open_ai.rs

  1use anyhow::{Result, anyhow};
  2use collections::{BTreeMap, HashMap};
  3use futures::Stream;
  4use futures::{FutureExt, StreamExt, future, future::BoxFuture};
  5use gpui::{AnyView, App, AsyncApp, Context, Entity, SharedString, Task, Window};
  6use http_client::HttpClient;
  7use language_model::{
  8    AuthenticateError, LanguageModel, LanguageModelCompletionError, LanguageModelCompletionEvent,
  9    LanguageModelId, LanguageModelName, LanguageModelProvider, LanguageModelProviderId,
 10    LanguageModelProviderName, LanguageModelProviderState, LanguageModelRequest,
 11    LanguageModelToolChoice, LanguageModelToolResultContent, LanguageModelToolUse, MessageContent,
 12    RateLimiter, Role, StopReason, TokenUsage,
 13};
 14use menu;
 15use open_ai::{
 16    ImageUrl, Model, OPEN_AI_API_URL, ReasoningEffort, ResponseStreamEvent, stream_completion,
 17};
 18use settings::{OpenAiAvailableModel as AvailableModel, Settings, SettingsStore};
 19use std::pin::Pin;
 20use std::str::FromStr as _;
 21use std::sync::{Arc, LazyLock};
 22use strum::IntoEnumIterator;
 23use ui::{List, prelude::*};
 24use ui_input::InputField;
 25use util::ResultExt;
 26use zed_env_vars::{EnvVar, env_var};
 27
 28use crate::ui::ConfiguredApiCard;
 29use crate::{api_key::ApiKeyState, ui::InstructionListItem};
 30
 31const PROVIDER_ID: LanguageModelProviderId = language_model::OPEN_AI_PROVIDER_ID;
 32const PROVIDER_NAME: LanguageModelProviderName = language_model::OPEN_AI_PROVIDER_NAME;
 33
 34const API_KEY_ENV_VAR_NAME: &str = "OPENAI_API_KEY";
 35static API_KEY_ENV_VAR: LazyLock<EnvVar> = env_var!(API_KEY_ENV_VAR_NAME);
 36
 37#[derive(Default, Clone, Debug, PartialEq)]
 38pub struct OpenAiSettings {
 39    pub api_url: String,
 40    pub available_models: Vec<AvailableModel>,
 41}
 42
 43pub struct OpenAiLanguageModelProvider {
 44    http_client: Arc<dyn HttpClient>,
 45    state: Entity<State>,
 46}
 47
 48pub struct State {
 49    api_key_state: ApiKeyState,
 50}
 51
 52impl State {
 53    fn is_authenticated(&self) -> bool {
 54        self.api_key_state.has_key()
 55    }
 56
 57    fn set_api_key(&mut self, api_key: Option<String>, cx: &mut Context<Self>) -> Task<Result<()>> {
 58        let api_url = OpenAiLanguageModelProvider::api_url(cx);
 59        self.api_key_state
 60            .store(api_url, api_key, |this| &mut this.api_key_state, cx)
 61    }
 62
 63    fn authenticate(&mut self, cx: &mut Context<Self>) -> Task<Result<(), AuthenticateError>> {
 64        let api_url = OpenAiLanguageModelProvider::api_url(cx);
 65        self.api_key_state.load_if_needed(
 66            api_url,
 67            &API_KEY_ENV_VAR,
 68            |this| &mut this.api_key_state,
 69            cx,
 70        )
 71    }
 72}
 73
 74impl OpenAiLanguageModelProvider {
 75    pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut App) -> Self {
 76        let state = cx.new(|cx| {
 77            cx.observe_global::<SettingsStore>(|this: &mut State, cx| {
 78                let api_url = Self::api_url(cx);
 79                this.api_key_state.handle_url_change(
 80                    api_url,
 81                    &API_KEY_ENV_VAR,
 82                    |this| &mut this.api_key_state,
 83                    cx,
 84                );
 85                cx.notify();
 86            })
 87            .detach();
 88            State {
 89                api_key_state: ApiKeyState::new(Self::api_url(cx)),
 90            }
 91        });
 92
 93        Self { http_client, state }
 94    }
 95
 96    fn create_language_model(&self, model: open_ai::Model) -> Arc<dyn LanguageModel> {
 97        Arc::new(OpenAiLanguageModel {
 98            id: LanguageModelId::from(model.id().to_string()),
 99            model,
100            state: self.state.clone(),
101            http_client: self.http_client.clone(),
102            request_limiter: RateLimiter::new(4),
103        })
104    }
105
106    fn settings(cx: &App) -> &OpenAiSettings {
107        &crate::AllLanguageModelSettings::get_global(cx).openai
108    }
109
110    fn api_url(cx: &App) -> SharedString {
111        let api_url = &Self::settings(cx).api_url;
112        if api_url.is_empty() {
113            open_ai::OPEN_AI_API_URL.into()
114        } else {
115            SharedString::new(api_url.as_str())
116        }
117    }
118}
119
120impl LanguageModelProviderState for OpenAiLanguageModelProvider {
121    type ObservableEntity = State;
122
123    fn observable_entity(&self) -> Option<Entity<Self::ObservableEntity>> {
124        Some(self.state.clone())
125    }
126}
127
128impl LanguageModelProvider for OpenAiLanguageModelProvider {
129    fn id(&self) -> LanguageModelProviderId {
130        PROVIDER_ID
131    }
132
133    fn name(&self) -> LanguageModelProviderName {
134        PROVIDER_NAME
135    }
136
137    fn icon(&self) -> IconName {
138        IconName::AiOpenAi
139    }
140
141    fn default_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
142        Some(self.create_language_model(open_ai::Model::default()))
143    }
144
145    fn default_fast_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
146        Some(self.create_language_model(open_ai::Model::default_fast()))
147    }
148
149    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
150        let mut models = BTreeMap::default();
151
152        // Add base models from open_ai::Model::iter()
153        for model in open_ai::Model::iter() {
154            if !matches!(model, open_ai::Model::Custom { .. }) {
155                models.insert(model.id().to_string(), model);
156            }
157        }
158
159        // Override with available models from settings
160        for model in &OpenAiLanguageModelProvider::settings(cx).available_models {
161            models.insert(
162                model.name.clone(),
163                open_ai::Model::Custom {
164                    name: model.name.clone(),
165                    display_name: model.display_name.clone(),
166                    max_tokens: model.max_tokens,
167                    max_output_tokens: model.max_output_tokens,
168                    max_completion_tokens: model.max_completion_tokens,
169                    reasoning_effort: model.reasoning_effort.clone(),
170                },
171            );
172        }
173
174        models
175            .into_values()
176            .map(|model| self.create_language_model(model))
177            .collect()
178    }
179
180    fn is_authenticated(&self, cx: &App) -> bool {
181        self.state.read(cx).is_authenticated()
182    }
183
184    fn authenticate(&self, cx: &mut App) -> Task<Result<(), AuthenticateError>> {
185        self.state.update(cx, |state, cx| state.authenticate(cx))
186    }
187
188    fn configuration_view(
189        &self,
190        _target_agent: language_model::ConfigurationViewTargetAgent,
191        window: &mut Window,
192        cx: &mut App,
193    ) -> AnyView {
194        cx.new(|cx| ConfigurationView::new(self.state.clone(), window, cx))
195            .into()
196    }
197
198    fn reset_credentials(&self, cx: &mut App) -> Task<Result<()>> {
199        self.state
200            .update(cx, |state, cx| state.set_api_key(None, cx))
201    }
202}
203
204pub struct OpenAiLanguageModel {
205    id: LanguageModelId,
206    model: open_ai::Model,
207    state: Entity<State>,
208    http_client: Arc<dyn HttpClient>,
209    request_limiter: RateLimiter,
210}
211
212impl OpenAiLanguageModel {
213    fn stream_completion(
214        &self,
215        request: open_ai::Request,
216        cx: &AsyncApp,
217    ) -> BoxFuture<'static, Result<futures::stream::BoxStream<'static, Result<ResponseStreamEvent>>>>
218    {
219        let http_client = self.http_client.clone();
220
221        let Ok((api_key, api_url)) = self.state.read_with(cx, |state, cx| {
222            let api_url = OpenAiLanguageModelProvider::api_url(cx);
223            (state.api_key_state.key(&api_url), api_url)
224        }) else {
225            return future::ready(Err(anyhow!("App state dropped"))).boxed();
226        };
227
228        let future = self.request_limiter.stream(async move {
229            let Some(api_key) = api_key else {
230                return Err(LanguageModelCompletionError::NoApiKey {
231                    provider: PROVIDER_NAME,
232                });
233            };
234            let request = stream_completion(http_client.as_ref(), &api_url, &api_key, request);
235            let response = request.await?;
236            Ok(response)
237        });
238
239        async move { Ok(future.await?.boxed()) }.boxed()
240    }
241}
242
243impl LanguageModel for OpenAiLanguageModel {
244    fn id(&self) -> LanguageModelId {
245        self.id.clone()
246    }
247
248    fn name(&self) -> LanguageModelName {
249        LanguageModelName::from(self.model.display_name().to_string())
250    }
251
252    fn provider_id(&self) -> LanguageModelProviderId {
253        PROVIDER_ID
254    }
255
256    fn provider_name(&self) -> LanguageModelProviderName {
257        PROVIDER_NAME
258    }
259
260    fn supports_tools(&self) -> bool {
261        true
262    }
263
264    fn supports_images(&self) -> bool {
265        use open_ai::Model;
266        match &self.model {
267            Model::FourOmni
268            | Model::FourOmniMini
269            | Model::FourPointOne
270            | Model::FourPointOneMini
271            | Model::FourPointOneNano
272            | Model::Five
273            | Model::FiveMini
274            | Model::FiveNano
275            | Model::O1
276            | Model::O3
277            | Model::O4Mini => true,
278            Model::ThreePointFiveTurbo
279            | Model::Four
280            | Model::FourTurbo
281            | Model::O3Mini
282            | Model::Custom { .. } => false,
283        }
284    }
285
286    fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
287        match choice {
288            LanguageModelToolChoice::Auto => true,
289            LanguageModelToolChoice::Any => true,
290            LanguageModelToolChoice::None => true,
291        }
292    }
293
294    fn telemetry_id(&self) -> String {
295        format!("openai/{}", self.model.id())
296    }
297
298    fn max_token_count(&self) -> u64 {
299        self.model.max_token_count()
300    }
301
302    fn max_output_tokens(&self) -> Option<u64> {
303        self.model.max_output_tokens()
304    }
305
306    fn count_tokens(
307        &self,
308        request: LanguageModelRequest,
309        cx: &App,
310    ) -> BoxFuture<'static, Result<u64>> {
311        count_open_ai_tokens(request, self.model.clone(), cx)
312    }
313
314    fn stream_completion(
315        &self,
316        request: LanguageModelRequest,
317        cx: &AsyncApp,
318    ) -> BoxFuture<
319        'static,
320        Result<
321            futures::stream::BoxStream<
322                'static,
323                Result<LanguageModelCompletionEvent, LanguageModelCompletionError>,
324            >,
325            LanguageModelCompletionError,
326        >,
327    > {
328        let request = into_open_ai(
329            request,
330            self.model.id(),
331            self.model.supports_parallel_tool_calls(),
332            self.model.supports_prompt_cache_key(),
333            self.max_output_tokens(),
334            self.model.reasoning_effort(),
335        );
336        let completions = self.stream_completion(request, cx);
337        async move {
338            let mapper = OpenAiEventMapper::new();
339            Ok(mapper.map_stream(completions.await?).boxed())
340        }
341        .boxed()
342    }
343}
344
345pub fn into_open_ai(
346    request: LanguageModelRequest,
347    model_id: &str,
348    supports_parallel_tool_calls: bool,
349    supports_prompt_cache_key: bool,
350    max_output_tokens: Option<u64>,
351    reasoning_effort: Option<ReasoningEffort>,
352) -> open_ai::Request {
353    let stream = !model_id.starts_with("o1-");
354
355    let mut messages = Vec::new();
356    for message in request.messages {
357        for content in message.content {
358            match content {
359                MessageContent::Text(text) | MessageContent::Thinking { text, .. } => {
360                    if !text.trim().is_empty() {
361                        add_message_content_part(
362                            open_ai::MessagePart::Text { text },
363                            message.role,
364                            &mut messages,
365                        );
366                    }
367                }
368                MessageContent::RedactedThinking(_) => {}
369                MessageContent::Image(image) => {
370                    add_message_content_part(
371                        open_ai::MessagePart::Image {
372                            image_url: ImageUrl {
373                                url: image.to_base64_url(),
374                                detail: None,
375                            },
376                        },
377                        message.role,
378                        &mut messages,
379                    );
380                }
381                MessageContent::ToolUse(tool_use) => {
382                    let tool_call = open_ai::ToolCall {
383                        id: tool_use.id.to_string(),
384                        content: open_ai::ToolCallContent::Function {
385                            function: open_ai::FunctionContent {
386                                name: tool_use.name.to_string(),
387                                arguments: serde_json::to_string(&tool_use.input)
388                                    .unwrap_or_default(),
389                            },
390                        },
391                    };
392
393                    if let Some(open_ai::RequestMessage::Assistant { tool_calls, .. }) =
394                        messages.last_mut()
395                    {
396                        tool_calls.push(tool_call);
397                    } else {
398                        messages.push(open_ai::RequestMessage::Assistant {
399                            content: None,
400                            tool_calls: vec![tool_call],
401                        });
402                    }
403                }
404                MessageContent::ToolResult(tool_result) => {
405                    let content = match &tool_result.content {
406                        LanguageModelToolResultContent::Text(text) => {
407                            vec![open_ai::MessagePart::Text {
408                                text: text.to_string(),
409                            }]
410                        }
411                        LanguageModelToolResultContent::Image(image) => {
412                            vec![open_ai::MessagePart::Image {
413                                image_url: ImageUrl {
414                                    url: image.to_base64_url(),
415                                    detail: None,
416                                },
417                            }]
418                        }
419                    };
420
421                    messages.push(open_ai::RequestMessage::Tool {
422                        content: content.into(),
423                        tool_call_id: tool_result.tool_use_id.to_string(),
424                    });
425                }
426            }
427        }
428    }
429
430    open_ai::Request {
431        model: model_id.into(),
432        messages,
433        stream,
434        stop: request.stop,
435        temperature: request.temperature.unwrap_or(1.0),
436        max_completion_tokens: max_output_tokens,
437        parallel_tool_calls: if supports_parallel_tool_calls && !request.tools.is_empty() {
438            // Disable parallel tool calls, as the Agent currently expects a maximum of one per turn.
439            Some(false)
440        } else {
441            None
442        },
443        prompt_cache_key: if supports_prompt_cache_key {
444            request.thread_id
445        } else {
446            None
447        },
448        tools: request
449            .tools
450            .into_iter()
451            .map(|tool| open_ai::ToolDefinition::Function {
452                function: open_ai::FunctionDefinition {
453                    name: tool.name,
454                    description: Some(tool.description),
455                    parameters: Some(tool.input_schema),
456                },
457            })
458            .collect(),
459        tool_choice: request.tool_choice.map(|choice| match choice {
460            LanguageModelToolChoice::Auto => open_ai::ToolChoice::Auto,
461            LanguageModelToolChoice::Any => open_ai::ToolChoice::Required,
462            LanguageModelToolChoice::None => open_ai::ToolChoice::None,
463        }),
464        reasoning_effort,
465    }
466}
467
468fn add_message_content_part(
469    new_part: open_ai::MessagePart,
470    role: Role,
471    messages: &mut Vec<open_ai::RequestMessage>,
472) {
473    match (role, messages.last_mut()) {
474        (Role::User, Some(open_ai::RequestMessage::User { content }))
475        | (
476            Role::Assistant,
477            Some(open_ai::RequestMessage::Assistant {
478                content: Some(content),
479                ..
480            }),
481        )
482        | (Role::System, Some(open_ai::RequestMessage::System { content, .. })) => {
483            content.push_part(new_part);
484        }
485        _ => {
486            messages.push(match role {
487                Role::User => open_ai::RequestMessage::User {
488                    content: open_ai::MessageContent::from(vec![new_part]),
489                },
490                Role::Assistant => open_ai::RequestMessage::Assistant {
491                    content: Some(open_ai::MessageContent::from(vec![new_part])),
492                    tool_calls: Vec::new(),
493                },
494                Role::System => open_ai::RequestMessage::System {
495                    content: open_ai::MessageContent::from(vec![new_part]),
496                },
497            });
498        }
499    }
500}
501
502pub struct OpenAiEventMapper {
503    tool_calls_by_index: HashMap<usize, RawToolCall>,
504}
505
506impl OpenAiEventMapper {
507    pub fn new() -> Self {
508        Self {
509            tool_calls_by_index: HashMap::default(),
510        }
511    }
512
513    pub fn map_stream(
514        mut self,
515        events: Pin<Box<dyn Send + Stream<Item = Result<ResponseStreamEvent>>>>,
516    ) -> impl Stream<Item = Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
517    {
518        events.flat_map(move |event| {
519            futures::stream::iter(match event {
520                Ok(event) => self.map_event(event),
521                Err(error) => vec![Err(LanguageModelCompletionError::from(anyhow!(error)))],
522            })
523        })
524    }
525
526    pub fn map_event(
527        &mut self,
528        event: ResponseStreamEvent,
529    ) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
530        let mut events = Vec::new();
531        if let Some(usage) = event.usage {
532            events.push(Ok(LanguageModelCompletionEvent::UsageUpdate(TokenUsage {
533                input_tokens: usage.prompt_tokens,
534                output_tokens: usage.completion_tokens,
535                cache_creation_input_tokens: 0,
536                cache_read_input_tokens: 0,
537            })));
538        }
539
540        let Some(choice) = event.choices.first() else {
541            return events;
542        };
543
544        if let Some(delta) = choice.delta.as_ref() {
545            if let Some(content) = delta.content.clone() {
546                events.push(Ok(LanguageModelCompletionEvent::Text(content)));
547            }
548
549            if let Some(tool_calls) = delta.tool_calls.as_ref() {
550                for tool_call in tool_calls {
551                    let entry = self.tool_calls_by_index.entry(tool_call.index).or_default();
552
553                    if let Some(tool_id) = tool_call.id.clone() {
554                        entry.id = tool_id;
555                    }
556
557                    if let Some(function) = tool_call.function.as_ref() {
558                        if let Some(name) = function.name.clone() {
559                            entry.name = name;
560                        }
561
562                        if let Some(arguments) = function.arguments.clone() {
563                            entry.arguments.push_str(&arguments);
564                        }
565                    }
566                }
567            }
568        }
569
570        match choice.finish_reason.as_deref() {
571            Some("stop") => {
572                events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::EndTurn)));
573            }
574            Some("tool_calls") => {
575                events.extend(self.tool_calls_by_index.drain().map(|(_, tool_call)| {
576                    match serde_json::Value::from_str(&tool_call.arguments) {
577                        Ok(input) => Ok(LanguageModelCompletionEvent::ToolUse(
578                            LanguageModelToolUse {
579                                id: tool_call.id.clone().into(),
580                                name: tool_call.name.as_str().into(),
581                                is_input_complete: true,
582                                input,
583                                raw_input: tool_call.arguments.clone(),
584                            },
585                        )),
586                        Err(error) => Ok(LanguageModelCompletionEvent::ToolUseJsonParseError {
587                            id: tool_call.id.into(),
588                            tool_name: tool_call.name.into(),
589                            raw_input: tool_call.arguments.clone().into(),
590                            json_parse_error: error.to_string(),
591                        }),
592                    }
593                }));
594
595                events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::ToolUse)));
596            }
597            Some(stop_reason) => {
598                log::error!("Unexpected OpenAI stop_reason: {stop_reason:?}",);
599                events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::EndTurn)));
600            }
601            None => {}
602        }
603
604        events
605    }
606}
607
608#[derive(Default)]
609struct RawToolCall {
610    id: String,
611    name: String,
612    arguments: String,
613}
614
615pub(crate) fn collect_tiktoken_messages(
616    request: LanguageModelRequest,
617) -> Vec<tiktoken_rs::ChatCompletionRequestMessage> {
618    request
619        .messages
620        .into_iter()
621        .map(|message| tiktoken_rs::ChatCompletionRequestMessage {
622            role: match message.role {
623                Role::User => "user".into(),
624                Role::Assistant => "assistant".into(),
625                Role::System => "system".into(),
626            },
627            content: Some(message.string_contents()),
628            name: None,
629            function_call: None,
630        })
631        .collect::<Vec<_>>()
632}
633
634pub fn count_open_ai_tokens(
635    request: LanguageModelRequest,
636    model: Model,
637    cx: &App,
638) -> BoxFuture<'static, Result<u64>> {
639    cx.background_spawn(async move {
640        let messages = collect_tiktoken_messages(request);
641
642        match model {
643            Model::Custom { max_tokens, .. } => {
644                let model = if max_tokens >= 100_000 {
645                    // If the max tokens is 100k or more, it is likely the o200k_base tokenizer from gpt4o
646                    "gpt-4o"
647                } else {
648                    // Otherwise fallback to gpt-4, since only cl100k_base and o200k_base are
649                    // supported with this tiktoken method
650                    "gpt-4"
651                };
652                tiktoken_rs::num_tokens_from_messages(model, &messages)
653            }
654            // Currently supported by tiktoken_rs
655            // Sometimes tiktoken-rs is behind on model support. If that is the case, make a new branch
656            // arm with an override. We enumerate all supported models here so that we can check if new
657            // models are supported yet or not.
658            Model::ThreePointFiveTurbo
659            | Model::Four
660            | Model::FourTurbo
661            | Model::FourOmni
662            | Model::FourOmniMini
663            | Model::FourPointOne
664            | Model::FourPointOneMini
665            | Model::FourPointOneNano
666            | Model::O1
667            | Model::O3
668            | Model::O3Mini
669            | Model::O4Mini => tiktoken_rs::num_tokens_from_messages(model.id(), &messages),
670            // GPT-5 models don't have tiktoken support yet; fall back on gpt-4o tokenizer
671            Model::Five | Model::FiveMini | Model::FiveNano => {
672                tiktoken_rs::num_tokens_from_messages("gpt-4o", &messages)
673            }
674        }
675        .map(|tokens| tokens as u64)
676    })
677    .boxed()
678}
679
680struct ConfigurationView {
681    api_key_editor: Entity<InputField>,
682    state: Entity<State>,
683    load_credentials_task: Option<Task<()>>,
684}
685
686impl ConfigurationView {
687    fn new(state: Entity<State>, window: &mut Window, cx: &mut Context<Self>) -> Self {
688        let api_key_editor = cx.new(|cx| {
689            InputField::new(
690                window,
691                cx,
692                "sk-000000000000000000000000000000000000000000000000",
693            )
694        });
695
696        cx.observe(&state, |_, _, cx| {
697            cx.notify();
698        })
699        .detach();
700
701        let load_credentials_task = Some(cx.spawn_in(window, {
702            let state = state.clone();
703            async move |this, cx| {
704                if let Some(task) = state
705                    .update(cx, |state, cx| state.authenticate(cx))
706                    .log_err()
707                {
708                    // We don't log an error, because "not signed in" is also an error.
709                    let _ = task.await;
710                }
711                this.update(cx, |this, cx| {
712                    this.load_credentials_task = None;
713                    cx.notify();
714                })
715                .log_err();
716            }
717        }));
718
719        Self {
720            api_key_editor,
721            state,
722            load_credentials_task,
723        }
724    }
725
726    fn save_api_key(&mut self, _: &menu::Confirm, window: &mut Window, cx: &mut Context<Self>) {
727        let api_key = self.api_key_editor.read(cx).text(cx).trim().to_string();
728        if api_key.is_empty() {
729            return;
730        }
731
732        // url changes can cause the editor to be displayed again
733        self.api_key_editor
734            .update(cx, |editor, cx| editor.set_text("", window, cx));
735
736        let state = self.state.clone();
737        cx.spawn_in(window, async move |_, cx| {
738            state
739                .update(cx, |state, cx| state.set_api_key(Some(api_key), cx))?
740                .await
741        })
742        .detach_and_log_err(cx);
743    }
744
745    fn reset_api_key(&mut self, window: &mut Window, cx: &mut Context<Self>) {
746        self.api_key_editor
747            .update(cx, |input, cx| input.set_text("", window, cx));
748
749        let state = self.state.clone();
750        cx.spawn_in(window, async move |_, cx| {
751            state
752                .update(cx, |state, cx| state.set_api_key(None, cx))?
753                .await
754        })
755        .detach_and_log_err(cx);
756    }
757
758    fn should_render_editor(&self, cx: &mut Context<Self>) -> bool {
759        !self.state.read(cx).is_authenticated()
760    }
761}
762
763impl Render for ConfigurationView {
764    fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
765        let env_var_set = self.state.read(cx).api_key_state.is_from_env_var();
766        let configured_card_label = if env_var_set {
767            format!("API key set in {API_KEY_ENV_VAR_NAME} environment variable")
768        } else {
769            let api_url = OpenAiLanguageModelProvider::api_url(cx);
770            if api_url == OPEN_AI_API_URL {
771                "API key configured".to_string()
772            } else {
773                format!("API key configured for {}", api_url)
774            }
775        };
776
777        let api_key_section = if self.should_render_editor(cx) {
778            v_flex()
779                .on_action(cx.listener(Self::save_api_key))
780                .child(Label::new("To use Zed's agent with OpenAI, you need to add an API key. Follow these steps:"))
781                .child(
782                    List::new()
783                        .child(InstructionListItem::new(
784                            "Create one by visiting",
785                            Some("OpenAI's console"),
786                            Some("https://platform.openai.com/api-keys"),
787                        ))
788                        .child(InstructionListItem::text_only(
789                            "Ensure your OpenAI account has credits",
790                        ))
791                        .child(InstructionListItem::text_only(
792                            "Paste your API key below and hit enter to start using the assistant",
793                        )),
794                )
795                .child(self.api_key_editor.clone())
796                .child(
797                    Label::new(format!(
798                        "You can also assign the {API_KEY_ENV_VAR_NAME} environment variable and restart Zed."
799                    ))
800                    .size(LabelSize::Small)
801                    .color(Color::Muted),
802                )
803                .child(
804                    Label::new(
805                        "Note that having a subscription for another service like GitHub Copilot won't work.",
806                    )
807                    .size(LabelSize::Small).color(Color::Muted),
808                )
809                .into_any_element()
810        } else {
811            ConfiguredApiCard::new(configured_card_label)
812                .disabled(env_var_set)
813                .on_click(cx.listener(|this, _, window, cx| this.reset_api_key(window, cx)))
814                .when(env_var_set, |this| {
815                    this.tooltip_label(format!("To reset your API key, unset the {API_KEY_ENV_VAR_NAME} environment variable."))
816                })
817                .into_any_element()
818        };
819
820        let compatible_api_section = h_flex()
821            .mt_1p5()
822            .gap_0p5()
823            .flex_wrap()
824            .when(self.should_render_editor(cx), |this| {
825                this.pt_1p5()
826                    .border_t_1()
827                    .border_color(cx.theme().colors().border_variant)
828            })
829            .child(
830                h_flex()
831                    .gap_2()
832                    .child(
833                        Icon::new(IconName::Info)
834                            .size(IconSize::XSmall)
835                            .color(Color::Muted),
836                    )
837                    .child(Label::new("Zed also supports OpenAI-compatible models.")),
838            )
839            .child(
840                Button::new("docs", "Learn More")
841                    .icon(IconName::ArrowUpRight)
842                    .icon_size(IconSize::Small)
843                    .icon_color(Color::Muted)
844                    .on_click(move |_, _window, cx| {
845                        cx.open_url("https://zed.dev/docs/ai/llm-providers#openai-api-compatible")
846                    }),
847            );
848
849        if self.load_credentials_task.is_some() {
850            div().child(Label::new("Loading credentials…")).into_any()
851        } else {
852            v_flex()
853                .size_full()
854                .child(api_key_section)
855                .child(compatible_api_section)
856                .into_any()
857        }
858    }
859}
860
861#[cfg(test)]
862mod tests {
863    use gpui::TestAppContext;
864    use language_model::LanguageModelRequestMessage;
865
866    use super::*;
867
868    #[gpui::test]
869    fn tiktoken_rs_support(cx: &TestAppContext) {
870        let request = LanguageModelRequest {
871            thread_id: None,
872            prompt_id: None,
873            intent: None,
874            mode: None,
875            messages: vec![LanguageModelRequestMessage {
876                role: Role::User,
877                content: vec![MessageContent::Text("message".into())],
878                cache: false,
879            }],
880            tools: vec![],
881            tool_choice: None,
882            stop: vec![],
883            temperature: None,
884            thinking_allowed: true,
885        };
886
887        // Validate that all models are supported by tiktoken-rs
888        for model in Model::iter() {
889            let count = cx
890                .executor()
891                .block(count_open_ai_tokens(
892                    request.clone(),
893                    model,
894                    &cx.app.borrow(),
895                ))
896                .unwrap();
897            assert!(count > 0);
898        }
899    }
900}