open_ai.rs

  1use anyhow::{Context as _, Result, anyhow};
  2use collections::{BTreeMap, HashMap};
  3use credentials_provider::CredentialsProvider;
  4
  5use futures::Stream;
  6use futures::{FutureExt, StreamExt, future::BoxFuture};
  7use gpui::{AnyView, App, AsyncApp, Context, Entity, Subscription, Task, Window};
  8use http_client::HttpClient;
  9use language_model::{
 10    AuthenticateError, LanguageModel, LanguageModelCompletionError, LanguageModelCompletionEvent,
 11    LanguageModelId, LanguageModelName, LanguageModelProvider, LanguageModelProviderId,
 12    LanguageModelProviderName, LanguageModelProviderState, LanguageModelRequest,
 13    LanguageModelToolChoice, LanguageModelToolResultContent, LanguageModelToolUse, MessageContent,
 14    RateLimiter, Role, StopReason, TokenUsage,
 15};
 16use menu;
 17use open_ai::{ImageUrl, Model, ReasoningEffort, ResponseStreamEvent, stream_completion};
 18use schemars::JsonSchema;
 19use serde::{Deserialize, Serialize};
 20use settings::{Settings, SettingsStore};
 21use std::pin::Pin;
 22use std::str::FromStr as _;
 23use std::sync::Arc;
 24use strum::IntoEnumIterator;
 25
 26use ui::{ElevationIndex, List, Tooltip, prelude::*};
 27use ui_input::SingleLineInput;
 28use util::ResultExt;
 29
 30use crate::{AllLanguageModelSettings, ui::InstructionListItem};
 31
 32const PROVIDER_ID: LanguageModelProviderId = language_model::OPEN_AI_PROVIDER_ID;
 33const PROVIDER_NAME: LanguageModelProviderName = language_model::OPEN_AI_PROVIDER_NAME;
 34
 35#[derive(Default, Clone, Debug, PartialEq)]
 36pub struct OpenAiSettings {
 37    pub api_url: String,
 38    pub available_models: Vec<AvailableModel>,
 39}
 40
 41#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
 42pub struct AvailableModel {
 43    pub name: String,
 44    pub display_name: Option<String>,
 45    pub max_tokens: u64,
 46    pub max_output_tokens: Option<u64>,
 47    pub max_completion_tokens: Option<u64>,
 48    pub reasoning_effort: Option<ReasoningEffort>,
 49}
 50
 51pub struct OpenAiLanguageModelProvider {
 52    http_client: Arc<dyn HttpClient>,
 53    state: gpui::Entity<State>,
 54}
 55
 56pub struct State {
 57    api_key: Option<String>,
 58    api_key_from_env: bool,
 59    _subscription: Subscription,
 60}
 61
 62const OPENAI_API_KEY_VAR: &str = "OPENAI_API_KEY";
 63
 64impl State {
 65    //
 66    fn is_authenticated(&self) -> bool {
 67        self.api_key.is_some()
 68    }
 69
 70    fn reset_api_key(&self, cx: &mut Context<Self>) -> Task<Result<()>> {
 71        let credentials_provider = <dyn CredentialsProvider>::global(cx);
 72        let api_url = AllLanguageModelSettings::get_global(cx)
 73            .openai
 74            .api_url
 75            .clone();
 76        cx.spawn(async move |this, cx| {
 77            credentials_provider
 78                .delete_credentials(&api_url, &cx)
 79                .await
 80                .log_err();
 81            this.update(cx, |this, cx| {
 82                this.api_key = None;
 83                this.api_key_from_env = false;
 84                cx.notify();
 85            })
 86        })
 87    }
 88
 89    fn set_api_key(&mut self, api_key: String, cx: &mut Context<Self>) -> Task<Result<()>> {
 90        let credentials_provider = <dyn CredentialsProvider>::global(cx);
 91        let api_url = AllLanguageModelSettings::get_global(cx)
 92            .openai
 93            .api_url
 94            .clone();
 95        cx.spawn(async move |this, cx| {
 96            credentials_provider
 97                .write_credentials(&api_url, "Bearer", api_key.as_bytes(), &cx)
 98                .await
 99                .log_err();
100            this.update(cx, |this, cx| {
101                this.api_key = Some(api_key);
102                cx.notify();
103            })
104        })
105    }
106
107    fn authenticate(&self, cx: &mut Context<Self>) -> Task<Result<(), AuthenticateError>> {
108        if self.is_authenticated() {
109            return Task::ready(Ok(()));
110        }
111
112        let credentials_provider = <dyn CredentialsProvider>::global(cx);
113        let api_url = AllLanguageModelSettings::get_global(cx)
114            .openai
115            .api_url
116            .clone();
117        cx.spawn(async move |this, cx| {
118            let (api_key, from_env) = if let Ok(api_key) = std::env::var(OPENAI_API_KEY_VAR) {
119                (api_key, true)
120            } else {
121                let (_, api_key) = credentials_provider
122                    .read_credentials(&api_url, &cx)
123                    .await?
124                    .ok_or(AuthenticateError::CredentialsNotFound)?;
125                (
126                    String::from_utf8(api_key).context("invalid {PROVIDER_NAME} API key")?,
127                    false,
128                )
129            };
130            this.update(cx, |this, cx| {
131                this.api_key = Some(api_key);
132                this.api_key_from_env = from_env;
133                cx.notify();
134            })?;
135
136            Ok(())
137        })
138    }
139}
140
141impl OpenAiLanguageModelProvider {
142    pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut App) -> Self {
143        let state = cx.new(|cx| State {
144            api_key: None,
145            api_key_from_env: false,
146            _subscription: cx.observe_global::<SettingsStore>(|_this: &mut State, cx| {
147                cx.notify();
148            }),
149        });
150
151        Self { http_client, state }
152    }
153
154    fn create_language_model(&self, model: open_ai::Model) -> Arc<dyn LanguageModel> {
155        Arc::new(OpenAiLanguageModel {
156            id: LanguageModelId::from(model.id().to_string()),
157            model,
158            state: self.state.clone(),
159            http_client: self.http_client.clone(),
160            request_limiter: RateLimiter::new(4),
161        })
162    }
163}
164
165impl LanguageModelProviderState for OpenAiLanguageModelProvider {
166    type ObservableEntity = State;
167
168    fn observable_entity(&self) -> Option<gpui::Entity<Self::ObservableEntity>> {
169        Some(self.state.clone())
170    }
171}
172
173impl LanguageModelProvider for OpenAiLanguageModelProvider {
174    fn id(&self) -> LanguageModelProviderId {
175        PROVIDER_ID
176    }
177
178    fn name(&self) -> LanguageModelProviderName {
179        PROVIDER_NAME
180    }
181
182    fn icon(&self) -> IconName {
183        IconName::AiOpenAi
184    }
185
186    fn default_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
187        Some(self.create_language_model(open_ai::Model::default()))
188    }
189
190    fn default_fast_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
191        Some(self.create_language_model(open_ai::Model::default_fast()))
192    }
193
194    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
195        let mut models = BTreeMap::default();
196
197        // Add base models from open_ai::Model::iter()
198        for model in open_ai::Model::iter() {
199            if !matches!(model, open_ai::Model::Custom { .. }) {
200                models.insert(model.id().to_string(), model);
201            }
202        }
203
204        // Override with available models from settings
205        for model in &AllLanguageModelSettings::get_global(cx)
206            .openai
207            .available_models
208        {
209            models.insert(
210                model.name.clone(),
211                open_ai::Model::Custom {
212                    name: model.name.clone(),
213                    display_name: model.display_name.clone(),
214                    max_tokens: model.max_tokens,
215                    max_output_tokens: model.max_output_tokens,
216                    max_completion_tokens: model.max_completion_tokens,
217                    reasoning_effort: model.reasoning_effort.clone(),
218                },
219            );
220        }
221
222        models
223            .into_values()
224            .map(|model| self.create_language_model(model))
225            .collect()
226    }
227
228    fn is_authenticated(&self, cx: &App) -> bool {
229        self.state.read(cx).is_authenticated()
230    }
231
232    fn authenticate(&self, cx: &mut App) -> Task<Result<(), AuthenticateError>> {
233        self.state.update(cx, |state, cx| state.authenticate(cx))
234    }
235
236    fn configuration_view(&self, window: &mut Window, cx: &mut App) -> AnyView {
237        cx.new(|cx| ConfigurationView::new(self.state.clone(), window, cx))
238            .into()
239    }
240
241    fn reset_credentials(&self, cx: &mut App) -> Task<Result<()>> {
242        self.state.update(cx, |state, cx| state.reset_api_key(cx))
243    }
244}
245
246pub struct OpenAiLanguageModel {
247    id: LanguageModelId,
248    model: open_ai::Model,
249    state: gpui::Entity<State>,
250    http_client: Arc<dyn HttpClient>,
251    request_limiter: RateLimiter,
252}
253
254impl OpenAiLanguageModel {
255    fn stream_completion(
256        &self,
257        request: open_ai::Request,
258        cx: &AsyncApp,
259    ) -> BoxFuture<'static, Result<futures::stream::BoxStream<'static, Result<ResponseStreamEvent>>>>
260    {
261        let http_client = self.http_client.clone();
262        let Ok((api_key, api_url)) = cx.read_entity(&self.state, |state, cx| {
263            let settings = &AllLanguageModelSettings::get_global(cx).openai;
264            (state.api_key.clone(), settings.api_url.clone())
265        }) else {
266            return futures::future::ready(Err(anyhow!("App state dropped"))).boxed();
267        };
268
269        let future = self.request_limiter.stream(async move {
270            let Some(api_key) = api_key else {
271                return Err(LanguageModelCompletionError::NoApiKey {
272                    provider: PROVIDER_NAME,
273                });
274            };
275            let request = stream_completion(http_client.as_ref(), &api_url, &api_key, request);
276            let response = request.await?;
277            Ok(response)
278        });
279
280        async move { Ok(future.await?.boxed()) }.boxed()
281    }
282}
283
284impl LanguageModel for OpenAiLanguageModel {
285    fn id(&self) -> LanguageModelId {
286        self.id.clone()
287    }
288
289    fn name(&self) -> LanguageModelName {
290        LanguageModelName::from(self.model.display_name().to_string())
291    }
292
293    fn provider_id(&self) -> LanguageModelProviderId {
294        PROVIDER_ID
295    }
296
297    fn provider_name(&self) -> LanguageModelProviderName {
298        PROVIDER_NAME
299    }
300
301    fn supports_tools(&self) -> bool {
302        true
303    }
304
305    fn supports_images(&self) -> bool {
306        use open_ai::Model;
307        match &self.model {
308            Model::FourOmni
309            | Model::FourOmniMini
310            | Model::FourPointOne
311            | Model::FourPointOneMini
312            | Model::FourPointOneNano
313            | Model::Five
314            | Model::FiveMini
315            | Model::FiveNano
316            | Model::O1
317            | Model::O3
318            | Model::O4Mini => true,
319            Model::ThreePointFiveTurbo
320            | Model::Four
321            | Model::FourTurbo
322            | Model::O3Mini
323            | Model::Custom { .. } => false,
324        }
325    }
326
327    fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
328        match choice {
329            LanguageModelToolChoice::Auto => true,
330            LanguageModelToolChoice::Any => true,
331            LanguageModelToolChoice::None => true,
332        }
333    }
334
335    fn telemetry_id(&self) -> String {
336        format!("openai/{}", self.model.id())
337    }
338
339    fn max_token_count(&self) -> u64 {
340        self.model.max_token_count()
341    }
342
343    fn max_output_tokens(&self) -> Option<u64> {
344        self.model.max_output_tokens()
345    }
346
347    fn count_tokens(
348        &self,
349        request: LanguageModelRequest,
350        cx: &App,
351    ) -> BoxFuture<'static, Result<u64>> {
352        count_open_ai_tokens(request, self.model.clone(), cx)
353    }
354
355    fn stream_completion(
356        &self,
357        request: LanguageModelRequest,
358        cx: &AsyncApp,
359    ) -> BoxFuture<
360        'static,
361        Result<
362            futures::stream::BoxStream<
363                'static,
364                Result<LanguageModelCompletionEvent, LanguageModelCompletionError>,
365            >,
366            LanguageModelCompletionError,
367        >,
368    > {
369        let request = into_open_ai(
370            request,
371            self.model.id(),
372            self.model.supports_parallel_tool_calls(),
373            self.max_output_tokens(),
374            self.model.reasoning_effort(),
375        );
376        let completions = self.stream_completion(request, cx);
377        async move {
378            let mapper = OpenAiEventMapper::new();
379            Ok(mapper.map_stream(completions.await?).boxed())
380        }
381        .boxed()
382    }
383}
384
385pub fn into_open_ai(
386    request: LanguageModelRequest,
387    model_id: &str,
388    supports_parallel_tool_calls: bool,
389    max_output_tokens: Option<u64>,
390    reasoning_effort: Option<ReasoningEffort>,
391) -> open_ai::Request {
392    let stream = !model_id.starts_with("o1-");
393
394    let mut messages = Vec::new();
395    for message in request.messages {
396        for content in message.content {
397            match content {
398                MessageContent::Text(text) | MessageContent::Thinking { text, .. } => {
399                    add_message_content_part(
400                        open_ai::MessagePart::Text { text: text },
401                        message.role,
402                        &mut messages,
403                    )
404                }
405                MessageContent::RedactedThinking(_) => {}
406                MessageContent::Image(image) => {
407                    add_message_content_part(
408                        open_ai::MessagePart::Image {
409                            image_url: ImageUrl {
410                                url: image.to_base64_url(),
411                                detail: None,
412                            },
413                        },
414                        message.role,
415                        &mut messages,
416                    );
417                }
418                MessageContent::ToolUse(tool_use) => {
419                    let tool_call = open_ai::ToolCall {
420                        id: tool_use.id.to_string(),
421                        content: open_ai::ToolCallContent::Function {
422                            function: open_ai::FunctionContent {
423                                name: tool_use.name.to_string(),
424                                arguments: serde_json::to_string(&tool_use.input)
425                                    .unwrap_or_default(),
426                            },
427                        },
428                    };
429
430                    if let Some(open_ai::RequestMessage::Assistant { tool_calls, .. }) =
431                        messages.last_mut()
432                    {
433                        tool_calls.push(tool_call);
434                    } else {
435                        messages.push(open_ai::RequestMessage::Assistant {
436                            content: None,
437                            tool_calls: vec![tool_call],
438                        });
439                    }
440                }
441                MessageContent::ToolResult(tool_result) => {
442                    let content = match &tool_result.content {
443                        LanguageModelToolResultContent::Text(text) => {
444                            vec![open_ai::MessagePart::Text {
445                                text: text.to_string(),
446                            }]
447                        }
448                        LanguageModelToolResultContent::Image(image) => {
449                            vec![open_ai::MessagePart::Image {
450                                image_url: ImageUrl {
451                                    url: image.to_base64_url(),
452                                    detail: None,
453                                },
454                            }]
455                        }
456                    };
457
458                    messages.push(open_ai::RequestMessage::Tool {
459                        content: content.into(),
460                        tool_call_id: tool_result.tool_use_id.to_string(),
461                    });
462                }
463            }
464        }
465    }
466
467    open_ai::Request {
468        model: model_id.into(),
469        messages,
470        stream,
471        stop: request.stop,
472        temperature: request.temperature.unwrap_or(1.0),
473        max_completion_tokens: max_output_tokens,
474        parallel_tool_calls: if supports_parallel_tool_calls && !request.tools.is_empty() {
475            // Disable parallel tool calls, as the Agent currently expects a maximum of one per turn.
476            Some(false)
477        } else {
478            None
479        },
480        prompt_cache_key: request.thread_id,
481        tools: request
482            .tools
483            .into_iter()
484            .map(|tool| open_ai::ToolDefinition::Function {
485                function: open_ai::FunctionDefinition {
486                    name: tool.name,
487                    description: Some(tool.description),
488                    parameters: Some(tool.input_schema),
489                },
490            })
491            .collect(),
492        tool_choice: request.tool_choice.map(|choice| match choice {
493            LanguageModelToolChoice::Auto => open_ai::ToolChoice::Auto,
494            LanguageModelToolChoice::Any => open_ai::ToolChoice::Required,
495            LanguageModelToolChoice::None => open_ai::ToolChoice::None,
496        }),
497        reasoning_effort,
498    }
499}
500
501fn add_message_content_part(
502    new_part: open_ai::MessagePart,
503    role: Role,
504    messages: &mut Vec<open_ai::RequestMessage>,
505) {
506    match (role, messages.last_mut()) {
507        (Role::User, Some(open_ai::RequestMessage::User { content }))
508        | (
509            Role::Assistant,
510            Some(open_ai::RequestMessage::Assistant {
511                content: Some(content),
512                ..
513            }),
514        )
515        | (Role::System, Some(open_ai::RequestMessage::System { content, .. })) => {
516            content.push_part(new_part);
517        }
518        _ => {
519            messages.push(match role {
520                Role::User => open_ai::RequestMessage::User {
521                    content: open_ai::MessageContent::from(vec![new_part]),
522                },
523                Role::Assistant => open_ai::RequestMessage::Assistant {
524                    content: Some(open_ai::MessageContent::from(vec![new_part])),
525                    tool_calls: Vec::new(),
526                },
527                Role::System => open_ai::RequestMessage::System {
528                    content: open_ai::MessageContent::from(vec![new_part]),
529                },
530            });
531        }
532    }
533}
534
535pub struct OpenAiEventMapper {
536    tool_calls_by_index: HashMap<usize, RawToolCall>,
537}
538
539impl OpenAiEventMapper {
540    pub fn new() -> Self {
541        Self {
542            tool_calls_by_index: HashMap::default(),
543        }
544    }
545
546    pub fn map_stream(
547        mut self,
548        events: Pin<Box<dyn Send + Stream<Item = Result<ResponseStreamEvent>>>>,
549    ) -> impl Stream<Item = Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
550    {
551        events.flat_map(move |event| {
552            futures::stream::iter(match event {
553                Ok(event) => self.map_event(event),
554                Err(error) => vec![Err(LanguageModelCompletionError::from(anyhow!(error)))],
555            })
556        })
557    }
558
559    pub fn map_event(
560        &mut self,
561        event: ResponseStreamEvent,
562    ) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
563        let mut events = Vec::new();
564        if let Some(usage) = event.usage {
565            events.push(Ok(LanguageModelCompletionEvent::UsageUpdate(TokenUsage {
566                input_tokens: usage.prompt_tokens,
567                output_tokens: usage.completion_tokens,
568                cache_creation_input_tokens: 0,
569                cache_read_input_tokens: 0,
570            })));
571        }
572
573        let Some(choice) = event.choices.first() else {
574            return events;
575        };
576
577        if let Some(content) = choice.delta.content.clone() {
578            events.push(Ok(LanguageModelCompletionEvent::Text(content)));
579        }
580
581        if let Some(tool_calls) = choice.delta.tool_calls.as_ref() {
582            for tool_call in tool_calls {
583                let entry = self.tool_calls_by_index.entry(tool_call.index).or_default();
584
585                if let Some(tool_id) = tool_call.id.clone() {
586                    entry.id = tool_id;
587                }
588
589                if let Some(function) = tool_call.function.as_ref() {
590                    if let Some(name) = function.name.clone() {
591                        entry.name = name;
592                    }
593
594                    if let Some(arguments) = function.arguments.clone() {
595                        entry.arguments.push_str(&arguments);
596                    }
597                }
598            }
599        }
600
601        match choice.finish_reason.as_deref() {
602            Some("stop") => {
603                events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::EndTurn)));
604            }
605            Some("tool_calls") => {
606                events.extend(self.tool_calls_by_index.drain().map(|(_, tool_call)| {
607                    match serde_json::Value::from_str(&tool_call.arguments) {
608                        Ok(input) => Ok(LanguageModelCompletionEvent::ToolUse(
609                            LanguageModelToolUse {
610                                id: tool_call.id.clone().into(),
611                                name: tool_call.name.as_str().into(),
612                                is_input_complete: true,
613                                input,
614                                raw_input: tool_call.arguments.clone(),
615                            },
616                        )),
617                        Err(error) => Ok(LanguageModelCompletionEvent::ToolUseJsonParseError {
618                            id: tool_call.id.into(),
619                            tool_name: tool_call.name.into(),
620                            raw_input: tool_call.arguments.clone().into(),
621                            json_parse_error: error.to_string(),
622                        }),
623                    }
624                }));
625
626                events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::ToolUse)));
627            }
628            Some(stop_reason) => {
629                log::error!("Unexpected OpenAI stop_reason: {stop_reason:?}",);
630                events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::EndTurn)));
631            }
632            None => {}
633        }
634
635        events
636    }
637}
638
639#[derive(Default)]
640struct RawToolCall {
641    id: String,
642    name: String,
643    arguments: String,
644}
645
646pub(crate) fn collect_tiktoken_messages(
647    request: LanguageModelRequest,
648) -> Vec<tiktoken_rs::ChatCompletionRequestMessage> {
649    request
650        .messages
651        .into_iter()
652        .map(|message| tiktoken_rs::ChatCompletionRequestMessage {
653            role: match message.role {
654                Role::User => "user".into(),
655                Role::Assistant => "assistant".into(),
656                Role::System => "system".into(),
657            },
658            content: Some(message.string_contents()),
659            name: None,
660            function_call: None,
661        })
662        .collect::<Vec<_>>()
663}
664
665pub fn count_open_ai_tokens(
666    request: LanguageModelRequest,
667    model: Model,
668    cx: &App,
669) -> BoxFuture<'static, Result<u64>> {
670    cx.background_spawn(async move {
671        let messages = collect_tiktoken_messages(request);
672
673        match model {
674            Model::Custom { max_tokens, .. } => {
675                let model = if max_tokens >= 100_000 {
676                    // If the max tokens is 100k or more, it is likely the o200k_base tokenizer from gpt4o
677                    "gpt-4o"
678                } else {
679                    // Otherwise fallback to gpt-4, since only cl100k_base and o200k_base are
680                    // supported with this tiktoken method
681                    "gpt-4"
682                };
683                tiktoken_rs::num_tokens_from_messages(model, &messages)
684            }
685            // Currently supported by tiktoken_rs
686            // Sometimes tiktoken-rs is behind on model support. If that is the case, make a new branch
687            // arm with an override. We enumerate all supported models here so that we can check if new
688            // models are supported yet or not.
689            Model::ThreePointFiveTurbo
690            | Model::Four
691            | Model::FourTurbo
692            | Model::FourOmni
693            | Model::FourOmniMini
694            | Model::FourPointOne
695            | Model::FourPointOneMini
696            | Model::FourPointOneNano
697            | Model::O1
698            | Model::O3
699            | Model::O3Mini
700            | Model::O4Mini => tiktoken_rs::num_tokens_from_messages(model.id(), &messages),
701            // GPT-5 models don't have tiktoken support yet; fall back on gpt-4o tokenizer
702            Model::Five | Model::FiveMini | Model::FiveNano => {
703                tiktoken_rs::num_tokens_from_messages("gpt-4o", &messages)
704            }
705        }
706        .map(|tokens| tokens as u64)
707    })
708    .boxed()
709}
710
711struct ConfigurationView {
712    api_key_editor: Entity<SingleLineInput>,
713    state: gpui::Entity<State>,
714    load_credentials_task: Option<Task<()>>,
715}
716
717impl ConfigurationView {
718    fn new(state: gpui::Entity<State>, window: &mut Window, cx: &mut Context<Self>) -> Self {
719        let api_key_editor = cx.new(|cx| {
720            SingleLineInput::new(
721                window,
722                cx,
723                "sk-000000000000000000000000000000000000000000000000",
724            )
725        });
726
727        cx.observe(&state, |_, _, cx| {
728            cx.notify();
729        })
730        .detach();
731
732        let load_credentials_task = Some(cx.spawn_in(window, {
733            let state = state.clone();
734            async move |this, cx| {
735                if let Some(task) = state
736                    .update(cx, |state, cx| state.authenticate(cx))
737                    .log_err()
738                {
739                    // We don't log an error, because "not signed in" is also an error.
740                    let _ = task.await;
741                }
742                this.update(cx, |this, cx| {
743                    this.load_credentials_task = None;
744                    cx.notify();
745                })
746                .log_err();
747            }
748        }));
749
750        Self {
751            api_key_editor,
752            state,
753            load_credentials_task,
754        }
755    }
756
757    fn save_api_key(&mut self, _: &menu::Confirm, window: &mut Window, cx: &mut Context<Self>) {
758        let api_key = self
759            .api_key_editor
760            .read(cx)
761            .editor()
762            .read(cx)
763            .text(cx)
764            .trim()
765            .to_string();
766
767        // Don't proceed if no API key is provided and we're not authenticated
768        if api_key.is_empty() && !self.state.read(cx).is_authenticated() {
769            return;
770        }
771
772        let state = self.state.clone();
773        cx.spawn_in(window, async move |_, cx| {
774            state
775                .update(cx, |state, cx| state.set_api_key(api_key, cx))?
776                .await
777        })
778        .detach_and_log_err(cx);
779
780        cx.notify();
781    }
782
783    fn reset_api_key(&mut self, window: &mut Window, cx: &mut Context<Self>) {
784        self.api_key_editor.update(cx, |input, cx| {
785            input.editor.update(cx, |editor, cx| {
786                editor.set_text("", window, cx);
787            });
788        });
789
790        let state = self.state.clone();
791        cx.spawn_in(window, async move |_, cx| {
792            state.update(cx, |state, cx| state.reset_api_key(cx))?.await
793        })
794        .detach_and_log_err(cx);
795
796        cx.notify();
797    }
798
799    fn should_render_editor(&self, cx: &mut Context<Self>) -> bool {
800        !self.state.read(cx).is_authenticated()
801    }
802}
803
804impl Render for ConfigurationView {
805    fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
806        let env_var_set = self.state.read(cx).api_key_from_env;
807
808        let api_key_section = if self.should_render_editor(cx) {
809            v_flex()
810                .on_action(cx.listener(Self::save_api_key))
811                .child(Label::new("To use Zed's agent with OpenAI, you need to add an API key. Follow these steps:"))
812                .child(
813                    List::new()
814                        .child(InstructionListItem::new(
815                            "Create one by visiting",
816                            Some("OpenAI's console"),
817                            Some("https://platform.openai.com/api-keys"),
818                        ))
819                        .child(InstructionListItem::text_only(
820                            "Ensure your OpenAI account has credits",
821                        ))
822                        .child(InstructionListItem::text_only(
823                            "Paste your API key below and hit enter to start using the assistant",
824                        )),
825                )
826                .child(self.api_key_editor.clone())
827                .child(
828                    Label::new(
829                        format!("You can also assign the {OPENAI_API_KEY_VAR} environment variable and restart Zed."),
830                    )
831                    .size(LabelSize::Small).color(Color::Muted),
832                )
833                .child(
834                    Label::new(
835                        "Note that having a subscription for another service like GitHub Copilot won't work.",
836                    )
837                    .size(LabelSize::Small).color(Color::Muted),
838                )
839                .into_any()
840        } else {
841            h_flex()
842                .mt_1()
843                .p_1()
844                .justify_between()
845                .rounded_md()
846                .border_1()
847                .border_color(cx.theme().colors().border)
848                .bg(cx.theme().colors().background)
849                .child(
850                    h_flex()
851                        .gap_1()
852                        .child(Icon::new(IconName::Check).color(Color::Success))
853                        .child(Label::new(if env_var_set {
854                            format!("API key set in {OPENAI_API_KEY_VAR} environment variable.")
855                        } else {
856                            "API key configured.".to_string()
857                        })),
858                )
859                .child(
860                    Button::new("reset-api-key", "Reset API Key")
861                        .label_size(LabelSize::Small)
862                        .icon(IconName::Undo)
863                        .icon_size(IconSize::Small)
864                        .icon_position(IconPosition::Start)
865                        .layer(ElevationIndex::ModalSurface)
866                        .when(env_var_set, |this| {
867                            this.tooltip(Tooltip::text(format!("To reset your API key, unset the {OPENAI_API_KEY_VAR} environment variable.")))
868                        })
869                        .on_click(cx.listener(|this, _, window, cx| this.reset_api_key(window, cx))),
870                )
871                .into_any()
872        };
873
874        let compatible_api_section = h_flex()
875            .mt_1p5()
876            .gap_0p5()
877            .flex_wrap()
878            .when(self.should_render_editor(cx), |this| {
879                this.pt_1p5()
880                    .border_t_1()
881                    .border_color(cx.theme().colors().border_variant)
882            })
883            .child(
884                h_flex()
885                    .gap_2()
886                    .child(
887                        Icon::new(IconName::Info)
888                            .size(IconSize::XSmall)
889                            .color(Color::Muted),
890                    )
891                    .child(Label::new("Zed also supports OpenAI-compatible models.")),
892            )
893            .child(
894                Button::new("docs", "Learn More")
895                    .icon(IconName::ArrowUpRight)
896                    .icon_size(IconSize::Small)
897                    .icon_color(Color::Muted)
898                    .on_click(move |_, _window, cx| {
899                        cx.open_url("https://zed.dev/docs/ai/llm-providers#openai-api-compatible")
900                    }),
901            );
902
903        if self.load_credentials_task.is_some() {
904            div().child(Label::new("Loading credentials…")).into_any()
905        } else {
906            v_flex()
907                .size_full()
908                .child(api_key_section)
909                .child(compatible_api_section)
910                .into_any()
911        }
912    }
913}
914
915#[cfg(test)]
916mod tests {
917    use gpui::TestAppContext;
918    use language_model::LanguageModelRequestMessage;
919
920    use super::*;
921
922    #[gpui::test]
923    fn tiktoken_rs_support(cx: &TestAppContext) {
924        let request = LanguageModelRequest {
925            thread_id: None,
926            prompt_id: None,
927            intent: None,
928            mode: None,
929            messages: vec![LanguageModelRequestMessage {
930                role: Role::User,
931                content: vec![MessageContent::Text("message".into())],
932                cache: false,
933            }],
934            tools: vec![],
935            tool_choice: None,
936            stop: vec![],
937            temperature: None,
938            thinking_allowed: true,
939        };
940
941        // Validate that all models are supported by tiktoken-rs
942        for model in Model::iter() {
943            let count = cx
944                .executor()
945                .block(count_open_ai_tokens(
946                    request.clone(),
947                    model,
948                    &cx.app.borrow(),
949                ))
950                .unwrap();
951            assert!(count > 0);
952        }
953    }
954}