name) => write!(f, "{}", name)?,
5012 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
5013 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
5014 ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
5015 ElementId::Path(path) => write!(f, "{}", path.display())?,
5016 ElementId::CodeLocation(location) => write!(f, "{}", location)?,
5017 ElementId::NamedChild(id, name) => write!(f, "{}-{}", id, name)?,
5018 }
5019
5020 Ok(())
5021 }
5022}
5023
5024impl TryInto<SharedString> for ElementId {
5025 type Error = anyhow::Error;
5026
5027 fn try_into(self) -> anyhow::Result<SharedString> {
5028 if let ElementId::Name(name) = self {
5029 Ok(name)
5030 } else {
5031 anyhow::bail!("element id is not string")
5032 }
5033 }
5034}
5035
5036impl From<usize> for ElementId {
5037 fn from(id: usize) -> Self {
5038 ElementId::Integer(id as u64)
5039 }
5040}
5041
5042impl From<i32> for ElementId {
5043 fn from(id: i32) -> Self {
5044 Self::Integer(id as u64)
5045 }
5046}
5047
5048impl From<SharedString> for ElementId {
5049 fn from(name: SharedString) -> Self {
5050 ElementId::Name(name)
5051 }
5052}
5053
5054impl From<Arc<std::path::Path>> for ElementId {
5055 fn from(path: Arc<std::path::Path>) -> Self {
5056 ElementId::Path(path)
5057 }
5058}
5059
5060impl From<&'static str> for ElementId {
5061 fn from(name: &'static str) -> Self {
5062 ElementId::Name(name.into())
5063 }
5064}
5065
5066impl<'a> From<&'a FocusHandle> for ElementId {
5067 fn from(handle: &'a FocusHandle) -> Self {
5068 ElementId::FocusHandle(handle.id)
5069 }
5070}
5071
5072impl From<(&'static str, EntityId)> for ElementId {
5073 fn from((name, id): (&'static str, EntityId)) -> Self {
5074 ElementId::NamedInteger(name.into(), id.as_u64())
5075 }
5076}
5077
5078impl From<(&'static str, usize)> for ElementId {
5079 fn from((name, id): (&'static str, usize)) -> Self {
5080 ElementId::NamedInteger(name.into(), id as u64)
5081 }
5082}
5083
5084impl From<(SharedString, usize)> for ElementId {
5085 fn from((name, id): (SharedString, usize)) -> Self {
5086 ElementId::NamedInteger(name, id as u64)
5087 }
5088}
5089
5090impl From<(&'static str, u64)> for ElementId {
5091 fn from((name, id): (&'static str, u64)) -> Self {
5092 ElementId::NamedInteger(name.into(), id)
5093 }
5094}
5095
5096impl From<Uuid> for ElementId {
5097 fn from(value: Uuid) -> Self {
5098 Self::Uuid(value)
5099 }
5100}
5101
5102impl From<(&'static str, u32)> for ElementId {
5103 fn from((name, id): (&'static str, u32)) -> Self {
5104 ElementId::NamedInteger(name.into(), id.into())
5105 }
5106}
5107
5108impl<T: Into<SharedString>> From<(ElementId, T)> for ElementId {
5109 fn from((id, name): (ElementId, T)) -> Self {
5110 ElementId::NamedChild(Arc::new(id), name.into())
5111 }
5112}
5113
5114impl From<&'static core::panic::Location<'static>> for ElementId {
5115 fn from(location: &'static core::panic::Location<'static>) -> Self {
5116 ElementId::CodeLocation(*location)
5117 }
5118}
5119
5120/// A rectangle to be rendered in the window at the given position and size.
5121/// Passed as an argument [`Window::paint_quad`].
5122#[derive(Clone)]
5123pub struct PaintQuad {
5124 /// The bounds of the quad within the window.
5125 pub bounds: Bounds<Pixels>,
5126 /// The radii of the quad's corners.
5127 pub corner_radii: Corners<Pixels>,
5128 /// The background color of the quad.
5129 pub background: Background,
5130 /// The widths of the quad's borders.
5131 pub border_widths: Edges<Pixels>,
5132 /// The color of the quad's borders.
5133 pub border_color: Hsla,
5134 /// The style of the quad's borders.
5135 pub border_style: BorderStyle,
5136}
5137
5138impl PaintQuad {
5139 /// Sets the corner radii of the quad.
5140 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
5141 PaintQuad {
5142 corner_radii: corner_radii.into(),
5143 ..self
5144 }
5145 }
5146
5147 /// Sets the border widths of the quad.
5148 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
5149 PaintQuad {
5150 border_widths: border_widths.into(),
5151 ..self
5152 }
5153 }
5154
5155 /// Sets the border color of the quad.
5156 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
5157 PaintQuad {
5158 border_color: border_color.into(),
5159 ..self
5160 }
5161 }
5162
5163 /// Sets the background color of the quad.
5164 pub fn background(self, background: impl Into<Background>) -> Self {
5165 PaintQuad {
5166 background: background.into(),
5167 ..self
5168 }
5169 }
5170}
5171
5172/// Creates a quad with the given parameters.
5173pub fn quad(
5174 bounds: Bounds<Pixels>,
5175 corner_radii: impl Into<Corners<Pixels>>,
5176 background: impl Into<Background>,
5177 border_widths: impl Into<Edges<Pixels>>,
5178 border_color: impl Into<Hsla>,
5179 border_style: BorderStyle,
5180) -> PaintQuad {
5181 PaintQuad {
5182 bounds,
5183 corner_radii: corner_radii.into(),
5184 background: background.into(),
5185 border_widths: border_widths.into(),
5186 border_color: border_color.into(),
5187 border_style,
5188 }
5189}
5190
5191/// Creates a filled quad with the given bounds and background color.
5192pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
5193 PaintQuad {
5194 bounds: bounds.into(),
5195 corner_radii: (0.).into(),
5196 background: background.into(),
5197 border_widths: (0.).into(),
5198 border_color: transparent_black(),
5199 border_style: BorderStyle::default(),
5200 }
5201}
5202
5203/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
5204pub fn outline(
5205 bounds: impl Into<Bounds<Pixels>>,
5206 border_color: impl Into<Hsla>,
5207 border_style: BorderStyle,
5208) -> PaintQuad {
5209 PaintQuad {
5210 bounds: bounds.into(),
5211 corner_radii: (0.).into(),
5212 background: transparent_black().into(),
5213 border_widths: (1.).into(),
5214 border_color: border_color.into(),
5215 border_style,
5216 }
5217}