cloud.rs

   1use ai_onboarding::YoungAccountBanner;
   2use anthropic::AnthropicModelMode;
   3use anyhow::{Context as _, Result, anyhow};
   4use chrono::{DateTime, Utc};
   5use client::{Client, UserStore, zed_urls};
   6use cloud_llm_client::{
   7    CLIENT_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, CLIENT_SUPPORTS_X_AI_HEADER_NAME, CompletionBody,
   8    CompletionEvent, CountTokensBody, CountTokensResponse, EXPIRED_LLM_TOKEN_HEADER_NAME,
   9    ListModelsResponse, Plan, PlanV2, SERVER_SUPPORTS_STATUS_MESSAGES_HEADER_NAME,
  10    ZED_VERSION_HEADER_NAME,
  11};
  12use feature_flags::{CloudThinkingToggleFeatureFlag, FeatureFlagAppExt as _};
  13use futures::{
  14    AsyncBufReadExt, FutureExt, Stream, StreamExt, future::BoxFuture, stream::BoxStream,
  15};
  16use google_ai::GoogleModelMode;
  17use gpui::{AnyElement, AnyView, App, AsyncApp, Context, Entity, Subscription, Task};
  18use http_client::http::{HeaderMap, HeaderValue};
  19use http_client::{AsyncBody, HttpClient, HttpRequestExt, Method, Response, StatusCode};
  20use language_model::{
  21    AuthenticateError, IconOrSvg, LanguageModel, LanguageModelCacheConfiguration,
  22    LanguageModelCompletionError, LanguageModelCompletionEvent, LanguageModelId, LanguageModelName,
  23    LanguageModelProvider, LanguageModelProviderId, LanguageModelProviderName,
  24    LanguageModelProviderState, LanguageModelRequest, LanguageModelToolChoice,
  25    LanguageModelToolSchemaFormat, LlmApiToken, PaymentRequiredError, RateLimiter,
  26    RefreshLlmTokenListener,
  27};
  28use release_channel::AppVersion;
  29use schemars::JsonSchema;
  30use semver::Version;
  31use serde::{Deserialize, Serialize, de::DeserializeOwned};
  32use settings::SettingsStore;
  33pub use settings::ZedDotDevAvailableModel as AvailableModel;
  34pub use settings::ZedDotDevAvailableProvider as AvailableProvider;
  35use smol::io::{AsyncReadExt, BufReader};
  36use std::pin::Pin;
  37use std::sync::Arc;
  38use std::time::Duration;
  39use thiserror::Error;
  40use ui::{TintColor, prelude::*};
  41use util::{ResultExt as _, maybe};
  42
  43use crate::provider::anthropic::{
  44    AnthropicEventMapper, count_anthropic_tokens_with_tiktoken, into_anthropic,
  45};
  46use crate::provider::google::{GoogleEventMapper, into_google};
  47use crate::provider::open_ai::{
  48    OpenAiEventMapper, OpenAiResponseEventMapper, count_open_ai_tokens, into_open_ai,
  49    into_open_ai_response,
  50};
  51use crate::provider::x_ai::count_xai_tokens;
  52
  53const PROVIDER_ID: LanguageModelProviderId = language_model::ZED_CLOUD_PROVIDER_ID;
  54const PROVIDER_NAME: LanguageModelProviderName = language_model::ZED_CLOUD_PROVIDER_NAME;
  55
  56#[derive(Default, Clone, Debug, PartialEq)]
  57pub struct ZedDotDevSettings {
  58    pub available_models: Vec<AvailableModel>,
  59}
  60#[derive(Default, Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
  61#[serde(tag = "type", rename_all = "lowercase")]
  62pub enum ModelMode {
  63    #[default]
  64    Default,
  65    Thinking {
  66        /// The maximum number of tokens to use for reasoning. Must be lower than the model's `max_output_tokens`.
  67        budget_tokens: Option<u32>,
  68    },
  69}
  70
  71impl From<ModelMode> for AnthropicModelMode {
  72    fn from(value: ModelMode) -> Self {
  73        match value {
  74            ModelMode::Default => AnthropicModelMode::Default,
  75            ModelMode::Thinking { budget_tokens } => AnthropicModelMode::Thinking { budget_tokens },
  76        }
  77    }
  78}
  79
  80pub struct CloudLanguageModelProvider {
  81    client: Arc<Client>,
  82    state: Entity<State>,
  83    _maintain_client_status: Task<()>,
  84}
  85
  86pub struct State {
  87    client: Arc<Client>,
  88    llm_api_token: LlmApiToken,
  89    user_store: Entity<UserStore>,
  90    status: client::Status,
  91    models: Vec<Arc<cloud_llm_client::LanguageModel>>,
  92    default_model: Option<Arc<cloud_llm_client::LanguageModel>>,
  93    default_fast_model: Option<Arc<cloud_llm_client::LanguageModel>>,
  94    recommended_models: Vec<Arc<cloud_llm_client::LanguageModel>>,
  95    _fetch_models_task: Task<()>,
  96    _settings_subscription: Subscription,
  97    _llm_token_subscription: Subscription,
  98}
  99
 100impl State {
 101    fn new(
 102        client: Arc<Client>,
 103        user_store: Entity<UserStore>,
 104        status: client::Status,
 105        cx: &mut Context<Self>,
 106    ) -> Self {
 107        let refresh_llm_token_listener = RefreshLlmTokenListener::global(cx);
 108        let mut current_user = user_store.read(cx).watch_current_user();
 109        Self {
 110            client: client.clone(),
 111            llm_api_token: LlmApiToken::default(),
 112            user_store,
 113            status,
 114            models: Vec::new(),
 115            default_model: None,
 116            default_fast_model: None,
 117            recommended_models: Vec::new(),
 118            _fetch_models_task: cx.spawn(async move |this, cx| {
 119                maybe!(async move {
 120                    let (client, llm_api_token) = this
 121                        .read_with(cx, |this, _cx| (client.clone(), this.llm_api_token.clone()))?;
 122
 123                    while current_user.borrow().is_none() {
 124                        current_user.next().await;
 125                    }
 126
 127                    let response =
 128                        Self::fetch_models(client.clone(), llm_api_token.clone()).await?;
 129                    this.update(cx, |this, cx| this.update_models(response, cx))?;
 130                    anyhow::Ok(())
 131                })
 132                .await
 133                .context("failed to fetch Zed models")
 134                .log_err();
 135            }),
 136            _settings_subscription: cx.observe_global::<SettingsStore>(|_, cx| {
 137                cx.notify();
 138            }),
 139            _llm_token_subscription: cx.subscribe(
 140                &refresh_llm_token_listener,
 141                move |this, _listener, _event, cx| {
 142                    let client = this.client.clone();
 143                    let llm_api_token = this.llm_api_token.clone();
 144                    cx.spawn(async move |this, cx| {
 145                        llm_api_token.refresh(&client).await?;
 146                        let response = Self::fetch_models(client, llm_api_token).await?;
 147                        this.update(cx, |this, cx| {
 148                            this.update_models(response, cx);
 149                        })
 150                    })
 151                    .detach_and_log_err(cx);
 152                },
 153            ),
 154        }
 155    }
 156
 157    fn is_signed_out(&self, cx: &App) -> bool {
 158        self.user_store.read(cx).current_user().is_none()
 159    }
 160
 161    fn authenticate(&self, cx: &mut Context<Self>) -> Task<Result<()>> {
 162        let client = self.client.clone();
 163        cx.spawn(async move |state, cx| {
 164            client.sign_in_with_optional_connect(true, cx).await?;
 165            state.update(cx, |_, cx| cx.notify())
 166        })
 167    }
 168
 169    fn update_models(&mut self, response: ListModelsResponse, cx: &mut Context<Self>) {
 170        let is_thinking_toggle_enabled = cx.has_flag::<CloudThinkingToggleFeatureFlag>();
 171
 172        let mut models = Vec::new();
 173
 174        for model in response.models {
 175            models.push(Arc::new(model.clone()));
 176
 177            if !is_thinking_toggle_enabled {
 178                // Right now we represent thinking variants of models as separate models on the client,
 179                // so we need to insert variants for any model that supports thinking.
 180                if model.supports_thinking {
 181                    models.push(Arc::new(cloud_llm_client::LanguageModel {
 182                        id: cloud_llm_client::LanguageModelId(
 183                            format!("{}-thinking", model.id).into(),
 184                        ),
 185                        display_name: format!("{} Thinking", model.display_name),
 186                        ..model
 187                    }));
 188                }
 189            }
 190        }
 191
 192        self.default_model = models
 193            .iter()
 194            .find(|model| {
 195                response
 196                    .default_model
 197                    .as_ref()
 198                    .is_some_and(|default_model_id| &model.id == default_model_id)
 199            })
 200            .cloned();
 201        self.default_fast_model = models
 202            .iter()
 203            .find(|model| {
 204                response
 205                    .default_fast_model
 206                    .as_ref()
 207                    .is_some_and(|default_fast_model_id| &model.id == default_fast_model_id)
 208            })
 209            .cloned();
 210        self.recommended_models = response
 211            .recommended_models
 212            .iter()
 213            .filter_map(|id| models.iter().find(|model| &model.id == id))
 214            .cloned()
 215            .collect();
 216        self.models = models;
 217        cx.notify();
 218    }
 219
 220    async fn fetch_models(
 221        client: Arc<Client>,
 222        llm_api_token: LlmApiToken,
 223    ) -> Result<ListModelsResponse> {
 224        let http_client = &client.http_client();
 225        let token = llm_api_token.acquire(&client).await?;
 226
 227        let request = http_client::Request::builder()
 228            .method(Method::GET)
 229            .header(CLIENT_SUPPORTS_X_AI_HEADER_NAME, "true")
 230            .uri(http_client.build_zed_llm_url("/models", &[])?.as_ref())
 231            .header("Authorization", format!("Bearer {token}"))
 232            .body(AsyncBody::empty())?;
 233        let mut response = http_client
 234            .send(request)
 235            .await
 236            .context("failed to send list models request")?;
 237
 238        if response.status().is_success() {
 239            let mut body = String::new();
 240            response.body_mut().read_to_string(&mut body).await?;
 241            Ok(serde_json::from_str(&body)?)
 242        } else {
 243            let mut body = String::new();
 244            response.body_mut().read_to_string(&mut body).await?;
 245            anyhow::bail!(
 246                "error listing models.\nStatus: {:?}\nBody: {body}",
 247                response.status(),
 248            );
 249        }
 250    }
 251}
 252
 253impl CloudLanguageModelProvider {
 254    pub fn new(user_store: Entity<UserStore>, client: Arc<Client>, cx: &mut App) -> Self {
 255        let mut status_rx = client.status();
 256        let status = *status_rx.borrow();
 257
 258        let state = cx.new(|cx| State::new(client.clone(), user_store.clone(), status, cx));
 259
 260        let state_ref = state.downgrade();
 261        let maintain_client_status = cx.spawn(async move |cx| {
 262            while let Some(status) = status_rx.next().await {
 263                if let Some(this) = state_ref.upgrade() {
 264                    _ = this.update(cx, |this, cx| {
 265                        if this.status != status {
 266                            this.status = status;
 267                            cx.notify();
 268                        }
 269                    });
 270                } else {
 271                    break;
 272                }
 273            }
 274        });
 275
 276        Self {
 277            client,
 278            state,
 279            _maintain_client_status: maintain_client_status,
 280        }
 281    }
 282
 283    fn create_language_model(
 284        &self,
 285        model: Arc<cloud_llm_client::LanguageModel>,
 286        llm_api_token: LlmApiToken,
 287    ) -> Arc<dyn LanguageModel> {
 288        Arc::new(CloudLanguageModel {
 289            id: LanguageModelId(SharedString::from(model.id.0.clone())),
 290            model,
 291            llm_api_token,
 292            client: self.client.clone(),
 293            request_limiter: RateLimiter::new(4),
 294        })
 295    }
 296}
 297
 298impl LanguageModelProviderState for CloudLanguageModelProvider {
 299    type ObservableEntity = State;
 300
 301    fn observable_entity(&self) -> Option<Entity<Self::ObservableEntity>> {
 302        Some(self.state.clone())
 303    }
 304}
 305
 306impl LanguageModelProvider for CloudLanguageModelProvider {
 307    fn id(&self) -> LanguageModelProviderId {
 308        PROVIDER_ID
 309    }
 310
 311    fn name(&self) -> LanguageModelProviderName {
 312        PROVIDER_NAME
 313    }
 314
 315    fn icon(&self) -> IconOrSvg {
 316        IconOrSvg::Icon(IconName::AiZed)
 317    }
 318
 319    fn default_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
 320        let default_model = self.state.read(cx).default_model.clone()?;
 321        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 322        Some(self.create_language_model(default_model, llm_api_token))
 323    }
 324
 325    fn default_fast_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
 326        let default_fast_model = self.state.read(cx).default_fast_model.clone()?;
 327        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 328        Some(self.create_language_model(default_fast_model, llm_api_token))
 329    }
 330
 331    fn recommended_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 332        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 333        self.state
 334            .read(cx)
 335            .recommended_models
 336            .iter()
 337            .cloned()
 338            .map(|model| self.create_language_model(model, llm_api_token.clone()))
 339            .collect()
 340    }
 341
 342    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 343        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 344        self.state
 345            .read(cx)
 346            .models
 347            .iter()
 348            .cloned()
 349            .map(|model| self.create_language_model(model, llm_api_token.clone()))
 350            .collect()
 351    }
 352
 353    fn is_authenticated(&self, cx: &App) -> bool {
 354        let state = self.state.read(cx);
 355        !state.is_signed_out(cx)
 356    }
 357
 358    fn authenticate(&self, _cx: &mut App) -> Task<Result<(), AuthenticateError>> {
 359        Task::ready(Ok(()))
 360    }
 361
 362    fn configuration_view(
 363        &self,
 364        _target_agent: language_model::ConfigurationViewTargetAgent,
 365        _: &mut Window,
 366        cx: &mut App,
 367    ) -> AnyView {
 368        cx.new(|_| ConfigurationView::new(self.state.clone()))
 369            .into()
 370    }
 371
 372    fn reset_credentials(&self, _cx: &mut App) -> Task<Result<()>> {
 373        Task::ready(Ok(()))
 374    }
 375}
 376
 377pub struct CloudLanguageModel {
 378    id: LanguageModelId,
 379    model: Arc<cloud_llm_client::LanguageModel>,
 380    llm_api_token: LlmApiToken,
 381    client: Arc<Client>,
 382    request_limiter: RateLimiter,
 383}
 384
 385struct PerformLlmCompletionResponse {
 386    response: Response<AsyncBody>,
 387    includes_status_messages: bool,
 388}
 389
 390impl CloudLanguageModel {
 391    async fn perform_llm_completion(
 392        client: Arc<Client>,
 393        llm_api_token: LlmApiToken,
 394        app_version: Option<Version>,
 395        body: CompletionBody,
 396    ) -> Result<PerformLlmCompletionResponse> {
 397        let http_client = &client.http_client();
 398
 399        let mut token = llm_api_token.acquire(&client).await?;
 400        let mut refreshed_token = false;
 401
 402        loop {
 403            let request = http_client::Request::builder()
 404                .method(Method::POST)
 405                .uri(http_client.build_zed_llm_url("/completions", &[])?.as_ref())
 406                .when_some(app_version.as_ref(), |builder, app_version| {
 407                    builder.header(ZED_VERSION_HEADER_NAME, app_version.to_string())
 408                })
 409                .header("Content-Type", "application/json")
 410                .header("Authorization", format!("Bearer {token}"))
 411                .header(CLIENT_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, "true")
 412                .body(serde_json::to_string(&body)?.into())?;
 413
 414            let mut response = http_client.send(request).await?;
 415            let status = response.status();
 416            if status.is_success() {
 417                let includes_status_messages = response
 418                    .headers()
 419                    .get(SERVER_SUPPORTS_STATUS_MESSAGES_HEADER_NAME)
 420                    .is_some();
 421
 422                return Ok(PerformLlmCompletionResponse {
 423                    response,
 424                    includes_status_messages,
 425                });
 426            }
 427
 428            if !refreshed_token
 429                && response
 430                    .headers()
 431                    .get(EXPIRED_LLM_TOKEN_HEADER_NAME)
 432                    .is_some()
 433            {
 434                token = llm_api_token.refresh(&client).await?;
 435                refreshed_token = true;
 436                continue;
 437            }
 438
 439            if status == StatusCode::PAYMENT_REQUIRED {
 440                return Err(anyhow!(PaymentRequiredError));
 441            }
 442
 443            let mut body = String::new();
 444            let headers = response.headers().clone();
 445            response.body_mut().read_to_string(&mut body).await?;
 446            return Err(anyhow!(ApiError {
 447                status,
 448                body,
 449                headers
 450            }));
 451        }
 452    }
 453}
 454
 455#[derive(Debug, Error)]
 456#[error("cloud language model request failed with status {status}: {body}")]
 457struct ApiError {
 458    status: StatusCode,
 459    body: String,
 460    headers: HeaderMap<HeaderValue>,
 461}
 462
 463/// Represents error responses from Zed's cloud API.
 464///
 465/// Example JSON for an upstream HTTP error:
 466/// ```json
 467/// {
 468///   "code": "upstream_http_error",
 469///   "message": "Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout",
 470///   "upstream_status": 503
 471/// }
 472/// ```
 473#[derive(Debug, serde::Deserialize)]
 474struct CloudApiError {
 475    code: String,
 476    message: String,
 477    #[serde(default)]
 478    #[serde(deserialize_with = "deserialize_optional_status_code")]
 479    upstream_status: Option<StatusCode>,
 480    #[serde(default)]
 481    retry_after: Option<f64>,
 482}
 483
 484fn deserialize_optional_status_code<'de, D>(deserializer: D) -> Result<Option<StatusCode>, D::Error>
 485where
 486    D: serde::Deserializer<'de>,
 487{
 488    let opt: Option<u16> = Option::deserialize(deserializer)?;
 489    Ok(opt.and_then(|code| StatusCode::from_u16(code).ok()))
 490}
 491
 492impl From<ApiError> for LanguageModelCompletionError {
 493    fn from(error: ApiError) -> Self {
 494        if let Ok(cloud_error) = serde_json::from_str::<CloudApiError>(&error.body) {
 495            if cloud_error.code.starts_with("upstream_http_") {
 496                let status = if let Some(status) = cloud_error.upstream_status {
 497                    status
 498                } else if cloud_error.code.ends_with("_error") {
 499                    error.status
 500                } else {
 501                    // If there's a status code in the code string (e.g. "upstream_http_429")
 502                    // then use that; otherwise, see if the JSON contains a status code.
 503                    cloud_error
 504                        .code
 505                        .strip_prefix("upstream_http_")
 506                        .and_then(|code_str| code_str.parse::<u16>().ok())
 507                        .and_then(|code| StatusCode::from_u16(code).ok())
 508                        .unwrap_or(error.status)
 509                };
 510
 511                return LanguageModelCompletionError::UpstreamProviderError {
 512                    message: cloud_error.message,
 513                    status,
 514                    retry_after: cloud_error.retry_after.map(Duration::from_secs_f64),
 515                };
 516            }
 517
 518            return LanguageModelCompletionError::from_http_status(
 519                PROVIDER_NAME,
 520                error.status,
 521                cloud_error.message,
 522                None,
 523            );
 524        }
 525
 526        let retry_after = None;
 527        LanguageModelCompletionError::from_http_status(
 528            PROVIDER_NAME,
 529            error.status,
 530            error.body,
 531            retry_after,
 532        )
 533    }
 534}
 535
 536impl LanguageModel for CloudLanguageModel {
 537    fn id(&self) -> LanguageModelId {
 538        self.id.clone()
 539    }
 540
 541    fn name(&self) -> LanguageModelName {
 542        LanguageModelName::from(self.model.display_name.clone())
 543    }
 544
 545    fn provider_id(&self) -> LanguageModelProviderId {
 546        PROVIDER_ID
 547    }
 548
 549    fn provider_name(&self) -> LanguageModelProviderName {
 550        PROVIDER_NAME
 551    }
 552
 553    fn upstream_provider_id(&self) -> LanguageModelProviderId {
 554        use cloud_llm_client::LanguageModelProvider::*;
 555        match self.model.provider {
 556            Anthropic => language_model::ANTHROPIC_PROVIDER_ID,
 557            OpenAi => language_model::OPEN_AI_PROVIDER_ID,
 558            Google => language_model::GOOGLE_PROVIDER_ID,
 559            XAi => language_model::X_AI_PROVIDER_ID,
 560        }
 561    }
 562
 563    fn upstream_provider_name(&self) -> LanguageModelProviderName {
 564        use cloud_llm_client::LanguageModelProvider::*;
 565        match self.model.provider {
 566            Anthropic => language_model::ANTHROPIC_PROVIDER_NAME,
 567            OpenAi => language_model::OPEN_AI_PROVIDER_NAME,
 568            Google => language_model::GOOGLE_PROVIDER_NAME,
 569            XAi => language_model::X_AI_PROVIDER_NAME,
 570        }
 571    }
 572
 573    fn supports_tools(&self) -> bool {
 574        self.model.supports_tools
 575    }
 576
 577    fn supports_images(&self) -> bool {
 578        self.model.supports_images
 579    }
 580
 581    fn supports_thinking(&self) -> bool {
 582        self.model.supports_thinking
 583    }
 584
 585    fn supports_streaming_tools(&self) -> bool {
 586        self.model.supports_streaming_tools
 587    }
 588
 589    fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
 590        match choice {
 591            LanguageModelToolChoice::Auto
 592            | LanguageModelToolChoice::Any
 593            | LanguageModelToolChoice::None => true,
 594        }
 595    }
 596
 597    fn supports_split_token_display(&self) -> bool {
 598        use cloud_llm_client::LanguageModelProvider::*;
 599        matches!(self.model.provider, OpenAi)
 600    }
 601
 602    fn telemetry_id(&self) -> String {
 603        format!("zed.dev/{}", self.model.id)
 604    }
 605
 606    fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
 607        match self.model.provider {
 608            cloud_llm_client::LanguageModelProvider::Anthropic
 609            | cloud_llm_client::LanguageModelProvider::OpenAi
 610            | cloud_llm_client::LanguageModelProvider::XAi => {
 611                LanguageModelToolSchemaFormat::JsonSchema
 612            }
 613            cloud_llm_client::LanguageModelProvider::Google => {
 614                LanguageModelToolSchemaFormat::JsonSchemaSubset
 615            }
 616        }
 617    }
 618
 619    fn max_token_count(&self) -> u64 {
 620        self.model.max_token_count as u64
 621    }
 622
 623    fn max_output_tokens(&self) -> Option<u64> {
 624        Some(self.model.max_output_tokens as u64)
 625    }
 626
 627    fn cache_configuration(&self) -> Option<LanguageModelCacheConfiguration> {
 628        match &self.model.provider {
 629            cloud_llm_client::LanguageModelProvider::Anthropic => {
 630                Some(LanguageModelCacheConfiguration {
 631                    min_total_token: 2_048,
 632                    should_speculate: true,
 633                    max_cache_anchors: 4,
 634                })
 635            }
 636            cloud_llm_client::LanguageModelProvider::OpenAi
 637            | cloud_llm_client::LanguageModelProvider::XAi
 638            | cloud_llm_client::LanguageModelProvider::Google => None,
 639        }
 640    }
 641
 642    fn count_tokens(
 643        &self,
 644        request: LanguageModelRequest,
 645        cx: &App,
 646    ) -> BoxFuture<'static, Result<u64>> {
 647        match self.model.provider {
 648            cloud_llm_client::LanguageModelProvider::Anthropic => cx
 649                .background_spawn(async move { count_anthropic_tokens_with_tiktoken(request) })
 650                .boxed(),
 651            cloud_llm_client::LanguageModelProvider::OpenAi => {
 652                let model = match open_ai::Model::from_id(&self.model.id.0) {
 653                    Ok(model) => model,
 654                    Err(err) => return async move { Err(anyhow!(err)) }.boxed(),
 655                };
 656                count_open_ai_tokens(request, model, cx)
 657            }
 658            cloud_llm_client::LanguageModelProvider::XAi => {
 659                let model = match x_ai::Model::from_id(&self.model.id.0) {
 660                    Ok(model) => model,
 661                    Err(err) => return async move { Err(anyhow!(err)) }.boxed(),
 662                };
 663                count_xai_tokens(request, model, cx)
 664            }
 665            cloud_llm_client::LanguageModelProvider::Google => {
 666                let client = self.client.clone();
 667                let llm_api_token = self.llm_api_token.clone();
 668                let model_id = self.model.id.to_string();
 669                let generate_content_request =
 670                    into_google(request, model_id.clone(), GoogleModelMode::Default);
 671                async move {
 672                    let http_client = &client.http_client();
 673                    let token = llm_api_token.acquire(&client).await?;
 674
 675                    let request_body = CountTokensBody {
 676                        provider: cloud_llm_client::LanguageModelProvider::Google,
 677                        model: model_id,
 678                        provider_request: serde_json::to_value(&google_ai::CountTokensRequest {
 679                            generate_content_request,
 680                        })?,
 681                    };
 682                    let request = http_client::Request::builder()
 683                        .method(Method::POST)
 684                        .uri(
 685                            http_client
 686                                .build_zed_llm_url("/count_tokens", &[])?
 687                                .as_ref(),
 688                        )
 689                        .header("Content-Type", "application/json")
 690                        .header("Authorization", format!("Bearer {token}"))
 691                        .body(serde_json::to_string(&request_body)?.into())?;
 692                    let mut response = http_client.send(request).await?;
 693                    let status = response.status();
 694                    let headers = response.headers().clone();
 695                    let mut response_body = String::new();
 696                    response
 697                        .body_mut()
 698                        .read_to_string(&mut response_body)
 699                        .await?;
 700
 701                    if status.is_success() {
 702                        let response_body: CountTokensResponse =
 703                            serde_json::from_str(&response_body)?;
 704
 705                        Ok(response_body.tokens as u64)
 706                    } else {
 707                        Err(anyhow!(ApiError {
 708                            status,
 709                            body: response_body,
 710                            headers
 711                        }))
 712                    }
 713                }
 714                .boxed()
 715            }
 716        }
 717    }
 718
 719    fn stream_completion(
 720        &self,
 721        request: LanguageModelRequest,
 722        cx: &AsyncApp,
 723    ) -> BoxFuture<
 724        'static,
 725        Result<
 726            BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>,
 727            LanguageModelCompletionError,
 728        >,
 729    > {
 730        let thread_id = request.thread_id.clone();
 731        let prompt_id = request.prompt_id.clone();
 732        let intent = request.intent;
 733        let app_version = Some(cx.update(|cx| AppVersion::global(cx)));
 734        let thinking_allowed = request.thinking_allowed;
 735        let is_thinking_toggle_enabled =
 736            cx.update(|cx| cx.has_flag::<CloudThinkingToggleFeatureFlag>());
 737        let enable_thinking = if is_thinking_toggle_enabled {
 738            thinking_allowed && self.model.supports_thinking
 739        } else {
 740            thinking_allowed && self.model.id.0.ends_with("-thinking")
 741        };
 742        let provider_name = provider_name(&self.model.provider);
 743        match self.model.provider {
 744            cloud_llm_client::LanguageModelProvider::Anthropic => {
 745                let request = into_anthropic(
 746                    request,
 747                    self.model.id.to_string(),
 748                    1.0,
 749                    self.model.max_output_tokens as u64,
 750                    if enable_thinking {
 751                        AnthropicModelMode::Thinking {
 752                            budget_tokens: Some(4_096),
 753                        }
 754                    } else {
 755                        AnthropicModelMode::Default
 756                    },
 757                );
 758                let client = self.client.clone();
 759                let llm_api_token = self.llm_api_token.clone();
 760                let future = self.request_limiter.stream(async move {
 761                    let PerformLlmCompletionResponse {
 762                        response,
 763                        includes_status_messages,
 764                    } = Self::perform_llm_completion(
 765                        client.clone(),
 766                        llm_api_token,
 767                        app_version,
 768                        CompletionBody {
 769                            thread_id,
 770                            prompt_id,
 771                            intent,
 772                            provider: cloud_llm_client::LanguageModelProvider::Anthropic,
 773                            model: request.model.clone(),
 774                            provider_request: serde_json::to_value(&request)
 775                                .map_err(|e| anyhow!(e))?,
 776                        },
 777                    )
 778                    .await
 779                    .map_err(|err| match err.downcast::<ApiError>() {
 780                        Ok(api_err) => anyhow!(LanguageModelCompletionError::from(api_err)),
 781                        Err(err) => anyhow!(err),
 782                    })?;
 783
 784                    let mut mapper = AnthropicEventMapper::new();
 785                    Ok(map_cloud_completion_events(
 786                        Box::pin(response_lines(response, includes_status_messages)),
 787                        &provider_name,
 788                        move |event| mapper.map_event(event),
 789                    ))
 790                });
 791                async move { Ok(future.await?.boxed()) }.boxed()
 792            }
 793            cloud_llm_client::LanguageModelProvider::OpenAi => {
 794                let client = self.client.clone();
 795                let llm_api_token = self.llm_api_token.clone();
 796
 797                let request = into_open_ai_response(
 798                    request,
 799                    &self.model.id.0,
 800                    self.model.supports_parallel_tool_calls,
 801                    true,
 802                    None,
 803                    None,
 804                );
 805                let future = self.request_limiter.stream(async move {
 806                    let PerformLlmCompletionResponse {
 807                        response,
 808                        includes_status_messages,
 809                    } = Self::perform_llm_completion(
 810                        client.clone(),
 811                        llm_api_token,
 812                        app_version,
 813                        CompletionBody {
 814                            thread_id,
 815                            prompt_id,
 816                            intent,
 817                            provider: cloud_llm_client::LanguageModelProvider::OpenAi,
 818                            model: request.model.clone(),
 819                            provider_request: serde_json::to_value(&request)
 820                                .map_err(|e| anyhow!(e))?,
 821                        },
 822                    )
 823                    .await?;
 824
 825                    let mut mapper = OpenAiResponseEventMapper::new();
 826                    Ok(map_cloud_completion_events(
 827                        Box::pin(response_lines(response, includes_status_messages)),
 828                        &provider_name,
 829                        move |event| mapper.map_event(event),
 830                    ))
 831                });
 832                async move { Ok(future.await?.boxed()) }.boxed()
 833            }
 834            cloud_llm_client::LanguageModelProvider::XAi => {
 835                let client = self.client.clone();
 836                let request = into_open_ai(
 837                    request,
 838                    &self.model.id.0,
 839                    self.model.supports_parallel_tool_calls,
 840                    false,
 841                    None,
 842                    None,
 843                );
 844                let llm_api_token = self.llm_api_token.clone();
 845                let future = self.request_limiter.stream(async move {
 846                    let PerformLlmCompletionResponse {
 847                        response,
 848                        includes_status_messages,
 849                    } = Self::perform_llm_completion(
 850                        client.clone(),
 851                        llm_api_token,
 852                        app_version,
 853                        CompletionBody {
 854                            thread_id,
 855                            prompt_id,
 856                            intent,
 857                            provider: cloud_llm_client::LanguageModelProvider::XAi,
 858                            model: request.model.clone(),
 859                            provider_request: serde_json::to_value(&request)
 860                                .map_err(|e| anyhow!(e))?,
 861                        },
 862                    )
 863                    .await?;
 864
 865                    let mut mapper = OpenAiEventMapper::new();
 866                    Ok(map_cloud_completion_events(
 867                        Box::pin(response_lines(response, includes_status_messages)),
 868                        &provider_name,
 869                        move |event| mapper.map_event(event),
 870                    ))
 871                });
 872                async move { Ok(future.await?.boxed()) }.boxed()
 873            }
 874            cloud_llm_client::LanguageModelProvider::Google => {
 875                let client = self.client.clone();
 876                let request =
 877                    into_google(request, self.model.id.to_string(), GoogleModelMode::Default);
 878                let llm_api_token = self.llm_api_token.clone();
 879                let future = self.request_limiter.stream(async move {
 880                    let PerformLlmCompletionResponse {
 881                        response,
 882                        includes_status_messages,
 883                    } = Self::perform_llm_completion(
 884                        client.clone(),
 885                        llm_api_token,
 886                        app_version,
 887                        CompletionBody {
 888                            thread_id,
 889                            prompt_id,
 890                            intent,
 891                            provider: cloud_llm_client::LanguageModelProvider::Google,
 892                            model: request.model.model_id.clone(),
 893                            provider_request: serde_json::to_value(&request)
 894                                .map_err(|e| anyhow!(e))?,
 895                        },
 896                    )
 897                    .await?;
 898
 899                    let mut mapper = GoogleEventMapper::new();
 900                    Ok(map_cloud_completion_events(
 901                        Box::pin(response_lines(response, includes_status_messages)),
 902                        &provider_name,
 903                        move |event| mapper.map_event(event),
 904                    ))
 905                });
 906                async move { Ok(future.await?.boxed()) }.boxed()
 907            }
 908        }
 909    }
 910}
 911
 912fn map_cloud_completion_events<T, F>(
 913    stream: Pin<Box<dyn Stream<Item = Result<CompletionEvent<T>>> + Send>>,
 914    provider: &LanguageModelProviderName,
 915    mut map_callback: F,
 916) -> BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 917where
 918    T: DeserializeOwned + 'static,
 919    F: FnMut(T) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 920        + Send
 921        + 'static,
 922{
 923    let provider = provider.clone();
 924    stream
 925        .flat_map(move |event| {
 926            futures::stream::iter(match event {
 927                Err(error) => {
 928                    vec![Err(LanguageModelCompletionError::from(error))]
 929                }
 930                Ok(CompletionEvent::Status(event)) => {
 931                    vec![
 932                        LanguageModelCompletionEvent::from_completion_request_status(
 933                            event,
 934                            provider.clone(),
 935                        ),
 936                    ]
 937                }
 938                Ok(CompletionEvent::Event(event)) => map_callback(event),
 939            })
 940        })
 941        .boxed()
 942}
 943
 944fn provider_name(provider: &cloud_llm_client::LanguageModelProvider) -> LanguageModelProviderName {
 945    match provider {
 946        cloud_llm_client::LanguageModelProvider::Anthropic => {
 947            language_model::ANTHROPIC_PROVIDER_NAME
 948        }
 949        cloud_llm_client::LanguageModelProvider::OpenAi => language_model::OPEN_AI_PROVIDER_NAME,
 950        cloud_llm_client::LanguageModelProvider::Google => language_model::GOOGLE_PROVIDER_NAME,
 951        cloud_llm_client::LanguageModelProvider::XAi => language_model::X_AI_PROVIDER_NAME,
 952    }
 953}
 954
 955fn response_lines<T: DeserializeOwned>(
 956    response: Response<AsyncBody>,
 957    includes_status_messages: bool,
 958) -> impl Stream<Item = Result<CompletionEvent<T>>> {
 959    futures::stream::try_unfold(
 960        (String::new(), BufReader::new(response.into_body())),
 961        move |(mut line, mut body)| async move {
 962            match body.read_line(&mut line).await {
 963                Ok(0) => Ok(None),
 964                Ok(_) => {
 965                    let event = if includes_status_messages {
 966                        serde_json::from_str::<CompletionEvent<T>>(&line)?
 967                    } else {
 968                        CompletionEvent::Event(serde_json::from_str::<T>(&line)?)
 969                    };
 970
 971                    line.clear();
 972                    Ok(Some((event, (line, body))))
 973                }
 974                Err(e) => Err(e.into()),
 975            }
 976        },
 977    )
 978}
 979
 980#[derive(IntoElement, RegisterComponent)]
 981struct ZedAiConfiguration {
 982    is_connected: bool,
 983    plan: Option<Plan>,
 984    subscription_period: Option<(DateTime<Utc>, DateTime<Utc>)>,
 985    eligible_for_trial: bool,
 986    account_too_young: bool,
 987    sign_in_callback: Arc<dyn Fn(&mut Window, &mut App) + Send + Sync>,
 988}
 989
 990impl RenderOnce for ZedAiConfiguration {
 991    fn render(self, _window: &mut Window, _cx: &mut App) -> impl IntoElement {
 992        let is_pro = self
 993            .plan
 994            .is_some_and(|plan| plan == Plan::V2(PlanV2::ZedPro));
 995        let subscription_text = match (self.plan, self.subscription_period) {
 996            (Some(Plan::V2(PlanV2::ZedPro)), Some(_)) => {
 997                "You have access to Zed's hosted models through your Pro subscription."
 998            }
 999            (Some(Plan::V2(PlanV2::ZedProTrial)), Some(_)) => {
1000                "You have access to Zed's hosted models through your Pro trial."
1001            }
1002            (Some(Plan::V2(PlanV2::ZedFree)), Some(_)) => {
1003                if self.eligible_for_trial {
1004                    "Subscribe for access to Zed's hosted models. Start with a 14 day free trial."
1005                } else {
1006                    "Subscribe for access to Zed's hosted models."
1007                }
1008            }
1009            _ => {
1010                if self.eligible_for_trial {
1011                    "Subscribe for access to Zed's hosted models. Start with a 14 day free trial."
1012                } else {
1013                    "Subscribe for access to Zed's hosted models."
1014                }
1015            }
1016        };
1017
1018        let manage_subscription_buttons = if is_pro {
1019            Button::new("manage_settings", "Manage Subscription")
1020                .full_width()
1021                .style(ButtonStyle::Tinted(TintColor::Accent))
1022                .on_click(|_, _, cx| cx.open_url(&zed_urls::account_url(cx)))
1023                .into_any_element()
1024        } else if self.plan.is_none() || self.eligible_for_trial {
1025            Button::new("start_trial", "Start 14-day Free Pro Trial")
1026                .full_width()
1027                .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1028                .on_click(|_, _, cx| cx.open_url(&zed_urls::start_trial_url(cx)))
1029                .into_any_element()
1030        } else {
1031            Button::new("upgrade", "Upgrade to Pro")
1032                .full_width()
1033                .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1034                .on_click(|_, _, cx| cx.open_url(&zed_urls::upgrade_to_zed_pro_url(cx)))
1035                .into_any_element()
1036        };
1037
1038        if !self.is_connected {
1039            return v_flex()
1040                .gap_2()
1041                .child(Label::new("Sign in to have access to Zed's complete agentic experience with hosted models."))
1042                .child(
1043                    Button::new("sign_in", "Sign In to use Zed AI")
1044                        .icon_color(Color::Muted)
1045                        .icon(IconName::Github)
1046                        .icon_size(IconSize::Small)
1047                        .icon_position(IconPosition::Start)
1048                        .full_width()
1049                        .on_click({
1050                            let callback = self.sign_in_callback.clone();
1051                            move |_, window, cx| (callback)(window, cx)
1052                        }),
1053                );
1054        }
1055
1056        v_flex().gap_2().w_full().map(|this| {
1057            if self.account_too_young {
1058                this.child(YoungAccountBanner).child(
1059                    Button::new("upgrade", "Upgrade to Pro")
1060                        .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1061                        .full_width()
1062                        .on_click(|_, _, cx| cx.open_url(&zed_urls::upgrade_to_zed_pro_url(cx))),
1063                )
1064            } else {
1065                this.text_sm()
1066                    .child(subscription_text)
1067                    .child(manage_subscription_buttons)
1068            }
1069        })
1070    }
1071}
1072
1073struct ConfigurationView {
1074    state: Entity<State>,
1075    sign_in_callback: Arc<dyn Fn(&mut Window, &mut App) + Send + Sync>,
1076}
1077
1078impl ConfigurationView {
1079    fn new(state: Entity<State>) -> Self {
1080        let sign_in_callback = Arc::new({
1081            let state = state.clone();
1082            move |_window: &mut Window, cx: &mut App| {
1083                state.update(cx, |state, cx| {
1084                    state.authenticate(cx).detach_and_log_err(cx);
1085                });
1086            }
1087        });
1088
1089        Self {
1090            state,
1091            sign_in_callback,
1092        }
1093    }
1094}
1095
1096impl Render for ConfigurationView {
1097    fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
1098        let state = self.state.read(cx);
1099        let user_store = state.user_store.read(cx);
1100
1101        ZedAiConfiguration {
1102            is_connected: !state.is_signed_out(cx),
1103            plan: user_store.plan(),
1104            subscription_period: user_store.subscription_period(),
1105            eligible_for_trial: user_store.trial_started_at().is_none(),
1106            account_too_young: user_store.account_too_young(),
1107            sign_in_callback: self.sign_in_callback.clone(),
1108        }
1109    }
1110}
1111
1112impl Component for ZedAiConfiguration {
1113    fn name() -> &'static str {
1114        "AI Configuration Content"
1115    }
1116
1117    fn sort_name() -> &'static str {
1118        "AI Configuration Content"
1119    }
1120
1121    fn scope() -> ComponentScope {
1122        ComponentScope::Onboarding
1123    }
1124
1125    fn preview(_window: &mut Window, _cx: &mut App) -> Option<AnyElement> {
1126        fn configuration(
1127            is_connected: bool,
1128            plan: Option<Plan>,
1129            eligible_for_trial: bool,
1130            account_too_young: bool,
1131        ) -> AnyElement {
1132            ZedAiConfiguration {
1133                is_connected,
1134                plan,
1135                subscription_period: plan
1136                    .is_some()
1137                    .then(|| (Utc::now(), Utc::now() + chrono::Duration::days(7))),
1138                eligible_for_trial,
1139                account_too_young,
1140                sign_in_callback: Arc::new(|_, _| {}),
1141            }
1142            .into_any_element()
1143        }
1144
1145        Some(
1146            v_flex()
1147                .p_4()
1148                .gap_4()
1149                .children(vec![
1150                    single_example("Not connected", configuration(false, None, false, false)),
1151                    single_example(
1152                        "Accept Terms of Service",
1153                        configuration(true, None, true, false),
1154                    ),
1155                    single_example(
1156                        "No Plan - Not eligible for trial",
1157                        configuration(true, None, false, false),
1158                    ),
1159                    single_example(
1160                        "No Plan - Eligible for trial",
1161                        configuration(true, None, true, false),
1162                    ),
1163                    single_example(
1164                        "Free Plan",
1165                        configuration(true, Some(Plan::V2(PlanV2::ZedFree)), true, false),
1166                    ),
1167                    single_example(
1168                        "Zed Pro Trial Plan",
1169                        configuration(true, Some(Plan::V2(PlanV2::ZedProTrial)), true, false),
1170                    ),
1171                    single_example(
1172                        "Zed Pro Plan",
1173                        configuration(true, Some(Plan::V2(PlanV2::ZedPro)), true, false),
1174                    ),
1175                ])
1176                .into_any_element(),
1177        )
1178    }
1179}
1180
1181#[cfg(test)]
1182mod tests {
1183    use super::*;
1184    use http_client::http::{HeaderMap, StatusCode};
1185    use language_model::LanguageModelCompletionError;
1186
1187    #[test]
1188    fn test_api_error_conversion_with_upstream_http_error() {
1189        // upstream_http_error with 503 status should become ServerOverloaded
1190        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout","upstream_status":503}"#;
1191
1192        let api_error = ApiError {
1193            status: StatusCode::INTERNAL_SERVER_ERROR,
1194            body: error_body.to_string(),
1195            headers: HeaderMap::new(),
1196        };
1197
1198        let completion_error: LanguageModelCompletionError = api_error.into();
1199
1200        match completion_error {
1201            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1202                assert_eq!(
1203                    message,
1204                    "Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout"
1205                );
1206            }
1207            _ => panic!(
1208                "Expected UpstreamProviderError for upstream 503, got: {:?}",
1209                completion_error
1210            ),
1211        }
1212
1213        // upstream_http_error with 500 status should become ApiInternalServerError
1214        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the OpenAI API: internal server error","upstream_status":500}"#;
1215
1216        let api_error = ApiError {
1217            status: StatusCode::INTERNAL_SERVER_ERROR,
1218            body: error_body.to_string(),
1219            headers: HeaderMap::new(),
1220        };
1221
1222        let completion_error: LanguageModelCompletionError = api_error.into();
1223
1224        match completion_error {
1225            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1226                assert_eq!(
1227                    message,
1228                    "Received an error from the OpenAI API: internal server error"
1229                );
1230            }
1231            _ => panic!(
1232                "Expected UpstreamProviderError for upstream 500, got: {:?}",
1233                completion_error
1234            ),
1235        }
1236
1237        // upstream_http_error with 429 status should become RateLimitExceeded
1238        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the Google API: rate limit exceeded","upstream_status":429}"#;
1239
1240        let api_error = ApiError {
1241            status: StatusCode::INTERNAL_SERVER_ERROR,
1242            body: error_body.to_string(),
1243            headers: HeaderMap::new(),
1244        };
1245
1246        let completion_error: LanguageModelCompletionError = api_error.into();
1247
1248        match completion_error {
1249            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1250                assert_eq!(
1251                    message,
1252                    "Received an error from the Google API: rate limit exceeded"
1253                );
1254            }
1255            _ => panic!(
1256                "Expected UpstreamProviderError for upstream 429, got: {:?}",
1257                completion_error
1258            ),
1259        }
1260
1261        // Regular 500 error without upstream_http_error should remain ApiInternalServerError for Zed
1262        let error_body = "Regular internal server error";
1263
1264        let api_error = ApiError {
1265            status: StatusCode::INTERNAL_SERVER_ERROR,
1266            body: error_body.to_string(),
1267            headers: HeaderMap::new(),
1268        };
1269
1270        let completion_error: LanguageModelCompletionError = api_error.into();
1271
1272        match completion_error {
1273            LanguageModelCompletionError::ApiInternalServerError { provider, message } => {
1274                assert_eq!(provider, PROVIDER_NAME);
1275                assert_eq!(message, "Regular internal server error");
1276            }
1277            _ => panic!(
1278                "Expected ApiInternalServerError for regular 500, got: {:?}",
1279                completion_error
1280            ),
1281        }
1282
1283        // upstream_http_429 format should be converted to UpstreamProviderError
1284        let error_body = r#"{"code":"upstream_http_429","message":"Upstream Anthropic rate limit exceeded.","retry_after":30.5}"#;
1285
1286        let api_error = ApiError {
1287            status: StatusCode::INTERNAL_SERVER_ERROR,
1288            body: error_body.to_string(),
1289            headers: HeaderMap::new(),
1290        };
1291
1292        let completion_error: LanguageModelCompletionError = api_error.into();
1293
1294        match completion_error {
1295            LanguageModelCompletionError::UpstreamProviderError {
1296                message,
1297                status,
1298                retry_after,
1299            } => {
1300                assert_eq!(message, "Upstream Anthropic rate limit exceeded.");
1301                assert_eq!(status, StatusCode::TOO_MANY_REQUESTS);
1302                assert_eq!(retry_after, Some(Duration::from_secs_f64(30.5)));
1303            }
1304            _ => panic!(
1305                "Expected UpstreamProviderError for upstream_http_429, got: {:?}",
1306                completion_error
1307            ),
1308        }
1309
1310        // Invalid JSON in error body should fall back to regular error handling
1311        let error_body = "Not JSON at all";
1312
1313        let api_error = ApiError {
1314            status: StatusCode::INTERNAL_SERVER_ERROR,
1315            body: error_body.to_string(),
1316            headers: HeaderMap::new(),
1317        };
1318
1319        let completion_error: LanguageModelCompletionError = api_error.into();
1320
1321        match completion_error {
1322            LanguageModelCompletionError::ApiInternalServerError { provider, .. } => {
1323                assert_eq!(provider, PROVIDER_NAME);
1324            }
1325            _ => panic!(
1326                "Expected ApiInternalServerError for invalid JSON, got: {:?}",
1327                completion_error
1328            ),
1329        }
1330    }
1331}