executor.rs

  1use crate::{AppContext, PlatformDispatcher};
  2use futures::{channel::mpsc, pin_mut, FutureExt};
  3use smol::prelude::*;
  4use std::{
  5    fmt::Debug,
  6    marker::PhantomData,
  7    mem,
  8    num::NonZeroUsize,
  9    pin::Pin,
 10    rc::Rc,
 11    sync::{
 12        atomic::{AtomicBool, AtomicUsize, Ordering::SeqCst},
 13        Arc,
 14    },
 15    task::{Context, Poll},
 16    time::Duration,
 17};
 18use util::TryFutureExt;
 19use waker_fn::waker_fn;
 20
 21#[cfg(any(test, feature = "test-support"))]
 22use rand::rngs::StdRng;
 23
 24#[derive(Clone)]
 25pub struct BackgroundExecutor {
 26    dispatcher: Arc<dyn PlatformDispatcher>,
 27}
 28
 29#[derive(Clone)]
 30pub struct ForegroundExecutor {
 31    dispatcher: Arc<dyn PlatformDispatcher>,
 32    not_send: PhantomData<Rc<()>>,
 33}
 34
 35/// Task is a primitive that allows work to happen in the background.
 36///
 37/// It implements [`Future`] so you can `.await` on it.
 38///
 39/// If you drop a task it will be cancelled immediately. Calling [`Task::detach`] allows
 40/// the task to continue running in the background, but with no way to return a value.
 41#[must_use]
 42#[derive(Debug)]
 43pub enum Task<T> {
 44    Ready(Option<T>),
 45    Spawned(async_task::Task<T>),
 46}
 47
 48impl<T> Task<T> {
 49    /// Create a new task that will resolve with the value
 50    pub fn ready(val: T) -> Self {
 51        Task::Ready(Some(val))
 52    }
 53
 54    /// Detaching a task runs it to completion in the background
 55    pub fn detach(self) {
 56        match self {
 57            Task::Ready(_) => {}
 58            Task::Spawned(task) => task.detach(),
 59        }
 60    }
 61}
 62
 63impl<E, T> Task<Result<T, E>>
 64where
 65    T: 'static,
 66    E: 'static + Debug,
 67{
 68    /// Run the task to completion in the background and log any
 69    /// errors that occur.
 70    #[track_caller]
 71    pub fn detach_and_log_err(self, cx: &mut AppContext) {
 72        let location = core::panic::Location::caller();
 73        cx.foreground_executor()
 74            .spawn(self.log_tracked_err(*location))
 75            .detach();
 76    }
 77}
 78
 79impl<T> Future for Task<T> {
 80    type Output = T;
 81
 82    fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
 83        match unsafe { self.get_unchecked_mut() } {
 84            Task::Ready(val) => Poll::Ready(val.take().unwrap()),
 85            Task::Spawned(task) => task.poll(cx),
 86        }
 87    }
 88}
 89
 90#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
 91pub struct TaskLabel(NonZeroUsize);
 92
 93impl Default for TaskLabel {
 94    fn default() -> Self {
 95        Self::new()
 96    }
 97}
 98
 99impl TaskLabel {
100    pub fn new() -> Self {
101        static NEXT_TASK_LABEL: AtomicUsize = AtomicUsize::new(1);
102        Self(NEXT_TASK_LABEL.fetch_add(1, SeqCst).try_into().unwrap())
103    }
104}
105
106type AnyLocalFuture<R> = Pin<Box<dyn 'static + Future<Output = R>>>;
107
108type AnyFuture<R> = Pin<Box<dyn 'static + Send + Future<Output = R>>>;
109
110/// BackgroundExecutor lets you run things on background threads.
111/// In production this is a thread pool with no ordering guarantees.
112/// In tests this is simalated by running tasks one by one in a deterministic
113/// (but arbitrary) order controlled by the `SEED` environment variable.
114impl BackgroundExecutor {
115    pub fn new(dispatcher: Arc<dyn PlatformDispatcher>) -> Self {
116        Self { dispatcher }
117    }
118
119    /// Enqueues the given future to be run to completion on a background thread.
120    pub fn spawn<R>(&self, future: impl Future<Output = R> + Send + 'static) -> Task<R>
121    where
122        R: Send + 'static,
123    {
124        self.spawn_internal::<R>(Box::pin(future), None)
125    }
126
127    /// Enqueues the given future to be run to completion on a background thread.
128    /// The given label can be used to control the priority of the task in tests.
129    pub fn spawn_labeled<R>(
130        &self,
131        label: TaskLabel,
132        future: impl Future<Output = R> + Send + 'static,
133    ) -> Task<R>
134    where
135        R: Send + 'static,
136    {
137        self.spawn_internal::<R>(Box::pin(future), Some(label))
138    }
139
140    fn spawn_internal<R: Send + 'static>(
141        &self,
142        future: AnyFuture<R>,
143        label: Option<TaskLabel>,
144    ) -> Task<R> {
145        let dispatcher = self.dispatcher.clone();
146        let (runnable, task) =
147            async_task::spawn(future, move |runnable| dispatcher.dispatch(runnable, label));
148        runnable.schedule();
149        Task::Spawned(task)
150    }
151
152    /// Used by the test harness to run an async test in a syncronous fashion.
153    #[cfg(any(test, feature = "test-support"))]
154    #[track_caller]
155    pub fn block_test<R>(&self, future: impl Future<Output = R>) -> R {
156        if let Ok(value) = self.block_internal(false, future, usize::MAX) {
157            value
158        } else {
159            unreachable!()
160        }
161    }
162
163    /// Block the current thread until the given future resolves.
164    /// Consider using `block_with_timeout` instead.
165    pub fn block<R>(&self, future: impl Future<Output = R>) -> R {
166        if let Ok(value) = self.block_internal(true, future, usize::MAX) {
167            value
168        } else {
169            unreachable!()
170        }
171    }
172
173    #[track_caller]
174    pub(crate) fn block_internal<R>(
175        &self,
176        background_only: bool,
177        future: impl Future<Output = R>,
178        mut max_ticks: usize,
179    ) -> Result<R, ()> {
180        pin_mut!(future);
181        let unparker = self.dispatcher.unparker();
182        let awoken = Arc::new(AtomicBool::new(false));
183
184        let waker = waker_fn({
185            let awoken = awoken.clone();
186            move || {
187                awoken.store(true, SeqCst);
188                unparker.unpark();
189            }
190        });
191        let mut cx = std::task::Context::from_waker(&waker);
192
193        loop {
194            match future.as_mut().poll(&mut cx) {
195                Poll::Ready(result) => return Ok(result),
196                Poll::Pending => {
197                    if max_ticks == 0 {
198                        return Err(());
199                    }
200                    max_ticks -= 1;
201
202                    if !self.dispatcher.tick(background_only) {
203                        if awoken.swap(false, SeqCst) {
204                            continue;
205                        }
206
207                        #[cfg(any(test, feature = "test-support"))]
208                        if let Some(test) = self.dispatcher.as_test() {
209                            if !test.parking_allowed() {
210                                let mut backtrace_message = String::new();
211                                if let Some(backtrace) = test.waiting_backtrace() {
212                                    backtrace_message =
213                                        format!("\nbacktrace of waiting future:\n{:?}", backtrace);
214                                }
215                                panic!("parked with nothing left to run\n{:?}", backtrace_message)
216                            }
217                        }
218
219                        self.dispatcher.park();
220                    }
221                }
222            }
223        }
224    }
225
226    /// Block the current thread until the given future resolves
227    /// or `duration` has elapsed.
228    pub fn block_with_timeout<R>(
229        &self,
230        duration: Duration,
231        future: impl Future<Output = R>,
232    ) -> Result<R, impl Future<Output = R>> {
233        let mut future = Box::pin(future.fuse());
234        if duration.is_zero() {
235            return Err(future);
236        }
237
238        #[cfg(any(test, feature = "test-support"))]
239        let max_ticks = self
240            .dispatcher
241            .as_test()
242            .map_or(usize::MAX, |dispatcher| dispatcher.gen_block_on_ticks());
243        #[cfg(not(any(test, feature = "test-support")))]
244        let max_ticks = usize::MAX;
245
246        let mut timer = self.timer(duration).fuse();
247
248        let timeout = async {
249            futures::select_biased! {
250                value = future => Ok(value),
251                _ = timer => Err(()),
252            }
253        };
254        match self.block_internal(true, timeout, max_ticks) {
255            Ok(Ok(value)) => Ok(value),
256            _ => Err(future),
257        }
258    }
259
260    /// Scoped lets you start a number of tasks and waits
261    /// for all of them to complete before returning.
262    pub async fn scoped<'scope, F>(&self, scheduler: F)
263    where
264        F: FnOnce(&mut Scope<'scope>),
265    {
266        let mut scope = Scope::new(self.clone());
267        (scheduler)(&mut scope);
268        let spawned = mem::take(&mut scope.futures)
269            .into_iter()
270            .map(|f| self.spawn(f))
271            .collect::<Vec<_>>();
272        for task in spawned {
273            task.await;
274        }
275    }
276
277    /// Returns a task that will complete after the given duration.
278    /// Depending on other concurrent tasks the elapsed duration may be longer
279    /// than reqested.
280    pub fn timer(&self, duration: Duration) -> Task<()> {
281        let (runnable, task) = async_task::spawn(async move {}, {
282            let dispatcher = self.dispatcher.clone();
283            move |runnable| dispatcher.dispatch_after(duration, runnable)
284        });
285        runnable.schedule();
286        Task::Spawned(task)
287    }
288
289    /// in tests, start_waiting lets you indicate which task is waiting (for debugging only)
290    #[cfg(any(test, feature = "test-support"))]
291    pub fn start_waiting(&self) {
292        self.dispatcher.as_test().unwrap().start_waiting();
293    }
294
295    /// in tests, removes the debugging data added by start_waiting
296    #[cfg(any(test, feature = "test-support"))]
297    pub fn finish_waiting(&self) {
298        self.dispatcher.as_test().unwrap().finish_waiting();
299    }
300
301    /// in tests, run an arbitrary number of tasks (determined by the SEED environment variable)
302    #[cfg(any(test, feature = "test-support"))]
303    pub fn simulate_random_delay(&self) -> impl Future<Output = ()> {
304        self.dispatcher.as_test().unwrap().simulate_random_delay()
305    }
306
307    /// in tests, indicate that a given task from `spawn_labeled` should run after everything else
308    #[cfg(any(test, feature = "test-support"))]
309    pub fn deprioritize(&self, task_label: TaskLabel) {
310        self.dispatcher.as_test().unwrap().deprioritize(task_label)
311    }
312
313    /// in tests, move time forward. This does not run any tasks, but does make `timer`s ready.
314    #[cfg(any(test, feature = "test-support"))]
315    pub fn advance_clock(&self, duration: Duration) {
316        self.dispatcher.as_test().unwrap().advance_clock(duration)
317    }
318
319    /// in tests, run one task.
320    #[cfg(any(test, feature = "test-support"))]
321    pub fn tick(&self) -> bool {
322        self.dispatcher.as_test().unwrap().tick(false)
323    }
324
325    /// in tests, run all tasks that are ready to run. If after doing so
326    /// the test still has outstanding tasks, this will panic. (See also `allow_parking`)
327    #[cfg(any(test, feature = "test-support"))]
328    pub fn run_until_parked(&self) {
329        self.dispatcher.as_test().unwrap().run_until_parked()
330    }
331
332    /// in tests, prevents `run_until_parked` from panicking if there are outstanding tasks.
333    /// This is useful when you are integrating other (non-GPUI) futures, like disk access, that
334    /// do take real async time to run.
335    #[cfg(any(test, feature = "test-support"))]
336    pub fn allow_parking(&self) {
337        self.dispatcher.as_test().unwrap().allow_parking();
338    }
339
340    /// in tests, returns the rng used by the dispatcher and seeded by the `SEED` environment variable
341    #[cfg(any(test, feature = "test-support"))]
342    pub fn rng(&self) -> StdRng {
343        self.dispatcher.as_test().unwrap().rng()
344    }
345
346    /// How many CPUs are available to the dispatcher
347    pub fn num_cpus(&self) -> usize {
348        num_cpus::get()
349    }
350
351    /// Whether we're on the main thread.
352    pub fn is_main_thread(&self) -> bool {
353        self.dispatcher.is_main_thread()
354    }
355
356    #[cfg(any(test, feature = "test-support"))]
357    /// in tests, control the number of ticks that `block_with_timeout` will run before timing out.
358    pub fn set_block_on_ticks(&self, range: std::ops::RangeInclusive<usize>) {
359        self.dispatcher.as_test().unwrap().set_block_on_ticks(range);
360    }
361}
362
363/// ForegroundExecutor runs things on the main thread.
364impl ForegroundExecutor {
365    pub fn new(dispatcher: Arc<dyn PlatformDispatcher>) -> Self {
366        Self {
367            dispatcher,
368            not_send: PhantomData,
369        }
370    }
371
372    /// Enqueues the given Task to run on the main thread at some point in the future.
373    pub fn spawn<R>(&self, future: impl Future<Output = R> + 'static) -> Task<R>
374    where
375        R: 'static,
376    {
377        let dispatcher = self.dispatcher.clone();
378        fn inner<R: 'static>(
379            dispatcher: Arc<dyn PlatformDispatcher>,
380            future: AnyLocalFuture<R>,
381        ) -> Task<R> {
382            let (runnable, task) = async_task::spawn_local(future, move |runnable| {
383                dispatcher.dispatch_on_main_thread(runnable)
384            });
385            runnable.schedule();
386            Task::Spawned(task)
387        }
388        inner::<R>(dispatcher, Box::pin(future))
389    }
390}
391
392/// Scope manages a set of tasks that are enqueued and waited on together. See [`BackgroundExecutor::scoped`].
393pub struct Scope<'a> {
394    executor: BackgroundExecutor,
395    futures: Vec<Pin<Box<dyn Future<Output = ()> + Send + 'static>>>,
396    tx: Option<mpsc::Sender<()>>,
397    rx: mpsc::Receiver<()>,
398    lifetime: PhantomData<&'a ()>,
399}
400
401impl<'a> Scope<'a> {
402    fn new(executor: BackgroundExecutor) -> Self {
403        let (tx, rx) = mpsc::channel(1);
404        Self {
405            executor,
406            tx: Some(tx),
407            rx,
408            futures: Default::default(),
409            lifetime: PhantomData,
410        }
411    }
412
413    pub fn spawn<F>(&mut self, f: F)
414    where
415        F: Future<Output = ()> + Send + 'a,
416    {
417        let tx = self.tx.clone().unwrap();
418
419        // Safety: The 'a lifetime is guaranteed to outlive any of these futures because
420        // dropping this `Scope` blocks until all of the futures have resolved.
421        let f = unsafe {
422            mem::transmute::<
423                Pin<Box<dyn Future<Output = ()> + Send + 'a>>,
424                Pin<Box<dyn Future<Output = ()> + Send + 'static>>,
425            >(Box::pin(async move {
426                f.await;
427                drop(tx);
428            }))
429        };
430        self.futures.push(f);
431    }
432}
433
434impl<'a> Drop for Scope<'a> {
435    fn drop(&mut self) {
436        self.tx.take().unwrap();
437
438        // Wait until the channel is closed, which means that all of the spawned
439        // futures have resolved.
440        self.executor.block(self.rx.next());
441    }
442}