1use crate::{
2 arena::{Arena, ArenaRef},
3 key_dispatch::DispatchActionListener,
4 px, size, transparent_black, Action, AnyDrag, AnyView, AppContext, AsyncWindowContext,
5 AvailableSpace, Bounds, BoxShadow, Context, Corners, CursorStyle, DevicePixels, DispatchNodeId,
6 DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter, FileDropEvent, Flatten,
7 FontId, GlobalElementId, GlyphId, Hsla, ImageData, InputEvent, IsZero, KeyBinding, KeyContext,
8 KeyDownEvent, KeystrokeEvent, LayoutId, Model, ModelContext, Modifiers, MonochromeSprite,
9 MouseButton, MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay,
10 PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptLevel, Quad, Render,
11 RenderGlyphParams, RenderImageParams, RenderSvgParams, ScaledPixels, Scene, SceneBuilder,
12 Shadow, SharedString, Size, Style, SubscriberSet, Subscription, Surface, TaffyLayoutEngine,
13 Task, Underline, UnderlineStyle, View, VisualContext, WeakView, WindowBounds, WindowOptions,
14 SUBPIXEL_VARIANTS,
15};
16use anyhow::{anyhow, Context as _, Result};
17use collections::FxHashMap;
18use derive_more::{Deref, DerefMut};
19use futures::{
20 channel::{mpsc, oneshot},
21 StreamExt,
22};
23use media::core_video::CVImageBuffer;
24use parking_lot::RwLock;
25use slotmap::SlotMap;
26use smallvec::SmallVec;
27use std::{
28 any::{Any, TypeId},
29 borrow::{Borrow, BorrowMut, Cow},
30 cell::RefCell,
31 fmt::Debug,
32 future::Future,
33 hash::{Hash, Hasher},
34 marker::PhantomData,
35 mem,
36 rc::Rc,
37 sync::{
38 atomic::{AtomicUsize, Ordering::SeqCst},
39 Arc,
40 },
41};
42use util::ResultExt;
43
44const ACTIVE_DRAG_Z_INDEX: u8 = 1;
45
46/// A global stacking order, which is created by stacking successive z-index values.
47/// Each z-index will always be interpreted in the context of its parent z-index.
48#[derive(Deref, DerefMut, Clone, Debug, Ord, PartialOrd, PartialEq, Eq)]
49pub struct StackingOrder {
50 #[deref]
51 #[deref_mut]
52 z_indices: SmallVec<[u8; 64]>,
53}
54
55impl Default for StackingOrder {
56 fn default() -> Self {
57 StackingOrder {
58 z_indices: SmallVec::new(),
59 }
60 }
61}
62
63/// Represents the two different phases when dispatching events.
64#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
65pub enum DispatchPhase {
66 /// After the capture phase comes the bubble phase, in which mouse event listeners are
67 /// invoked front to back and keyboard event listeners are invoked from the focused element
68 /// to the root of the element tree. This is the phase you'll most commonly want to use when
69 /// registering event listeners.
70 #[default]
71 Bubble,
72 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
73 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
74 /// is used for special purposes such as clearing the "pressed" state for click events. If
75 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
76 /// outside of the immediate region may rely on detecting non-local events during this phase.
77 Capture,
78}
79
80impl DispatchPhase {
81 pub fn bubble(self) -> bool {
82 self == DispatchPhase::Bubble
83 }
84
85 pub fn capture(self) -> bool {
86 self == DispatchPhase::Capture
87 }
88}
89
90type AnyObserver = Box<dyn FnMut(&mut WindowContext) -> bool + 'static>;
91type AnyMouseListener = ArenaRef<dyn FnMut(&dyn Any, DispatchPhase, &mut WindowContext) + 'static>;
92type AnyWindowFocusListener = Box<dyn FnMut(&FocusEvent, &mut WindowContext) -> bool + 'static>;
93
94struct FocusEvent {
95 previous_focus_path: SmallVec<[FocusId; 8]>,
96 current_focus_path: SmallVec<[FocusId; 8]>,
97}
98
99slotmap::new_key_type! { pub struct FocusId; }
100
101thread_local! {
102 pub static FRAME_ARENA: RefCell<Arena> = RefCell::new(Arena::new(16 * 1024 * 1024));
103}
104
105#[inline(always)]
106pub(crate) fn frame_alloc<T>(f: impl FnOnce() -> T) -> ArenaRef<T> {
107 FRAME_ARENA.with_borrow_mut(|arena| arena.alloc(f))
108}
109
110impl FocusId {
111 /// Obtains whether the element associated with this handle is currently focused.
112 pub fn is_focused(&self, cx: &WindowContext) -> bool {
113 cx.window.focus == Some(*self)
114 }
115
116 /// Obtains whether the element associated with this handle contains the focused
117 /// element or is itself focused.
118 pub fn contains_focused(&self, cx: &WindowContext) -> bool {
119 cx.focused()
120 .map_or(false, |focused| self.contains(focused.id, cx))
121 }
122
123 /// Obtains whether the element associated with this handle is contained within the
124 /// focused element or is itself focused.
125 pub fn within_focused(&self, cx: &WindowContext) -> bool {
126 let focused = cx.focused();
127 focused.map_or(false, |focused| focused.id.contains(*self, cx))
128 }
129
130 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
131 pub(crate) fn contains(&self, other: Self, cx: &WindowContext) -> bool {
132 cx.window
133 .rendered_frame
134 .dispatch_tree
135 .focus_contains(*self, other)
136 }
137}
138
139/// A handle which can be used to track and manipulate the focused element in a window.
140pub struct FocusHandle {
141 pub(crate) id: FocusId,
142 handles: Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
143}
144
145impl std::fmt::Debug for FocusHandle {
146 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
147 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
148 }
149}
150
151impl FocusHandle {
152 pub(crate) fn new(handles: &Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>) -> Self {
153 let id = handles.write().insert(AtomicUsize::new(1));
154 Self {
155 id,
156 handles: handles.clone(),
157 }
158 }
159
160 pub(crate) fn for_id(
161 id: FocusId,
162 handles: &Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
163 ) -> Option<Self> {
164 let lock = handles.read();
165 let ref_count = lock.get(id)?;
166 if ref_count.load(SeqCst) == 0 {
167 None
168 } else {
169 ref_count.fetch_add(1, SeqCst);
170 Some(Self {
171 id,
172 handles: handles.clone(),
173 })
174 }
175 }
176
177 /// Moves the focus to the element associated with this handle.
178 pub fn focus(&self, cx: &mut WindowContext) {
179 cx.focus(self)
180 }
181
182 /// Obtains whether the element associated with this handle is currently focused.
183 pub fn is_focused(&self, cx: &WindowContext) -> bool {
184 self.id.is_focused(cx)
185 }
186
187 /// Obtains whether the element associated with this handle contains the focused
188 /// element or is itself focused.
189 pub fn contains_focused(&self, cx: &WindowContext) -> bool {
190 self.id.contains_focused(cx)
191 }
192
193 /// Obtains whether the element associated with this handle is contained within the
194 /// focused element or is itself focused.
195 pub fn within_focused(&self, cx: &WindowContext) -> bool {
196 self.id.within_focused(cx)
197 }
198
199 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
200 pub fn contains(&self, other: &Self, cx: &WindowContext) -> bool {
201 self.id.contains(other.id, cx)
202 }
203}
204
205impl Clone for FocusHandle {
206 fn clone(&self) -> Self {
207 Self::for_id(self.id, &self.handles).unwrap()
208 }
209}
210
211impl PartialEq for FocusHandle {
212 fn eq(&self, other: &Self) -> bool {
213 self.id == other.id
214 }
215}
216
217impl Eq for FocusHandle {}
218
219impl Drop for FocusHandle {
220 fn drop(&mut self) {
221 self.handles
222 .read()
223 .get(self.id)
224 .unwrap()
225 .fetch_sub(1, SeqCst);
226 }
227}
228
229/// FocusableView allows users of your view to easily
230/// focus it (using cx.focus_view(view))
231pub trait FocusableView: 'static + Render {
232 fn focus_handle(&self, cx: &AppContext) -> FocusHandle;
233}
234
235/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
236/// where the lifecycle of the view is handled by another view.
237pub trait ManagedView: FocusableView + EventEmitter<DismissEvent> {}
238
239impl<M: FocusableView + EventEmitter<DismissEvent>> ManagedView for M {}
240
241pub struct DismissEvent;
242
243// Holds the state for a specific window.
244pub struct Window {
245 pub(crate) handle: AnyWindowHandle,
246 pub(crate) removed: bool,
247 pub(crate) platform_window: Box<dyn PlatformWindow>,
248 display_id: DisplayId,
249 sprite_atlas: Arc<dyn PlatformAtlas>,
250 rem_size: Pixels,
251 viewport_size: Size<Pixels>,
252 layout_engine: Option<TaffyLayoutEngine>,
253 pub(crate) root_view: Option<AnyView>,
254 pub(crate) element_id_stack: GlobalElementId,
255 pub(crate) rendered_frame: Frame,
256 pub(crate) next_frame: Frame,
257 pub(crate) focus_handles: Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
258 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
259 blur_listeners: SubscriberSet<(), AnyObserver>,
260 default_prevented: bool,
261 mouse_position: Point<Pixels>,
262 modifiers: Modifiers,
263 requested_cursor_style: Option<CursorStyle>,
264 scale_factor: f32,
265 bounds: WindowBounds,
266 bounds_observers: SubscriberSet<(), AnyObserver>,
267 active: bool,
268 pub(crate) dirty: bool,
269 pub(crate) drawing: bool,
270 activation_observers: SubscriberSet<(), AnyObserver>,
271 pub(crate) focus: Option<FocusId>,
272
273 #[cfg(any(test, feature = "test-support"))]
274 pub(crate) focus_invalidated: bool,
275}
276
277pub(crate) struct ElementStateBox {
278 inner: Box<dyn Any>,
279 #[cfg(debug_assertions)]
280 type_name: &'static str,
281}
282
283pub(crate) struct Frame {
284 focus: Option<FocusId>,
285 pub(crate) element_states: FxHashMap<GlobalElementId, ElementStateBox>,
286 mouse_listeners: FxHashMap<TypeId, Vec<(StackingOrder, AnyMouseListener)>>,
287 pub(crate) dispatch_tree: DispatchTree,
288 pub(crate) scene_builder: SceneBuilder,
289 pub(crate) depth_map: Vec<(StackingOrder, Bounds<Pixels>)>,
290 pub(crate) z_index_stack: StackingOrder,
291 content_mask_stack: Vec<ContentMask<Pixels>>,
292 element_offset_stack: Vec<Point<Pixels>>,
293}
294
295impl Frame {
296 fn new(dispatch_tree: DispatchTree) -> Self {
297 Frame {
298 focus: None,
299 element_states: FxHashMap::default(),
300 mouse_listeners: FxHashMap::default(),
301 dispatch_tree,
302 scene_builder: SceneBuilder::default(),
303 z_index_stack: StackingOrder::default(),
304 depth_map: Default::default(),
305 content_mask_stack: Vec::new(),
306 element_offset_stack: Vec::new(),
307 }
308 }
309
310 fn clear(&mut self) {
311 self.element_states.clear();
312 self.mouse_listeners.values_mut().for_each(Vec::clear);
313 self.dispatch_tree.clear();
314 self.depth_map.clear();
315 }
316
317 fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
318 self.focus
319 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
320 .unwrap_or_default()
321 }
322}
323
324impl Window {
325 pub(crate) fn new(
326 handle: AnyWindowHandle,
327 options: WindowOptions,
328 cx: &mut AppContext,
329 ) -> Self {
330 let platform_window = cx.platform.open_window(
331 handle,
332 options,
333 Box::new({
334 let mut cx = cx.to_async();
335 move || handle.update(&mut cx, |_, cx| cx.draw())
336 }),
337 );
338 let display_id = platform_window.display().id();
339 let sprite_atlas = platform_window.sprite_atlas();
340 let mouse_position = platform_window.mouse_position();
341 let modifiers = platform_window.modifiers();
342 let content_size = platform_window.content_size();
343 let scale_factor = platform_window.scale_factor();
344 let bounds = platform_window.bounds();
345
346 platform_window.on_resize(Box::new({
347 let mut cx = cx.to_async();
348 move |_, _| {
349 handle
350 .update(&mut cx, |_, cx| cx.window_bounds_changed())
351 .log_err();
352 }
353 }));
354 platform_window.on_moved(Box::new({
355 let mut cx = cx.to_async();
356 move || {
357 handle
358 .update(&mut cx, |_, cx| cx.window_bounds_changed())
359 .log_err();
360 }
361 }));
362 platform_window.on_active_status_change(Box::new({
363 let mut cx = cx.to_async();
364 move |active| {
365 handle
366 .update(&mut cx, |_, cx| {
367 cx.window.active = active;
368 cx.window
369 .activation_observers
370 .clone()
371 .retain(&(), |callback| callback(cx));
372 })
373 .log_err();
374 }
375 }));
376
377 platform_window.on_input({
378 let mut cx = cx.to_async();
379 Box::new(move |event| {
380 handle
381 .update(&mut cx, |_, cx| cx.dispatch_event(event))
382 .log_err()
383 .unwrap_or(false)
384 })
385 });
386
387 Window {
388 handle,
389 removed: false,
390 platform_window,
391 display_id,
392 sprite_atlas,
393 rem_size: px(16.),
394 viewport_size: content_size,
395 layout_engine: Some(TaffyLayoutEngine::new()),
396 root_view: None,
397 element_id_stack: GlobalElementId::default(),
398 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
399 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
400 focus_handles: Arc::new(RwLock::new(SlotMap::with_key())),
401 focus_listeners: SubscriberSet::new(),
402 blur_listeners: SubscriberSet::new(),
403 default_prevented: true,
404 mouse_position,
405 modifiers,
406 requested_cursor_style: None,
407 scale_factor,
408 bounds,
409 bounds_observers: SubscriberSet::new(),
410 active: false,
411 dirty: false,
412 drawing: false,
413 activation_observers: SubscriberSet::new(),
414 focus: None,
415
416 #[cfg(any(test, feature = "test-support"))]
417 focus_invalidated: false,
418 }
419 }
420}
421
422/// Indicates which region of the window is visible. Content falling outside of this mask will not be
423/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
424/// to leave room to support more complex shapes in the future.
425#[derive(Clone, Debug, Default, PartialEq, Eq)]
426#[repr(C)]
427pub struct ContentMask<P: Clone + Default + Debug> {
428 pub bounds: Bounds<P>,
429}
430
431impl ContentMask<Pixels> {
432 /// Scale the content mask's pixel units by the given scaling factor.
433 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
434 ContentMask {
435 bounds: self.bounds.scale(factor),
436 }
437 }
438
439 /// Intersect the content mask with the given content mask.
440 pub fn intersect(&self, other: &Self) -> Self {
441 let bounds = self.bounds.intersect(&other.bounds);
442 ContentMask { bounds }
443 }
444}
445
446/// Provides access to application state in the context of a single window. Derefs
447/// to an `AppContext`, so you can also pass a `WindowContext` to any method that takes
448/// an `AppContext` and call any `AppContext` methods.
449pub struct WindowContext<'a> {
450 pub(crate) app: &'a mut AppContext,
451 pub(crate) window: &'a mut Window,
452}
453
454impl<'a> WindowContext<'a> {
455 pub(crate) fn new(app: &'a mut AppContext, window: &'a mut Window) -> Self {
456 Self { app, window }
457 }
458
459 /// Obtain a handle to the window that belongs to this context.
460 pub fn window_handle(&self) -> AnyWindowHandle {
461 self.window.handle
462 }
463
464 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
465 pub fn notify(&mut self) {
466 if !self.window.drawing {
467 self.window.dirty = true;
468 }
469 }
470
471 /// Close this window.
472 pub fn remove_window(&mut self) {
473 self.window.removed = true;
474 }
475
476 /// Obtain a new `FocusHandle`, which allows you to track and manipulate the keyboard focus
477 /// for elements rendered within this window.
478 pub fn focus_handle(&mut self) -> FocusHandle {
479 FocusHandle::new(&self.window.focus_handles)
480 }
481
482 /// Obtain the currently focused `FocusHandle`. If no elements are focused, returns `None`.
483 pub fn focused(&self) -> Option<FocusHandle> {
484 self.window
485 .focus
486 .and_then(|id| FocusHandle::for_id(id, &self.window.focus_handles))
487 }
488
489 /// Move focus to the element associated with the given `FocusHandle`.
490 pub fn focus(&mut self, handle: &FocusHandle) {
491 if self.window.focus == Some(handle.id) {
492 return;
493 }
494
495 self.window.focus = Some(handle.id);
496 self.window
497 .rendered_frame
498 .dispatch_tree
499 .clear_pending_keystrokes();
500
501 #[cfg(any(test, feature = "test-support"))]
502 {
503 self.window.focus_invalidated = true;
504 }
505
506 self.notify();
507 }
508
509 /// Remove focus from all elements within this context's window.
510 pub fn blur(&mut self) {
511 self.window.focus = None;
512 self.notify();
513 }
514
515 pub fn dispatch_action(&mut self, action: Box<dyn Action>) {
516 let focus_handle = self.focused();
517
518 self.defer(move |cx| {
519 let node_id = focus_handle
520 .and_then(|handle| {
521 cx.window
522 .rendered_frame
523 .dispatch_tree
524 .focusable_node_id(handle.id)
525 })
526 .unwrap_or_else(|| cx.window.rendered_frame.dispatch_tree.root_node_id());
527
528 cx.propagate_event = true;
529 cx.dispatch_action_on_node(node_id, action);
530 })
531 }
532
533 pub(crate) fn dispatch_keystroke_observers(
534 &mut self,
535 event: &dyn Any,
536 action: Option<Box<dyn Action>>,
537 ) {
538 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
539 return;
540 };
541
542 self.keystroke_observers
543 .clone()
544 .retain(&(), move |callback| {
545 (callback)(
546 &KeystrokeEvent {
547 keystroke: key_down_event.keystroke.clone(),
548 action: action.as_ref().map(|action| action.boxed_clone()),
549 },
550 self,
551 );
552 true
553 });
554 }
555
556 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
557 /// that are currently on the stack to be returned to the app.
558 pub fn defer(&mut self, f: impl FnOnce(&mut WindowContext) + 'static) {
559 let handle = self.window.handle;
560 self.app.defer(move |cx| {
561 handle.update(cx, |_, cx| f(cx)).ok();
562 });
563 }
564
565 pub fn subscribe<Emitter, E, Evt>(
566 &mut self,
567 entity: &E,
568 mut on_event: impl FnMut(E, &Evt, &mut WindowContext<'_>) + 'static,
569 ) -> Subscription
570 where
571 Emitter: EventEmitter<Evt>,
572 E: Entity<Emitter>,
573 Evt: 'static,
574 {
575 let entity_id = entity.entity_id();
576 let entity = entity.downgrade();
577 let window_handle = self.window.handle;
578 let (subscription, activate) = self.app.event_listeners.insert(
579 entity_id,
580 (
581 TypeId::of::<Evt>(),
582 Box::new(move |event, cx| {
583 window_handle
584 .update(cx, |_, cx| {
585 if let Some(handle) = E::upgrade_from(&entity) {
586 let event = event.downcast_ref().expect("invalid event type");
587 on_event(handle, event, cx);
588 true
589 } else {
590 false
591 }
592 })
593 .unwrap_or(false)
594 }),
595 ),
596 );
597 self.app.defer(move |_| activate());
598 subscription
599 }
600
601 /// Create an `AsyncWindowContext`, which has a static lifetime and can be held across
602 /// await points in async code.
603 pub fn to_async(&self) -> AsyncWindowContext {
604 AsyncWindowContext::new(self.app.to_async(), self.window.handle)
605 }
606
607 /// Schedule the given closure to be run directly after the current frame is rendered.
608 pub fn on_next_frame(&mut self, callback: impl FnOnce(&mut WindowContext) + 'static) {
609 let handle = self.window.handle;
610 let display_id = self.window.display_id;
611
612 if !self.frame_consumers.contains_key(&display_id) {
613 let (tx, mut rx) = mpsc::unbounded::<()>();
614 self.platform.set_display_link_output_callback(
615 display_id,
616 Box::new(move |_current_time, _output_time| _ = tx.unbounded_send(())),
617 );
618
619 let consumer_task = self.app.spawn(|cx| async move {
620 while rx.next().await.is_some() {
621 cx.update(|cx| {
622 for callback in cx
623 .next_frame_callbacks
624 .get_mut(&display_id)
625 .unwrap()
626 .drain(..)
627 .collect::<SmallVec<[_; 32]>>()
628 {
629 callback(cx);
630 }
631 })
632 .ok();
633
634 // Flush effects, then stop the display link if no new next_frame_callbacks have been added.
635
636 cx.update(|cx| {
637 if cx.next_frame_callbacks.is_empty() {
638 cx.platform.stop_display_link(display_id);
639 }
640 })
641 .ok();
642 }
643 });
644 self.frame_consumers.insert(display_id, consumer_task);
645 }
646
647 if self.next_frame_callbacks.is_empty() {
648 self.platform.start_display_link(display_id);
649 }
650
651 self.next_frame_callbacks
652 .entry(display_id)
653 .or_default()
654 .push(Box::new(move |cx: &mut AppContext| {
655 cx.update_window(handle, |_root_view, cx| callback(cx)).ok();
656 }));
657 }
658
659 /// Spawn the future returned by the given closure on the application thread pool.
660 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
661 /// use within your future.
662 pub fn spawn<Fut, R>(&mut self, f: impl FnOnce(AsyncWindowContext) -> Fut) -> Task<R>
663 where
664 R: 'static,
665 Fut: Future<Output = R> + 'static,
666 {
667 self.app
668 .spawn(|app| f(AsyncWindowContext::new(app, self.window.handle)))
669 }
670
671 /// Update the global of the given type. The given closure is given simultaneous mutable
672 /// access both to the global and the context.
673 pub fn update_global<G, R>(&mut self, f: impl FnOnce(&mut G, &mut Self) -> R) -> R
674 where
675 G: 'static,
676 {
677 let mut global = self.app.lease_global::<G>();
678 let result = f(&mut global, self);
679 self.app.end_global_lease(global);
680 result
681 }
682
683 #[must_use]
684 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
685 /// layout is being requested, along with the layout ids of any children. This method is called during
686 /// calls to the `Element::layout` trait method and enables any element to participate in layout.
687 pub fn request_layout(
688 &mut self,
689 style: &Style,
690 children: impl IntoIterator<Item = LayoutId>,
691 ) -> LayoutId {
692 self.app.layout_id_buffer.clear();
693 self.app.layout_id_buffer.extend(children.into_iter());
694 let rem_size = self.rem_size();
695
696 self.window.layout_engine.as_mut().unwrap().request_layout(
697 style,
698 rem_size,
699 &self.app.layout_id_buffer,
700 )
701 }
702
703 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
704 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
705 /// determine the element's size. One place this is used internally is when measuring text.
706 ///
707 /// The given closure is invoked at layout time with the known dimensions and available space and
708 /// returns a `Size`.
709 pub fn request_measured_layout<
710 F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut WindowContext) -> Size<Pixels>
711 + 'static,
712 >(
713 &mut self,
714 style: Style,
715 measure: F,
716 ) -> LayoutId {
717 let rem_size = self.rem_size();
718 self.window
719 .layout_engine
720 .as_mut()
721 .unwrap()
722 .request_measured_layout(style, rem_size, measure)
723 }
724
725 pub fn compute_layout(&mut self, layout_id: LayoutId, available_space: Size<AvailableSpace>) {
726 let mut layout_engine = self.window.layout_engine.take().unwrap();
727 layout_engine.compute_layout(layout_id, available_space, self);
728 self.window.layout_engine = Some(layout_engine);
729 }
730
731 /// Obtain the bounds computed for the given LayoutId relative to the window. This method should not
732 /// be invoked until the paint phase begins, and will usually be invoked by GPUI itself automatically
733 /// in order to pass your element its `Bounds` automatically.
734 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
735 let mut bounds = self
736 .window
737 .layout_engine
738 .as_mut()
739 .unwrap()
740 .layout_bounds(layout_id)
741 .map(Into::into);
742 bounds.origin += self.element_offset();
743 bounds
744 }
745
746 fn window_bounds_changed(&mut self) {
747 self.window.scale_factor = self.window.platform_window.scale_factor();
748 self.window.viewport_size = self.window.platform_window.content_size();
749 self.window.bounds = self.window.platform_window.bounds();
750 self.window.display_id = self.window.platform_window.display().id();
751 self.notify();
752
753 self.window
754 .bounds_observers
755 .clone()
756 .retain(&(), |callback| callback(self));
757 }
758
759 pub fn window_bounds(&self) -> WindowBounds {
760 self.window.bounds
761 }
762
763 pub fn viewport_size(&self) -> Size<Pixels> {
764 self.window.viewport_size
765 }
766
767 pub fn is_window_active(&self) -> bool {
768 self.window.active
769 }
770
771 pub fn zoom_window(&self) {
772 self.window.platform_window.zoom();
773 }
774
775 pub fn set_window_title(&mut self, title: &str) {
776 self.window.platform_window.set_title(title);
777 }
778
779 pub fn display(&self) -> Option<Rc<dyn PlatformDisplay>> {
780 self.platform
781 .displays()
782 .into_iter()
783 .find(|display| display.id() == self.window.display_id)
784 }
785
786 pub fn show_character_palette(&self) {
787 self.window.platform_window.show_character_palette();
788 }
789
790 /// The scale factor of the display associated with the window. For example, it could
791 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
792 /// be rendered as two pixels on screen.
793 pub fn scale_factor(&self) -> f32 {
794 self.window.scale_factor
795 }
796
797 /// The size of an em for the base font of the application. Adjusting this value allows the
798 /// UI to scale, just like zooming a web page.
799 pub fn rem_size(&self) -> Pixels {
800 self.window.rem_size
801 }
802
803 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
804 /// UI to scale, just like zooming a web page.
805 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
806 self.window.rem_size = rem_size.into();
807 }
808
809 /// The line height associated with the current text style.
810 pub fn line_height(&self) -> Pixels {
811 let rem_size = self.rem_size();
812 let text_style = self.text_style();
813 text_style
814 .line_height
815 .to_pixels(text_style.font_size.into(), rem_size)
816 }
817
818 /// Call to prevent the default action of an event. Currently only used to prevent
819 /// parent elements from becoming focused on mouse down.
820 pub fn prevent_default(&mut self) {
821 self.window.default_prevented = true;
822 }
823
824 /// Obtain whether default has been prevented for the event currently being dispatched.
825 pub fn default_prevented(&self) -> bool {
826 self.window.default_prevented
827 }
828
829 /// Register a mouse event listener on the window for the next frame. The type of event
830 /// is determined by the first parameter of the given listener. When the next frame is rendered
831 /// the listener will be cleared.
832 pub fn on_mouse_event<Event: 'static>(
833 &mut self,
834 mut handler: impl FnMut(&Event, DispatchPhase, &mut WindowContext) + 'static,
835 ) {
836 let order = self.window.next_frame.z_index_stack.clone();
837 let handler = frame_alloc(|| {
838 move |event: &dyn Any, phase: DispatchPhase, cx: &mut WindowContext<'_>| {
839 handler(event.downcast_ref().unwrap(), phase, cx)
840 }
841 })
842 .map(|handler| handler as _);
843 self.window
844 .next_frame
845 .mouse_listeners
846 .entry(TypeId::of::<Event>())
847 .or_default()
848 .push((order, handler))
849 }
850
851 /// Register a key event listener on the window for the next frame. The type of event
852 /// is determined by the first parameter of the given listener. When the next frame is rendered
853 /// the listener will be cleared.
854 ///
855 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
856 /// a specific need to register a global listener.
857 pub fn on_key_event<Event: 'static>(
858 &mut self,
859 listener: impl Fn(&Event, DispatchPhase, &mut WindowContext) + 'static,
860 ) {
861 let listener = frame_alloc(|| {
862 move |event: &dyn Any, phase, cx: &mut WindowContext<'_>| {
863 if let Some(event) = event.downcast_ref::<Event>() {
864 listener(event, phase, cx)
865 }
866 }
867 })
868 .map(|handler| handler as _);
869 self.window.next_frame.dispatch_tree.on_key_event(listener);
870 }
871
872 /// Register an action listener on the window for the next frame. The type of action
873 /// is determined by the first parameter of the given listener. When the next frame is rendered
874 /// the listener will be cleared.
875 ///
876 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
877 /// a specific need to register a global listener.
878 pub fn on_action(
879 &mut self,
880 action_type: TypeId,
881 listener: impl Fn(&dyn Any, DispatchPhase, &mut WindowContext) + 'static,
882 ) {
883 let listener = frame_alloc(|| listener).map(|handler| handler as _);
884 self.window
885 .next_frame
886 .dispatch_tree
887 .on_action(action_type, listener);
888 }
889
890 pub fn is_action_available(&self, action: &dyn Action) -> bool {
891 let target = self
892 .focused()
893 .and_then(|focused_handle| {
894 self.window
895 .rendered_frame
896 .dispatch_tree
897 .focusable_node_id(focused_handle.id)
898 })
899 .unwrap_or_else(|| self.window.rendered_frame.dispatch_tree.root_node_id());
900 self.window
901 .rendered_frame
902 .dispatch_tree
903 .is_action_available(action, target)
904 }
905
906 /// The position of the mouse relative to the window.
907 pub fn mouse_position(&self) -> Point<Pixels> {
908 self.window.mouse_position
909 }
910
911 /// The current state of the keyboard's modifiers
912 pub fn modifiers(&self) -> Modifiers {
913 self.window.modifiers
914 }
915
916 pub fn set_cursor_style(&mut self, style: CursorStyle) {
917 self.window.requested_cursor_style = Some(style)
918 }
919
920 /// Called during painting to invoke the given closure in a new stacking context. The given
921 /// z-index is interpreted relative to the previous call to `stack`.
922 pub fn with_z_index<R>(&mut self, z_index: u8, f: impl FnOnce(&mut Self) -> R) -> R {
923 self.window.next_frame.z_index_stack.push(z_index);
924 let result = f(self);
925 self.window.next_frame.z_index_stack.pop();
926 result
927 }
928
929 /// Called during painting to track which z-index is on top at each pixel position
930 pub fn add_opaque_layer(&mut self, bounds: Bounds<Pixels>) {
931 let stacking_order = self.window.next_frame.z_index_stack.clone();
932 let depth_map = &mut self.window.next_frame.depth_map;
933 match depth_map.binary_search_by(|(level, _)| stacking_order.cmp(&level)) {
934 Ok(i) | Err(i) => depth_map.insert(i, (stacking_order, bounds)),
935 }
936 }
937
938 /// Returns true if the top-most opaque layer painted over this point was part of the
939 /// same layer as the given stacking order.
940 pub fn was_top_layer(&self, point: &Point<Pixels>, level: &StackingOrder) -> bool {
941 for (stack, bounds) in self.window.rendered_frame.depth_map.iter() {
942 if bounds.contains(point) {
943 return level.starts_with(stack) || stack.starts_with(level);
944 }
945 }
946
947 false
948 }
949
950 pub fn was_top_layer_under_active_drag(
951 &self,
952 point: &Point<Pixels>,
953 level: &StackingOrder,
954 ) -> bool {
955 for (stack, bounds) in self.window.rendered_frame.depth_map.iter() {
956 if stack.starts_with(&[ACTIVE_DRAG_Z_INDEX]) {
957 continue;
958 }
959 if bounds.contains(point) {
960 return level.starts_with(stack) || stack.starts_with(level);
961 }
962 }
963
964 false
965 }
966
967 /// Called during painting to get the current stacking order.
968 pub fn stacking_order(&self) -> &StackingOrder {
969 &self.window.next_frame.z_index_stack
970 }
971
972 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
973 pub fn paint_shadows(
974 &mut self,
975 bounds: Bounds<Pixels>,
976 corner_radii: Corners<Pixels>,
977 shadows: &[BoxShadow],
978 ) {
979 let scale_factor = self.scale_factor();
980 let content_mask = self.content_mask();
981 let window = &mut *self.window;
982 for shadow in shadows {
983 let mut shadow_bounds = bounds;
984 shadow_bounds.origin += shadow.offset;
985 shadow_bounds.dilate(shadow.spread_radius);
986 window.next_frame.scene_builder.insert(
987 &window.next_frame.z_index_stack,
988 Shadow {
989 order: 0,
990 bounds: shadow_bounds.scale(scale_factor),
991 content_mask: content_mask.scale(scale_factor),
992 corner_radii: corner_radii.scale(scale_factor),
993 color: shadow.color,
994 blur_radius: shadow.blur_radius.scale(scale_factor),
995 },
996 );
997 }
998 }
999
1000 /// Paint one or more quads into the scene for the next frame at the current stacking context.
1001 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
1002 /// see [`fill`], [`outline`], and [`quad`] to construct this type.
1003 pub fn paint_quad(&mut self, quad: PaintQuad) {
1004 let scale_factor = self.scale_factor();
1005 let content_mask = self.content_mask();
1006
1007 let window = &mut *self.window;
1008 window.next_frame.scene_builder.insert(
1009 &window.next_frame.z_index_stack,
1010 Quad {
1011 order: 0,
1012 bounds: quad.bounds.scale(scale_factor),
1013 content_mask: content_mask.scale(scale_factor),
1014 background: quad.background,
1015 border_color: quad.border_color,
1016 corner_radii: quad.corner_radii.scale(scale_factor),
1017 border_widths: quad.border_widths.scale(scale_factor),
1018 },
1019 );
1020 }
1021
1022 /// Paint the given `Path` into the scene for the next frame at the current z-index.
1023 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Hsla>) {
1024 let scale_factor = self.scale_factor();
1025 let content_mask = self.content_mask();
1026 path.content_mask = content_mask;
1027 path.color = color.into();
1028 let window = &mut *self.window;
1029 window
1030 .next_frame
1031 .scene_builder
1032 .insert(&window.next_frame.z_index_stack, path.scale(scale_factor));
1033 }
1034
1035 /// Paint an underline into the scene for the next frame at the current z-index.
1036 pub fn paint_underline(
1037 &mut self,
1038 origin: Point<Pixels>,
1039 width: Pixels,
1040 style: &UnderlineStyle,
1041 ) {
1042 let scale_factor = self.scale_factor();
1043 let height = if style.wavy {
1044 style.thickness * 3.
1045 } else {
1046 style.thickness
1047 };
1048 let bounds = Bounds {
1049 origin,
1050 size: size(width, height),
1051 };
1052 let content_mask = self.content_mask();
1053 let window = &mut *self.window;
1054 window.next_frame.scene_builder.insert(
1055 &window.next_frame.z_index_stack,
1056 Underline {
1057 order: 0,
1058 bounds: bounds.scale(scale_factor),
1059 content_mask: content_mask.scale(scale_factor),
1060 thickness: style.thickness.scale(scale_factor),
1061 color: style.color.unwrap_or_default(),
1062 wavy: style.wavy,
1063 },
1064 );
1065 }
1066
1067 /// Paint a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
1068 /// The y component of the origin is the baseline of the glyph.
1069 pub fn paint_glyph(
1070 &mut self,
1071 origin: Point<Pixels>,
1072 font_id: FontId,
1073 glyph_id: GlyphId,
1074 font_size: Pixels,
1075 color: Hsla,
1076 ) -> Result<()> {
1077 let scale_factor = self.scale_factor();
1078 let glyph_origin = origin.scale(scale_factor);
1079 let subpixel_variant = Point {
1080 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
1081 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
1082 };
1083 let params = RenderGlyphParams {
1084 font_id,
1085 glyph_id,
1086 font_size,
1087 subpixel_variant,
1088 scale_factor,
1089 is_emoji: false,
1090 };
1091
1092 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
1093 if !raster_bounds.is_zero() {
1094 let tile =
1095 self.window
1096 .sprite_atlas
1097 .get_or_insert_with(¶ms.clone().into(), &mut || {
1098 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
1099 Ok((size, Cow::Owned(bytes)))
1100 })?;
1101 let bounds = Bounds {
1102 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
1103 size: tile.bounds.size.map(Into::into),
1104 };
1105 let content_mask = self.content_mask().scale(scale_factor);
1106 let window = &mut *self.window;
1107 window.next_frame.scene_builder.insert(
1108 &window.next_frame.z_index_stack,
1109 MonochromeSprite {
1110 order: 0,
1111 bounds,
1112 content_mask,
1113 color,
1114 tile,
1115 },
1116 );
1117 }
1118 Ok(())
1119 }
1120
1121 /// Paint an emoji glyph into the scene for the next frame at the current z-index.
1122 /// The y component of the origin is the baseline of the glyph.
1123 pub fn paint_emoji(
1124 &mut self,
1125 origin: Point<Pixels>,
1126 font_id: FontId,
1127 glyph_id: GlyphId,
1128 font_size: Pixels,
1129 ) -> Result<()> {
1130 let scale_factor = self.scale_factor();
1131 let glyph_origin = origin.scale(scale_factor);
1132 let params = RenderGlyphParams {
1133 font_id,
1134 glyph_id,
1135 font_size,
1136 // We don't render emojis with subpixel variants.
1137 subpixel_variant: Default::default(),
1138 scale_factor,
1139 is_emoji: true,
1140 };
1141
1142 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
1143 if !raster_bounds.is_zero() {
1144 let tile =
1145 self.window
1146 .sprite_atlas
1147 .get_or_insert_with(¶ms.clone().into(), &mut || {
1148 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
1149 Ok((size, Cow::Owned(bytes)))
1150 })?;
1151 let bounds = Bounds {
1152 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
1153 size: tile.bounds.size.map(Into::into),
1154 };
1155 let content_mask = self.content_mask().scale(scale_factor);
1156 let window = &mut *self.window;
1157
1158 window.next_frame.scene_builder.insert(
1159 &window.next_frame.z_index_stack,
1160 PolychromeSprite {
1161 order: 0,
1162 bounds,
1163 corner_radii: Default::default(),
1164 content_mask,
1165 tile,
1166 grayscale: false,
1167 },
1168 );
1169 }
1170 Ok(())
1171 }
1172
1173 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
1174 pub fn paint_svg(
1175 &mut self,
1176 bounds: Bounds<Pixels>,
1177 path: SharedString,
1178 color: Hsla,
1179 ) -> Result<()> {
1180 let scale_factor = self.scale_factor();
1181 let bounds = bounds.scale(scale_factor);
1182 // Render the SVG at twice the size to get a higher quality result.
1183 let params = RenderSvgParams {
1184 path,
1185 size: bounds
1186 .size
1187 .map(|pixels| DevicePixels::from((pixels.0 * 2.).ceil() as i32)),
1188 };
1189
1190 let tile =
1191 self.window
1192 .sprite_atlas
1193 .get_or_insert_with(¶ms.clone().into(), &mut || {
1194 let bytes = self.svg_renderer.render(¶ms)?;
1195 Ok((params.size, Cow::Owned(bytes)))
1196 })?;
1197 let content_mask = self.content_mask().scale(scale_factor);
1198
1199 let window = &mut *self.window;
1200 window.next_frame.scene_builder.insert(
1201 &window.next_frame.z_index_stack,
1202 MonochromeSprite {
1203 order: 0,
1204 bounds,
1205 content_mask,
1206 color,
1207 tile,
1208 },
1209 );
1210
1211 Ok(())
1212 }
1213
1214 /// Paint an image into the scene for the next frame at the current z-index.
1215 pub fn paint_image(
1216 &mut self,
1217 bounds: Bounds<Pixels>,
1218 corner_radii: Corners<Pixels>,
1219 data: Arc<ImageData>,
1220 grayscale: bool,
1221 ) -> Result<()> {
1222 let scale_factor = self.scale_factor();
1223 let bounds = bounds.scale(scale_factor);
1224 let params = RenderImageParams { image_id: data.id };
1225
1226 let tile = self
1227 .window
1228 .sprite_atlas
1229 .get_or_insert_with(¶ms.clone().into(), &mut || {
1230 Ok((data.size(), Cow::Borrowed(data.as_bytes())))
1231 })?;
1232 let content_mask = self.content_mask().scale(scale_factor);
1233 let corner_radii = corner_radii.scale(scale_factor);
1234
1235 let window = &mut *self.window;
1236 window.next_frame.scene_builder.insert(
1237 &window.next_frame.z_index_stack,
1238 PolychromeSprite {
1239 order: 0,
1240 bounds,
1241 content_mask,
1242 corner_radii,
1243 tile,
1244 grayscale,
1245 },
1246 );
1247 Ok(())
1248 }
1249
1250 /// Paint a surface into the scene for the next frame at the current z-index.
1251 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVImageBuffer) {
1252 let scale_factor = self.scale_factor();
1253 let bounds = bounds.scale(scale_factor);
1254 let content_mask = self.content_mask().scale(scale_factor);
1255 let window = &mut *self.window;
1256 window.next_frame.scene_builder.insert(
1257 &window.next_frame.z_index_stack,
1258 Surface {
1259 order: 0,
1260 bounds,
1261 content_mask,
1262 image_buffer,
1263 },
1264 );
1265 }
1266
1267 /// Draw pixels to the display for this window based on the contents of its scene.
1268 pub(crate) fn draw(&mut self) -> Scene {
1269 self.window.dirty = false;
1270 self.window.drawing = true;
1271
1272 #[cfg(any(test, feature = "test-support"))]
1273 {
1274 self.window.focus_invalidated = false;
1275 }
1276
1277 self.text_system().start_frame();
1278 self.window.platform_window.clear_input_handler();
1279 self.window.layout_engine.as_mut().unwrap().clear();
1280 self.window.next_frame.clear();
1281 FRAME_ARENA.with_borrow_mut(|arena| arena.clear());
1282 let root_view = self.window.root_view.take().unwrap();
1283
1284 self.with_z_index(0, |cx| {
1285 cx.with_key_dispatch(Some(KeyContext::default()), None, |_, cx| {
1286 for (action_type, action_listeners) in &cx.app.global_action_listeners {
1287 for action_listener in action_listeners.iter().cloned() {
1288 let listener = frame_alloc(|| {
1289 move |action: &dyn Any, phase, cx: &mut WindowContext<'_>| {
1290 action_listener(action, phase, cx)
1291 }
1292 })
1293 .map(|listener| listener as _);
1294 cx.window
1295 .next_frame
1296 .dispatch_tree
1297 .on_action(*action_type, listener)
1298 }
1299 }
1300
1301 let available_space = cx.window.viewport_size.map(Into::into);
1302 root_view.draw(Point::default(), available_space, cx);
1303 })
1304 });
1305
1306 if let Some(active_drag) = self.app.active_drag.take() {
1307 self.with_z_index(ACTIVE_DRAG_Z_INDEX, |cx| {
1308 let offset = cx.mouse_position() - active_drag.cursor_offset;
1309 let available_space = size(AvailableSpace::MinContent, AvailableSpace::MinContent);
1310 active_drag.view.draw(offset, available_space, cx);
1311 });
1312 self.active_drag = Some(active_drag);
1313 } else if let Some(active_tooltip) = self.app.active_tooltip.take() {
1314 self.with_z_index(1, |cx| {
1315 let available_space = size(AvailableSpace::MinContent, AvailableSpace::MinContent);
1316 active_tooltip
1317 .view
1318 .draw(active_tooltip.cursor_offset, available_space, cx);
1319 });
1320 }
1321
1322 self.window
1323 .next_frame
1324 .dispatch_tree
1325 .preserve_pending_keystrokes(
1326 &mut self.window.rendered_frame.dispatch_tree,
1327 self.window.focus,
1328 );
1329 self.window.next_frame.focus = self.window.focus;
1330 self.window.root_view = Some(root_view);
1331
1332 let previous_focus_path = self.window.rendered_frame.focus_path();
1333 mem::swap(&mut self.window.rendered_frame, &mut self.window.next_frame);
1334 let current_focus_path = self.window.rendered_frame.focus_path();
1335
1336 if previous_focus_path != current_focus_path {
1337 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
1338 self.window
1339 .blur_listeners
1340 .clone()
1341 .retain(&(), |listener| listener(self));
1342 }
1343
1344 let event = FocusEvent {
1345 previous_focus_path,
1346 current_focus_path,
1347 };
1348 self.window
1349 .focus_listeners
1350 .clone()
1351 .retain(&(), |listener| listener(&event, self));
1352 }
1353
1354 let scene = self.window.rendered_frame.scene_builder.build();
1355
1356 // Set the cursor only if we're the active window.
1357 let cursor_style = self
1358 .window
1359 .requested_cursor_style
1360 .take()
1361 .unwrap_or(CursorStyle::Arrow);
1362 if self.is_window_active() {
1363 self.platform.set_cursor_style(cursor_style);
1364 }
1365
1366 self.window.drawing = false;
1367
1368 scene
1369 }
1370
1371 /// Dispatch a mouse or keyboard event on the window.
1372 pub fn dispatch_event(&mut self, event: InputEvent) -> bool {
1373 // Handlers may set this to false by calling `stop_propagation`.
1374 self.app.propagate_event = true;
1375 // Handlers may set this to true by calling `prevent_default`.
1376 self.window.default_prevented = false;
1377
1378 let event = match event {
1379 // Track the mouse position with our own state, since accessing the platform
1380 // API for the mouse position can only occur on the main thread.
1381 InputEvent::MouseMove(mouse_move) => {
1382 self.window.mouse_position = mouse_move.position;
1383 self.window.modifiers = mouse_move.modifiers;
1384 InputEvent::MouseMove(mouse_move)
1385 }
1386 InputEvent::MouseDown(mouse_down) => {
1387 self.window.mouse_position = mouse_down.position;
1388 self.window.modifiers = mouse_down.modifiers;
1389 InputEvent::MouseDown(mouse_down)
1390 }
1391 InputEvent::MouseUp(mouse_up) => {
1392 self.window.mouse_position = mouse_up.position;
1393 self.window.modifiers = mouse_up.modifiers;
1394 InputEvent::MouseUp(mouse_up)
1395 }
1396 InputEvent::MouseExited(mouse_exited) => {
1397 // todo!("Should we record that the mouse is outside of the window somehow? Or are these global pixels?")
1398 self.window.modifiers = mouse_exited.modifiers;
1399
1400 InputEvent::MouseExited(mouse_exited)
1401 }
1402 InputEvent::ModifiersChanged(modifiers_changed) => {
1403 self.window.modifiers = modifiers_changed.modifiers;
1404 InputEvent::ModifiersChanged(modifiers_changed)
1405 }
1406 InputEvent::ScrollWheel(scroll_wheel) => {
1407 self.window.mouse_position = scroll_wheel.position;
1408 self.window.modifiers = scroll_wheel.modifiers;
1409 InputEvent::ScrollWheel(scroll_wheel)
1410 }
1411 // Translate dragging and dropping of external files from the operating system
1412 // to internal drag and drop events.
1413 InputEvent::FileDrop(file_drop) => match file_drop {
1414 FileDropEvent::Entered { position, files } => {
1415 self.window.mouse_position = position;
1416 if self.active_drag.is_none() {
1417 self.active_drag = Some(AnyDrag {
1418 value: Box::new(files.clone()),
1419 view: self.build_view(|_| files).into(),
1420 cursor_offset: position,
1421 });
1422 }
1423 InputEvent::MouseMove(MouseMoveEvent {
1424 position,
1425 pressed_button: Some(MouseButton::Left),
1426 modifiers: Modifiers::default(),
1427 })
1428 }
1429 FileDropEvent::Pending { position } => {
1430 self.window.mouse_position = position;
1431 InputEvent::MouseMove(MouseMoveEvent {
1432 position,
1433 pressed_button: Some(MouseButton::Left),
1434 modifiers: Modifiers::default(),
1435 })
1436 }
1437 FileDropEvent::Submit { position } => {
1438 self.activate(true);
1439 self.window.mouse_position = position;
1440 InputEvent::MouseUp(MouseUpEvent {
1441 button: MouseButton::Left,
1442 position,
1443 modifiers: Modifiers::default(),
1444 click_count: 1,
1445 })
1446 }
1447 FileDropEvent::Exited => InputEvent::MouseUp(MouseUpEvent {
1448 button: MouseButton::Left,
1449 position: Point::default(),
1450 modifiers: Modifiers::default(),
1451 click_count: 1,
1452 }),
1453 },
1454 InputEvent::KeyDown(_) | InputEvent::KeyUp(_) => event,
1455 };
1456
1457 if let Some(any_mouse_event) = event.mouse_event() {
1458 self.dispatch_mouse_event(any_mouse_event);
1459 } else if let Some(any_key_event) = event.keyboard_event() {
1460 self.dispatch_key_event(any_key_event);
1461 }
1462
1463 !self.app.propagate_event
1464 }
1465
1466 fn dispatch_mouse_event(&mut self, event: &dyn Any) {
1467 if let Some(mut handlers) = self
1468 .window
1469 .rendered_frame
1470 .mouse_listeners
1471 .remove(&event.type_id())
1472 {
1473 // Because handlers may add other handlers, we sort every time.
1474 handlers.sort_by(|(a, _), (b, _)| a.cmp(b));
1475
1476 // Capture phase, events bubble from back to front. Handlers for this phase are used for
1477 // special purposes, such as detecting events outside of a given Bounds.
1478 for (_, handler) in &mut handlers {
1479 handler(event, DispatchPhase::Capture, self);
1480 if !self.app.propagate_event {
1481 break;
1482 }
1483 }
1484
1485 // Bubble phase, where most normal handlers do their work.
1486 if self.app.propagate_event {
1487 for (_, handler) in handlers.iter_mut().rev() {
1488 handler(event, DispatchPhase::Bubble, self);
1489 if !self.app.propagate_event {
1490 break;
1491 }
1492 }
1493 }
1494
1495 if self.app.propagate_event && event.downcast_ref::<MouseUpEvent>().is_some() {
1496 self.active_drag = None;
1497 }
1498
1499 self.window
1500 .rendered_frame
1501 .mouse_listeners
1502 .insert(event.type_id(), handlers);
1503 }
1504 }
1505
1506 fn dispatch_key_event(&mut self, event: &dyn Any) {
1507 let node_id = self
1508 .window
1509 .focus
1510 .and_then(|focus_id| {
1511 self.window
1512 .rendered_frame
1513 .dispatch_tree
1514 .focusable_node_id(focus_id)
1515 })
1516 .unwrap_or_else(|| self.window.rendered_frame.dispatch_tree.root_node_id());
1517
1518 let dispatch_path = self
1519 .window
1520 .rendered_frame
1521 .dispatch_tree
1522 .dispatch_path(node_id);
1523
1524 let mut actions: Vec<Box<dyn Action>> = Vec::new();
1525
1526 // Capture phase
1527 let mut context_stack: SmallVec<[KeyContext; 16]> = SmallVec::new();
1528 self.propagate_event = true;
1529
1530 for node_id in &dispatch_path {
1531 let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
1532
1533 if let Some(context) = node.context.clone() {
1534 context_stack.push(context);
1535 }
1536
1537 for key_listener in node.key_listeners.clone() {
1538 key_listener(event, DispatchPhase::Capture, self);
1539 if !self.propagate_event {
1540 return;
1541 }
1542 }
1543 }
1544
1545 // Bubble phase
1546 for node_id in dispatch_path.iter().rev() {
1547 // Handle low level key events
1548 let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
1549 for key_listener in node.key_listeners.clone() {
1550 key_listener(event, DispatchPhase::Bubble, self);
1551 if !self.propagate_event {
1552 return;
1553 }
1554 }
1555
1556 // Match keystrokes
1557 let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
1558 if node.context.is_some() {
1559 if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
1560 let mut new_actions = self
1561 .window
1562 .rendered_frame
1563 .dispatch_tree
1564 .dispatch_key(&key_down_event.keystroke, &context_stack);
1565 actions.append(&mut new_actions);
1566 }
1567
1568 context_stack.pop();
1569 }
1570 }
1571
1572 for action in actions {
1573 self.dispatch_action_on_node(node_id, action.boxed_clone());
1574 if !self.propagate_event {
1575 self.dispatch_keystroke_observers(event, Some(action));
1576 return;
1577 }
1578 }
1579 self.dispatch_keystroke_observers(event, None);
1580 }
1581
1582 pub fn has_pending_keystrokes(&self) -> bool {
1583 self.window
1584 .rendered_frame
1585 .dispatch_tree
1586 .has_pending_keystrokes()
1587 }
1588
1589 fn dispatch_action_on_node(&mut self, node_id: DispatchNodeId, action: Box<dyn Action>) {
1590 let dispatch_path = self
1591 .window
1592 .rendered_frame
1593 .dispatch_tree
1594 .dispatch_path(node_id);
1595
1596 // Capture phase
1597 for node_id in &dispatch_path {
1598 let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
1599 for DispatchActionListener {
1600 action_type,
1601 listener,
1602 } in node.action_listeners.clone()
1603 {
1604 let any_action = action.as_any();
1605 if action_type == any_action.type_id() {
1606 listener(any_action, DispatchPhase::Capture, self);
1607 if !self.propagate_event {
1608 return;
1609 }
1610 }
1611 }
1612 }
1613 // Bubble phase
1614 for node_id in dispatch_path.iter().rev() {
1615 let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
1616 for DispatchActionListener {
1617 action_type,
1618 listener,
1619 } in node.action_listeners.clone()
1620 {
1621 let any_action = action.as_any();
1622 if action_type == any_action.type_id() {
1623 self.propagate_event = false; // Actions stop propagation by default during the bubble phase
1624 listener(any_action, DispatchPhase::Bubble, self);
1625 if !self.propagate_event {
1626 return;
1627 }
1628 }
1629 }
1630 }
1631 }
1632
1633 /// Register the given handler to be invoked whenever the global of the given type
1634 /// is updated.
1635 pub fn observe_global<G: 'static>(
1636 &mut self,
1637 f: impl Fn(&mut WindowContext<'_>) + 'static,
1638 ) -> Subscription {
1639 let window_handle = self.window.handle;
1640 let (subscription, activate) = self.global_observers.insert(
1641 TypeId::of::<G>(),
1642 Box::new(move |cx| window_handle.update(cx, |_, cx| f(cx)).is_ok()),
1643 );
1644 self.app.defer(move |_| activate());
1645 subscription
1646 }
1647
1648 pub fn activate_window(&self) {
1649 self.window.platform_window.activate();
1650 }
1651
1652 pub fn minimize_window(&self) {
1653 self.window.platform_window.minimize();
1654 }
1655
1656 pub fn toggle_full_screen(&self) {
1657 self.window.platform_window.toggle_full_screen();
1658 }
1659
1660 pub fn prompt(
1661 &self,
1662 level: PromptLevel,
1663 msg: &str,
1664 answers: &[&str],
1665 ) -> oneshot::Receiver<usize> {
1666 self.window.platform_window.prompt(level, msg, answers)
1667 }
1668
1669 pub fn available_actions(&self) -> Vec<Box<dyn Action>> {
1670 let node_id = self
1671 .window
1672 .focus
1673 .and_then(|focus_id| {
1674 self.window
1675 .rendered_frame
1676 .dispatch_tree
1677 .focusable_node_id(focus_id)
1678 })
1679 .unwrap_or_else(|| self.window.rendered_frame.dispatch_tree.root_node_id());
1680
1681 self.window
1682 .rendered_frame
1683 .dispatch_tree
1684 .available_actions(node_id)
1685 }
1686
1687 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
1688 self.window
1689 .rendered_frame
1690 .dispatch_tree
1691 .bindings_for_action(
1692 action,
1693 &self.window.rendered_frame.dispatch_tree.context_stack,
1694 )
1695 }
1696
1697 pub fn bindings_for_action_in(
1698 &self,
1699 action: &dyn Action,
1700 focus_handle: &FocusHandle,
1701 ) -> Vec<KeyBinding> {
1702 let dispatch_tree = &self.window.rendered_frame.dispatch_tree;
1703
1704 let Some(node_id) = dispatch_tree.focusable_node_id(focus_handle.id) else {
1705 return vec![];
1706 };
1707 let context_stack = dispatch_tree
1708 .dispatch_path(node_id)
1709 .into_iter()
1710 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
1711 .collect();
1712 dispatch_tree.bindings_for_action(action, &context_stack)
1713 }
1714
1715 pub fn listener_for<V: Render, E>(
1716 &self,
1717 view: &View<V>,
1718 f: impl Fn(&mut V, &E, &mut ViewContext<V>) + 'static,
1719 ) -> impl Fn(&E, &mut WindowContext) + 'static {
1720 let view = view.downgrade();
1721 move |e: &E, cx: &mut WindowContext| {
1722 view.update(cx, |view, cx| f(view, e, cx)).ok();
1723 }
1724 }
1725
1726 pub fn handler_for<V: Render>(
1727 &self,
1728 view: &View<V>,
1729 f: impl Fn(&mut V, &mut ViewContext<V>) + 'static,
1730 ) -> impl Fn(&mut WindowContext) {
1731 let view = view.downgrade();
1732 move |cx: &mut WindowContext| {
1733 view.update(cx, |view, cx| f(view, cx)).ok();
1734 }
1735 }
1736
1737 //========== ELEMENT RELATED FUNCTIONS ===========
1738 pub fn with_key_dispatch<R>(
1739 &mut self,
1740 context: Option<KeyContext>,
1741 focus_handle: Option<FocusHandle>,
1742 f: impl FnOnce(Option<FocusHandle>, &mut Self) -> R,
1743 ) -> R {
1744 let window = &mut self.window;
1745 window.next_frame.dispatch_tree.push_node(context.clone());
1746 if let Some(focus_handle) = focus_handle.as_ref() {
1747 window
1748 .next_frame
1749 .dispatch_tree
1750 .make_focusable(focus_handle.id);
1751 }
1752 let result = f(focus_handle, self);
1753
1754 self.window.next_frame.dispatch_tree.pop_node();
1755
1756 result
1757 }
1758
1759 /// Set an input handler, such as [ElementInputHandler], which interfaces with the
1760 /// platform to receive textual input with proper integration with concerns such
1761 /// as IME interactions.
1762 pub fn handle_input(
1763 &mut self,
1764 focus_handle: &FocusHandle,
1765 input_handler: impl PlatformInputHandler,
1766 ) {
1767 if focus_handle.is_focused(self) {
1768 self.window
1769 .platform_window
1770 .set_input_handler(Box::new(input_handler));
1771 }
1772 }
1773
1774 pub fn on_window_should_close(&mut self, f: impl Fn(&mut WindowContext) -> bool + 'static) {
1775 let mut this = self.to_async();
1776 self.window
1777 .platform_window
1778 .on_should_close(Box::new(move || this.update(|_, cx| f(cx)).unwrap_or(true)))
1779 }
1780}
1781
1782impl Context for WindowContext<'_> {
1783 type Result<T> = T;
1784
1785 fn build_model<T>(
1786 &mut self,
1787 build_model: impl FnOnce(&mut ModelContext<'_, T>) -> T,
1788 ) -> Model<T>
1789 where
1790 T: 'static,
1791 {
1792 let slot = self.app.entities.reserve();
1793 let model = build_model(&mut ModelContext::new(&mut *self.app, slot.downgrade()));
1794 self.entities.insert(slot, model)
1795 }
1796
1797 fn update_model<T: 'static, R>(
1798 &mut self,
1799 model: &Model<T>,
1800 update: impl FnOnce(&mut T, &mut ModelContext<'_, T>) -> R,
1801 ) -> R {
1802 let mut entity = self.entities.lease(model);
1803 let result = update(
1804 &mut *entity,
1805 &mut ModelContext::new(&mut *self.app, model.downgrade()),
1806 );
1807 self.entities.end_lease(entity);
1808 result
1809 }
1810
1811 fn update_window<T, F>(&mut self, window: AnyWindowHandle, update: F) -> Result<T>
1812 where
1813 F: FnOnce(AnyView, &mut WindowContext<'_>) -> T,
1814 {
1815 if window == self.window.handle {
1816 let root_view = self.window.root_view.clone().unwrap();
1817 Ok(update(root_view, self))
1818 } else {
1819 window.update(self.app, update)
1820 }
1821 }
1822
1823 fn read_model<T, R>(
1824 &self,
1825 handle: &Model<T>,
1826 read: impl FnOnce(&T, &AppContext) -> R,
1827 ) -> Self::Result<R>
1828 where
1829 T: 'static,
1830 {
1831 let entity = self.entities.read(handle);
1832 read(&*entity, &*self.app)
1833 }
1834
1835 fn read_window<T, R>(
1836 &self,
1837 window: &WindowHandle<T>,
1838 read: impl FnOnce(View<T>, &AppContext) -> R,
1839 ) -> Result<R>
1840 where
1841 T: 'static,
1842 {
1843 if window.any_handle == self.window.handle {
1844 let root_view = self
1845 .window
1846 .root_view
1847 .clone()
1848 .unwrap()
1849 .downcast::<T>()
1850 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
1851 Ok(read(root_view, self))
1852 } else {
1853 self.app.read_window(window, read)
1854 }
1855 }
1856}
1857
1858impl VisualContext for WindowContext<'_> {
1859 fn build_view<V>(
1860 &mut self,
1861 build_view_state: impl FnOnce(&mut ViewContext<'_, V>) -> V,
1862 ) -> Self::Result<View<V>>
1863 where
1864 V: 'static + Render,
1865 {
1866 let slot = self.app.entities.reserve();
1867 let view = View {
1868 model: slot.clone(),
1869 };
1870 let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view);
1871 let entity = build_view_state(&mut cx);
1872 cx.entities.insert(slot, entity);
1873
1874 cx.new_view_observers
1875 .clone()
1876 .retain(&TypeId::of::<V>(), |observer| {
1877 let any_view = AnyView::from(view.clone());
1878 (observer)(any_view, self);
1879 true
1880 });
1881
1882 view
1883 }
1884
1885 /// Update the given view. Prefer calling `View::update` instead, which calls this method.
1886 fn update_view<T: 'static, R>(
1887 &mut self,
1888 view: &View<T>,
1889 update: impl FnOnce(&mut T, &mut ViewContext<'_, T>) -> R,
1890 ) -> Self::Result<R> {
1891 let mut lease = self.app.entities.lease(&view.model);
1892 let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view);
1893 let result = update(&mut *lease, &mut cx);
1894 cx.app.entities.end_lease(lease);
1895 result
1896 }
1897
1898 fn replace_root_view<V>(
1899 &mut self,
1900 build_view: impl FnOnce(&mut ViewContext<'_, V>) -> V,
1901 ) -> Self::Result<View<V>>
1902 where
1903 V: 'static + Render,
1904 {
1905 let slot = self.app.entities.reserve();
1906 let view = View {
1907 model: slot.clone(),
1908 };
1909 let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view);
1910 let entity = build_view(&mut cx);
1911 self.entities.insert(slot, entity);
1912 self.window.root_view = Some(view.clone().into());
1913 view
1914 }
1915
1916 fn focus_view<V: crate::FocusableView>(&mut self, view: &View<V>) -> Self::Result<()> {
1917 self.update_view(view, |view, cx| {
1918 view.focus_handle(cx).clone().focus(cx);
1919 })
1920 }
1921
1922 fn dismiss_view<V>(&mut self, view: &View<V>) -> Self::Result<()>
1923 where
1924 V: ManagedView,
1925 {
1926 self.update_view(view, |_, cx| cx.emit(DismissEvent))
1927 }
1928}
1929
1930impl<'a> std::ops::Deref for WindowContext<'a> {
1931 type Target = AppContext;
1932
1933 fn deref(&self) -> &Self::Target {
1934 &self.app
1935 }
1936}
1937
1938impl<'a> std::ops::DerefMut for WindowContext<'a> {
1939 fn deref_mut(&mut self) -> &mut Self::Target {
1940 &mut self.app
1941 }
1942}
1943
1944impl<'a> Borrow<AppContext> for WindowContext<'a> {
1945 fn borrow(&self) -> &AppContext {
1946 &self.app
1947 }
1948}
1949
1950impl<'a> BorrowMut<AppContext> for WindowContext<'a> {
1951 fn borrow_mut(&mut self) -> &mut AppContext {
1952 &mut self.app
1953 }
1954}
1955
1956pub trait BorrowWindow: BorrowMut<Window> + BorrowMut<AppContext> {
1957 fn app_mut(&mut self) -> &mut AppContext {
1958 self.borrow_mut()
1959 }
1960
1961 fn app(&self) -> &AppContext {
1962 self.borrow()
1963 }
1964
1965 fn window(&self) -> &Window {
1966 self.borrow()
1967 }
1968
1969 fn window_mut(&mut self) -> &mut Window {
1970 self.borrow_mut()
1971 }
1972
1973 /// Pushes the given element id onto the global stack and invokes the given closure
1974 /// with a `GlobalElementId`, which disambiguates the given id in the context of its ancestor
1975 /// ids. Because elements are discarded and recreated on each frame, the `GlobalElementId` is
1976 /// used to associate state with identified elements across separate frames.
1977 fn with_element_id<R>(
1978 &mut self,
1979 id: Option<impl Into<ElementId>>,
1980 f: impl FnOnce(&mut Self) -> R,
1981 ) -> R {
1982 if let Some(id) = id.map(Into::into) {
1983 let window = self.window_mut();
1984 window.element_id_stack.push(id.into());
1985 let result = f(self);
1986 let window: &mut Window = self.borrow_mut();
1987 window.element_id_stack.pop();
1988 result
1989 } else {
1990 f(self)
1991 }
1992 }
1993
1994 /// Invoke the given function with the given content mask after intersecting it
1995 /// with the current mask.
1996 fn with_content_mask<R>(
1997 &mut self,
1998 mask: Option<ContentMask<Pixels>>,
1999 f: impl FnOnce(&mut Self) -> R,
2000 ) -> R {
2001 if let Some(mask) = mask {
2002 let mask = mask.intersect(&self.content_mask());
2003 self.window_mut().next_frame.content_mask_stack.push(mask);
2004 let result = f(self);
2005 self.window_mut().next_frame.content_mask_stack.pop();
2006 result
2007 } else {
2008 f(self)
2009 }
2010 }
2011
2012 /// Invoke the given function with the content mask reset to that
2013 /// of the window.
2014 fn break_content_mask<R>(&mut self, f: impl FnOnce(&mut Self) -> R) -> R {
2015 let mask = ContentMask {
2016 bounds: Bounds {
2017 origin: Point::default(),
2018 size: self.window().viewport_size,
2019 },
2020 };
2021 self.window_mut().next_frame.content_mask_stack.push(mask);
2022 let result = f(self);
2023 self.window_mut().next_frame.content_mask_stack.pop();
2024 result
2025 }
2026
2027 /// Update the global element offset relative to the current offset. This is used to implement
2028 /// scrolling.
2029 fn with_element_offset<R>(
2030 &mut self,
2031 offset: Point<Pixels>,
2032 f: impl FnOnce(&mut Self) -> R,
2033 ) -> R {
2034 if offset.is_zero() {
2035 return f(self);
2036 };
2037
2038 let abs_offset = self.element_offset() + offset;
2039 self.with_absolute_element_offset(abs_offset, f)
2040 }
2041
2042 /// Update the global element offset based on the given offset. This is used to implement
2043 /// drag handles and other manual painting of elements.
2044 fn with_absolute_element_offset<R>(
2045 &mut self,
2046 offset: Point<Pixels>,
2047 f: impl FnOnce(&mut Self) -> R,
2048 ) -> R {
2049 self.window_mut()
2050 .next_frame
2051 .element_offset_stack
2052 .push(offset);
2053 let result = f(self);
2054 self.window_mut().next_frame.element_offset_stack.pop();
2055 result
2056 }
2057
2058 /// Obtain the current element offset.
2059 fn element_offset(&self) -> Point<Pixels> {
2060 self.window()
2061 .next_frame
2062 .element_offset_stack
2063 .last()
2064 .copied()
2065 .unwrap_or_default()
2066 }
2067
2068 /// Update or initialize state for an element with the given id that lives across multiple
2069 /// frames. If an element with this id existed in the rendered frame, its state will be passed
2070 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2071 /// when drawing the next frame.
2072 fn with_element_state<S, R>(
2073 &mut self,
2074 id: ElementId,
2075 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2076 ) -> R
2077 where
2078 S: 'static,
2079 {
2080 self.with_element_id(Some(id), |cx| {
2081 let global_id = cx.window().element_id_stack.clone();
2082
2083 if let Some(any) = cx
2084 .window_mut()
2085 .next_frame
2086 .element_states
2087 .remove(&global_id)
2088 .or_else(|| {
2089 cx.window_mut()
2090 .rendered_frame
2091 .element_states
2092 .remove(&global_id)
2093 })
2094 {
2095 let ElementStateBox {
2096 inner,
2097
2098 #[cfg(debug_assertions)]
2099 type_name
2100 } = any;
2101 // Using the extra inner option to avoid needing to reallocate a new box.
2102 let mut state_box = inner
2103 .downcast::<Option<S>>()
2104 .map_err(|_| {
2105 #[cfg(debug_assertions)]
2106 {
2107 anyhow!(
2108 "invalid element state type for id, requested_type {:?}, actual type: {:?}",
2109 std::any::type_name::<S>(),
2110 type_name
2111 )
2112 }
2113
2114 #[cfg(not(debug_assertions))]
2115 {
2116 anyhow!(
2117 "invalid element state type for id, requested_type {:?}",
2118 std::any::type_name::<S>(),
2119 )
2120 }
2121 })
2122 .unwrap();
2123
2124 // Actual: Option<AnyElement> <- View
2125 // Requested: () <- AnyElemet
2126 let state = state_box
2127 .take()
2128 .expect("element state is already on the stack");
2129 let (result, state) = f(Some(state), cx);
2130 state_box.replace(state);
2131 cx.window_mut()
2132 .next_frame
2133 .element_states
2134 .insert(global_id, ElementStateBox {
2135 inner: state_box,
2136
2137 #[cfg(debug_assertions)]
2138 type_name
2139 });
2140 result
2141 } else {
2142 let (result, state) = f(None, cx);
2143 cx.window_mut()
2144 .next_frame
2145 .element_states
2146 .insert(global_id,
2147 ElementStateBox {
2148 inner: Box::new(Some(state)),
2149
2150 #[cfg(debug_assertions)]
2151 type_name: std::any::type_name::<S>()
2152 }
2153
2154 );
2155 result
2156 }
2157 })
2158 }
2159
2160 /// Obtain the current content mask.
2161 fn content_mask(&self) -> ContentMask<Pixels> {
2162 self.window()
2163 .next_frame
2164 .content_mask_stack
2165 .last()
2166 .cloned()
2167 .unwrap_or_else(|| ContentMask {
2168 bounds: Bounds {
2169 origin: Point::default(),
2170 size: self.window().viewport_size,
2171 },
2172 })
2173 }
2174
2175 /// The size of an em for the base font of the application. Adjusting this value allows the
2176 /// UI to scale, just like zooming a web page.
2177 fn rem_size(&self) -> Pixels {
2178 self.window().rem_size
2179 }
2180}
2181
2182impl Borrow<Window> for WindowContext<'_> {
2183 fn borrow(&self) -> &Window {
2184 &self.window
2185 }
2186}
2187
2188impl BorrowMut<Window> for WindowContext<'_> {
2189 fn borrow_mut(&mut self) -> &mut Window {
2190 &mut self.window
2191 }
2192}
2193
2194impl<T> BorrowWindow for T where T: BorrowMut<AppContext> + BorrowMut<Window> {}
2195
2196pub struct ViewContext<'a, V> {
2197 window_cx: WindowContext<'a>,
2198 view: &'a View<V>,
2199}
2200
2201impl<V> Borrow<AppContext> for ViewContext<'_, V> {
2202 fn borrow(&self) -> &AppContext {
2203 &*self.window_cx.app
2204 }
2205}
2206
2207impl<V> BorrowMut<AppContext> for ViewContext<'_, V> {
2208 fn borrow_mut(&mut self) -> &mut AppContext {
2209 &mut *self.window_cx.app
2210 }
2211}
2212
2213impl<V> Borrow<Window> for ViewContext<'_, V> {
2214 fn borrow(&self) -> &Window {
2215 &*self.window_cx.window
2216 }
2217}
2218
2219impl<V> BorrowMut<Window> for ViewContext<'_, V> {
2220 fn borrow_mut(&mut self) -> &mut Window {
2221 &mut *self.window_cx.window
2222 }
2223}
2224
2225impl<'a, V: 'static> ViewContext<'a, V> {
2226 pub(crate) fn new(app: &'a mut AppContext, window: &'a mut Window, view: &'a View<V>) -> Self {
2227 Self {
2228 window_cx: WindowContext::new(app, window),
2229 view,
2230 }
2231 }
2232
2233 pub fn entity_id(&self) -> EntityId {
2234 self.view.entity_id()
2235 }
2236
2237 pub fn view(&self) -> &View<V> {
2238 self.view
2239 }
2240
2241 pub fn model(&self) -> &Model<V> {
2242 &self.view.model
2243 }
2244
2245 /// Access the underlying window context.
2246 pub fn window_context(&mut self) -> &mut WindowContext<'a> {
2247 &mut self.window_cx
2248 }
2249
2250 pub fn with_z_index<R>(&mut self, z_index: u8, f: impl FnOnce(&mut Self) -> R) -> R {
2251 self.window.next_frame.z_index_stack.push(z_index);
2252 let result = f(self);
2253 self.window.next_frame.z_index_stack.pop();
2254 result
2255 }
2256
2257 pub fn on_next_frame(&mut self, f: impl FnOnce(&mut V, &mut ViewContext<V>) + 'static)
2258 where
2259 V: 'static,
2260 {
2261 let view = self.view().clone();
2262 self.window_cx.on_next_frame(move |cx| view.update(cx, f));
2263 }
2264
2265 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
2266 /// that are currently on the stack to be returned to the app.
2267 pub fn defer(&mut self, f: impl FnOnce(&mut V, &mut ViewContext<V>) + 'static) {
2268 let view = self.view().downgrade();
2269 self.window_cx.defer(move |cx| {
2270 view.update(cx, f).ok();
2271 });
2272 }
2273
2274 pub fn observe<V2, E>(
2275 &mut self,
2276 entity: &E,
2277 mut on_notify: impl FnMut(&mut V, E, &mut ViewContext<'_, V>) + 'static,
2278 ) -> Subscription
2279 where
2280 V2: 'static,
2281 V: 'static,
2282 E: Entity<V2>,
2283 {
2284 let view = self.view().downgrade();
2285 let entity_id = entity.entity_id();
2286 let entity = entity.downgrade();
2287 let window_handle = self.window.handle;
2288 let (subscription, activate) = self.app.observers.insert(
2289 entity_id,
2290 Box::new(move |cx| {
2291 window_handle
2292 .update(cx, |_, cx| {
2293 if let Some(handle) = E::upgrade_from(&entity) {
2294 view.update(cx, |this, cx| on_notify(this, handle, cx))
2295 .is_ok()
2296 } else {
2297 false
2298 }
2299 })
2300 .unwrap_or(false)
2301 }),
2302 );
2303 self.app.defer(move |_| activate());
2304 subscription
2305 }
2306
2307 pub fn subscribe<V2, E, Evt>(
2308 &mut self,
2309 entity: &E,
2310 mut on_event: impl FnMut(&mut V, E, &Evt, &mut ViewContext<'_, V>) + 'static,
2311 ) -> Subscription
2312 where
2313 V2: EventEmitter<Evt>,
2314 E: Entity<V2>,
2315 Evt: 'static,
2316 {
2317 let view = self.view().downgrade();
2318 let entity_id = entity.entity_id();
2319 let handle = entity.downgrade();
2320 let window_handle = self.window.handle;
2321 let (subscription, activate) = self.app.event_listeners.insert(
2322 entity_id,
2323 (
2324 TypeId::of::<Evt>(),
2325 Box::new(move |event, cx| {
2326 window_handle
2327 .update(cx, |_, cx| {
2328 if let Some(handle) = E::upgrade_from(&handle) {
2329 let event = event.downcast_ref().expect("invalid event type");
2330 view.update(cx, |this, cx| on_event(this, handle, event, cx))
2331 .is_ok()
2332 } else {
2333 false
2334 }
2335 })
2336 .unwrap_or(false)
2337 }),
2338 ),
2339 );
2340 self.app.defer(move |_| activate());
2341 subscription
2342 }
2343
2344 pub fn on_release(
2345 &mut self,
2346 on_release: impl FnOnce(&mut V, &mut WindowContext) + 'static,
2347 ) -> Subscription {
2348 let window_handle = self.window.handle;
2349 let (subscription, activate) = self.app.release_listeners.insert(
2350 self.view.model.entity_id,
2351 Box::new(move |this, cx| {
2352 let this = this.downcast_mut().expect("invalid entity type");
2353 let _ = window_handle.update(cx, |_, cx| on_release(this, cx));
2354 }),
2355 );
2356 activate();
2357 subscription
2358 }
2359
2360 pub fn observe_release<V2, E>(
2361 &mut self,
2362 entity: &E,
2363 mut on_release: impl FnMut(&mut V, &mut V2, &mut ViewContext<'_, V>) + 'static,
2364 ) -> Subscription
2365 where
2366 V: 'static,
2367 V2: 'static,
2368 E: Entity<V2>,
2369 {
2370 let view = self.view().downgrade();
2371 let entity_id = entity.entity_id();
2372 let window_handle = self.window.handle;
2373 let (subscription, activate) = self.app.release_listeners.insert(
2374 entity_id,
2375 Box::new(move |entity, cx| {
2376 let entity = entity.downcast_mut().expect("invalid entity type");
2377 let _ = window_handle.update(cx, |_, cx| {
2378 view.update(cx, |this, cx| on_release(this, entity, cx))
2379 });
2380 }),
2381 );
2382 activate();
2383 subscription
2384 }
2385
2386 pub fn notify(&mut self) {
2387 if !self.window.drawing {
2388 self.window_cx.notify();
2389 self.window_cx.app.push_effect(Effect::Notify {
2390 emitter: self.view.model.entity_id,
2391 });
2392 }
2393 }
2394
2395 pub fn observe_window_bounds(
2396 &mut self,
2397 mut callback: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2398 ) -> Subscription {
2399 let view = self.view.downgrade();
2400 let (subscription, activate) = self.window.bounds_observers.insert(
2401 (),
2402 Box::new(move |cx| view.update(cx, |view, cx| callback(view, cx)).is_ok()),
2403 );
2404 activate();
2405 subscription
2406 }
2407
2408 pub fn observe_window_activation(
2409 &mut self,
2410 mut callback: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2411 ) -> Subscription {
2412 let view = self.view.downgrade();
2413 let (subscription, activate) = self.window.activation_observers.insert(
2414 (),
2415 Box::new(move |cx| view.update(cx, |view, cx| callback(view, cx)).is_ok()),
2416 );
2417 activate();
2418 subscription
2419 }
2420
2421 /// Register a listener to be called when the given focus handle receives focus.
2422 /// Unlike [on_focus_changed], returns a subscription and persists until the subscription
2423 /// is dropped.
2424 pub fn on_focus(
2425 &mut self,
2426 handle: &FocusHandle,
2427 mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2428 ) -> Subscription {
2429 let view = self.view.downgrade();
2430 let focus_id = handle.id;
2431 let (subscription, activate) = self.window.focus_listeners.insert(
2432 (),
2433 Box::new(move |event, cx| {
2434 view.update(cx, |view, cx| {
2435 if event.previous_focus_path.last() != Some(&focus_id)
2436 && event.current_focus_path.last() == Some(&focus_id)
2437 {
2438 listener(view, cx)
2439 }
2440 })
2441 .is_ok()
2442 }),
2443 );
2444 self.app.defer(move |_| activate());
2445 subscription
2446 }
2447
2448 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
2449 /// Unlike [on_focus_changed], returns a subscription and persists until the subscription
2450 /// is dropped.
2451 pub fn on_focus_in(
2452 &mut self,
2453 handle: &FocusHandle,
2454 mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2455 ) -> Subscription {
2456 let view = self.view.downgrade();
2457 let focus_id = handle.id;
2458 let (subscription, activate) = self.window.focus_listeners.insert(
2459 (),
2460 Box::new(move |event, cx| {
2461 view.update(cx, |view, cx| {
2462 if !event.previous_focus_path.contains(&focus_id)
2463 && event.current_focus_path.contains(&focus_id)
2464 {
2465 listener(view, cx)
2466 }
2467 })
2468 .is_ok()
2469 }),
2470 );
2471 self.app.defer(move |_| activate());
2472 subscription
2473 }
2474
2475 /// Register a listener to be called when the given focus handle loses focus.
2476 /// Unlike [on_focus_changed], returns a subscription and persists until the subscription
2477 /// is dropped.
2478 pub fn on_blur(
2479 &mut self,
2480 handle: &FocusHandle,
2481 mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2482 ) -> Subscription {
2483 let view = self.view.downgrade();
2484 let focus_id = handle.id;
2485 let (subscription, activate) = self.window.focus_listeners.insert(
2486 (),
2487 Box::new(move |event, cx| {
2488 view.update(cx, |view, cx| {
2489 if event.previous_focus_path.last() == Some(&focus_id)
2490 && event.current_focus_path.last() != Some(&focus_id)
2491 {
2492 listener(view, cx)
2493 }
2494 })
2495 .is_ok()
2496 }),
2497 );
2498 self.app.defer(move |_| activate());
2499 subscription
2500 }
2501
2502 /// Register a listener to be called when the window loses focus.
2503 /// Unlike [on_focus_changed], returns a subscription and persists until the subscription
2504 /// is dropped.
2505 pub fn on_blur_window(
2506 &mut self,
2507 mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2508 ) -> Subscription {
2509 let view = self.view.downgrade();
2510 let (subscription, activate) = self.window.blur_listeners.insert(
2511 (),
2512 Box::new(move |cx| view.update(cx, |view, cx| listener(view, cx)).is_ok()),
2513 );
2514 activate();
2515 subscription
2516 }
2517
2518 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
2519 /// Unlike [on_focus_changed], returns a subscription and persists until the subscription
2520 /// is dropped.
2521 pub fn on_focus_out(
2522 &mut self,
2523 handle: &FocusHandle,
2524 mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2525 ) -> Subscription {
2526 let view = self.view.downgrade();
2527 let focus_id = handle.id;
2528 let (subscription, activate) = self.window.focus_listeners.insert(
2529 (),
2530 Box::new(move |event, cx| {
2531 view.update(cx, |view, cx| {
2532 if event.previous_focus_path.contains(&focus_id)
2533 && !event.current_focus_path.contains(&focus_id)
2534 {
2535 listener(view, cx)
2536 }
2537 })
2538 .is_ok()
2539 }),
2540 );
2541 self.app.defer(move |_| activate());
2542 subscription
2543 }
2544
2545 pub fn spawn<Fut, R>(
2546 &mut self,
2547 f: impl FnOnce(WeakView<V>, AsyncWindowContext) -> Fut,
2548 ) -> Task<R>
2549 where
2550 R: 'static,
2551 Fut: Future<Output = R> + 'static,
2552 {
2553 let view = self.view().downgrade();
2554 self.window_cx.spawn(|cx| f(view, cx))
2555 }
2556
2557 pub fn update_global<G, R>(&mut self, f: impl FnOnce(&mut G, &mut Self) -> R) -> R
2558 where
2559 G: 'static,
2560 {
2561 let mut global = self.app.lease_global::<G>();
2562 let result = f(&mut global, self);
2563 self.app.end_global_lease(global);
2564 result
2565 }
2566
2567 pub fn observe_global<G: 'static>(
2568 &mut self,
2569 mut f: impl FnMut(&mut V, &mut ViewContext<'_, V>) + 'static,
2570 ) -> Subscription {
2571 let window_handle = self.window.handle;
2572 let view = self.view().downgrade();
2573 let (subscription, activate) = self.global_observers.insert(
2574 TypeId::of::<G>(),
2575 Box::new(move |cx| {
2576 window_handle
2577 .update(cx, |_, cx| view.update(cx, |view, cx| f(view, cx)).is_ok())
2578 .unwrap_or(false)
2579 }),
2580 );
2581 self.app.defer(move |_| activate());
2582 subscription
2583 }
2584
2585 pub fn on_mouse_event<Event: 'static>(
2586 &mut self,
2587 handler: impl Fn(&mut V, &Event, DispatchPhase, &mut ViewContext<V>) + 'static,
2588 ) {
2589 let handle = self.view().clone();
2590 self.window_cx.on_mouse_event(move |event, phase, cx| {
2591 handle.update(cx, |view, cx| {
2592 handler(view, event, phase, cx);
2593 })
2594 });
2595 }
2596
2597 pub fn on_key_event<Event: 'static>(
2598 &mut self,
2599 handler: impl Fn(&mut V, &Event, DispatchPhase, &mut ViewContext<V>) + 'static,
2600 ) {
2601 let handle = self.view().clone();
2602 self.window_cx.on_key_event(move |event, phase, cx| {
2603 handle.update(cx, |view, cx| {
2604 handler(view, event, phase, cx);
2605 })
2606 });
2607 }
2608
2609 pub fn on_action(
2610 &mut self,
2611 action_type: TypeId,
2612 listener: impl Fn(&mut V, &dyn Any, DispatchPhase, &mut ViewContext<V>) + 'static,
2613 ) {
2614 let handle = self.view().clone();
2615 self.window_cx
2616 .on_action(action_type, move |action, phase, cx| {
2617 handle.update(cx, |view, cx| {
2618 listener(view, action, phase, cx);
2619 })
2620 });
2621 }
2622
2623 pub fn emit<Evt>(&mut self, event: Evt)
2624 where
2625 Evt: 'static,
2626 V: EventEmitter<Evt>,
2627 {
2628 let emitter = self.view.model.entity_id;
2629 self.app.push_effect(Effect::Emit {
2630 emitter,
2631 event_type: TypeId::of::<Evt>(),
2632 event: Box::new(event),
2633 });
2634 }
2635
2636 pub fn focus_self(&mut self)
2637 where
2638 V: FocusableView,
2639 {
2640 self.defer(|view, cx| view.focus_handle(cx).focus(cx))
2641 }
2642
2643 pub fn dismiss_self(&mut self)
2644 where
2645 V: ManagedView,
2646 {
2647 self.defer(|_, cx| cx.emit(DismissEvent))
2648 }
2649
2650 pub fn listener<E>(
2651 &self,
2652 f: impl Fn(&mut V, &E, &mut ViewContext<V>) + 'static,
2653 ) -> impl Fn(&E, &mut WindowContext) + 'static {
2654 let view = self.view().downgrade();
2655 move |e: &E, cx: &mut WindowContext| {
2656 view.update(cx, |view, cx| f(view, e, cx)).ok();
2657 }
2658 }
2659}
2660
2661impl<V> Context for ViewContext<'_, V> {
2662 type Result<U> = U;
2663
2664 fn build_model<T: 'static>(
2665 &mut self,
2666 build_model: impl FnOnce(&mut ModelContext<'_, T>) -> T,
2667 ) -> Model<T> {
2668 self.window_cx.build_model(build_model)
2669 }
2670
2671 fn update_model<T: 'static, R>(
2672 &mut self,
2673 model: &Model<T>,
2674 update: impl FnOnce(&mut T, &mut ModelContext<'_, T>) -> R,
2675 ) -> R {
2676 self.window_cx.update_model(model, update)
2677 }
2678
2679 fn update_window<T, F>(&mut self, window: AnyWindowHandle, update: F) -> Result<T>
2680 where
2681 F: FnOnce(AnyView, &mut WindowContext<'_>) -> T,
2682 {
2683 self.window_cx.update_window(window, update)
2684 }
2685
2686 fn read_model<T, R>(
2687 &self,
2688 handle: &Model<T>,
2689 read: impl FnOnce(&T, &AppContext) -> R,
2690 ) -> Self::Result<R>
2691 where
2692 T: 'static,
2693 {
2694 self.window_cx.read_model(handle, read)
2695 }
2696
2697 fn read_window<T, R>(
2698 &self,
2699 window: &WindowHandle<T>,
2700 read: impl FnOnce(View<T>, &AppContext) -> R,
2701 ) -> Result<R>
2702 where
2703 T: 'static,
2704 {
2705 self.window_cx.read_window(window, read)
2706 }
2707}
2708
2709impl<V: 'static> VisualContext for ViewContext<'_, V> {
2710 fn build_view<W: Render + 'static>(
2711 &mut self,
2712 build_view_state: impl FnOnce(&mut ViewContext<'_, W>) -> W,
2713 ) -> Self::Result<View<W>> {
2714 self.window_cx.build_view(build_view_state)
2715 }
2716
2717 fn update_view<V2: 'static, R>(
2718 &mut self,
2719 view: &View<V2>,
2720 update: impl FnOnce(&mut V2, &mut ViewContext<'_, V2>) -> R,
2721 ) -> Self::Result<R> {
2722 self.window_cx.update_view(view, update)
2723 }
2724
2725 fn replace_root_view<W>(
2726 &mut self,
2727 build_view: impl FnOnce(&mut ViewContext<'_, W>) -> W,
2728 ) -> Self::Result<View<W>>
2729 where
2730 W: 'static + Render,
2731 {
2732 self.window_cx.replace_root_view(build_view)
2733 }
2734
2735 fn focus_view<W: FocusableView>(&mut self, view: &View<W>) -> Self::Result<()> {
2736 self.window_cx.focus_view(view)
2737 }
2738
2739 fn dismiss_view<W: ManagedView>(&mut self, view: &View<W>) -> Self::Result<()> {
2740 self.window_cx.dismiss_view(view)
2741 }
2742}
2743
2744impl<'a, V> std::ops::Deref for ViewContext<'a, V> {
2745 type Target = WindowContext<'a>;
2746
2747 fn deref(&self) -> &Self::Target {
2748 &self.window_cx
2749 }
2750}
2751
2752impl<'a, V> std::ops::DerefMut for ViewContext<'a, V> {
2753 fn deref_mut(&mut self) -> &mut Self::Target {
2754 &mut self.window_cx
2755 }
2756}
2757
2758// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
2759slotmap::new_key_type! { pub struct WindowId; }
2760
2761impl WindowId {
2762 pub fn as_u64(&self) -> u64 {
2763 self.0.as_ffi()
2764 }
2765}
2766
2767#[derive(Deref, DerefMut)]
2768pub struct WindowHandle<V> {
2769 #[deref]
2770 #[deref_mut]
2771 pub(crate) any_handle: AnyWindowHandle,
2772 state_type: PhantomData<V>,
2773}
2774
2775impl<V: 'static + Render> WindowHandle<V> {
2776 pub fn new(id: WindowId) -> Self {
2777 WindowHandle {
2778 any_handle: AnyWindowHandle {
2779 id,
2780 state_type: TypeId::of::<V>(),
2781 },
2782 state_type: PhantomData,
2783 }
2784 }
2785
2786 pub fn root<C>(&self, cx: &mut C) -> Result<View<V>>
2787 where
2788 C: Context,
2789 {
2790 Flatten::flatten(cx.update_window(self.any_handle, |root_view, _| {
2791 root_view
2792 .downcast::<V>()
2793 .map_err(|_| anyhow!("the type of the window's root view has changed"))
2794 }))
2795 }
2796
2797 pub fn update<C, R>(
2798 &self,
2799 cx: &mut C,
2800 update: impl FnOnce(&mut V, &mut ViewContext<'_, V>) -> R,
2801 ) -> Result<R>
2802 where
2803 C: Context,
2804 {
2805 cx.update_window(self.any_handle, |root_view, cx| {
2806 let view = root_view
2807 .downcast::<V>()
2808 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
2809 Ok(cx.update_view(&view, update))
2810 })?
2811 }
2812
2813 pub fn read<'a>(&self, cx: &'a AppContext) -> Result<&'a V> {
2814 let x = cx
2815 .windows
2816 .get(self.id)
2817 .and_then(|window| {
2818 window
2819 .as_ref()
2820 .and_then(|window| window.root_view.clone())
2821 .map(|root_view| root_view.downcast::<V>())
2822 })
2823 .ok_or_else(|| anyhow!("window not found"))?
2824 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
2825
2826 Ok(x.read(cx))
2827 }
2828
2829 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &AppContext) -> R) -> Result<R>
2830 where
2831 C: Context,
2832 {
2833 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
2834 }
2835
2836 pub fn root_view<C>(&self, cx: &C) -> Result<View<V>>
2837 where
2838 C: Context,
2839 {
2840 cx.read_window(self, |root_view, _cx| root_view.clone())
2841 }
2842
2843 pub fn is_active(&self, cx: &AppContext) -> Option<bool> {
2844 cx.windows
2845 .get(self.id)
2846 .and_then(|window| window.as_ref().map(|window| window.active))
2847 }
2848}
2849
2850impl<V> Copy for WindowHandle<V> {}
2851
2852impl<V> Clone for WindowHandle<V> {
2853 fn clone(&self) -> Self {
2854 WindowHandle {
2855 any_handle: self.any_handle,
2856 state_type: PhantomData,
2857 }
2858 }
2859}
2860
2861impl<V> PartialEq for WindowHandle<V> {
2862 fn eq(&self, other: &Self) -> bool {
2863 self.any_handle == other.any_handle
2864 }
2865}
2866
2867impl<V> Eq for WindowHandle<V> {}
2868
2869impl<V> Hash for WindowHandle<V> {
2870 fn hash<H: Hasher>(&self, state: &mut H) {
2871 self.any_handle.hash(state);
2872 }
2873}
2874
2875impl<V: 'static> Into<AnyWindowHandle> for WindowHandle<V> {
2876 fn into(self) -> AnyWindowHandle {
2877 self.any_handle
2878 }
2879}
2880
2881#[derive(Copy, Clone, PartialEq, Eq, Hash)]
2882pub struct AnyWindowHandle {
2883 pub(crate) id: WindowId,
2884 state_type: TypeId,
2885}
2886
2887impl AnyWindowHandle {
2888 pub fn window_id(&self) -> WindowId {
2889 self.id
2890 }
2891
2892 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
2893 if TypeId::of::<T>() == self.state_type {
2894 Some(WindowHandle {
2895 any_handle: *self,
2896 state_type: PhantomData,
2897 })
2898 } else {
2899 None
2900 }
2901 }
2902
2903 pub fn update<C, R>(
2904 self,
2905 cx: &mut C,
2906 update: impl FnOnce(AnyView, &mut WindowContext<'_>) -> R,
2907 ) -> Result<R>
2908 where
2909 C: Context,
2910 {
2911 cx.update_window(self, update)
2912 }
2913
2914 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(View<T>, &AppContext) -> R) -> Result<R>
2915 where
2916 C: Context,
2917 T: 'static,
2918 {
2919 let view = self
2920 .downcast::<T>()
2921 .context("the type of the window's root view has changed")?;
2922
2923 cx.read_window(&view, read)
2924 }
2925}
2926
2927// #[cfg(any(test, feature = "test-support"))]
2928// impl From<SmallVec<[u32; 16]>> for StackingOrder {
2929// fn from(small_vec: SmallVec<[u32; 16]>) -> Self {
2930// StackingOrder(small_vec)
2931// }
2932// }
2933
2934#[derive(Clone, Debug, Eq, PartialEq, Hash)]
2935pub enum ElementId {
2936 View(EntityId),
2937 Integer(usize),
2938 Name(SharedString),
2939 FocusHandle(FocusId),
2940 NamedInteger(SharedString, usize),
2941}
2942
2943impl ElementId {
2944 pub(crate) fn from_entity_id(entity_id: EntityId) -> Self {
2945 ElementId::View(entity_id)
2946 }
2947}
2948
2949impl TryInto<SharedString> for ElementId {
2950 type Error = anyhow::Error;
2951
2952 fn try_into(self) -> anyhow::Result<SharedString> {
2953 if let ElementId::Name(name) = self {
2954 Ok(name)
2955 } else {
2956 Err(anyhow!("element id is not string"))
2957 }
2958 }
2959}
2960
2961impl From<usize> for ElementId {
2962 fn from(id: usize) -> Self {
2963 ElementId::Integer(id)
2964 }
2965}
2966
2967impl From<i32> for ElementId {
2968 fn from(id: i32) -> Self {
2969 Self::Integer(id as usize)
2970 }
2971}
2972
2973impl From<SharedString> for ElementId {
2974 fn from(name: SharedString) -> Self {
2975 ElementId::Name(name)
2976 }
2977}
2978
2979impl From<&'static str> for ElementId {
2980 fn from(name: &'static str) -> Self {
2981 ElementId::Name(name.into())
2982 }
2983}
2984
2985impl<'a> From<&'a FocusHandle> for ElementId {
2986 fn from(handle: &'a FocusHandle) -> Self {
2987 ElementId::FocusHandle(handle.id)
2988 }
2989}
2990
2991impl From<(&'static str, EntityId)> for ElementId {
2992 fn from((name, id): (&'static str, EntityId)) -> Self {
2993 ElementId::NamedInteger(name.into(), id.as_u64() as usize)
2994 }
2995}
2996
2997impl From<(&'static str, usize)> for ElementId {
2998 fn from((name, id): (&'static str, usize)) -> Self {
2999 ElementId::NamedInteger(name.into(), id)
3000 }
3001}
3002
3003impl From<(&'static str, u64)> for ElementId {
3004 fn from((name, id): (&'static str, u64)) -> Self {
3005 ElementId::NamedInteger(name.into(), id as usize)
3006 }
3007}
3008
3009/// A rectangle, to be rendered on the screen by GPUI at the given position and size.
3010pub struct PaintQuad {
3011 bounds: Bounds<Pixels>,
3012 corner_radii: Corners<Pixels>,
3013 background: Hsla,
3014 border_widths: Edges<Pixels>,
3015 border_color: Hsla,
3016}
3017
3018impl PaintQuad {
3019 /// Set the corner radii of the quad.
3020 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
3021 PaintQuad {
3022 corner_radii: corner_radii.into(),
3023 ..self
3024 }
3025 }
3026
3027 /// Set the border widths of the quad.
3028 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
3029 PaintQuad {
3030 border_widths: border_widths.into(),
3031 ..self
3032 }
3033 }
3034
3035 /// Set the border color of the quad.
3036 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
3037 PaintQuad {
3038 border_color: border_color.into(),
3039 ..self
3040 }
3041 }
3042
3043 /// Set the background color of the quad.
3044 pub fn background(self, background: impl Into<Hsla>) -> Self {
3045 PaintQuad {
3046 background: background.into(),
3047 ..self
3048 }
3049 }
3050}
3051
3052/// Create a quad with the given parameters.
3053pub fn quad(
3054 bounds: Bounds<Pixels>,
3055 corner_radii: impl Into<Corners<Pixels>>,
3056 background: impl Into<Hsla>,
3057 border_widths: impl Into<Edges<Pixels>>,
3058 border_color: impl Into<Hsla>,
3059) -> PaintQuad {
3060 PaintQuad {
3061 bounds,
3062 corner_radii: corner_radii.into(),
3063 background: background.into(),
3064 border_widths: border_widths.into(),
3065 border_color: border_color.into(),
3066 }
3067}
3068
3069/// Create a filled quad with the given bounds and background color.
3070pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Hsla>) -> PaintQuad {
3071 PaintQuad {
3072 bounds: bounds.into(),
3073 corner_radii: (0.).into(),
3074 background: background.into(),
3075 border_widths: (0.).into(),
3076 border_color: transparent_black(),
3077 }
3078}
3079
3080/// Create a rectangle outline with the given bounds, border color, and a 1px border width
3081pub fn outline(bounds: impl Into<Bounds<Pixels>>, border_color: impl Into<Hsla>) -> PaintQuad {
3082 PaintQuad {
3083 bounds: bounds.into(),
3084 corner_radii: (0.).into(),
3085 background: transparent_black(),
3086 border_widths: (1.).into(),
3087 border_color: border_color.into(),
3088 }
3089}