window.rs

   1#[cfg(any(feature = "inspector", debug_assertions))]
   2use crate::Inspector;
   3use crate::{
   4    Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
   5    AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Capslock,
   6    Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
   7    DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
   8    FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
   9    KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
  10    LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
  11    MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
  12    PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptButton, PromptLevel, Quad,
  13    Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge,
  14    SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS, ScaledPixels, Scene, Shadow, SharedString, Size,
  15    StrikethroughStyle, Style, SubscriberSet, Subscription, TaffyLayoutEngine, Task, TextStyle,
  16    TextStyleRefinement, TransformationMatrix, Underline, UnderlineStyle, WindowAppearance,
  17    WindowBackgroundAppearance, WindowBounds, WindowControls, WindowDecorations, WindowOptions,
  18    WindowParams, WindowTextSystem, point, prelude::*, px, rems, size, transparent_black,
  19};
  20use anyhow::{Context as _, Result, anyhow};
  21use collections::{FxHashMap, FxHashSet};
  22#[cfg(target_os = "macos")]
  23use core_video::pixel_buffer::CVPixelBuffer;
  24use derive_more::{Deref, DerefMut};
  25use futures::FutureExt;
  26use futures::channel::oneshot;
  27use itertools::FoldWhile::{Continue, Done};
  28use itertools::Itertools;
  29use parking_lot::RwLock;
  30use raw_window_handle::{HandleError, HasDisplayHandle, HasWindowHandle};
  31use refineable::Refineable;
  32use slotmap::SlotMap;
  33use smallvec::SmallVec;
  34use std::{
  35    any::{Any, TypeId},
  36    borrow::Cow,
  37    cell::{Cell, RefCell},
  38    cmp,
  39    fmt::{Debug, Display},
  40    hash::{Hash, Hasher},
  41    marker::PhantomData,
  42    mem,
  43    ops::{DerefMut, Range},
  44    rc::Rc,
  45    sync::{
  46        Arc, Weak,
  47        atomic::{AtomicUsize, Ordering::SeqCst},
  48    },
  49    time::{Duration, Instant},
  50};
  51use util::post_inc;
  52use util::{ResultExt, measure};
  53use uuid::Uuid;
  54
  55mod prompts;
  56
  57use crate::util::atomic_incr_if_not_zero;
  58pub use prompts::*;
  59
  60pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1024.), px(700.));
  61
  62/// Represents the two different phases when dispatching events.
  63#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
  64pub enum DispatchPhase {
  65    /// After the capture phase comes the bubble phase, in which mouse event listeners are
  66    /// invoked front to back and keyboard event listeners are invoked from the focused element
  67    /// to the root of the element tree. This is the phase you'll most commonly want to use when
  68    /// registering event listeners.
  69    #[default]
  70    Bubble,
  71    /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
  72    /// listeners are invoked from the root of the tree downward toward the focused element. This phase
  73    /// is used for special purposes such as clearing the "pressed" state for click events. If
  74    /// you stop event propagation during this phase, you need to know what you're doing. Handlers
  75    /// outside of the immediate region may rely on detecting non-local events during this phase.
  76    Capture,
  77}
  78
  79impl DispatchPhase {
  80    /// Returns true if this represents the "bubble" phase.
  81    pub fn bubble(self) -> bool {
  82        self == DispatchPhase::Bubble
  83    }
  84
  85    /// Returns true if this represents the "capture" phase.
  86    pub fn capture(self) -> bool {
  87        self == DispatchPhase::Capture
  88    }
  89}
  90
  91struct WindowInvalidatorInner {
  92    pub dirty: bool,
  93    pub draw_phase: DrawPhase,
  94    pub dirty_views: FxHashSet<EntityId>,
  95}
  96
  97#[derive(Clone)]
  98pub(crate) struct WindowInvalidator {
  99    inner: Rc<RefCell<WindowInvalidatorInner>>,
 100}
 101
 102impl WindowInvalidator {
 103    pub fn new() -> Self {
 104        WindowInvalidator {
 105            inner: Rc::new(RefCell::new(WindowInvalidatorInner {
 106                dirty: true,
 107                draw_phase: DrawPhase::None,
 108                dirty_views: FxHashSet::default(),
 109            })),
 110        }
 111    }
 112
 113    pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
 114        let mut inner = self.inner.borrow_mut();
 115        inner.dirty_views.insert(entity);
 116        if inner.draw_phase == DrawPhase::None {
 117            inner.dirty = true;
 118            cx.push_effect(Effect::Notify { emitter: entity });
 119            true
 120        } else {
 121            false
 122        }
 123    }
 124
 125    pub fn is_dirty(&self) -> bool {
 126        self.inner.borrow().dirty
 127    }
 128
 129    pub fn set_dirty(&self, dirty: bool) {
 130        self.inner.borrow_mut().dirty = dirty
 131    }
 132
 133    pub fn set_phase(&self, phase: DrawPhase) {
 134        self.inner.borrow_mut().draw_phase = phase
 135    }
 136
 137    pub fn take_views(&self) -> FxHashSet<EntityId> {
 138        mem::take(&mut self.inner.borrow_mut().dirty_views)
 139    }
 140
 141    pub fn replace_views(&self, views: FxHashSet<EntityId>) {
 142        self.inner.borrow_mut().dirty_views = views;
 143    }
 144
 145    pub fn not_drawing(&self) -> bool {
 146        self.inner.borrow().draw_phase == DrawPhase::None
 147    }
 148
 149    #[track_caller]
 150    pub fn debug_assert_paint(&self) {
 151        debug_assert!(
 152            matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
 153            "this method can only be called during paint"
 154        );
 155    }
 156
 157    #[track_caller]
 158    pub fn debug_assert_prepaint(&self) {
 159        debug_assert!(
 160            matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
 161            "this method can only be called during request_layout, or prepaint"
 162        );
 163    }
 164
 165    #[track_caller]
 166    pub fn debug_assert_paint_or_prepaint(&self) {
 167        debug_assert!(
 168            matches!(
 169                self.inner.borrow().draw_phase,
 170                DrawPhase::Paint | DrawPhase::Prepaint
 171            ),
 172            "this method can only be called during request_layout, prepaint, or paint"
 173        );
 174    }
 175}
 176
 177type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
 178
 179pub(crate) type AnyWindowFocusListener =
 180    Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
 181
 182pub(crate) struct WindowFocusEvent {
 183    pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
 184    pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
 185}
 186
 187impl WindowFocusEvent {
 188    pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
 189        !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
 190    }
 191
 192    pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
 193        self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
 194    }
 195}
 196
 197/// This is provided when subscribing for `Context::on_focus_out` events.
 198pub struct FocusOutEvent {
 199    /// A weak focus handle representing what was blurred.
 200    pub blurred: WeakFocusHandle,
 201}
 202
 203slotmap::new_key_type! {
 204    /// A globally unique identifier for a focusable element.
 205    pub struct FocusId;
 206}
 207
 208thread_local! {
 209    /// 8MB wasn't quite enough...
 210    pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(32 * 1024 * 1024));
 211}
 212
 213pub(crate) type FocusMap = RwLock<SlotMap<FocusId, AtomicUsize>>;
 214
 215impl FocusId {
 216    /// Obtains whether the element associated with this handle is currently focused.
 217    pub fn is_focused(&self, window: &Window) -> bool {
 218        window.focus == Some(*self)
 219    }
 220
 221    /// Obtains whether the element associated with this handle contains the focused
 222    /// element or is itself focused.
 223    pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
 224        window
 225            .focused(cx)
 226            .map_or(false, |focused| self.contains(focused.id, window))
 227    }
 228
 229    /// Obtains whether the element associated with this handle is contained within the
 230    /// focused element or is itself focused.
 231    pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
 232        let focused = window.focused(cx);
 233        focused.map_or(false, |focused| focused.id.contains(*self, window))
 234    }
 235
 236    /// Obtains whether this handle contains the given handle in the most recently rendered frame.
 237    pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
 238        window
 239            .rendered_frame
 240            .dispatch_tree
 241            .focus_contains(*self, other)
 242    }
 243}
 244
 245/// A handle which can be used to track and manipulate the focused element in a window.
 246pub struct FocusHandle {
 247    pub(crate) id: FocusId,
 248    handles: Arc<FocusMap>,
 249}
 250
 251impl std::fmt::Debug for FocusHandle {
 252    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 253        f.write_fmt(format_args!("FocusHandle({:?})", self.id))
 254    }
 255}
 256
 257impl FocusHandle {
 258    pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
 259        let id = handles.write().insert(AtomicUsize::new(1));
 260        Self {
 261            id,
 262            handles: handles.clone(),
 263        }
 264    }
 265
 266    pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
 267        let lock = handles.read();
 268        let ref_count = lock.get(id)?;
 269        if atomic_incr_if_not_zero(ref_count) == 0 {
 270            return None;
 271        }
 272        Some(Self {
 273            id,
 274            handles: handles.clone(),
 275        })
 276    }
 277
 278    /// Converts this focus handle into a weak variant, which does not prevent it from being released.
 279    pub fn downgrade(&self) -> WeakFocusHandle {
 280        WeakFocusHandle {
 281            id: self.id,
 282            handles: Arc::downgrade(&self.handles),
 283        }
 284    }
 285
 286    /// Moves the focus to the element associated with this handle.
 287    pub fn focus(&self, window: &mut Window) {
 288        window.focus(self)
 289    }
 290
 291    /// Obtains whether the element associated with this handle is currently focused.
 292    pub fn is_focused(&self, window: &Window) -> bool {
 293        self.id.is_focused(window)
 294    }
 295
 296    /// Obtains whether the element associated with this handle contains the focused
 297    /// element or is itself focused.
 298    pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
 299        self.id.contains_focused(window, cx)
 300    }
 301
 302    /// Obtains whether the element associated with this handle is contained within the
 303    /// focused element or is itself focused.
 304    pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
 305        self.id.within_focused(window, cx)
 306    }
 307
 308    /// Obtains whether this handle contains the given handle in the most recently rendered frame.
 309    pub fn contains(&self, other: &Self, window: &Window) -> bool {
 310        self.id.contains(other.id, window)
 311    }
 312
 313    /// Dispatch an action on the element that rendered this focus handle
 314    pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
 315        if let Some(node_id) = window
 316            .rendered_frame
 317            .dispatch_tree
 318            .focusable_node_id(self.id)
 319        {
 320            window.dispatch_action_on_node(node_id, action, cx)
 321        }
 322    }
 323}
 324
 325impl Clone for FocusHandle {
 326    fn clone(&self) -> Self {
 327        Self::for_id(self.id, &self.handles).unwrap()
 328    }
 329}
 330
 331impl PartialEq for FocusHandle {
 332    fn eq(&self, other: &Self) -> bool {
 333        self.id == other.id
 334    }
 335}
 336
 337impl Eq for FocusHandle {}
 338
 339impl Drop for FocusHandle {
 340    fn drop(&mut self) {
 341        self.handles
 342            .read()
 343            .get(self.id)
 344            .unwrap()
 345            .fetch_sub(1, SeqCst);
 346    }
 347}
 348
 349/// A weak reference to a focus handle.
 350#[derive(Clone, Debug)]
 351pub struct WeakFocusHandle {
 352    pub(crate) id: FocusId,
 353    pub(crate) handles: Weak<FocusMap>,
 354}
 355
 356impl WeakFocusHandle {
 357    /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
 358    pub fn upgrade(&self) -> Option<FocusHandle> {
 359        let handles = self.handles.upgrade()?;
 360        FocusHandle::for_id(self.id, &handles)
 361    }
 362}
 363
 364impl PartialEq for WeakFocusHandle {
 365    fn eq(&self, other: &WeakFocusHandle) -> bool {
 366        self.id == other.id
 367    }
 368}
 369
 370impl Eq for WeakFocusHandle {}
 371
 372impl PartialEq<FocusHandle> for WeakFocusHandle {
 373    fn eq(&self, other: &FocusHandle) -> bool {
 374        self.id == other.id
 375    }
 376}
 377
 378impl PartialEq<WeakFocusHandle> for FocusHandle {
 379    fn eq(&self, other: &WeakFocusHandle) -> bool {
 380        self.id == other.id
 381    }
 382}
 383
 384/// Focusable allows users of your view to easily
 385/// focus it (using window.focus_view(cx, view))
 386pub trait Focusable: 'static {
 387    /// Returns the focus handle associated with this view.
 388    fn focus_handle(&self, cx: &App) -> FocusHandle;
 389}
 390
 391impl<V: Focusable> Focusable for Entity<V> {
 392    fn focus_handle(&self, cx: &App) -> FocusHandle {
 393        self.read(cx).focus_handle(cx)
 394    }
 395}
 396
 397/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
 398/// where the lifecycle of the view is handled by another view.
 399pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
 400
 401impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
 402
 403/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
 404pub struct DismissEvent;
 405
 406type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
 407
 408pub(crate) type AnyMouseListener =
 409    Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
 410
 411#[derive(Clone)]
 412pub(crate) struct CursorStyleRequest {
 413    pub(crate) hitbox_id: Option<HitboxId>,
 414    pub(crate) style: CursorStyle,
 415}
 416
 417#[derive(Default, Eq, PartialEq)]
 418pub(crate) struct HitTest {
 419    pub(crate) ids: SmallVec<[HitboxId; 8]>,
 420    pub(crate) hover_hitbox_count: usize,
 421}
 422
 423/// A type of window control area that corresponds to the platform window.
 424#[derive(Clone, Copy, Debug, Eq, PartialEq)]
 425pub enum WindowControlArea {
 426    /// An area that allows dragging of the platform window.
 427    Drag,
 428    /// An area that allows closing of the platform window.
 429    Close,
 430    /// An area that allows maximizing of the platform window.
 431    Max,
 432    /// An area that allows minimizing of the platform window.
 433    Min,
 434}
 435
 436/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
 437#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
 438pub struct HitboxId(u64);
 439
 440impl HitboxId {
 441    /// Checks if the hitbox with this ID is currently hovered. Except when handling
 442    /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
 443    /// events or paint hover styles.
 444    ///
 445    /// See [`Hitbox::is_hovered`] for details.
 446    pub fn is_hovered(self, window: &Window) -> bool {
 447        let hit_test = &window.mouse_hit_test;
 448        for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
 449            if self == *id {
 450                return true;
 451            }
 452        }
 453        return false;
 454    }
 455
 456    /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
 457    /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
 458    /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
 459    /// this distinction.
 460    pub fn should_handle_scroll(self, window: &Window) -> bool {
 461        window.mouse_hit_test.ids.contains(&self)
 462    }
 463
 464    fn next(mut self) -> HitboxId {
 465        HitboxId(self.0.wrapping_add(1))
 466    }
 467}
 468
 469/// A rectangular region that potentially blocks hitboxes inserted prior.
 470/// See [Window::insert_hitbox] for more details.
 471#[derive(Clone, Debug, Deref)]
 472pub struct Hitbox {
 473    /// A unique identifier for the hitbox.
 474    pub id: HitboxId,
 475    /// The bounds of the hitbox.
 476    #[deref]
 477    pub bounds: Bounds<Pixels>,
 478    /// The content mask when the hitbox was inserted.
 479    pub content_mask: ContentMask<Pixels>,
 480    /// Flags that specify hitbox behavior.
 481    pub behavior: HitboxBehavior,
 482}
 483
 484impl Hitbox {
 485    /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
 486    /// typically what you want when determining whether to handle mouse events or paint hover
 487    /// styles.
 488    ///
 489    /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
 490    /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
 491    /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
 492    ///
 493    /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
 494    /// Concretely, this is due to use-cases like overlays that cause the elements under to be
 495    /// non-interactive while still allowing scrolling. More abstractly, this is because
 496    /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
 497    /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
 498    /// container.
 499    pub fn is_hovered(&self, window: &Window) -> bool {
 500        self.id.is_hovered(window)
 501    }
 502
 503    /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
 504    /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
 505    /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
 506    ///
 507    /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
 508    /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
 509    pub fn should_handle_scroll(&self, window: &Window) -> bool {
 510        self.id.should_handle_scroll(window)
 511    }
 512}
 513
 514/// How the hitbox affects mouse behavior.
 515#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
 516pub enum HitboxBehavior {
 517    /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
 518    #[default]
 519    Normal,
 520
 521    /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
 522    /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
 523    /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
 524    /// [`InteractiveElement::occlude`].
 525    ///
 526    /// For mouse handlers that check those hitboxes, this behaves the same as registering a
 527    /// bubble-phase handler for every mouse event type:
 528    ///
 529    /// ```
 530    /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
 531    ///     if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
 532    ///         cx.stop_propagation();
 533    ///     }
 534    /// }
 535    /// ```
 536    ///
 537    /// This has effects beyond event handling - any use of hitbox checking, such as hover
 538    /// styles and tooltops. These other behaviors are the main point of this mechanism. An
 539    /// alternative might be to not affect mouse event handling - but this would allow
 540    /// inconsistent UI where clicks and moves interact with elements that are not considered to
 541    /// be hovered.
 542    BlockMouse,
 543
 544    /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
 545    /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
 546    /// interaction except scroll events to be ignored - see the documentation of
 547    /// [`Hitbox::is_hovered`] for details. This flag is set by
 548    /// [`InteractiveElement::block_mouse_except_scroll`].
 549    ///
 550    /// For mouse handlers that check those hitboxes, this behaves the same as registering a
 551    /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
 552    ///
 553    /// ```
 554    /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, _cx| {
 555    ///     if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
 556    ///         cx.stop_propagation();
 557    ///     }
 558    /// }
 559    /// ```
 560    ///
 561    /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
 562    /// handled differently than other mouse events. If also blocking these scroll events is
 563    /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
 564    ///
 565    /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
 566    /// hover styles and tooltops. These other behaviors are the main point of this mechanism.
 567    /// An alternative might be to not affect mouse event handling - but this would allow
 568    /// inconsistent UI where clicks and moves interact with elements that are not considered to
 569    /// be hovered.
 570    BlockMouseExceptScroll,
 571}
 572
 573/// An identifier for a tooltip.
 574#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
 575pub struct TooltipId(usize);
 576
 577impl TooltipId {
 578    /// Checks if the tooltip is currently hovered.
 579    pub fn is_hovered(&self, window: &Window) -> bool {
 580        window
 581            .tooltip_bounds
 582            .as_ref()
 583            .map_or(false, |tooltip_bounds| {
 584                tooltip_bounds.id == *self
 585                    && tooltip_bounds.bounds.contains(&window.mouse_position())
 586            })
 587    }
 588}
 589
 590pub(crate) struct TooltipBounds {
 591    id: TooltipId,
 592    bounds: Bounds<Pixels>,
 593}
 594
 595#[derive(Clone)]
 596pub(crate) struct TooltipRequest {
 597    id: TooltipId,
 598    tooltip: AnyTooltip,
 599}
 600
 601pub(crate) struct DeferredDraw {
 602    current_view: EntityId,
 603    priority: usize,
 604    parent_node: DispatchNodeId,
 605    element_id_stack: SmallVec<[ElementId; 32]>,
 606    text_style_stack: Vec<TextStyleRefinement>,
 607    element: Option<AnyElement>,
 608    absolute_offset: Point<Pixels>,
 609    prepaint_range: Range<PrepaintStateIndex>,
 610    paint_range: Range<PaintIndex>,
 611}
 612
 613pub(crate) struct Frame {
 614    pub(crate) focus: Option<FocusId>,
 615    pub(crate) window_active: bool,
 616    pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
 617    accessed_element_states: Vec<(GlobalElementId, TypeId)>,
 618    pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
 619    pub(crate) dispatch_tree: DispatchTree,
 620    pub(crate) scene: Scene,
 621    pub(crate) hitboxes: Vec<Hitbox>,
 622    pub(crate) window_control_hitboxes: Vec<(WindowControlArea, Hitbox)>,
 623    pub(crate) deferred_draws: Vec<DeferredDraw>,
 624    pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
 625    pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
 626    pub(crate) cursor_styles: Vec<CursorStyleRequest>,
 627    #[cfg(any(test, feature = "test-support"))]
 628    pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
 629    #[cfg(any(feature = "inspector", debug_assertions))]
 630    pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
 631    #[cfg(any(feature = "inspector", debug_assertions))]
 632    pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
 633}
 634
 635#[derive(Clone, Default)]
 636pub(crate) struct PrepaintStateIndex {
 637    hitboxes_index: usize,
 638    tooltips_index: usize,
 639    deferred_draws_index: usize,
 640    dispatch_tree_index: usize,
 641    accessed_element_states_index: usize,
 642    line_layout_index: LineLayoutIndex,
 643}
 644
 645#[derive(Clone, Default)]
 646pub(crate) struct PaintIndex {
 647    scene_index: usize,
 648    mouse_listeners_index: usize,
 649    input_handlers_index: usize,
 650    cursor_styles_index: usize,
 651    accessed_element_states_index: usize,
 652    line_layout_index: LineLayoutIndex,
 653}
 654
 655impl Frame {
 656    pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
 657        Frame {
 658            focus: None,
 659            window_active: false,
 660            element_states: FxHashMap::default(),
 661            accessed_element_states: Vec::new(),
 662            mouse_listeners: Vec::new(),
 663            dispatch_tree,
 664            scene: Scene::default(),
 665            hitboxes: Vec::new(),
 666            window_control_hitboxes: Vec::new(),
 667            deferred_draws: Vec::new(),
 668            input_handlers: Vec::new(),
 669            tooltip_requests: Vec::new(),
 670            cursor_styles: Vec::new(),
 671
 672            #[cfg(any(test, feature = "test-support"))]
 673            debug_bounds: FxHashMap::default(),
 674
 675            #[cfg(any(feature = "inspector", debug_assertions))]
 676            next_inspector_instance_ids: FxHashMap::default(),
 677
 678            #[cfg(any(feature = "inspector", debug_assertions))]
 679            inspector_hitboxes: FxHashMap::default(),
 680        }
 681    }
 682
 683    pub(crate) fn clear(&mut self) {
 684        self.element_states.clear();
 685        self.accessed_element_states.clear();
 686        self.mouse_listeners.clear();
 687        self.dispatch_tree.clear();
 688        self.scene.clear();
 689        self.input_handlers.clear();
 690        self.tooltip_requests.clear();
 691        self.cursor_styles.clear();
 692        self.hitboxes.clear();
 693        self.window_control_hitboxes.clear();
 694        self.deferred_draws.clear();
 695        self.focus = None;
 696
 697        #[cfg(any(feature = "inspector", debug_assertions))]
 698        {
 699            self.next_inspector_instance_ids.clear();
 700            self.inspector_hitboxes.clear();
 701        }
 702    }
 703
 704    pub(crate) fn cursor_style(&self, window: &Window) -> Option<CursorStyle> {
 705        self.cursor_styles
 706            .iter()
 707            .rev()
 708            .fold_while(None, |style, request| match request.hitbox_id {
 709                None => Done(Some(request.style)),
 710                Some(hitbox_id) => Continue(
 711                    style.or_else(|| hitbox_id.is_hovered(window).then_some(request.style)),
 712                ),
 713            })
 714            .into_inner()
 715    }
 716
 717    pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
 718        let mut set_hover_hitbox_count = false;
 719        let mut hit_test = HitTest::default();
 720        for hitbox in self.hitboxes.iter().rev() {
 721            let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
 722            if bounds.contains(&position) {
 723                hit_test.ids.push(hitbox.id);
 724                if !set_hover_hitbox_count
 725                    && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
 726                {
 727                    hit_test.hover_hitbox_count = hit_test.ids.len();
 728                    set_hover_hitbox_count = true;
 729                }
 730                if hitbox.behavior == HitboxBehavior::BlockMouse {
 731                    break;
 732                }
 733            }
 734        }
 735        if !set_hover_hitbox_count {
 736            hit_test.hover_hitbox_count = hit_test.ids.len();
 737        }
 738        hit_test
 739    }
 740
 741    pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
 742        self.focus
 743            .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
 744            .unwrap_or_default()
 745    }
 746
 747    pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
 748        for element_state_key in &self.accessed_element_states {
 749            if let Some((element_state_key, element_state)) =
 750                prev_frame.element_states.remove_entry(element_state_key)
 751            {
 752                self.element_states.insert(element_state_key, element_state);
 753            }
 754        }
 755
 756        self.scene.finish();
 757    }
 758}
 759
 760/// Holds the state for a specific window.
 761pub struct Window {
 762    pub(crate) handle: AnyWindowHandle,
 763    pub(crate) invalidator: WindowInvalidator,
 764    pub(crate) removed: bool,
 765    pub(crate) platform_window: Box<dyn PlatformWindow>,
 766    display_id: Option<DisplayId>,
 767    sprite_atlas: Arc<dyn PlatformAtlas>,
 768    text_system: Arc<WindowTextSystem>,
 769    rem_size: Pixels,
 770    /// The stack of override values for the window's rem size.
 771    ///
 772    /// This is used by `with_rem_size` to allow rendering an element tree with
 773    /// a given rem size.
 774    rem_size_override_stack: SmallVec<[Pixels; 8]>,
 775    pub(crate) viewport_size: Size<Pixels>,
 776    layout_engine: Option<TaffyLayoutEngine>,
 777    pub(crate) root: Option<AnyView>,
 778    pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
 779    pub(crate) text_style_stack: Vec<TextStyleRefinement>,
 780    pub(crate) rendered_entity_stack: Vec<EntityId>,
 781    pub(crate) element_offset_stack: Vec<Point<Pixels>>,
 782    pub(crate) element_opacity: Option<f32>,
 783    pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
 784    pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
 785    pub(crate) image_cache_stack: Vec<AnyImageCache>,
 786    pub(crate) rendered_frame: Frame,
 787    pub(crate) next_frame: Frame,
 788    next_hitbox_id: HitboxId,
 789    pub(crate) next_tooltip_id: TooltipId,
 790    pub(crate) tooltip_bounds: Option<TooltipBounds>,
 791    next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
 792    pub(crate) dirty_views: FxHashSet<EntityId>,
 793    focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
 794    pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
 795    default_prevented: bool,
 796    mouse_position: Point<Pixels>,
 797    mouse_hit_test: HitTest,
 798    modifiers: Modifiers,
 799    capslock: Capslock,
 800    scale_factor: f32,
 801    pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
 802    appearance: WindowAppearance,
 803    pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
 804    active: Rc<Cell<bool>>,
 805    hovered: Rc<Cell<bool>>,
 806    pub(crate) needs_present: Rc<Cell<bool>>,
 807    pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
 808    pub(crate) refreshing: bool,
 809    pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
 810    pub(crate) focus: Option<FocusId>,
 811    focus_enabled: bool,
 812    pending_input: Option<PendingInput>,
 813    pending_modifier: ModifierState,
 814    pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
 815    prompt: Option<RenderablePromptHandle>,
 816    pub(crate) client_inset: Option<Pixels>,
 817    #[cfg(any(feature = "inspector", debug_assertions))]
 818    inspector: Option<Entity<Inspector>>,
 819}
 820
 821#[derive(Clone, Debug, Default)]
 822struct ModifierState {
 823    modifiers: Modifiers,
 824    saw_keystroke: bool,
 825}
 826
 827#[derive(Clone, Copy, Debug, Eq, PartialEq)]
 828pub(crate) enum DrawPhase {
 829    None,
 830    Prepaint,
 831    Paint,
 832    Focus,
 833}
 834
 835#[derive(Default, Debug)]
 836struct PendingInput {
 837    keystrokes: SmallVec<[Keystroke; 1]>,
 838    focus: Option<FocusId>,
 839    timer: Option<Task<()>>,
 840}
 841
 842pub(crate) struct ElementStateBox {
 843    pub(crate) inner: Box<dyn Any>,
 844    #[cfg(debug_assertions)]
 845    pub(crate) type_name: &'static str,
 846}
 847
 848fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> Bounds<Pixels> {
 849    const DEFAULT_WINDOW_OFFSET: Point<Pixels> = point(px(0.), px(35.));
 850
 851    // TODO, BUG: if you open a window with the currently active window
 852    // on the stack, this will erroneously select the 'unwrap_or_else'
 853    // code path
 854    cx.active_window()
 855        .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok())
 856        .map(|mut bounds| {
 857            bounds.origin += DEFAULT_WINDOW_OFFSET;
 858            bounds
 859        })
 860        .unwrap_or_else(|| {
 861            let display = display_id
 862                .map(|id| cx.find_display(id))
 863                .unwrap_or_else(|| cx.primary_display());
 864
 865            display
 866                .map(|display| display.default_bounds())
 867                .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE))
 868        })
 869}
 870
 871impl Window {
 872    pub(crate) fn new(
 873        handle: AnyWindowHandle,
 874        options: WindowOptions,
 875        cx: &mut App,
 876    ) -> Result<Self> {
 877        let WindowOptions {
 878            window_bounds,
 879            titlebar,
 880            focus,
 881            show,
 882            kind,
 883            is_movable,
 884            display_id,
 885            window_background,
 886            app_id,
 887            window_min_size,
 888            window_decorations,
 889        } = options;
 890
 891        let bounds = window_bounds
 892            .map(|bounds| bounds.get_bounds())
 893            .unwrap_or_else(|| default_bounds(display_id, cx));
 894        let mut platform_window = cx.platform.open_window(
 895            handle,
 896            WindowParams {
 897                bounds,
 898                titlebar,
 899                kind,
 900                is_movable,
 901                focus,
 902                show,
 903                display_id,
 904                window_min_size,
 905            },
 906        )?;
 907        let display_id = platform_window.display().map(|display| display.id());
 908        let sprite_atlas = platform_window.sprite_atlas();
 909        let mouse_position = platform_window.mouse_position();
 910        let modifiers = platform_window.modifiers();
 911        let capslock = platform_window.capslock();
 912        let content_size = platform_window.content_size();
 913        let scale_factor = platform_window.scale_factor();
 914        let appearance = platform_window.appearance();
 915        let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
 916        let invalidator = WindowInvalidator::new();
 917        let active = Rc::new(Cell::new(platform_window.is_active()));
 918        let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
 919        let needs_present = Rc::new(Cell::new(false));
 920        let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
 921        let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
 922
 923        platform_window
 924            .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
 925        platform_window.set_background_appearance(window_background);
 926
 927        if let Some(ref window_open_state) = window_bounds {
 928            match window_open_state {
 929                WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
 930                WindowBounds::Maximized(_) => platform_window.zoom(),
 931                WindowBounds::Windowed(_) => {}
 932            }
 933        }
 934
 935        platform_window.on_close(Box::new({
 936            let mut cx = cx.to_async();
 937            move || {
 938                let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
 939            }
 940        }));
 941        platform_window.on_request_frame(Box::new({
 942            let mut cx = cx.to_async();
 943            let invalidator = invalidator.clone();
 944            let active = active.clone();
 945            let needs_present = needs_present.clone();
 946            let next_frame_callbacks = next_frame_callbacks.clone();
 947            let last_input_timestamp = last_input_timestamp.clone();
 948            move |request_frame_options| {
 949                let next_frame_callbacks = next_frame_callbacks.take();
 950                if !next_frame_callbacks.is_empty() {
 951                    handle
 952                        .update(&mut cx, |_, window, cx| {
 953                            for callback in next_frame_callbacks {
 954                                callback(window, cx);
 955                            }
 956                        })
 957                        .log_err();
 958                }
 959
 960                // Keep presenting the current scene for 1 extra second since the
 961                // last input to prevent the display from underclocking the refresh rate.
 962                let needs_present = request_frame_options.require_presentation
 963                    || needs_present.get()
 964                    || (active.get()
 965                        && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
 966
 967                if invalidator.is_dirty() {
 968                    measure("frame duration", || {
 969                        handle
 970                            .update(&mut cx, |_, window, cx| {
 971                                window.draw(cx);
 972                                window.present();
 973                            })
 974                            .log_err();
 975                    })
 976                } else if needs_present {
 977                    handle
 978                        .update(&mut cx, |_, window, _| window.present())
 979                        .log_err();
 980                }
 981
 982                handle
 983                    .update(&mut cx, |_, window, _| {
 984                        window.complete_frame();
 985                    })
 986                    .log_err();
 987            }
 988        }));
 989        platform_window.on_resize(Box::new({
 990            let mut cx = cx.to_async();
 991            move |_, _| {
 992                handle
 993                    .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
 994                    .log_err();
 995            }
 996        }));
 997        platform_window.on_moved(Box::new({
 998            let mut cx = cx.to_async();
 999            move || {
1000                handle
1001                    .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1002                    .log_err();
1003            }
1004        }));
1005        platform_window.on_appearance_changed(Box::new({
1006            let mut cx = cx.to_async();
1007            move || {
1008                handle
1009                    .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
1010                    .log_err();
1011            }
1012        }));
1013        platform_window.on_active_status_change(Box::new({
1014            let mut cx = cx.to_async();
1015            move |active| {
1016                handle
1017                    .update(&mut cx, |_, window, cx| {
1018                        window.active.set(active);
1019                        window.modifiers = window.platform_window.modifiers();
1020                        window.capslock = window.platform_window.capslock();
1021                        window
1022                            .activation_observers
1023                            .clone()
1024                            .retain(&(), |callback| callback(window, cx));
1025                        window.refresh();
1026                    })
1027                    .log_err();
1028            }
1029        }));
1030        platform_window.on_hover_status_change(Box::new({
1031            let mut cx = cx.to_async();
1032            move |active| {
1033                handle
1034                    .update(&mut cx, |_, window, _| {
1035                        window.hovered.set(active);
1036                        window.refresh();
1037                    })
1038                    .log_err();
1039            }
1040        }));
1041        platform_window.on_input({
1042            let mut cx = cx.to_async();
1043            Box::new(move |event| {
1044                handle
1045                    .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1046                    .log_err()
1047                    .unwrap_or(DispatchEventResult::default())
1048            })
1049        });
1050        platform_window.on_hit_test_window_control({
1051            let mut cx = cx.to_async();
1052            Box::new(move || {
1053                handle
1054                    .update(&mut cx, |_, window, _cx| {
1055                        for (area, hitbox) in &window.rendered_frame.window_control_hitboxes {
1056                            if window.mouse_hit_test.ids.contains(&hitbox.id) {
1057                                return Some(*area);
1058                            }
1059                        }
1060                        None
1061                    })
1062                    .log_err()
1063                    .unwrap_or(None)
1064            })
1065        });
1066
1067        if let Some(app_id) = app_id {
1068            platform_window.set_app_id(&app_id);
1069        }
1070
1071        platform_window.map_window().unwrap();
1072
1073        Ok(Window {
1074            handle,
1075            invalidator,
1076            removed: false,
1077            platform_window,
1078            display_id,
1079            sprite_atlas,
1080            text_system,
1081            rem_size: px(16.),
1082            rem_size_override_stack: SmallVec::new(),
1083            viewport_size: content_size,
1084            layout_engine: Some(TaffyLayoutEngine::new()),
1085            root: None,
1086            element_id_stack: SmallVec::default(),
1087            text_style_stack: Vec::new(),
1088            rendered_entity_stack: Vec::new(),
1089            element_offset_stack: Vec::new(),
1090            content_mask_stack: Vec::new(),
1091            element_opacity: None,
1092            requested_autoscroll: None,
1093            rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1094            next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1095            next_frame_callbacks,
1096            next_hitbox_id: HitboxId(0),
1097            next_tooltip_id: TooltipId::default(),
1098            tooltip_bounds: None,
1099            dirty_views: FxHashSet::default(),
1100            focus_listeners: SubscriberSet::new(),
1101            focus_lost_listeners: SubscriberSet::new(),
1102            default_prevented: true,
1103            mouse_position,
1104            mouse_hit_test: HitTest::default(),
1105            modifiers,
1106            capslock,
1107            scale_factor,
1108            bounds_observers: SubscriberSet::new(),
1109            appearance,
1110            appearance_observers: SubscriberSet::new(),
1111            active,
1112            hovered,
1113            needs_present,
1114            last_input_timestamp,
1115            refreshing: false,
1116            activation_observers: SubscriberSet::new(),
1117            focus: None,
1118            focus_enabled: true,
1119            pending_input: None,
1120            pending_modifier: ModifierState::default(),
1121            pending_input_observers: SubscriberSet::new(),
1122            prompt: None,
1123            client_inset: None,
1124            image_cache_stack: Vec::new(),
1125            #[cfg(any(feature = "inspector", debug_assertions))]
1126            inspector: None,
1127        })
1128    }
1129
1130    pub(crate) fn new_focus_listener(
1131        &self,
1132        value: AnyWindowFocusListener,
1133    ) -> (Subscription, impl FnOnce() + use<>) {
1134        self.focus_listeners.insert((), value)
1135    }
1136}
1137
1138#[derive(Clone, Debug, Default, PartialEq, Eq)]
1139pub(crate) struct DispatchEventResult {
1140    pub propagate: bool,
1141    pub default_prevented: bool,
1142}
1143
1144/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1145/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1146/// to leave room to support more complex shapes in the future.
1147#[derive(Clone, Debug, Default, PartialEq, Eq)]
1148#[repr(C)]
1149pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1150    /// The bounds
1151    pub bounds: Bounds<P>,
1152}
1153
1154impl ContentMask<Pixels> {
1155    /// Scale the content mask's pixel units by the given scaling factor.
1156    pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1157        ContentMask {
1158            bounds: self.bounds.scale(factor),
1159        }
1160    }
1161
1162    /// Intersect the content mask with the given content mask.
1163    pub fn intersect(&self, other: &Self) -> Self {
1164        let bounds = self.bounds.intersect(&other.bounds);
1165        ContentMask { bounds }
1166    }
1167}
1168
1169impl Window {
1170    fn mark_view_dirty(&mut self, view_id: EntityId) {
1171        // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1172        // should already be dirty.
1173        for view_id in self
1174            .rendered_frame
1175            .dispatch_tree
1176            .view_path(view_id)
1177            .into_iter()
1178            .rev()
1179        {
1180            if !self.dirty_views.insert(view_id) {
1181                break;
1182            }
1183        }
1184    }
1185
1186    /// Registers a callback to be invoked when the window appearance changes.
1187    pub fn observe_window_appearance(
1188        &self,
1189        mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1190    ) -> Subscription {
1191        let (subscription, activate) = self.appearance_observers.insert(
1192            (),
1193            Box::new(move |window, cx| {
1194                callback(window, cx);
1195                true
1196            }),
1197        );
1198        activate();
1199        subscription
1200    }
1201
1202    /// Replaces the root entity of the window with a new one.
1203    pub fn replace_root<E>(
1204        &mut self,
1205        cx: &mut App,
1206        build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1207    ) -> Entity<E>
1208    where
1209        E: 'static + Render,
1210    {
1211        let view = cx.new(|cx| build_view(self, cx));
1212        self.root = Some(view.clone().into());
1213        self.refresh();
1214        view
1215    }
1216
1217    /// Returns the root entity of the window, if it has one.
1218    pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1219    where
1220        E: 'static + Render,
1221    {
1222        self.root
1223            .as_ref()
1224            .map(|view| view.clone().downcast::<E>().ok())
1225    }
1226
1227    /// Obtain a handle to the window that belongs to this context.
1228    pub fn window_handle(&self) -> AnyWindowHandle {
1229        self.handle
1230    }
1231
1232    /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1233    pub fn refresh(&mut self) {
1234        if self.invalidator.not_drawing() {
1235            self.refreshing = true;
1236            self.invalidator.set_dirty(true);
1237        }
1238    }
1239
1240    /// Close this window.
1241    pub fn remove_window(&mut self) {
1242        self.removed = true;
1243    }
1244
1245    /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1246    pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1247        self.focus
1248            .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1249    }
1250
1251    /// Move focus to the element associated with the given [`FocusHandle`].
1252    pub fn focus(&mut self, handle: &FocusHandle) {
1253        if !self.focus_enabled || self.focus == Some(handle.id) {
1254            return;
1255        }
1256
1257        self.focus = Some(handle.id);
1258        self.clear_pending_keystrokes();
1259        self.refresh();
1260    }
1261
1262    /// Remove focus from all elements within this context's window.
1263    pub fn blur(&mut self) {
1264        if !self.focus_enabled {
1265            return;
1266        }
1267
1268        self.focus = None;
1269        self.refresh();
1270    }
1271
1272    /// Blur the window and don't allow anything in it to be focused again.
1273    pub fn disable_focus(&mut self) {
1274        self.blur();
1275        self.focus_enabled = false;
1276    }
1277
1278    /// Accessor for the text system.
1279    pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1280        &self.text_system
1281    }
1282
1283    /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1284    pub fn text_style(&self) -> TextStyle {
1285        let mut style = TextStyle::default();
1286        for refinement in &self.text_style_stack {
1287            style.refine(refinement);
1288        }
1289        style
1290    }
1291
1292    /// Check if the platform window is maximized
1293    /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1294    pub fn is_maximized(&self) -> bool {
1295        self.platform_window.is_maximized()
1296    }
1297
1298    /// request a certain window decoration (Wayland)
1299    pub fn request_decorations(&self, decorations: WindowDecorations) {
1300        self.platform_window.request_decorations(decorations);
1301    }
1302
1303    /// Start a window resize operation (Wayland)
1304    pub fn start_window_resize(&self, edge: ResizeEdge) {
1305        self.platform_window.start_window_resize(edge);
1306    }
1307
1308    /// Return the `WindowBounds` to indicate that how a window should be opened
1309    /// after it has been closed
1310    pub fn window_bounds(&self) -> WindowBounds {
1311        self.platform_window.window_bounds()
1312    }
1313
1314    /// Return the `WindowBounds` excluding insets (Wayland and X11)
1315    pub fn inner_window_bounds(&self) -> WindowBounds {
1316        self.platform_window.inner_window_bounds()
1317    }
1318
1319    /// Dispatch the given action on the currently focused element.
1320    pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1321        let focus_id = self.focused(cx).map(|handle| handle.id);
1322
1323        let window = self.handle;
1324        cx.defer(move |cx| {
1325            window
1326                .update(cx, |_, window, cx| {
1327                    let node_id = window.focus_node_id_in_rendered_frame(focus_id);
1328                    window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1329                })
1330                .log_err();
1331        })
1332    }
1333
1334    pub(crate) fn dispatch_keystroke_observers(
1335        &mut self,
1336        event: &dyn Any,
1337        action: Option<Box<dyn Action>>,
1338        context_stack: Vec<KeyContext>,
1339        cx: &mut App,
1340    ) {
1341        let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1342            return;
1343        };
1344
1345        cx.keystroke_observers.clone().retain(&(), move |callback| {
1346            (callback)(
1347                &KeystrokeEvent {
1348                    keystroke: key_down_event.keystroke.clone(),
1349                    action: action.as_ref().map(|action| action.boxed_clone()),
1350                    context_stack: context_stack.clone(),
1351                },
1352                self,
1353                cx,
1354            )
1355        });
1356    }
1357
1358    /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1359    /// that are currently on the stack to be returned to the app.
1360    pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1361        let handle = self.handle;
1362        cx.defer(move |cx| {
1363            handle.update(cx, |_, window, cx| f(window, cx)).ok();
1364        });
1365    }
1366
1367    /// Subscribe to events emitted by a entity.
1368    /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1369    /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1370    pub fn observe<T: 'static>(
1371        &mut self,
1372        observed: &Entity<T>,
1373        cx: &mut App,
1374        mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1375    ) -> Subscription {
1376        let entity_id = observed.entity_id();
1377        let observed = observed.downgrade();
1378        let window_handle = self.handle;
1379        cx.new_observer(
1380            entity_id,
1381            Box::new(move |cx| {
1382                window_handle
1383                    .update(cx, |_, window, cx| {
1384                        if let Some(handle) = observed.upgrade() {
1385                            on_notify(handle, window, cx);
1386                            true
1387                        } else {
1388                            false
1389                        }
1390                    })
1391                    .unwrap_or(false)
1392            }),
1393        )
1394    }
1395
1396    /// Subscribe to events emitted by a entity.
1397    /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1398    /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1399    pub fn subscribe<Emitter, Evt>(
1400        &mut self,
1401        entity: &Entity<Emitter>,
1402        cx: &mut App,
1403        mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1404    ) -> Subscription
1405    where
1406        Emitter: EventEmitter<Evt>,
1407        Evt: 'static,
1408    {
1409        let entity_id = entity.entity_id();
1410        let handle = entity.downgrade();
1411        let window_handle = self.handle;
1412        cx.new_subscription(
1413            entity_id,
1414            (
1415                TypeId::of::<Evt>(),
1416                Box::new(move |event, cx| {
1417                    window_handle
1418                        .update(cx, |_, window, cx| {
1419                            if let Some(entity) = handle.upgrade() {
1420                                let event = event.downcast_ref().expect("invalid event type");
1421                                on_event(entity, event, window, cx);
1422                                true
1423                            } else {
1424                                false
1425                            }
1426                        })
1427                        .unwrap_or(false)
1428                }),
1429            ),
1430        )
1431    }
1432
1433    /// Register a callback to be invoked when the given `Entity` is released.
1434    pub fn observe_release<T>(
1435        &self,
1436        entity: &Entity<T>,
1437        cx: &mut App,
1438        mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1439    ) -> Subscription
1440    where
1441        T: 'static,
1442    {
1443        let entity_id = entity.entity_id();
1444        let window_handle = self.handle;
1445        let (subscription, activate) = cx.release_listeners.insert(
1446            entity_id,
1447            Box::new(move |entity, cx| {
1448                let entity = entity.downcast_mut().expect("invalid entity type");
1449                let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1450            }),
1451        );
1452        activate();
1453        subscription
1454    }
1455
1456    /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1457    /// await points in async code.
1458    pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1459        AsyncWindowContext::new_context(cx.to_async(), self.handle)
1460    }
1461
1462    /// Schedule the given closure to be run directly after the current frame is rendered.
1463    pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1464        RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1465    }
1466
1467    /// Schedule a frame to be drawn on the next animation frame.
1468    ///
1469    /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1470    /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1471    ///
1472    /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1473    pub fn request_animation_frame(&self) {
1474        let entity = self.current_view();
1475        self.on_next_frame(move |_, cx| cx.notify(entity));
1476    }
1477
1478    /// Spawn the future returned by the given closure on the application thread pool.
1479    /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1480    /// use within your future.
1481    #[track_caller]
1482    pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1483    where
1484        R: 'static,
1485        AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1486    {
1487        let handle = self.handle;
1488        cx.spawn(async move |app| {
1489            let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1490            f(&mut async_window_cx).await
1491        })
1492    }
1493
1494    fn bounds_changed(&mut self, cx: &mut App) {
1495        self.scale_factor = self.platform_window.scale_factor();
1496        self.viewport_size = self.platform_window.content_size();
1497        self.display_id = self.platform_window.display().map(|display| display.id());
1498
1499        self.refresh();
1500
1501        self.bounds_observers
1502            .clone()
1503            .retain(&(), |callback| callback(self, cx));
1504    }
1505
1506    /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1507    pub fn bounds(&self) -> Bounds<Pixels> {
1508        self.platform_window.bounds()
1509    }
1510
1511    /// Set the content size of the window.
1512    pub fn resize(&mut self, size: Size<Pixels>) {
1513        self.platform_window.resize(size);
1514    }
1515
1516    /// Returns whether or not the window is currently fullscreen
1517    pub fn is_fullscreen(&self) -> bool {
1518        self.platform_window.is_fullscreen()
1519    }
1520
1521    pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1522        self.appearance = self.platform_window.appearance();
1523
1524        self.appearance_observers
1525            .clone()
1526            .retain(&(), |callback| callback(self, cx));
1527    }
1528
1529    /// Returns the appearance of the current window.
1530    pub fn appearance(&self) -> WindowAppearance {
1531        self.appearance
1532    }
1533
1534    /// Returns the size of the drawable area within the window.
1535    pub fn viewport_size(&self) -> Size<Pixels> {
1536        self.viewport_size
1537    }
1538
1539    /// Returns whether this window is focused by the operating system (receiving key events).
1540    pub fn is_window_active(&self) -> bool {
1541        self.active.get()
1542    }
1543
1544    /// Returns whether this window is considered to be the window
1545    /// that currently owns the mouse cursor.
1546    /// On mac, this is equivalent to `is_window_active`.
1547    pub fn is_window_hovered(&self) -> bool {
1548        if cfg!(any(
1549            target_os = "windows",
1550            target_os = "linux",
1551            target_os = "freebsd"
1552        )) {
1553            self.hovered.get()
1554        } else {
1555            self.is_window_active()
1556        }
1557    }
1558
1559    /// Toggle zoom on the window.
1560    pub fn zoom_window(&self) {
1561        self.platform_window.zoom();
1562    }
1563
1564    /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1565    pub fn show_window_menu(&self, position: Point<Pixels>) {
1566        self.platform_window.show_window_menu(position)
1567    }
1568
1569    /// Tells the compositor to take control of window movement (Wayland and X11)
1570    ///
1571    /// Events may not be received during a move operation.
1572    pub fn start_window_move(&self) {
1573        self.platform_window.start_window_move()
1574    }
1575
1576    /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1577    pub fn set_client_inset(&mut self, inset: Pixels) {
1578        self.client_inset = Some(inset);
1579        self.platform_window.set_client_inset(inset);
1580    }
1581
1582    /// Returns the client_inset value by [`Self::set_client_inset`].
1583    pub fn client_inset(&self) -> Option<Pixels> {
1584        self.client_inset
1585    }
1586
1587    /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1588    pub fn window_decorations(&self) -> Decorations {
1589        self.platform_window.window_decorations()
1590    }
1591
1592    /// Returns which window controls are currently visible (Wayland)
1593    pub fn window_controls(&self) -> WindowControls {
1594        self.platform_window.window_controls()
1595    }
1596
1597    /// Updates the window's title at the platform level.
1598    pub fn set_window_title(&mut self, title: &str) {
1599        self.platform_window.set_title(title);
1600    }
1601
1602    /// Sets the application identifier.
1603    pub fn set_app_id(&mut self, app_id: &str) {
1604        self.platform_window.set_app_id(app_id);
1605    }
1606
1607    /// Sets the window background appearance.
1608    pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1609        self.platform_window
1610            .set_background_appearance(background_appearance);
1611    }
1612
1613    /// Mark the window as dirty at the platform level.
1614    pub fn set_window_edited(&mut self, edited: bool) {
1615        self.platform_window.set_edited(edited);
1616    }
1617
1618    /// Determine the display on which the window is visible.
1619    pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1620        cx.platform
1621            .displays()
1622            .into_iter()
1623            .find(|display| Some(display.id()) == self.display_id)
1624    }
1625
1626    /// Show the platform character palette.
1627    pub fn show_character_palette(&self) {
1628        self.platform_window.show_character_palette();
1629    }
1630
1631    /// The scale factor of the display associated with the window. For example, it could
1632    /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1633    /// be rendered as two pixels on screen.
1634    pub fn scale_factor(&self) -> f32 {
1635        self.scale_factor
1636    }
1637
1638    /// The size of an em for the base font of the application. Adjusting this value allows the
1639    /// UI to scale, just like zooming a web page.
1640    pub fn rem_size(&self) -> Pixels {
1641        self.rem_size_override_stack
1642            .last()
1643            .copied()
1644            .unwrap_or(self.rem_size)
1645    }
1646
1647    /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1648    /// UI to scale, just like zooming a web page.
1649    pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1650        self.rem_size = rem_size.into();
1651    }
1652
1653    /// Acquire a globally unique identifier for the given ElementId.
1654    /// Only valid for the duration of the provided closure.
1655    pub fn with_global_id<R>(
1656        &mut self,
1657        element_id: ElementId,
1658        f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1659    ) -> R {
1660        self.element_id_stack.push(element_id);
1661        let global_id = GlobalElementId(self.element_id_stack.clone());
1662        let result = f(&global_id, self);
1663        self.element_id_stack.pop();
1664        result
1665    }
1666
1667    /// Executes the provided function with the specified rem size.
1668    ///
1669    /// This method must only be called as part of element drawing.
1670    pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1671    where
1672        F: FnOnce(&mut Self) -> R,
1673    {
1674        self.invalidator.debug_assert_paint_or_prepaint();
1675
1676        if let Some(rem_size) = rem_size {
1677            self.rem_size_override_stack.push(rem_size.into());
1678            let result = f(self);
1679            self.rem_size_override_stack.pop();
1680            result
1681        } else {
1682            f(self)
1683        }
1684    }
1685
1686    /// The line height associated with the current text style.
1687    pub fn line_height(&self) -> Pixels {
1688        self.text_style().line_height_in_pixels(self.rem_size())
1689    }
1690
1691    /// Call to prevent the default action of an event. Currently only used to prevent
1692    /// parent elements from becoming focused on mouse down.
1693    pub fn prevent_default(&mut self) {
1694        self.default_prevented = true;
1695    }
1696
1697    /// Obtain whether default has been prevented for the event currently being dispatched.
1698    pub fn default_prevented(&self) -> bool {
1699        self.default_prevented
1700    }
1701
1702    /// Determine whether the given action is available along the dispatch path to the currently focused element.
1703    pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1704        let node_id =
1705            self.focus_node_id_in_rendered_frame(self.focused(cx).map(|handle| handle.id));
1706        self.rendered_frame
1707            .dispatch_tree
1708            .is_action_available(action, node_id)
1709    }
1710
1711    /// The position of the mouse relative to the window.
1712    pub fn mouse_position(&self) -> Point<Pixels> {
1713        self.mouse_position
1714    }
1715
1716    /// The current state of the keyboard's modifiers
1717    pub fn modifiers(&self) -> Modifiers {
1718        self.modifiers
1719    }
1720
1721    /// The current state of the keyboard's capslock
1722    pub fn capslock(&self) -> Capslock {
1723        self.capslock
1724    }
1725
1726    fn complete_frame(&self) {
1727        self.platform_window.completed_frame();
1728    }
1729
1730    /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1731    /// the contents of the new [Scene], use [present].
1732    #[profiling::function]
1733    pub fn draw(&mut self, cx: &mut App) {
1734        self.invalidate_entities();
1735        cx.entities.clear_accessed();
1736        debug_assert!(self.rendered_entity_stack.is_empty());
1737        self.invalidator.set_dirty(false);
1738        self.requested_autoscroll = None;
1739
1740        // Restore the previously-used input handler.
1741        if let Some(input_handler) = self.platform_window.take_input_handler() {
1742            self.rendered_frame.input_handlers.push(Some(input_handler));
1743        }
1744        self.draw_roots(cx);
1745        self.dirty_views.clear();
1746        self.next_frame.window_active = self.active.get();
1747
1748        // Register requested input handler with the platform window.
1749        if let Some(input_handler) = self.next_frame.input_handlers.pop() {
1750            self.platform_window
1751                .set_input_handler(input_handler.unwrap());
1752        }
1753
1754        self.layout_engine.as_mut().unwrap().clear();
1755        self.text_system().finish_frame();
1756        self.next_frame.finish(&mut self.rendered_frame);
1757        ELEMENT_ARENA.with_borrow_mut(|element_arena| {
1758            let percentage = (element_arena.len() as f32 / element_arena.capacity() as f32) * 100.;
1759            if percentage >= 80. {
1760                log::warn!("elevated element arena occupation: {}.", percentage);
1761            }
1762            element_arena.clear();
1763        });
1764
1765        self.invalidator.set_phase(DrawPhase::Focus);
1766        let previous_focus_path = self.rendered_frame.focus_path();
1767        let previous_window_active = self.rendered_frame.window_active;
1768        mem::swap(&mut self.rendered_frame, &mut self.next_frame);
1769        self.next_frame.clear();
1770        let current_focus_path = self.rendered_frame.focus_path();
1771        let current_window_active = self.rendered_frame.window_active;
1772
1773        if previous_focus_path != current_focus_path
1774            || previous_window_active != current_window_active
1775        {
1776            if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
1777                self.focus_lost_listeners
1778                    .clone()
1779                    .retain(&(), |listener| listener(self, cx));
1780            }
1781
1782            let event = WindowFocusEvent {
1783                previous_focus_path: if previous_window_active {
1784                    previous_focus_path
1785                } else {
1786                    Default::default()
1787                },
1788                current_focus_path: if current_window_active {
1789                    current_focus_path
1790                } else {
1791                    Default::default()
1792                },
1793            };
1794            self.focus_listeners
1795                .clone()
1796                .retain(&(), |listener| listener(&event, self, cx));
1797        }
1798
1799        debug_assert!(self.rendered_entity_stack.is_empty());
1800        self.record_entities_accessed(cx);
1801        self.reset_cursor_style(cx);
1802        self.refreshing = false;
1803        self.invalidator.set_phase(DrawPhase::None);
1804        self.needs_present.set(true);
1805    }
1806
1807    fn record_entities_accessed(&mut self, cx: &mut App) {
1808        let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1809        let mut entities = mem::take(entities_ref.deref_mut());
1810        drop(entities_ref);
1811        let handle = self.handle;
1812        cx.record_entities_accessed(
1813            handle,
1814            // Try moving window invalidator into the Window
1815            self.invalidator.clone(),
1816            &entities,
1817        );
1818        let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1819        mem::swap(&mut entities, entities_ref.deref_mut());
1820    }
1821
1822    fn invalidate_entities(&mut self) {
1823        let mut views = self.invalidator.take_views();
1824        for entity in views.drain() {
1825            self.mark_view_dirty(entity);
1826        }
1827        self.invalidator.replace_views(views);
1828    }
1829
1830    #[profiling::function]
1831    fn present(&self) {
1832        self.platform_window.draw(&self.rendered_frame.scene);
1833        self.needs_present.set(false);
1834        profiling::finish_frame!();
1835    }
1836
1837    fn draw_roots(&mut self, cx: &mut App) {
1838        self.invalidator.set_phase(DrawPhase::Prepaint);
1839        self.tooltip_bounds.take();
1840
1841        let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
1842        let root_size = {
1843            #[cfg(any(feature = "inspector", debug_assertions))]
1844            {
1845                if self.inspector.is_some() {
1846                    let mut size = self.viewport_size;
1847                    size.width = (size.width - _inspector_width).max(px(0.0));
1848                    size
1849                } else {
1850                    self.viewport_size
1851                }
1852            }
1853            #[cfg(not(any(feature = "inspector", debug_assertions)))]
1854            {
1855                self.viewport_size
1856            }
1857        };
1858
1859        // Layout all root elements.
1860        let mut root_element = self.root.as_ref().unwrap().clone().into_any();
1861        root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
1862
1863        #[cfg(any(feature = "inspector", debug_assertions))]
1864        let inspector_element = self.prepaint_inspector(_inspector_width, cx);
1865
1866        let mut sorted_deferred_draws =
1867            (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
1868        sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
1869        self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
1870
1871        let mut prompt_element = None;
1872        let mut active_drag_element = None;
1873        let mut tooltip_element = None;
1874        if let Some(prompt) = self.prompt.take() {
1875            let mut element = prompt.view.any_view().into_any();
1876            element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
1877            prompt_element = Some(element);
1878            self.prompt = Some(prompt);
1879        } else if let Some(active_drag) = cx.active_drag.take() {
1880            let mut element = active_drag.view.clone().into_any();
1881            let offset = self.mouse_position() - active_drag.cursor_offset;
1882            element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
1883            active_drag_element = Some(element);
1884            cx.active_drag = Some(active_drag);
1885        } else {
1886            tooltip_element = self.prepaint_tooltip(cx);
1887        }
1888
1889        self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
1890
1891        // Now actually paint the elements.
1892        self.invalidator.set_phase(DrawPhase::Paint);
1893        root_element.paint(self, cx);
1894
1895        #[cfg(any(feature = "inspector", debug_assertions))]
1896        self.paint_inspector(inspector_element, cx);
1897
1898        self.paint_deferred_draws(&sorted_deferred_draws, cx);
1899
1900        if let Some(mut prompt_element) = prompt_element {
1901            prompt_element.paint(self, cx);
1902        } else if let Some(mut drag_element) = active_drag_element {
1903            drag_element.paint(self, cx);
1904        } else if let Some(mut tooltip_element) = tooltip_element {
1905            tooltip_element.paint(self, cx);
1906        }
1907
1908        #[cfg(any(feature = "inspector", debug_assertions))]
1909        self.paint_inspector_hitbox(cx);
1910    }
1911
1912    fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
1913        // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
1914        for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
1915            let Some(Some(tooltip_request)) = self
1916                .next_frame
1917                .tooltip_requests
1918                .get(tooltip_request_index)
1919                .cloned()
1920            else {
1921                log::error!("Unexpectedly absent TooltipRequest");
1922                continue;
1923            };
1924            let mut element = tooltip_request.tooltip.view.clone().into_any();
1925            let mouse_position = tooltip_request.tooltip.mouse_position;
1926            let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
1927
1928            let mut tooltip_bounds =
1929                Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
1930            let window_bounds = Bounds {
1931                origin: Point::default(),
1932                size: self.viewport_size(),
1933            };
1934
1935            if tooltip_bounds.right() > window_bounds.right() {
1936                let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
1937                if new_x >= Pixels::ZERO {
1938                    tooltip_bounds.origin.x = new_x;
1939                } else {
1940                    tooltip_bounds.origin.x = cmp::max(
1941                        Pixels::ZERO,
1942                        tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
1943                    );
1944                }
1945            }
1946
1947            if tooltip_bounds.bottom() > window_bounds.bottom() {
1948                let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
1949                if new_y >= Pixels::ZERO {
1950                    tooltip_bounds.origin.y = new_y;
1951                } else {
1952                    tooltip_bounds.origin.y = cmp::max(
1953                        Pixels::ZERO,
1954                        tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
1955                    );
1956                }
1957            }
1958
1959            // It's possible for an element to have an active tooltip while not being painted (e.g.
1960            // via the `visible_on_hover` method). Since mouse listeners are not active in this
1961            // case, instead update the tooltip's visibility here.
1962            let is_visible =
1963                (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
1964            if !is_visible {
1965                continue;
1966            }
1967
1968            self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
1969                element.prepaint(window, cx)
1970            });
1971
1972            self.tooltip_bounds = Some(TooltipBounds {
1973                id: tooltip_request.id,
1974                bounds: tooltip_bounds,
1975            });
1976            return Some(element);
1977        }
1978        None
1979    }
1980
1981    fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
1982        assert_eq!(self.element_id_stack.len(), 0);
1983
1984        let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
1985        for deferred_draw_ix in deferred_draw_indices {
1986            let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
1987            self.element_id_stack
1988                .clone_from(&deferred_draw.element_id_stack);
1989            self.text_style_stack
1990                .clone_from(&deferred_draw.text_style_stack);
1991            self.next_frame
1992                .dispatch_tree
1993                .set_active_node(deferred_draw.parent_node);
1994
1995            let prepaint_start = self.prepaint_index();
1996            if let Some(element) = deferred_draw.element.as_mut() {
1997                self.with_rendered_view(deferred_draw.current_view, |window| {
1998                    window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
1999                        element.prepaint(window, cx)
2000                    });
2001                })
2002            } else {
2003                self.reuse_prepaint(deferred_draw.prepaint_range.clone());
2004            }
2005            let prepaint_end = self.prepaint_index();
2006            deferred_draw.prepaint_range = prepaint_start..prepaint_end;
2007        }
2008        assert_eq!(
2009            self.next_frame.deferred_draws.len(),
2010            0,
2011            "cannot call defer_draw during deferred drawing"
2012        );
2013        self.next_frame.deferred_draws = deferred_draws;
2014        self.element_id_stack.clear();
2015        self.text_style_stack.clear();
2016    }
2017
2018    fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2019        assert_eq!(self.element_id_stack.len(), 0);
2020
2021        let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2022        for deferred_draw_ix in deferred_draw_indices {
2023            let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2024            self.element_id_stack
2025                .clone_from(&deferred_draw.element_id_stack);
2026            self.next_frame
2027                .dispatch_tree
2028                .set_active_node(deferred_draw.parent_node);
2029
2030            let paint_start = self.paint_index();
2031            if let Some(element) = deferred_draw.element.as_mut() {
2032                self.with_rendered_view(deferred_draw.current_view, |window| {
2033                    element.paint(window, cx);
2034                })
2035            } else {
2036                self.reuse_paint(deferred_draw.paint_range.clone());
2037            }
2038            let paint_end = self.paint_index();
2039            deferred_draw.paint_range = paint_start..paint_end;
2040        }
2041        self.next_frame.deferred_draws = deferred_draws;
2042        self.element_id_stack.clear();
2043    }
2044
2045    pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2046        PrepaintStateIndex {
2047            hitboxes_index: self.next_frame.hitboxes.len(),
2048            tooltips_index: self.next_frame.tooltip_requests.len(),
2049            deferred_draws_index: self.next_frame.deferred_draws.len(),
2050            dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2051            accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2052            line_layout_index: self.text_system.layout_index(),
2053        }
2054    }
2055
2056    pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2057        self.next_frame.hitboxes.extend(
2058            self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2059                .iter()
2060                .cloned(),
2061        );
2062        self.next_frame.tooltip_requests.extend(
2063            self.rendered_frame.tooltip_requests
2064                [range.start.tooltips_index..range.end.tooltips_index]
2065                .iter_mut()
2066                .map(|request| request.take()),
2067        );
2068        self.next_frame.accessed_element_states.extend(
2069            self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2070                ..range.end.accessed_element_states_index]
2071                .iter()
2072                .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2073        );
2074        self.text_system
2075            .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2076
2077        let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2078            range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2079            &mut self.rendered_frame.dispatch_tree,
2080            self.focus,
2081        );
2082
2083        if reused_subtree.contains_focus() {
2084            self.next_frame.focus = self.focus;
2085        }
2086
2087        self.next_frame.deferred_draws.extend(
2088            self.rendered_frame.deferred_draws
2089                [range.start.deferred_draws_index..range.end.deferred_draws_index]
2090                .iter()
2091                .map(|deferred_draw| DeferredDraw {
2092                    current_view: deferred_draw.current_view,
2093                    parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2094                    element_id_stack: deferred_draw.element_id_stack.clone(),
2095                    text_style_stack: deferred_draw.text_style_stack.clone(),
2096                    priority: deferred_draw.priority,
2097                    element: None,
2098                    absolute_offset: deferred_draw.absolute_offset,
2099                    prepaint_range: deferred_draw.prepaint_range.clone(),
2100                    paint_range: deferred_draw.paint_range.clone(),
2101                }),
2102        );
2103    }
2104
2105    pub(crate) fn paint_index(&self) -> PaintIndex {
2106        PaintIndex {
2107            scene_index: self.next_frame.scene.len(),
2108            mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2109            input_handlers_index: self.next_frame.input_handlers.len(),
2110            cursor_styles_index: self.next_frame.cursor_styles.len(),
2111            accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2112            line_layout_index: self.text_system.layout_index(),
2113        }
2114    }
2115
2116    pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2117        self.next_frame.cursor_styles.extend(
2118            self.rendered_frame.cursor_styles
2119                [range.start.cursor_styles_index..range.end.cursor_styles_index]
2120                .iter()
2121                .cloned(),
2122        );
2123        self.next_frame.input_handlers.extend(
2124            self.rendered_frame.input_handlers
2125                [range.start.input_handlers_index..range.end.input_handlers_index]
2126                .iter_mut()
2127                .map(|handler| handler.take()),
2128        );
2129        self.next_frame.mouse_listeners.extend(
2130            self.rendered_frame.mouse_listeners
2131                [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2132                .iter_mut()
2133                .map(|listener| listener.take()),
2134        );
2135        self.next_frame.accessed_element_states.extend(
2136            self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2137                ..range.end.accessed_element_states_index]
2138                .iter()
2139                .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2140        );
2141
2142        self.text_system
2143            .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2144        self.next_frame.scene.replay(
2145            range.start.scene_index..range.end.scene_index,
2146            &self.rendered_frame.scene,
2147        );
2148    }
2149
2150    /// Push a text style onto the stack, and call a function with that style active.
2151    /// Use [`Window::text_style`] to get the current, combined text style. This method
2152    /// should only be called as part of element drawing.
2153    pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2154    where
2155        F: FnOnce(&mut Self) -> R,
2156    {
2157        self.invalidator.debug_assert_paint_or_prepaint();
2158        if let Some(style) = style {
2159            self.text_style_stack.push(style);
2160            let result = f(self);
2161            self.text_style_stack.pop();
2162            result
2163        } else {
2164            f(self)
2165        }
2166    }
2167
2168    /// Updates the cursor style at the platform level. This method should only be called
2169    /// during the prepaint phase of element drawing.
2170    pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
2171        self.invalidator.debug_assert_paint();
2172        self.next_frame.cursor_styles.push(CursorStyleRequest {
2173            hitbox_id: Some(hitbox.id),
2174            style,
2175        });
2176    }
2177
2178    /// Updates the cursor style for the entire window at the platform level. A cursor
2179    /// style using this method will have precedence over any cursor style set using
2180    /// `set_cursor_style`. This method should only be called during the prepaint
2181    /// phase of element drawing.
2182    pub fn set_window_cursor_style(&mut self, style: CursorStyle) {
2183        self.invalidator.debug_assert_paint();
2184        self.next_frame.cursor_styles.push(CursorStyleRequest {
2185            hitbox_id: None,
2186            style,
2187        })
2188    }
2189
2190    /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2191    /// during the paint phase of element drawing.
2192    pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2193        self.invalidator.debug_assert_prepaint();
2194        let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2195        self.next_frame
2196            .tooltip_requests
2197            .push(Some(TooltipRequest { id, tooltip }));
2198        id
2199    }
2200
2201    /// Invoke the given function with the given content mask after intersecting it
2202    /// with the current mask. This method should only be called during element drawing.
2203    pub fn with_content_mask<R>(
2204        &mut self,
2205        mask: Option<ContentMask<Pixels>>,
2206        f: impl FnOnce(&mut Self) -> R,
2207    ) -> R {
2208        self.invalidator.debug_assert_paint_or_prepaint();
2209        if let Some(mask) = mask {
2210            let mask = mask.intersect(&self.content_mask());
2211            self.content_mask_stack.push(mask);
2212            let result = f(self);
2213            self.content_mask_stack.pop();
2214            result
2215        } else {
2216            f(self)
2217        }
2218    }
2219
2220    /// Updates the global element offset relative to the current offset. This is used to implement
2221    /// scrolling. This method should only be called during the prepaint phase of element drawing.
2222    pub fn with_element_offset<R>(
2223        &mut self,
2224        offset: Point<Pixels>,
2225        f: impl FnOnce(&mut Self) -> R,
2226    ) -> R {
2227        self.invalidator.debug_assert_prepaint();
2228
2229        if offset.is_zero() {
2230            return f(self);
2231        };
2232
2233        let abs_offset = self.element_offset() + offset;
2234        self.with_absolute_element_offset(abs_offset, f)
2235    }
2236
2237    /// Updates the global element offset based on the given offset. This is used to implement
2238    /// drag handles and other manual painting of elements. This method should only be called during
2239    /// the prepaint phase of element drawing.
2240    pub fn with_absolute_element_offset<R>(
2241        &mut self,
2242        offset: Point<Pixels>,
2243        f: impl FnOnce(&mut Self) -> R,
2244    ) -> R {
2245        self.invalidator.debug_assert_prepaint();
2246        self.element_offset_stack.push(offset);
2247        let result = f(self);
2248        self.element_offset_stack.pop();
2249        result
2250    }
2251
2252    pub(crate) fn with_element_opacity<R>(
2253        &mut self,
2254        opacity: Option<f32>,
2255        f: impl FnOnce(&mut Self) -> R,
2256    ) -> R {
2257        if opacity.is_none() {
2258            return f(self);
2259        }
2260
2261        self.invalidator.debug_assert_paint_or_prepaint();
2262        self.element_opacity = opacity;
2263        let result = f(self);
2264        self.element_opacity = None;
2265        result
2266    }
2267
2268    /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2269    /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2270    /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2271    /// element offset and prepaint again. See [`List`] for an example. This method should only be
2272    /// called during the prepaint phase of element drawing.
2273    pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2274        self.invalidator.debug_assert_prepaint();
2275        let index = self.prepaint_index();
2276        let result = f(self);
2277        if result.is_err() {
2278            self.next_frame.hitboxes.truncate(index.hitboxes_index);
2279            self.next_frame
2280                .tooltip_requests
2281                .truncate(index.tooltips_index);
2282            self.next_frame
2283                .deferred_draws
2284                .truncate(index.deferred_draws_index);
2285            self.next_frame
2286                .dispatch_tree
2287                .truncate(index.dispatch_tree_index);
2288            self.next_frame
2289                .accessed_element_states
2290                .truncate(index.accessed_element_states_index);
2291            self.text_system.truncate_layouts(index.line_layout_index);
2292        }
2293        result
2294    }
2295
2296    /// When you call this method during [`prepaint`], containing elements will attempt to
2297    /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2298    /// [`prepaint`] again with a new set of bounds. See [`List`] for an example of an element
2299    /// that supports this method being called on the elements it contains. This method should only be
2300    /// called during the prepaint phase of element drawing.
2301    pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2302        self.invalidator.debug_assert_prepaint();
2303        self.requested_autoscroll = Some(bounds);
2304    }
2305
2306    /// This method can be called from a containing element such as [`List`] to support the autoscroll behavior
2307    /// described in [`request_autoscroll`].
2308    pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2309        self.invalidator.debug_assert_prepaint();
2310        self.requested_autoscroll.take()
2311    }
2312
2313    /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2314    /// Your view will be re-drawn once the asset has finished loading.
2315    ///
2316    /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2317    /// time.
2318    pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2319        let (task, is_first) = cx.fetch_asset::<A>(source);
2320        task.clone().now_or_never().or_else(|| {
2321            if is_first {
2322                let entity_id = self.current_view();
2323                self.spawn(cx, {
2324                    let task = task.clone();
2325                    async move |cx| {
2326                        task.await;
2327
2328                        cx.on_next_frame(move |_, cx| {
2329                            cx.notify(entity_id);
2330                        });
2331                    }
2332                })
2333                .detach();
2334            }
2335
2336            None
2337        })
2338    }
2339
2340    /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2341    /// Your view will not be re-drawn once the asset has finished loading.
2342    ///
2343    /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2344    /// time.
2345    pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2346        let (task, _) = cx.fetch_asset::<A>(source);
2347        task.clone().now_or_never()
2348    }
2349    /// Obtain the current element offset. This method should only be called during the
2350    /// prepaint phase of element drawing.
2351    pub fn element_offset(&self) -> Point<Pixels> {
2352        self.invalidator.debug_assert_prepaint();
2353        self.element_offset_stack
2354            .last()
2355            .copied()
2356            .unwrap_or_default()
2357    }
2358
2359    /// Obtain the current element opacity. This method should only be called during the
2360    /// prepaint phase of element drawing.
2361    pub(crate) fn element_opacity(&self) -> f32 {
2362        self.invalidator.debug_assert_paint_or_prepaint();
2363        self.element_opacity.unwrap_or(1.0)
2364    }
2365
2366    /// Obtain the current content mask. This method should only be called during element drawing.
2367    pub fn content_mask(&self) -> ContentMask<Pixels> {
2368        self.invalidator.debug_assert_paint_or_prepaint();
2369        self.content_mask_stack
2370            .last()
2371            .cloned()
2372            .unwrap_or_else(|| ContentMask {
2373                bounds: Bounds {
2374                    origin: Point::default(),
2375                    size: self.viewport_size,
2376                },
2377            })
2378    }
2379
2380    /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2381    /// This can be used within a custom element to distinguish multiple sets of child elements.
2382    pub fn with_element_namespace<R>(
2383        &mut self,
2384        element_id: impl Into<ElementId>,
2385        f: impl FnOnce(&mut Self) -> R,
2386    ) -> R {
2387        self.element_id_stack.push(element_id.into());
2388        let result = f(self);
2389        self.element_id_stack.pop();
2390        result
2391    }
2392
2393    /// Updates or initializes state for an element with the given id that lives across multiple
2394    /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2395    /// to the given closure. The state returned by the closure will be stored so it can be referenced
2396    /// when drawing the next frame. This method should only be called as part of element drawing.
2397    pub fn with_element_state<S, R>(
2398        &mut self,
2399        global_id: &GlobalElementId,
2400        f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2401    ) -> R
2402    where
2403        S: 'static,
2404    {
2405        self.invalidator.debug_assert_paint_or_prepaint();
2406
2407        let key = (GlobalElementId(global_id.0.clone()), TypeId::of::<S>());
2408        self.next_frame
2409            .accessed_element_states
2410            .push((GlobalElementId(key.0.clone()), TypeId::of::<S>()));
2411
2412        if let Some(any) = self
2413            .next_frame
2414            .element_states
2415            .remove(&key)
2416            .or_else(|| self.rendered_frame.element_states.remove(&key))
2417        {
2418            let ElementStateBox {
2419                inner,
2420                #[cfg(debug_assertions)]
2421                type_name,
2422            } = any;
2423            // Using the extra inner option to avoid needing to reallocate a new box.
2424            let mut state_box = inner
2425                .downcast::<Option<S>>()
2426                .map_err(|_| {
2427                    #[cfg(debug_assertions)]
2428                    {
2429                        anyhow::anyhow!(
2430                            "invalid element state type for id, requested {:?}, actual: {:?}",
2431                            std::any::type_name::<S>(),
2432                            type_name
2433                        )
2434                    }
2435
2436                    #[cfg(not(debug_assertions))]
2437                    {
2438                        anyhow::anyhow!(
2439                            "invalid element state type for id, requested {:?}",
2440                            std::any::type_name::<S>(),
2441                        )
2442                    }
2443                })
2444                .unwrap();
2445
2446            let state = state_box.take().expect(
2447                "reentrant call to with_element_state for the same state type and element id",
2448            );
2449            let (result, state) = f(Some(state), self);
2450            state_box.replace(state);
2451            self.next_frame.element_states.insert(
2452                key,
2453                ElementStateBox {
2454                    inner: state_box,
2455                    #[cfg(debug_assertions)]
2456                    type_name,
2457                },
2458            );
2459            result
2460        } else {
2461            let (result, state) = f(None, self);
2462            self.next_frame.element_states.insert(
2463                key,
2464                ElementStateBox {
2465                    inner: Box::new(Some(state)),
2466                    #[cfg(debug_assertions)]
2467                    type_name: std::any::type_name::<S>(),
2468                },
2469            );
2470            result
2471        }
2472    }
2473
2474    /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2475    /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2476    /// when the element is guaranteed to have an id.
2477    ///
2478    /// The first option means 'no ID provided'
2479    /// The second option means 'not yet initialized'
2480    pub fn with_optional_element_state<S, R>(
2481        &mut self,
2482        global_id: Option<&GlobalElementId>,
2483        f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2484    ) -> R
2485    where
2486        S: 'static,
2487    {
2488        self.invalidator.debug_assert_paint_or_prepaint();
2489
2490        if let Some(global_id) = global_id {
2491            self.with_element_state(global_id, |state, cx| {
2492                let (result, state) = f(Some(state), cx);
2493                let state =
2494                    state.expect("you must return some state when you pass some element id");
2495                (result, state)
2496            })
2497        } else {
2498            let (result, state) = f(None, self);
2499            debug_assert!(
2500                state.is_none(),
2501                "you must not return an element state when passing None for the global id"
2502            );
2503            result
2504        }
2505    }
2506
2507    /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2508    /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2509    /// with higher values being drawn on top.
2510    ///
2511    /// This method should only be called as part of the prepaint phase of element drawing.
2512    pub fn defer_draw(
2513        &mut self,
2514        element: AnyElement,
2515        absolute_offset: Point<Pixels>,
2516        priority: usize,
2517    ) {
2518        self.invalidator.debug_assert_prepaint();
2519        let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2520        self.next_frame.deferred_draws.push(DeferredDraw {
2521            current_view: self.current_view(),
2522            parent_node,
2523            element_id_stack: self.element_id_stack.clone(),
2524            text_style_stack: self.text_style_stack.clone(),
2525            priority,
2526            element: Some(element),
2527            absolute_offset,
2528            prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2529            paint_range: PaintIndex::default()..PaintIndex::default(),
2530        });
2531    }
2532
2533    /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2534    /// of geometry that are non-overlapping and have the same draw order. This is typically used
2535    /// for performance reasons.
2536    ///
2537    /// This method should only be called as part of the paint phase of element drawing.
2538    pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2539        self.invalidator.debug_assert_paint();
2540
2541        let scale_factor = self.scale_factor();
2542        let content_mask = self.content_mask();
2543        let clipped_bounds = bounds.intersect(&content_mask.bounds);
2544        if !clipped_bounds.is_empty() {
2545            self.next_frame
2546                .scene
2547                .push_layer(clipped_bounds.scale(scale_factor));
2548        }
2549
2550        let result = f(self);
2551
2552        if !clipped_bounds.is_empty() {
2553            self.next_frame.scene.pop_layer();
2554        }
2555
2556        result
2557    }
2558
2559    /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2560    ///
2561    /// This method should only be called as part of the paint phase of element drawing.
2562    pub fn paint_shadows(
2563        &mut self,
2564        bounds: Bounds<Pixels>,
2565        corner_radii: Corners<Pixels>,
2566        shadows: &[BoxShadow],
2567    ) {
2568        self.invalidator.debug_assert_paint();
2569
2570        let scale_factor = self.scale_factor();
2571        let content_mask = self.content_mask();
2572        let opacity = self.element_opacity();
2573        for shadow in shadows {
2574            let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2575            self.next_frame.scene.insert_primitive(Shadow {
2576                order: 0,
2577                blur_radius: shadow.blur_radius.scale(scale_factor),
2578                bounds: shadow_bounds.scale(scale_factor),
2579                content_mask: content_mask.scale(scale_factor),
2580                corner_radii: corner_radii.scale(scale_factor),
2581                color: shadow.color.opacity(opacity),
2582            });
2583        }
2584    }
2585
2586    /// Paint one or more quads into the scene for the next frame at the current stacking context.
2587    /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2588    /// see [`fill`](crate::fill), [`outline`](crate::outline), and [`quad`](crate::quad) to construct this type.
2589    ///
2590    /// This method should only be called as part of the paint phase of element drawing.
2591    ///
2592    /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2593    /// where the circular arcs meet. This will not display well when combined with dashed borders.
2594    /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2595    pub fn paint_quad(&mut self, quad: PaintQuad) {
2596        self.invalidator.debug_assert_paint();
2597
2598        let scale_factor = self.scale_factor();
2599        let content_mask = self.content_mask();
2600        let opacity = self.element_opacity();
2601        self.next_frame.scene.insert_primitive(Quad {
2602            order: 0,
2603            bounds: quad.bounds.scale(scale_factor),
2604            content_mask: content_mask.scale(scale_factor),
2605            background: quad.background.opacity(opacity),
2606            border_color: quad.border_color.opacity(opacity),
2607            corner_radii: quad.corner_radii.scale(scale_factor),
2608            border_widths: quad.border_widths.scale(scale_factor),
2609            border_style: quad.border_style,
2610        });
2611    }
2612
2613    /// Paint the given `Path` into the scene for the next frame at the current z-index.
2614    ///
2615    /// This method should only be called as part of the paint phase of element drawing.
2616    pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2617        self.invalidator.debug_assert_paint();
2618
2619        let scale_factor = self.scale_factor();
2620        let content_mask = self.content_mask();
2621        let opacity = self.element_opacity();
2622        path.content_mask = content_mask;
2623        let color: Background = color.into();
2624        path.color = color.opacity(opacity);
2625        self.next_frame
2626            .scene
2627            .insert_primitive(path.scale(scale_factor));
2628    }
2629
2630    /// Paint an underline into the scene for the next frame at the current z-index.
2631    ///
2632    /// This method should only be called as part of the paint phase of element drawing.
2633    pub fn paint_underline(
2634        &mut self,
2635        origin: Point<Pixels>,
2636        width: Pixels,
2637        style: &UnderlineStyle,
2638    ) {
2639        self.invalidator.debug_assert_paint();
2640
2641        let scale_factor = self.scale_factor();
2642        let height = if style.wavy {
2643            style.thickness * 3.
2644        } else {
2645            style.thickness
2646        };
2647        let bounds = Bounds {
2648            origin,
2649            size: size(width, height),
2650        };
2651        let content_mask = self.content_mask();
2652        let element_opacity = self.element_opacity();
2653
2654        self.next_frame.scene.insert_primitive(Underline {
2655            order: 0,
2656            pad: 0,
2657            bounds: bounds.scale(scale_factor),
2658            content_mask: content_mask.scale(scale_factor),
2659            color: style.color.unwrap_or_default().opacity(element_opacity),
2660            thickness: style.thickness.scale(scale_factor),
2661            wavy: style.wavy,
2662        });
2663    }
2664
2665    /// Paint a strikethrough into the scene for the next frame at the current z-index.
2666    ///
2667    /// This method should only be called as part of the paint phase of element drawing.
2668    pub fn paint_strikethrough(
2669        &mut self,
2670        origin: Point<Pixels>,
2671        width: Pixels,
2672        style: &StrikethroughStyle,
2673    ) {
2674        self.invalidator.debug_assert_paint();
2675
2676        let scale_factor = self.scale_factor();
2677        let height = style.thickness;
2678        let bounds = Bounds {
2679            origin,
2680            size: size(width, height),
2681        };
2682        let content_mask = self.content_mask();
2683        let opacity = self.element_opacity();
2684
2685        self.next_frame.scene.insert_primitive(Underline {
2686            order: 0,
2687            pad: 0,
2688            bounds: bounds.scale(scale_factor),
2689            content_mask: content_mask.scale(scale_factor),
2690            thickness: style.thickness.scale(scale_factor),
2691            color: style.color.unwrap_or_default().opacity(opacity),
2692            wavy: false,
2693        });
2694    }
2695
2696    /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
2697    ///
2698    /// The y component of the origin is the baseline of the glyph.
2699    /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2700    /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2701    /// This method is only useful if you need to paint a single glyph that has already been shaped.
2702    ///
2703    /// This method should only be called as part of the paint phase of element drawing.
2704    pub fn paint_glyph(
2705        &mut self,
2706        origin: Point<Pixels>,
2707        font_id: FontId,
2708        glyph_id: GlyphId,
2709        font_size: Pixels,
2710        color: Hsla,
2711    ) -> Result<()> {
2712        self.invalidator.debug_assert_paint();
2713
2714        let element_opacity = self.element_opacity();
2715        let scale_factor = self.scale_factor();
2716        let glyph_origin = origin.scale(scale_factor);
2717        let subpixel_variant = Point {
2718            x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2719            y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2720        };
2721        let params = RenderGlyphParams {
2722            font_id,
2723            glyph_id,
2724            font_size,
2725            subpixel_variant,
2726            scale_factor,
2727            is_emoji: false,
2728        };
2729
2730        let raster_bounds = self.text_system().raster_bounds(&params)?;
2731        if !raster_bounds.is_zero() {
2732            let tile = self
2733                .sprite_atlas
2734                .get_or_insert_with(&params.clone().into(), &mut || {
2735                    let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
2736                    Ok(Some((size, Cow::Owned(bytes))))
2737                })?
2738                .expect("Callback above only errors or returns Some");
2739            let bounds = Bounds {
2740                origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2741                size: tile.bounds.size.map(Into::into),
2742            };
2743            let content_mask = self.content_mask().scale(scale_factor);
2744            self.next_frame.scene.insert_primitive(MonochromeSprite {
2745                order: 0,
2746                pad: 0,
2747                bounds,
2748                content_mask,
2749                color: color.opacity(element_opacity),
2750                tile,
2751                transformation: TransformationMatrix::unit(),
2752            });
2753        }
2754        Ok(())
2755    }
2756
2757    /// Paints an emoji glyph into the scene for the next frame at the current z-index.
2758    ///
2759    /// The y component of the origin is the baseline of the glyph.
2760    /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2761    /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2762    /// This method is only useful if you need to paint a single emoji that has already been shaped.
2763    ///
2764    /// This method should only be called as part of the paint phase of element drawing.
2765    pub fn paint_emoji(
2766        &mut self,
2767        origin: Point<Pixels>,
2768        font_id: FontId,
2769        glyph_id: GlyphId,
2770        font_size: Pixels,
2771    ) -> Result<()> {
2772        self.invalidator.debug_assert_paint();
2773
2774        let scale_factor = self.scale_factor();
2775        let glyph_origin = origin.scale(scale_factor);
2776        let params = RenderGlyphParams {
2777            font_id,
2778            glyph_id,
2779            font_size,
2780            // We don't render emojis with subpixel variants.
2781            subpixel_variant: Default::default(),
2782            scale_factor,
2783            is_emoji: true,
2784        };
2785
2786        let raster_bounds = self.text_system().raster_bounds(&params)?;
2787        if !raster_bounds.is_zero() {
2788            let tile = self
2789                .sprite_atlas
2790                .get_or_insert_with(&params.clone().into(), &mut || {
2791                    let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
2792                    Ok(Some((size, Cow::Owned(bytes))))
2793                })?
2794                .expect("Callback above only errors or returns Some");
2795
2796            let bounds = Bounds {
2797                origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2798                size: tile.bounds.size.map(Into::into),
2799            };
2800            let content_mask = self.content_mask().scale(scale_factor);
2801            let opacity = self.element_opacity();
2802
2803            self.next_frame.scene.insert_primitive(PolychromeSprite {
2804                order: 0,
2805                pad: 0,
2806                grayscale: false,
2807                bounds,
2808                corner_radii: Default::default(),
2809                content_mask,
2810                tile,
2811                opacity,
2812            });
2813        }
2814        Ok(())
2815    }
2816
2817    /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
2818    ///
2819    /// This method should only be called as part of the paint phase of element drawing.
2820    pub fn paint_svg(
2821        &mut self,
2822        bounds: Bounds<Pixels>,
2823        path: SharedString,
2824        transformation: TransformationMatrix,
2825        color: Hsla,
2826        cx: &App,
2827    ) -> Result<()> {
2828        self.invalidator.debug_assert_paint();
2829
2830        let element_opacity = self.element_opacity();
2831        let scale_factor = self.scale_factor();
2832        let bounds = bounds.scale(scale_factor);
2833        let params = RenderSvgParams {
2834            path,
2835            size: bounds.size.map(|pixels| {
2836                DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
2837            }),
2838        };
2839
2840        let Some(tile) =
2841            self.sprite_atlas
2842                .get_or_insert_with(&params.clone().into(), &mut || {
2843                    let Some(bytes) = cx.svg_renderer.render(&params)? else {
2844                        return Ok(None);
2845                    };
2846                    Ok(Some((params.size, Cow::Owned(bytes))))
2847                })?
2848        else {
2849            return Ok(());
2850        };
2851        let content_mask = self.content_mask().scale(scale_factor);
2852
2853        self.next_frame.scene.insert_primitive(MonochromeSprite {
2854            order: 0,
2855            pad: 0,
2856            bounds: bounds
2857                .map_origin(|origin| origin.floor())
2858                .map_size(|size| size.ceil()),
2859            content_mask,
2860            color: color.opacity(element_opacity),
2861            tile,
2862            transformation,
2863        });
2864
2865        Ok(())
2866    }
2867
2868    /// Paint an image into the scene for the next frame at the current z-index.
2869    /// This method will panic if the frame_index is not valid
2870    ///
2871    /// This method should only be called as part of the paint phase of element drawing.
2872    pub fn paint_image(
2873        &mut self,
2874        bounds: Bounds<Pixels>,
2875        corner_radii: Corners<Pixels>,
2876        data: Arc<RenderImage>,
2877        frame_index: usize,
2878        grayscale: bool,
2879    ) -> Result<()> {
2880        self.invalidator.debug_assert_paint();
2881
2882        let scale_factor = self.scale_factor();
2883        let bounds = bounds.scale(scale_factor);
2884        let params = RenderImageParams {
2885            image_id: data.id,
2886            frame_index,
2887        };
2888
2889        let tile = self
2890            .sprite_atlas
2891            .get_or_insert_with(&params.clone().into(), &mut || {
2892                Ok(Some((
2893                    data.size(frame_index),
2894                    Cow::Borrowed(
2895                        data.as_bytes(frame_index)
2896                            .expect("It's the caller's job to pass a valid frame index"),
2897                    ),
2898                )))
2899            })?
2900            .expect("Callback above only returns Some");
2901        let content_mask = self.content_mask().scale(scale_factor);
2902        let corner_radii = corner_radii.scale(scale_factor);
2903        let opacity = self.element_opacity();
2904
2905        self.next_frame.scene.insert_primitive(PolychromeSprite {
2906            order: 0,
2907            pad: 0,
2908            grayscale,
2909            bounds: bounds
2910                .map_origin(|origin| origin.floor())
2911                .map_size(|size| size.ceil()),
2912            content_mask,
2913            corner_radii,
2914            tile,
2915            opacity,
2916        });
2917        Ok(())
2918    }
2919
2920    /// Paint a surface into the scene for the next frame at the current z-index.
2921    ///
2922    /// This method should only be called as part of the paint phase of element drawing.
2923    #[cfg(target_os = "macos")]
2924    pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
2925        use crate::PaintSurface;
2926
2927        self.invalidator.debug_assert_paint();
2928
2929        let scale_factor = self.scale_factor();
2930        let bounds = bounds.scale(scale_factor);
2931        let content_mask = self.content_mask().scale(scale_factor);
2932        self.next_frame.scene.insert_primitive(PaintSurface {
2933            order: 0,
2934            bounds,
2935            content_mask,
2936            image_buffer,
2937        });
2938    }
2939
2940    /// Removes an image from the sprite atlas.
2941    pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
2942        for frame_index in 0..data.frame_count() {
2943            let params = RenderImageParams {
2944                image_id: data.id,
2945                frame_index,
2946            };
2947
2948            self.sprite_atlas.remove(&params.clone().into());
2949        }
2950
2951        Ok(())
2952    }
2953
2954    /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
2955    /// layout is being requested, along with the layout ids of any children. This method is called during
2956    /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
2957    ///
2958    /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
2959    #[must_use]
2960    pub fn request_layout(
2961        &mut self,
2962        style: Style,
2963        children: impl IntoIterator<Item = LayoutId>,
2964        cx: &mut App,
2965    ) -> LayoutId {
2966        self.invalidator.debug_assert_prepaint();
2967
2968        cx.layout_id_buffer.clear();
2969        cx.layout_id_buffer.extend(children);
2970        let rem_size = self.rem_size();
2971
2972        self.layout_engine
2973            .as_mut()
2974            .unwrap()
2975            .request_layout(style, rem_size, &cx.layout_id_buffer)
2976    }
2977
2978    /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
2979    /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
2980    /// determine the element's size. One place this is used internally is when measuring text.
2981    ///
2982    /// The given closure is invoked at layout time with the known dimensions and available space and
2983    /// returns a `Size`.
2984    ///
2985    /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
2986    pub fn request_measured_layout<
2987        F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
2988            + 'static,
2989    >(
2990        &mut self,
2991        style: Style,
2992        measure: F,
2993    ) -> LayoutId {
2994        self.invalidator.debug_assert_prepaint();
2995
2996        let rem_size = self.rem_size();
2997        self.layout_engine
2998            .as_mut()
2999            .unwrap()
3000            .request_measured_layout(style, rem_size, measure)
3001    }
3002
3003    /// Compute the layout for the given id within the given available space.
3004    /// This method is called for its side effect, typically by the framework prior to painting.
3005    /// After calling it, you can request the bounds of the given layout node id or any descendant.
3006    ///
3007    /// This method should only be called as part of the prepaint phase of element drawing.
3008    pub fn compute_layout(
3009        &mut self,
3010        layout_id: LayoutId,
3011        available_space: Size<AvailableSpace>,
3012        cx: &mut App,
3013    ) {
3014        self.invalidator.debug_assert_prepaint();
3015
3016        let mut layout_engine = self.layout_engine.take().unwrap();
3017        layout_engine.compute_layout(layout_id, available_space, self, cx);
3018        self.layout_engine = Some(layout_engine);
3019    }
3020
3021    /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
3022    /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
3023    ///
3024    /// This method should only be called as part of element drawing.
3025    pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
3026        self.invalidator.debug_assert_prepaint();
3027
3028        let mut bounds = self
3029            .layout_engine
3030            .as_mut()
3031            .unwrap()
3032            .layout_bounds(layout_id)
3033            .map(Into::into);
3034        bounds.origin += self.element_offset();
3035        bounds
3036    }
3037
3038    /// This method should be called during `prepaint`. You can use
3039    /// the returned [Hitbox] during `paint` or in an event handler
3040    /// to determine whether the inserted hitbox was the topmost.
3041    ///
3042    /// This method should only be called as part of the prepaint phase of element drawing.
3043    pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
3044        self.invalidator.debug_assert_prepaint();
3045
3046        let content_mask = self.content_mask();
3047        let mut id = self.next_hitbox_id;
3048        self.next_hitbox_id = self.next_hitbox_id.next();
3049        let hitbox = Hitbox {
3050            id,
3051            bounds,
3052            content_mask,
3053            behavior,
3054        };
3055        self.next_frame.hitboxes.push(hitbox.clone());
3056        hitbox
3057    }
3058
3059    /// Set a hitbox which will act as a control area of the platform window.
3060    ///
3061    /// This method should only be called as part of the paint phase of element drawing.
3062    pub fn insert_window_control_hitbox(&mut self, area: WindowControlArea, hitbox: Hitbox) {
3063        self.invalidator.debug_assert_paint();
3064        self.next_frame.window_control_hitboxes.push((area, hitbox));
3065    }
3066
3067    /// Sets the key context for the current element. This context will be used to translate
3068    /// keybindings into actions.
3069    ///
3070    /// This method should only be called as part of the paint phase of element drawing.
3071    pub fn set_key_context(&mut self, context: KeyContext) {
3072        self.invalidator.debug_assert_paint();
3073        self.next_frame.dispatch_tree.set_key_context(context);
3074    }
3075
3076    /// Sets the focus handle for the current element. This handle will be used to manage focus state
3077    /// and keyboard event dispatch for the element.
3078    ///
3079    /// This method should only be called as part of the prepaint phase of element drawing.
3080    pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3081        self.invalidator.debug_assert_prepaint();
3082        if focus_handle.is_focused(self) {
3083            self.next_frame.focus = Some(focus_handle.id);
3084        }
3085        self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3086    }
3087
3088    /// Sets the view id for the current element, which will be used to manage view caching.
3089    ///
3090    /// This method should only be called as part of element prepaint. We plan on removing this
3091    /// method eventually when we solve some issues that require us to construct editor elements
3092    /// directly instead of always using editors via views.
3093    pub fn set_view_id(&mut self, view_id: EntityId) {
3094        self.invalidator.debug_assert_prepaint();
3095        self.next_frame.dispatch_tree.set_view_id(view_id);
3096    }
3097
3098    /// Get the entity ID for the currently rendering view
3099    pub fn current_view(&self) -> EntityId {
3100        self.invalidator.debug_assert_paint_or_prepaint();
3101        self.rendered_entity_stack.last().copied().unwrap()
3102    }
3103
3104    pub(crate) fn with_rendered_view<R>(
3105        &mut self,
3106        id: EntityId,
3107        f: impl FnOnce(&mut Self) -> R,
3108    ) -> R {
3109        self.rendered_entity_stack.push(id);
3110        let result = f(self);
3111        self.rendered_entity_stack.pop();
3112        result
3113    }
3114
3115    /// Executes the provided function with the specified image cache.
3116    pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3117    where
3118        F: FnOnce(&mut Self) -> R,
3119    {
3120        if let Some(image_cache) = image_cache {
3121            self.image_cache_stack.push(image_cache);
3122            let result = f(self);
3123            self.image_cache_stack.pop();
3124            result
3125        } else {
3126            f(self)
3127        }
3128    }
3129
3130    /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3131    /// platform to receive textual input with proper integration with concerns such
3132    /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3133    /// rendered.
3134    ///
3135    /// This method should only be called as part of the paint phase of element drawing.
3136    ///
3137    /// [element_input_handler]: crate::ElementInputHandler
3138    pub fn handle_input(
3139        &mut self,
3140        focus_handle: &FocusHandle,
3141        input_handler: impl InputHandler,
3142        cx: &App,
3143    ) {
3144        self.invalidator.debug_assert_paint();
3145
3146        if focus_handle.is_focused(self) {
3147            let cx = self.to_async(cx);
3148            self.next_frame
3149                .input_handlers
3150                .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3151        }
3152    }
3153
3154    /// Register a mouse event listener on the window for the next frame. The type of event
3155    /// is determined by the first parameter of the given listener. When the next frame is rendered
3156    /// the listener will be cleared.
3157    ///
3158    /// This method should only be called as part of the paint phase of element drawing.
3159    pub fn on_mouse_event<Event: MouseEvent>(
3160        &mut self,
3161        mut handler: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3162    ) {
3163        self.invalidator.debug_assert_paint();
3164
3165        self.next_frame.mouse_listeners.push(Some(Box::new(
3166            move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3167                if let Some(event) = event.downcast_ref() {
3168                    handler(event, phase, window, cx)
3169                }
3170            },
3171        )));
3172    }
3173
3174    /// Register a key event listener on the window for the next frame. The type of event
3175    /// is determined by the first parameter of the given listener. When the next frame is rendered
3176    /// the listener will be cleared.
3177    ///
3178    /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3179    /// a specific need to register a global listener.
3180    ///
3181    /// This method should only be called as part of the paint phase of element drawing.
3182    pub fn on_key_event<Event: KeyEvent>(
3183        &mut self,
3184        listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3185    ) {
3186        self.invalidator.debug_assert_paint();
3187
3188        self.next_frame.dispatch_tree.on_key_event(Rc::new(
3189            move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3190                if let Some(event) = event.downcast_ref::<Event>() {
3191                    listener(event, phase, window, cx)
3192                }
3193            },
3194        ));
3195    }
3196
3197    /// Register a modifiers changed event listener on the window for the next frame.
3198    ///
3199    /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3200    /// a specific need to register a global listener.
3201    ///
3202    /// This method should only be called as part of the paint phase of element drawing.
3203    pub fn on_modifiers_changed(
3204        &mut self,
3205        listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3206    ) {
3207        self.invalidator.debug_assert_paint();
3208
3209        self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3210            move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3211                listener(event, window, cx)
3212            },
3213        ));
3214    }
3215
3216    /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3217    /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3218    /// Returns a subscription and persists until the subscription is dropped.
3219    pub fn on_focus_in(
3220        &mut self,
3221        handle: &FocusHandle,
3222        cx: &mut App,
3223        mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3224    ) -> Subscription {
3225        let focus_id = handle.id;
3226        let (subscription, activate) =
3227            self.new_focus_listener(Box::new(move |event, window, cx| {
3228                if event.is_focus_in(focus_id) {
3229                    listener(window, cx);
3230                }
3231                true
3232            }));
3233        cx.defer(move |_| activate());
3234        subscription
3235    }
3236
3237    /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3238    /// Returns a subscription and persists until the subscription is dropped.
3239    pub fn on_focus_out(
3240        &mut self,
3241        handle: &FocusHandle,
3242        cx: &mut App,
3243        mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3244    ) -> Subscription {
3245        let focus_id = handle.id;
3246        let (subscription, activate) =
3247            self.new_focus_listener(Box::new(move |event, window, cx| {
3248                if let Some(blurred_id) = event.previous_focus_path.last().copied() {
3249                    if event.is_focus_out(focus_id) {
3250                        let event = FocusOutEvent {
3251                            blurred: WeakFocusHandle {
3252                                id: blurred_id,
3253                                handles: Arc::downgrade(&cx.focus_handles),
3254                            },
3255                        };
3256                        listener(event, window, cx)
3257                    }
3258                }
3259                true
3260            }));
3261        cx.defer(move |_| activate());
3262        subscription
3263    }
3264
3265    fn reset_cursor_style(&self, cx: &mut App) {
3266        // Set the cursor only if we're the active window.
3267        if self.is_window_hovered() {
3268            let style = self
3269                .rendered_frame
3270                .cursor_style(self)
3271                .unwrap_or(CursorStyle::Arrow);
3272            cx.platform.set_cursor_style(style);
3273        }
3274    }
3275
3276    /// Dispatch a given keystroke as though the user had typed it.
3277    /// You can create a keystroke with Keystroke::parse("").
3278    pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3279        let keystroke = keystroke.with_simulated_ime();
3280        let result = self.dispatch_event(
3281            PlatformInput::KeyDown(KeyDownEvent {
3282                keystroke: keystroke.clone(),
3283                is_held: false,
3284            }),
3285            cx,
3286        );
3287        if !result.propagate {
3288            return true;
3289        }
3290
3291        if let Some(input) = keystroke.key_char {
3292            if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3293                input_handler.dispatch_input(&input, self, cx);
3294                self.platform_window.set_input_handler(input_handler);
3295                return true;
3296            }
3297        }
3298
3299        false
3300    }
3301
3302    /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3303    /// binding for the action (last binding added to the keymap).
3304    pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3305        self.highest_precedence_binding_for_action(action)
3306            .map(|binding| {
3307                binding
3308                    .keystrokes()
3309                    .iter()
3310                    .map(ToString::to_string)
3311                    .collect::<Vec<_>>()
3312                    .join(" ")
3313            })
3314            .unwrap_or_else(|| action.name().to_string())
3315    }
3316
3317    /// Dispatch a mouse or keyboard event on the window.
3318    #[profiling::function]
3319    pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3320        self.last_input_timestamp.set(Instant::now());
3321        // Handlers may set this to false by calling `stop_propagation`.
3322        cx.propagate_event = true;
3323        // Handlers may set this to true by calling `prevent_default`.
3324        self.default_prevented = false;
3325
3326        let event = match event {
3327            // Track the mouse position with our own state, since accessing the platform
3328            // API for the mouse position can only occur on the main thread.
3329            PlatformInput::MouseMove(mouse_move) => {
3330                self.mouse_position = mouse_move.position;
3331                self.modifiers = mouse_move.modifiers;
3332                PlatformInput::MouseMove(mouse_move)
3333            }
3334            PlatformInput::MouseDown(mouse_down) => {
3335                self.mouse_position = mouse_down.position;
3336                self.modifiers = mouse_down.modifiers;
3337                PlatformInput::MouseDown(mouse_down)
3338            }
3339            PlatformInput::MouseUp(mouse_up) => {
3340                self.mouse_position = mouse_up.position;
3341                self.modifiers = mouse_up.modifiers;
3342                PlatformInput::MouseUp(mouse_up)
3343            }
3344            PlatformInput::MouseExited(mouse_exited) => {
3345                self.modifiers = mouse_exited.modifiers;
3346                PlatformInput::MouseExited(mouse_exited)
3347            }
3348            PlatformInput::ModifiersChanged(modifiers_changed) => {
3349                self.modifiers = modifiers_changed.modifiers;
3350                self.capslock = modifiers_changed.capslock;
3351                PlatformInput::ModifiersChanged(modifiers_changed)
3352            }
3353            PlatformInput::ScrollWheel(scroll_wheel) => {
3354                self.mouse_position = scroll_wheel.position;
3355                self.modifiers = scroll_wheel.modifiers;
3356                PlatformInput::ScrollWheel(scroll_wheel)
3357            }
3358            // Translate dragging and dropping of external files from the operating system
3359            // to internal drag and drop events.
3360            PlatformInput::FileDrop(file_drop) => match file_drop {
3361                FileDropEvent::Entered { position, paths } => {
3362                    self.mouse_position = position;
3363                    if cx.active_drag.is_none() {
3364                        cx.active_drag = Some(AnyDrag {
3365                            value: Arc::new(paths.clone()),
3366                            view: cx.new(|_| paths).into(),
3367                            cursor_offset: position,
3368                            cursor_style: None,
3369                        });
3370                    }
3371                    PlatformInput::MouseMove(MouseMoveEvent {
3372                        position,
3373                        pressed_button: Some(MouseButton::Left),
3374                        modifiers: Modifiers::default(),
3375                    })
3376                }
3377                FileDropEvent::Pending { position } => {
3378                    self.mouse_position = position;
3379                    PlatformInput::MouseMove(MouseMoveEvent {
3380                        position,
3381                        pressed_button: Some(MouseButton::Left),
3382                        modifiers: Modifiers::default(),
3383                    })
3384                }
3385                FileDropEvent::Submit { position } => {
3386                    cx.activate(true);
3387                    self.mouse_position = position;
3388                    PlatformInput::MouseUp(MouseUpEvent {
3389                        button: MouseButton::Left,
3390                        position,
3391                        modifiers: Modifiers::default(),
3392                        click_count: 1,
3393                    })
3394                }
3395                FileDropEvent::Exited => {
3396                    cx.active_drag.take();
3397                    PlatformInput::FileDrop(FileDropEvent::Exited)
3398                }
3399            },
3400            PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3401        };
3402
3403        if let Some(any_mouse_event) = event.mouse_event() {
3404            self.dispatch_mouse_event(any_mouse_event, cx);
3405        } else if let Some(any_key_event) = event.keyboard_event() {
3406            self.dispatch_key_event(any_key_event, cx);
3407        }
3408
3409        DispatchEventResult {
3410            propagate: cx.propagate_event,
3411            default_prevented: self.default_prevented,
3412        }
3413    }
3414
3415    fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3416        let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3417        if hit_test != self.mouse_hit_test {
3418            self.mouse_hit_test = hit_test;
3419            self.reset_cursor_style(cx);
3420        }
3421
3422        #[cfg(any(feature = "inspector", debug_assertions))]
3423        if self.is_inspector_picking(cx) {
3424            self.handle_inspector_mouse_event(event, cx);
3425            // When inspector is picking, all other mouse handling is skipped.
3426            return;
3427        }
3428
3429        let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3430
3431        // Capture phase, events bubble from back to front. Handlers for this phase are used for
3432        // special purposes, such as detecting events outside of a given Bounds.
3433        for listener in &mut mouse_listeners {
3434            let listener = listener.as_mut().unwrap();
3435            listener(event, DispatchPhase::Capture, self, cx);
3436            if !cx.propagate_event {
3437                break;
3438            }
3439        }
3440
3441        // Bubble phase, where most normal handlers do their work.
3442        if cx.propagate_event {
3443            for listener in mouse_listeners.iter_mut().rev() {
3444                let listener = listener.as_mut().unwrap();
3445                listener(event, DispatchPhase::Bubble, self, cx);
3446                if !cx.propagate_event {
3447                    break;
3448                }
3449            }
3450        }
3451
3452        self.rendered_frame.mouse_listeners = mouse_listeners;
3453
3454        if cx.has_active_drag() {
3455            if event.is::<MouseMoveEvent>() {
3456                // If this was a mouse move event, redraw the window so that the
3457                // active drag can follow the mouse cursor.
3458                self.refresh();
3459            } else if event.is::<MouseUpEvent>() {
3460                // If this was a mouse up event, cancel the active drag and redraw
3461                // the window.
3462                cx.active_drag = None;
3463                self.refresh();
3464            }
3465        }
3466    }
3467
3468    fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3469        if self.invalidator.is_dirty() {
3470            self.draw(cx);
3471        }
3472
3473        let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3474        let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3475
3476        let mut keystroke: Option<Keystroke> = None;
3477
3478        if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3479            if event.modifiers.number_of_modifiers() == 0
3480                && self.pending_modifier.modifiers.number_of_modifiers() == 1
3481                && !self.pending_modifier.saw_keystroke
3482            {
3483                let key = match self.pending_modifier.modifiers {
3484                    modifiers if modifiers.shift => Some("shift"),
3485                    modifiers if modifiers.control => Some("control"),
3486                    modifiers if modifiers.alt => Some("alt"),
3487                    modifiers if modifiers.platform => Some("platform"),
3488                    modifiers if modifiers.function => Some("function"),
3489                    _ => None,
3490                };
3491                if let Some(key) = key {
3492                    keystroke = Some(Keystroke {
3493                        key: key.to_string(),
3494                        key_char: None,
3495                        modifiers: Modifiers::default(),
3496                    });
3497                }
3498            }
3499
3500            if self.pending_modifier.modifiers.number_of_modifiers() == 0
3501                && event.modifiers.number_of_modifiers() == 1
3502            {
3503                self.pending_modifier.saw_keystroke = false
3504            }
3505            self.pending_modifier.modifiers = event.modifiers
3506        } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3507            self.pending_modifier.saw_keystroke = true;
3508            keystroke = Some(key_down_event.keystroke.clone());
3509        }
3510
3511        let Some(keystroke) = keystroke else {
3512            self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3513            return;
3514        };
3515
3516        let mut currently_pending = self.pending_input.take().unwrap_or_default();
3517        if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3518            currently_pending = PendingInput::default();
3519        }
3520
3521        let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3522            currently_pending.keystrokes,
3523            keystroke,
3524            &dispatch_path,
3525        );
3526
3527        if !match_result.to_replay.is_empty() {
3528            self.replay_pending_input(match_result.to_replay, cx)
3529        }
3530
3531        if !match_result.pending.is_empty() {
3532            currently_pending.keystrokes = match_result.pending;
3533            currently_pending.focus = self.focus;
3534            currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3535                cx.background_executor.timer(Duration::from_secs(1)).await;
3536                cx.update(move |window, cx| {
3537                    let Some(currently_pending) = window
3538                        .pending_input
3539                        .take()
3540                        .filter(|pending| pending.focus == window.focus)
3541                    else {
3542                        return;
3543                    };
3544
3545                    let node_id = window.focus_node_id_in_rendered_frame(window.focus);
3546                    let dispatch_path = window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3547
3548                    let to_replay = window
3549                        .rendered_frame
3550                        .dispatch_tree
3551                        .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3552
3553                    window.pending_input_changed(cx);
3554                    window.replay_pending_input(to_replay, cx)
3555                })
3556                .log_err();
3557            }));
3558            self.pending_input = Some(currently_pending);
3559            self.pending_input_changed(cx);
3560            cx.propagate_event = false;
3561            return;
3562        }
3563
3564        cx.propagate_event = true;
3565        for binding in match_result.bindings {
3566            self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3567            if !cx.propagate_event {
3568                self.dispatch_keystroke_observers(
3569                    event,
3570                    Some(binding.action),
3571                    match_result.context_stack.clone(),
3572                    cx,
3573                );
3574                self.pending_input_changed(cx);
3575                return;
3576            }
3577        }
3578
3579        self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
3580        self.pending_input_changed(cx);
3581    }
3582
3583    fn finish_dispatch_key_event(
3584        &mut self,
3585        event: &dyn Any,
3586        dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3587        context_stack: Vec<KeyContext>,
3588        cx: &mut App,
3589    ) {
3590        self.dispatch_key_down_up_event(event, &dispatch_path, cx);
3591        if !cx.propagate_event {
3592            return;
3593        }
3594
3595        self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
3596        if !cx.propagate_event {
3597            return;
3598        }
3599
3600        self.dispatch_keystroke_observers(event, None, context_stack, cx);
3601    }
3602
3603    fn pending_input_changed(&mut self, cx: &mut App) {
3604        self.pending_input_observers
3605            .clone()
3606            .retain(&(), |callback| callback(self, cx));
3607    }
3608
3609    fn dispatch_key_down_up_event(
3610        &mut self,
3611        event: &dyn Any,
3612        dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3613        cx: &mut App,
3614    ) {
3615        // Capture phase
3616        for node_id in dispatch_path {
3617            let node = self.rendered_frame.dispatch_tree.node(*node_id);
3618
3619            for key_listener in node.key_listeners.clone() {
3620                key_listener(event, DispatchPhase::Capture, self, cx);
3621                if !cx.propagate_event {
3622                    return;
3623                }
3624            }
3625        }
3626
3627        // Bubble phase
3628        for node_id in dispatch_path.iter().rev() {
3629            // Handle low level key events
3630            let node = self.rendered_frame.dispatch_tree.node(*node_id);
3631            for key_listener in node.key_listeners.clone() {
3632                key_listener(event, DispatchPhase::Bubble, self, cx);
3633                if !cx.propagate_event {
3634                    return;
3635                }
3636            }
3637        }
3638    }
3639
3640    fn dispatch_modifiers_changed_event(
3641        &mut self,
3642        event: &dyn Any,
3643        dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3644        cx: &mut App,
3645    ) {
3646        let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
3647            return;
3648        };
3649        for node_id in dispatch_path.iter().rev() {
3650            let node = self.rendered_frame.dispatch_tree.node(*node_id);
3651            for listener in node.modifiers_changed_listeners.clone() {
3652                listener(event, self, cx);
3653                if !cx.propagate_event {
3654                    return;
3655                }
3656            }
3657        }
3658    }
3659
3660    /// Determine whether a potential multi-stroke key binding is in progress on this window.
3661    pub fn has_pending_keystrokes(&self) -> bool {
3662        self.pending_input.is_some()
3663    }
3664
3665    pub(crate) fn clear_pending_keystrokes(&mut self) {
3666        self.pending_input.take();
3667    }
3668
3669    /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
3670    pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
3671        self.pending_input
3672            .as_ref()
3673            .map(|pending_input| pending_input.keystrokes.as_slice())
3674    }
3675
3676    fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
3677        let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3678        let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3679
3680        'replay: for replay in replays {
3681            let event = KeyDownEvent {
3682                keystroke: replay.keystroke.clone(),
3683                is_held: false,
3684            };
3685
3686            cx.propagate_event = true;
3687            for binding in replay.bindings {
3688                self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3689                if !cx.propagate_event {
3690                    self.dispatch_keystroke_observers(
3691                        &event,
3692                        Some(binding.action),
3693                        Vec::default(),
3694                        cx,
3695                    );
3696                    continue 'replay;
3697                }
3698            }
3699
3700            self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
3701            if !cx.propagate_event {
3702                continue 'replay;
3703            }
3704            if let Some(input) = replay.keystroke.key_char.as_ref().cloned() {
3705                if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3706                    input_handler.dispatch_input(&input, self, cx);
3707                    self.platform_window.set_input_handler(input_handler)
3708                }
3709            }
3710        }
3711    }
3712
3713    fn focus_node_id_in_rendered_frame(&self, focus_id: Option<FocusId>) -> DispatchNodeId {
3714        focus_id
3715            .and_then(|focus_id| {
3716                self.rendered_frame
3717                    .dispatch_tree
3718                    .focusable_node_id(focus_id)
3719            })
3720            .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id())
3721    }
3722
3723    fn dispatch_action_on_node(
3724        &mut self,
3725        node_id: DispatchNodeId,
3726        action: &dyn Action,
3727        cx: &mut App,
3728    ) {
3729        let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3730
3731        // Capture phase for global actions.
3732        cx.propagate_event = true;
3733        if let Some(mut global_listeners) = cx
3734            .global_action_listeners
3735            .remove(&action.as_any().type_id())
3736        {
3737            for listener in &global_listeners {
3738                listener(action.as_any(), DispatchPhase::Capture, cx);
3739                if !cx.propagate_event {
3740                    break;
3741                }
3742            }
3743
3744            global_listeners.extend(
3745                cx.global_action_listeners
3746                    .remove(&action.as_any().type_id())
3747                    .unwrap_or_default(),
3748            );
3749
3750            cx.global_action_listeners
3751                .insert(action.as_any().type_id(), global_listeners);
3752        }
3753
3754        if !cx.propagate_event {
3755            return;
3756        }
3757
3758        // Capture phase for window actions.
3759        for node_id in &dispatch_path {
3760            let node = self.rendered_frame.dispatch_tree.node(*node_id);
3761            for DispatchActionListener {
3762                action_type,
3763                listener,
3764            } in node.action_listeners.clone()
3765            {
3766                let any_action = action.as_any();
3767                if action_type == any_action.type_id() {
3768                    listener(any_action, DispatchPhase::Capture, self, cx);
3769
3770                    if !cx.propagate_event {
3771                        return;
3772                    }
3773                }
3774            }
3775        }
3776
3777        // Bubble phase for window actions.
3778        for node_id in dispatch_path.iter().rev() {
3779            let node = self.rendered_frame.dispatch_tree.node(*node_id);
3780            for DispatchActionListener {
3781                action_type,
3782                listener,
3783            } in node.action_listeners.clone()
3784            {
3785                let any_action = action.as_any();
3786                if action_type == any_action.type_id() {
3787                    cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3788                    listener(any_action, DispatchPhase::Bubble, self, cx);
3789
3790                    if !cx.propagate_event {
3791                        return;
3792                    }
3793                }
3794            }
3795        }
3796
3797        // Bubble phase for global actions.
3798        if let Some(mut global_listeners) = cx
3799            .global_action_listeners
3800            .remove(&action.as_any().type_id())
3801        {
3802            for listener in global_listeners.iter().rev() {
3803                cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3804
3805                listener(action.as_any(), DispatchPhase::Bubble, cx);
3806                if !cx.propagate_event {
3807                    break;
3808                }
3809            }
3810
3811            global_listeners.extend(
3812                cx.global_action_listeners
3813                    .remove(&action.as_any().type_id())
3814                    .unwrap_or_default(),
3815            );
3816
3817            cx.global_action_listeners
3818                .insert(action.as_any().type_id(), global_listeners);
3819        }
3820    }
3821
3822    /// Register the given handler to be invoked whenever the global of the given type
3823    /// is updated.
3824    pub fn observe_global<G: Global>(
3825        &mut self,
3826        cx: &mut App,
3827        f: impl Fn(&mut Window, &mut App) + 'static,
3828    ) -> Subscription {
3829        let window_handle = self.handle;
3830        let (subscription, activate) = cx.global_observers.insert(
3831            TypeId::of::<G>(),
3832            Box::new(move |cx| {
3833                window_handle
3834                    .update(cx, |_, window, cx| f(window, cx))
3835                    .is_ok()
3836            }),
3837        );
3838        cx.defer(move |_| activate());
3839        subscription
3840    }
3841
3842    /// Focus the current window and bring it to the foreground at the platform level.
3843    pub fn activate_window(&self) {
3844        self.platform_window.activate();
3845    }
3846
3847    /// Minimize the current window at the platform level.
3848    pub fn minimize_window(&self) {
3849        self.platform_window.minimize();
3850    }
3851
3852    /// Toggle full screen status on the current window at the platform level.
3853    pub fn toggle_fullscreen(&self) {
3854        self.platform_window.toggle_fullscreen();
3855    }
3856
3857    /// Updates the IME panel position suggestions for languages like japanese, chinese.
3858    pub fn invalidate_character_coordinates(&self) {
3859        self.on_next_frame(|window, cx| {
3860            if let Some(mut input_handler) = window.platform_window.take_input_handler() {
3861                if let Some(bounds) = input_handler.selected_bounds(window, cx) {
3862                    window
3863                        .platform_window
3864                        .update_ime_position(bounds.scale(window.scale_factor()));
3865                }
3866                window.platform_window.set_input_handler(input_handler);
3867            }
3868        });
3869    }
3870
3871    /// Present a platform dialog.
3872    /// The provided message will be presented, along with buttons for each answer.
3873    /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
3874    pub fn prompt<T>(
3875        &mut self,
3876        level: PromptLevel,
3877        message: &str,
3878        detail: Option<&str>,
3879        answers: &[T],
3880        cx: &mut App,
3881    ) -> oneshot::Receiver<usize>
3882    where
3883        T: Clone + Into<PromptButton>,
3884    {
3885        let prompt_builder = cx.prompt_builder.take();
3886        let Some(prompt_builder) = prompt_builder else {
3887            unreachable!("Re-entrant window prompting is not supported by GPUI");
3888        };
3889
3890        let answers = answers
3891            .iter()
3892            .map(|answer| answer.clone().into())
3893            .collect::<Vec<_>>();
3894
3895        let receiver = match &prompt_builder {
3896            PromptBuilder::Default => self
3897                .platform_window
3898                .prompt(level, message, detail, &answers)
3899                .unwrap_or_else(|| {
3900                    self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
3901                }),
3902            PromptBuilder::Custom(_) => {
3903                self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
3904            }
3905        };
3906
3907        cx.prompt_builder = Some(prompt_builder);
3908
3909        receiver
3910    }
3911
3912    fn build_custom_prompt(
3913        &mut self,
3914        prompt_builder: &PromptBuilder,
3915        level: PromptLevel,
3916        message: &str,
3917        detail: Option<&str>,
3918        answers: &[PromptButton],
3919        cx: &mut App,
3920    ) -> oneshot::Receiver<usize> {
3921        let (sender, receiver) = oneshot::channel();
3922        let handle = PromptHandle::new(sender);
3923        let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
3924        self.prompt = Some(handle);
3925        receiver
3926    }
3927
3928    /// Returns the current context stack.
3929    pub fn context_stack(&self) -> Vec<KeyContext> {
3930        let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3931        let dispatch_tree = &self.rendered_frame.dispatch_tree;
3932        dispatch_tree
3933            .dispatch_path(node_id)
3934            .iter()
3935            .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
3936            .collect()
3937    }
3938
3939    /// Returns all available actions for the focused element.
3940    pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
3941        let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3942        let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
3943        for action_type in cx.global_action_listeners.keys() {
3944            if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
3945                let action = cx.actions.build_action_type(action_type).ok();
3946                if let Some(action) = action {
3947                    actions.insert(ix, action);
3948                }
3949            }
3950        }
3951        actions
3952    }
3953
3954    /// Returns key bindings that invoke an action on the currently focused element. Bindings are
3955    /// returned in the order they were added. For display, the last binding should take precedence.
3956    pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
3957        self.rendered_frame
3958            .dispatch_tree
3959            .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
3960    }
3961
3962    /// Returns the highest precedence key binding that invokes an action on the currently focused
3963    /// element. This is more efficient than getting the last result of `bindings_for_action`.
3964    pub fn highest_precedence_binding_for_action(&self, action: &dyn Action) -> Option<KeyBinding> {
3965        self.rendered_frame
3966            .dispatch_tree
3967            .highest_precedence_binding_for_action(
3968                action,
3969                &self.rendered_frame.dispatch_tree.context_stack,
3970            )
3971    }
3972
3973    /// Returns the key bindings for an action in a context.
3974    pub fn bindings_for_action_in_context(
3975        &self,
3976        action: &dyn Action,
3977        context: KeyContext,
3978    ) -> Vec<KeyBinding> {
3979        let dispatch_tree = &self.rendered_frame.dispatch_tree;
3980        dispatch_tree.bindings_for_action(action, &[context])
3981    }
3982
3983    /// Returns the highest precedence key binding for an action in a context. This is more
3984    /// efficient than getting the last result of `bindings_for_action_in_context`.
3985    pub fn highest_precedence_binding_for_action_in_context(
3986        &self,
3987        action: &dyn Action,
3988        context: KeyContext,
3989    ) -> Option<KeyBinding> {
3990        let dispatch_tree = &self.rendered_frame.dispatch_tree;
3991        dispatch_tree.highest_precedence_binding_for_action(action, &[context])
3992    }
3993
3994    /// Returns any bindings that would invoke an action on the given focus handle if it were
3995    /// focused. Bindings are returned in the order they were added. For display, the last binding
3996    /// should take precedence.
3997    pub fn bindings_for_action_in(
3998        &self,
3999        action: &dyn Action,
4000        focus_handle: &FocusHandle,
4001    ) -> Vec<KeyBinding> {
4002        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4003        let Some(context_stack) = self.context_stack_for_focus_handle(focus_handle) else {
4004            return vec![];
4005        };
4006        dispatch_tree.bindings_for_action(action, &context_stack)
4007    }
4008
4009    /// Returns the highest precedence key binding that would invoke an action on the given focus
4010    /// handle if it were focused. This is more efficient than getting the last result of
4011    /// `bindings_for_action_in`.
4012    pub fn highest_precedence_binding_for_action_in(
4013        &self,
4014        action: &dyn Action,
4015        focus_handle: &FocusHandle,
4016    ) -> Option<KeyBinding> {
4017        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4018        let context_stack = self.context_stack_for_focus_handle(focus_handle)?;
4019        dispatch_tree.highest_precedence_binding_for_action(action, &context_stack)
4020    }
4021
4022    fn context_stack_for_focus_handle(
4023        &self,
4024        focus_handle: &FocusHandle,
4025    ) -> Option<Vec<KeyContext>> {
4026        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4027        let node_id = dispatch_tree.focusable_node_id(focus_handle.id)?;
4028        let context_stack: Vec<_> = dispatch_tree
4029            .dispatch_path(node_id)
4030            .into_iter()
4031            .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
4032            .collect();
4033        Some(context_stack)
4034    }
4035
4036    /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
4037    pub fn listener_for<V: Render, E>(
4038        &self,
4039        view: &Entity<V>,
4040        f: impl Fn(&mut V, &E, &mut Window, &mut Context<V>) + 'static,
4041    ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
4042        let view = view.downgrade();
4043        move |e: &E, window: &mut Window, cx: &mut App| {
4044            view.update(cx, |view, cx| f(view, e, window, cx)).ok();
4045        }
4046    }
4047
4048    /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
4049    pub fn handler_for<V: Render, Callback: Fn(&mut V, &mut Window, &mut Context<V>) + 'static>(
4050        &self,
4051        view: &Entity<V>,
4052        f: Callback,
4053    ) -> impl Fn(&mut Window, &mut App) + use<V, Callback> {
4054        let view = view.downgrade();
4055        move |window: &mut Window, cx: &mut App| {
4056            view.update(cx, |view, cx| f(view, window, cx)).ok();
4057        }
4058    }
4059
4060    /// Register a callback that can interrupt the closing of the current window based the returned boolean.
4061    /// If the callback returns false, the window won't be closed.
4062    pub fn on_window_should_close(
4063        &self,
4064        cx: &App,
4065        f: impl Fn(&mut Window, &mut App) -> bool + 'static,
4066    ) {
4067        let mut cx = self.to_async(cx);
4068        self.platform_window.on_should_close(Box::new(move || {
4069            cx.update(|window, cx| f(window, cx)).unwrap_or(true)
4070        }))
4071    }
4072
4073    /// Register an action listener on the window for the next frame. The type of action
4074    /// is determined by the first parameter of the given listener. When the next frame is rendered
4075    /// the listener will be cleared.
4076    ///
4077    /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4078    /// a specific need to register a global listener.
4079    pub fn on_action(
4080        &mut self,
4081        action_type: TypeId,
4082        listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4083    ) {
4084        self.next_frame
4085            .dispatch_tree
4086            .on_action(action_type, Rc::new(listener));
4087    }
4088
4089    /// Read information about the GPU backing this window.
4090    /// Currently returns None on Mac and Windows.
4091    pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4092        self.platform_window.gpu_specs()
4093    }
4094
4095    /// Perform titlebar double-click action.
4096    /// This is MacOS specific.
4097    pub fn titlebar_double_click(&self) {
4098        self.platform_window.titlebar_double_click();
4099    }
4100
4101    /// Toggles the inspector mode on this window.
4102    #[cfg(any(feature = "inspector", debug_assertions))]
4103    pub fn toggle_inspector(&mut self, cx: &mut App) {
4104        self.inspector = match self.inspector {
4105            None => Some(cx.new(|_| Inspector::new())),
4106            Some(_) => None,
4107        };
4108        self.refresh();
4109    }
4110
4111    /// Returns true if the window is in inspector mode.
4112    pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4113        #[cfg(any(feature = "inspector", debug_assertions))]
4114        {
4115            if let Some(inspector) = &self.inspector {
4116                return inspector.read(_cx).is_picking();
4117            }
4118        }
4119        false
4120    }
4121
4122    /// Executes the provided function with mutable access to an inspector state.
4123    #[cfg(any(feature = "inspector", debug_assertions))]
4124    pub fn with_inspector_state<T: 'static, R>(
4125        &mut self,
4126        _inspector_id: Option<&crate::InspectorElementId>,
4127        cx: &mut App,
4128        f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4129    ) -> R {
4130        if let Some(inspector_id) = _inspector_id {
4131            if let Some(inspector) = &self.inspector {
4132                let inspector = inspector.clone();
4133                let active_element_id = inspector.read(cx).active_element_id();
4134                if Some(inspector_id) == active_element_id {
4135                    return inspector.update(cx, |inspector, _cx| {
4136                        inspector.with_active_element_state(self, f)
4137                    });
4138                }
4139            }
4140        }
4141        f(&mut None, self)
4142    }
4143
4144    #[cfg(any(feature = "inspector", debug_assertions))]
4145    pub(crate) fn build_inspector_element_id(
4146        &mut self,
4147        path: crate::InspectorElementPath,
4148    ) -> crate::InspectorElementId {
4149        self.invalidator.debug_assert_paint_or_prepaint();
4150        let path = Rc::new(path);
4151        let next_instance_id = self
4152            .next_frame
4153            .next_inspector_instance_ids
4154            .entry(path.clone())
4155            .or_insert(0);
4156        let instance_id = *next_instance_id;
4157        *next_instance_id += 1;
4158        crate::InspectorElementId { path, instance_id }
4159    }
4160
4161    #[cfg(any(feature = "inspector", debug_assertions))]
4162    fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4163        if let Some(inspector) = self.inspector.take() {
4164            let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4165            inspector_element.prepaint_as_root(
4166                point(self.viewport_size.width - inspector_width, px(0.0)),
4167                size(inspector_width, self.viewport_size.height).into(),
4168                self,
4169                cx,
4170            );
4171            self.inspector = Some(inspector);
4172            Some(inspector_element)
4173        } else {
4174            None
4175        }
4176    }
4177
4178    #[cfg(any(feature = "inspector", debug_assertions))]
4179    fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4180        if let Some(mut inspector_element) = inspector_element {
4181            inspector_element.paint(self, cx);
4182        };
4183    }
4184
4185    /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4186    /// inspect UI elements by clicking on them.
4187    #[cfg(any(feature = "inspector", debug_assertions))]
4188    pub fn insert_inspector_hitbox(
4189        &mut self,
4190        hitbox_id: HitboxId,
4191        inspector_id: Option<&crate::InspectorElementId>,
4192        cx: &App,
4193    ) {
4194        self.invalidator.debug_assert_paint_or_prepaint();
4195        if !self.is_inspector_picking(cx) {
4196            return;
4197        }
4198        if let Some(inspector_id) = inspector_id {
4199            self.next_frame
4200                .inspector_hitboxes
4201                .insert(hitbox_id, inspector_id.clone());
4202        }
4203    }
4204
4205    #[cfg(any(feature = "inspector", debug_assertions))]
4206    fn paint_inspector_hitbox(&mut self, cx: &App) {
4207        if let Some(inspector) = self.inspector.as_ref() {
4208            let inspector = inspector.read(cx);
4209            if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
4210            {
4211                if let Some(hitbox) = self
4212                    .next_frame
4213                    .hitboxes
4214                    .iter()
4215                    .find(|hitbox| hitbox.id == hitbox_id)
4216                {
4217                    self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4218                }
4219            }
4220        }
4221    }
4222
4223    #[cfg(any(feature = "inspector", debug_assertions))]
4224    fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4225        let Some(inspector) = self.inspector.clone() else {
4226            return;
4227        };
4228        if event.downcast_ref::<MouseMoveEvent>().is_some() {
4229            inspector.update(cx, |inspector, _cx| {
4230                if let Some((_, inspector_id)) =
4231                    self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4232                {
4233                    inspector.hover(inspector_id, self);
4234                }
4235            });
4236        } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4237            inspector.update(cx, |inspector, _cx| {
4238                if let Some((_, inspector_id)) =
4239                    self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4240                {
4241                    inspector.select(inspector_id, self);
4242                }
4243            });
4244        } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4245            // This should be kept in sync with SCROLL_LINES in x11 platform.
4246            const SCROLL_LINES: f32 = 3.0;
4247            const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4248            let delta_y = event
4249                .delta
4250                .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4251                .y;
4252            if let Some(inspector) = self.inspector.clone() {
4253                inspector.update(cx, |inspector, _cx| {
4254                    if let Some(depth) = inspector.pick_depth.as_mut() {
4255                        *depth += delta_y.0 / SCROLL_PIXELS_PER_LAYER;
4256                        let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4257                        if *depth < 0.0 {
4258                            *depth = 0.0;
4259                        } else if *depth > max_depth {
4260                            *depth = max_depth;
4261                        }
4262                        if let Some((_, inspector_id)) =
4263                            self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4264                        {
4265                            inspector.set_active_element_id(inspector_id.clone(), self);
4266                        }
4267                    }
4268                });
4269            }
4270        }
4271    }
4272
4273    #[cfg(any(feature = "inspector", debug_assertions))]
4274    fn hovered_inspector_hitbox(
4275        &self,
4276        inspector: &Inspector,
4277        frame: &Frame,
4278    ) -> Option<(HitboxId, crate::InspectorElementId)> {
4279        if let Some(pick_depth) = inspector.pick_depth {
4280            let depth = (pick_depth as i64).try_into().unwrap_or(0);
4281            let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4282            let skip_count = (depth as usize).min(max_skipped);
4283            for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4284                if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4285                    return Some((*hitbox_id, inspector_id.clone()));
4286                }
4287            }
4288        }
4289        return None;
4290    }
4291}
4292
4293// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4294slotmap::new_key_type! {
4295    /// A unique identifier for a window.
4296    pub struct WindowId;
4297}
4298
4299impl WindowId {
4300    /// Converts this window ID to a `u64`.
4301    pub fn as_u64(&self) -> u64 {
4302        self.0.as_ffi()
4303    }
4304}
4305
4306impl From<u64> for WindowId {
4307    fn from(value: u64) -> Self {
4308        WindowId(slotmap::KeyData::from_ffi(value))
4309    }
4310}
4311
4312/// A handle to a window with a specific root view type.
4313/// Note that this does not keep the window alive on its own.
4314#[derive(Deref, DerefMut)]
4315pub struct WindowHandle<V> {
4316    #[deref]
4317    #[deref_mut]
4318    pub(crate) any_handle: AnyWindowHandle,
4319    state_type: PhantomData<V>,
4320}
4321
4322impl<V: 'static + Render> WindowHandle<V> {
4323    /// Creates a new handle from a window ID.
4324    /// This does not check if the root type of the window is `V`.
4325    pub fn new(id: WindowId) -> Self {
4326        WindowHandle {
4327            any_handle: AnyWindowHandle {
4328                id,
4329                state_type: TypeId::of::<V>(),
4330            },
4331            state_type: PhantomData,
4332        }
4333    }
4334
4335    /// Get the root view out of this window.
4336    ///
4337    /// This will fail if the window is closed or if the root view's type does not match `V`.
4338    #[cfg(any(test, feature = "test-support"))]
4339    pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4340    where
4341        C: AppContext,
4342    {
4343        crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4344            root_view
4345                .downcast::<V>()
4346                .map_err(|_| anyhow!("the type of the window's root view has changed"))
4347        }))
4348    }
4349
4350    /// Updates the root view of this window.
4351    ///
4352    /// This will fail if the window has been closed or if the root view's type does not match
4353    pub fn update<C, R>(
4354        &self,
4355        cx: &mut C,
4356        update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4357    ) -> Result<R>
4358    where
4359        C: AppContext,
4360    {
4361        cx.update_window(self.any_handle, |root_view, window, cx| {
4362            let view = root_view
4363                .downcast::<V>()
4364                .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4365
4366            Ok(view.update(cx, |view, cx| update(view, window, cx)))
4367        })?
4368    }
4369
4370    /// Read the root view out of this window.
4371    ///
4372    /// This will fail if the window is closed or if the root view's type does not match `V`.
4373    pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
4374        let x = cx
4375            .windows
4376            .get(self.id)
4377            .and_then(|window| {
4378                window
4379                    .as_ref()
4380                    .and_then(|window| window.root.clone())
4381                    .map(|root_view| root_view.downcast::<V>())
4382            })
4383            .context("window not found")?
4384            .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4385
4386        Ok(x.read(cx))
4387    }
4388
4389    /// Read the root view out of this window, with a callback
4390    ///
4391    /// This will fail if the window is closed or if the root view's type does not match `V`.
4392    pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4393    where
4394        C: AppContext,
4395    {
4396        cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
4397    }
4398
4399    /// Read the root view pointer off of this window.
4400    ///
4401    /// This will fail if the window is closed or if the root view's type does not match `V`.
4402    pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4403    where
4404        C: AppContext,
4405    {
4406        cx.read_window(self, |root_view, _cx| root_view.clone())
4407    }
4408
4409    /// Check if this window is 'active'.
4410    ///
4411    /// Will return `None` if the window is closed or currently
4412    /// borrowed.
4413    pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4414        cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4415            .ok()
4416    }
4417}
4418
4419impl<V> Copy for WindowHandle<V> {}
4420
4421impl<V> Clone for WindowHandle<V> {
4422    fn clone(&self) -> Self {
4423        *self
4424    }
4425}
4426
4427impl<V> PartialEq for WindowHandle<V> {
4428    fn eq(&self, other: &Self) -> bool {
4429        self.any_handle == other.any_handle
4430    }
4431}
4432
4433impl<V> Eq for WindowHandle<V> {}
4434
4435impl<V> Hash for WindowHandle<V> {
4436    fn hash<H: Hasher>(&self, state: &mut H) {
4437        self.any_handle.hash(state);
4438    }
4439}
4440
4441impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
4442    fn from(val: WindowHandle<V>) -> Self {
4443        val.any_handle
4444    }
4445}
4446
4447unsafe impl<V> Send for WindowHandle<V> {}
4448unsafe impl<V> Sync for WindowHandle<V> {}
4449
4450/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
4451#[derive(Copy, Clone, PartialEq, Eq, Hash)]
4452pub struct AnyWindowHandle {
4453    pub(crate) id: WindowId,
4454    state_type: TypeId,
4455}
4456
4457impl AnyWindowHandle {
4458    /// Get the ID of this window.
4459    pub fn window_id(&self) -> WindowId {
4460        self.id
4461    }
4462
4463    /// Attempt to convert this handle to a window handle with a specific root view type.
4464    /// If the types do not match, this will return `None`.
4465    pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
4466        if TypeId::of::<T>() == self.state_type {
4467            Some(WindowHandle {
4468                any_handle: *self,
4469                state_type: PhantomData,
4470            })
4471        } else {
4472            None
4473        }
4474    }
4475
4476    /// Updates the state of the root view of this window.
4477    ///
4478    /// This will fail if the window has been closed.
4479    pub fn update<C, R>(
4480        self,
4481        cx: &mut C,
4482        update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
4483    ) -> Result<R>
4484    where
4485        C: AppContext,
4486    {
4487        cx.update_window(self, update)
4488    }
4489
4490    /// Read the state of the root view of this window.
4491    ///
4492    /// This will fail if the window has been closed.
4493    pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
4494    where
4495        C: AppContext,
4496        T: 'static,
4497    {
4498        let view = self
4499            .downcast::<T>()
4500            .context("the type of the window's root view has changed")?;
4501
4502        cx.read_window(&view, read)
4503    }
4504}
4505
4506impl HasWindowHandle for Window {
4507    fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
4508        self.platform_window.window_handle()
4509    }
4510}
4511
4512impl HasDisplayHandle for Window {
4513    fn display_handle(
4514        &self,
4515    ) -> std::result::Result<raw_window_handle::DisplayHandle<'_>, HandleError> {
4516        self.platform_window.display_handle()
4517    }
4518}
4519
4520/// An identifier for an [`Element`](crate::Element).
4521///
4522/// Can be constructed with a string, a number, or both, as well
4523/// as other internal representations.
4524#[derive(Clone, Debug, Eq, PartialEq, Hash)]
4525pub enum ElementId {
4526    /// The ID of a View element
4527    View(EntityId),
4528    /// An integer ID.
4529    Integer(u64),
4530    /// A string based ID.
4531    Name(SharedString),
4532    /// A UUID.
4533    Uuid(Uuid),
4534    /// An ID that's equated with a focus handle.
4535    FocusHandle(FocusId),
4536    /// A combination of a name and an integer.
4537    NamedInteger(SharedString, u64),
4538    /// A path.
4539    Path(Arc<std::path::Path>),
4540}
4541
4542impl ElementId {
4543    /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
4544    pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
4545        Self::NamedInteger(name.into(), integer as u64)
4546    }
4547}
4548
4549impl Display for ElementId {
4550    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4551        match self {
4552            ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
4553            ElementId::Integer(ix) => write!(f, "{}", ix)?,
4554            ElementId::Name(name) => write!(f, "{}", name)?,
4555            ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
4556            ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
4557            ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
4558            ElementId::Path(path) => write!(f, "{}", path.display())?,
4559        }
4560
4561        Ok(())
4562    }
4563}
4564
4565impl TryInto<SharedString> for ElementId {
4566    type Error = anyhow::Error;
4567
4568    fn try_into(self) -> anyhow::Result<SharedString> {
4569        if let ElementId::Name(name) = self {
4570            Ok(name)
4571        } else {
4572            anyhow::bail!("element id is not string")
4573        }
4574    }
4575}
4576
4577impl From<usize> for ElementId {
4578    fn from(id: usize) -> Self {
4579        ElementId::Integer(id as u64)
4580    }
4581}
4582
4583impl From<i32> for ElementId {
4584    fn from(id: i32) -> Self {
4585        Self::Integer(id as u64)
4586    }
4587}
4588
4589impl From<SharedString> for ElementId {
4590    fn from(name: SharedString) -> Self {
4591        ElementId::Name(name)
4592    }
4593}
4594
4595impl From<Arc<std::path::Path>> for ElementId {
4596    fn from(path: Arc<std::path::Path>) -> Self {
4597        ElementId::Path(path)
4598    }
4599}
4600
4601impl From<&'static str> for ElementId {
4602    fn from(name: &'static str) -> Self {
4603        ElementId::Name(name.into())
4604    }
4605}
4606
4607impl<'a> From<&'a FocusHandle> for ElementId {
4608    fn from(handle: &'a FocusHandle) -> Self {
4609        ElementId::FocusHandle(handle.id)
4610    }
4611}
4612
4613impl From<(&'static str, EntityId)> for ElementId {
4614    fn from((name, id): (&'static str, EntityId)) -> Self {
4615        ElementId::NamedInteger(name.into(), id.as_u64())
4616    }
4617}
4618
4619impl From<(&'static str, usize)> for ElementId {
4620    fn from((name, id): (&'static str, usize)) -> Self {
4621        ElementId::NamedInteger(name.into(), id as u64)
4622    }
4623}
4624
4625impl From<(SharedString, usize)> for ElementId {
4626    fn from((name, id): (SharedString, usize)) -> Self {
4627        ElementId::NamedInteger(name, id as u64)
4628    }
4629}
4630
4631impl From<(&'static str, u64)> for ElementId {
4632    fn from((name, id): (&'static str, u64)) -> Self {
4633        ElementId::NamedInteger(name.into(), id)
4634    }
4635}
4636
4637impl From<Uuid> for ElementId {
4638    fn from(value: Uuid) -> Self {
4639        Self::Uuid(value)
4640    }
4641}
4642
4643impl From<(&'static str, u32)> for ElementId {
4644    fn from((name, id): (&'static str, u32)) -> Self {
4645        ElementId::NamedInteger(name.into(), id.into())
4646    }
4647}
4648
4649/// A rectangle to be rendered in the window at the given position and size.
4650/// Passed as an argument [`Window::paint_quad`].
4651#[derive(Clone)]
4652pub struct PaintQuad {
4653    /// The bounds of the quad within the window.
4654    pub bounds: Bounds<Pixels>,
4655    /// The radii of the quad's corners.
4656    pub corner_radii: Corners<Pixels>,
4657    /// The background color of the quad.
4658    pub background: Background,
4659    /// The widths of the quad's borders.
4660    pub border_widths: Edges<Pixels>,
4661    /// The color of the quad's borders.
4662    pub border_color: Hsla,
4663    /// The style of the quad's borders.
4664    pub border_style: BorderStyle,
4665}
4666
4667impl PaintQuad {
4668    /// Sets the corner radii of the quad.
4669    pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
4670        PaintQuad {
4671            corner_radii: corner_radii.into(),
4672            ..self
4673        }
4674    }
4675
4676    /// Sets the border widths of the quad.
4677    pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
4678        PaintQuad {
4679            border_widths: border_widths.into(),
4680            ..self
4681        }
4682    }
4683
4684    /// Sets the border color of the quad.
4685    pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
4686        PaintQuad {
4687            border_color: border_color.into(),
4688            ..self
4689        }
4690    }
4691
4692    /// Sets the background color of the quad.
4693    pub fn background(self, background: impl Into<Background>) -> Self {
4694        PaintQuad {
4695            background: background.into(),
4696            ..self
4697        }
4698    }
4699}
4700
4701/// Creates a quad with the given parameters.
4702pub fn quad(
4703    bounds: Bounds<Pixels>,
4704    corner_radii: impl Into<Corners<Pixels>>,
4705    background: impl Into<Background>,
4706    border_widths: impl Into<Edges<Pixels>>,
4707    border_color: impl Into<Hsla>,
4708    border_style: BorderStyle,
4709) -> PaintQuad {
4710    PaintQuad {
4711        bounds,
4712        corner_radii: corner_radii.into(),
4713        background: background.into(),
4714        border_widths: border_widths.into(),
4715        border_color: border_color.into(),
4716        border_style,
4717    }
4718}
4719
4720/// Creates a filled quad with the given bounds and background color.
4721pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
4722    PaintQuad {
4723        bounds: bounds.into(),
4724        corner_radii: (0.).into(),
4725        background: background.into(),
4726        border_widths: (0.).into(),
4727        border_color: transparent_black(),
4728        border_style: BorderStyle::default(),
4729    }
4730}
4731
4732/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
4733pub fn outline(
4734    bounds: impl Into<Bounds<Pixels>>,
4735    border_color: impl Into<Hsla>,
4736    border_style: BorderStyle,
4737) -> PaintQuad {
4738    PaintQuad {
4739        bounds: bounds.into(),
4740        corner_radii: (0.).into(),
4741        background: transparent_black().into(),
4742        border_widths: (1.).into(),
4743        border_color: border_color.into(),
4744        border_style,
4745    }
4746}