1#[cfg(any(feature = "inspector", debug_assertions))]
2use crate::Inspector;
3use crate::{
4 Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
5 AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Capslock,
6 Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
7 DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
8 FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
9 KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
10 LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
11 MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
12 PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptButton, PromptLevel, Quad,
13 Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge,
14 SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS, ScaledPixels, Scene, Shadow, SharedString, Size,
15 StrikethroughStyle, Style, SubscriberSet, Subscription, TaffyLayoutEngine, Task, TextStyle,
16 TextStyleRefinement, TransformationMatrix, Underline, UnderlineStyle, WindowAppearance,
17 WindowBackgroundAppearance, WindowBounds, WindowControls, WindowDecorations, WindowOptions,
18 WindowParams, WindowTextSystem, point, prelude::*, px, rems, size, transparent_black,
19};
20use anyhow::{Context as _, Result, anyhow};
21use collections::{FxHashMap, FxHashSet};
22#[cfg(target_os = "macos")]
23use core_video::pixel_buffer::CVPixelBuffer;
24use derive_more::{Deref, DerefMut};
25use futures::FutureExt;
26use futures::channel::oneshot;
27use itertools::FoldWhile::{Continue, Done};
28use itertools::Itertools;
29use parking_lot::RwLock;
30use raw_window_handle::{HandleError, HasDisplayHandle, HasWindowHandle};
31use refineable::Refineable;
32use slotmap::SlotMap;
33use smallvec::SmallVec;
34use std::{
35 any::{Any, TypeId},
36 borrow::Cow,
37 cell::{Cell, RefCell},
38 cmp,
39 fmt::{Debug, Display},
40 hash::{Hash, Hasher},
41 marker::PhantomData,
42 mem,
43 ops::{DerefMut, Range},
44 rc::Rc,
45 sync::{
46 Arc, Weak,
47 atomic::{AtomicUsize, Ordering::SeqCst},
48 },
49 time::{Duration, Instant},
50};
51use util::post_inc;
52use util::{ResultExt, measure};
53use uuid::Uuid;
54
55mod prompts;
56
57use crate::util::atomic_incr_if_not_zero;
58pub use prompts::*;
59
60pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1024.), px(700.));
61
62/// Represents the two different phases when dispatching events.
63#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
64pub enum DispatchPhase {
65 /// After the capture phase comes the bubble phase, in which mouse event listeners are
66 /// invoked front to back and keyboard event listeners are invoked from the focused element
67 /// to the root of the element tree. This is the phase you'll most commonly want to use when
68 /// registering event listeners.
69 #[default]
70 Bubble,
71 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
72 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
73 /// is used for special purposes such as clearing the "pressed" state for click events. If
74 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
75 /// outside of the immediate region may rely on detecting non-local events during this phase.
76 Capture,
77}
78
79impl DispatchPhase {
80 /// Returns true if this represents the "bubble" phase.
81 pub fn bubble(self) -> bool {
82 self == DispatchPhase::Bubble
83 }
84
85 /// Returns true if this represents the "capture" phase.
86 pub fn capture(self) -> bool {
87 self == DispatchPhase::Capture
88 }
89}
90
91struct WindowInvalidatorInner {
92 pub dirty: bool,
93 pub draw_phase: DrawPhase,
94 pub dirty_views: FxHashSet<EntityId>,
95}
96
97#[derive(Clone)]
98pub(crate) struct WindowInvalidator {
99 inner: Rc<RefCell<WindowInvalidatorInner>>,
100}
101
102impl WindowInvalidator {
103 pub fn new() -> Self {
104 WindowInvalidator {
105 inner: Rc::new(RefCell::new(WindowInvalidatorInner {
106 dirty: true,
107 draw_phase: DrawPhase::None,
108 dirty_views: FxHashSet::default(),
109 })),
110 }
111 }
112
113 pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
114 let mut inner = self.inner.borrow_mut();
115 inner.dirty_views.insert(entity);
116 if inner.draw_phase == DrawPhase::None {
117 inner.dirty = true;
118 cx.push_effect(Effect::Notify { emitter: entity });
119 true
120 } else {
121 false
122 }
123 }
124
125 pub fn is_dirty(&self) -> bool {
126 self.inner.borrow().dirty
127 }
128
129 pub fn set_dirty(&self, dirty: bool) {
130 self.inner.borrow_mut().dirty = dirty
131 }
132
133 pub fn set_phase(&self, phase: DrawPhase) {
134 self.inner.borrow_mut().draw_phase = phase
135 }
136
137 pub fn take_views(&self) -> FxHashSet<EntityId> {
138 mem::take(&mut self.inner.borrow_mut().dirty_views)
139 }
140
141 pub fn replace_views(&self, views: FxHashSet<EntityId>) {
142 self.inner.borrow_mut().dirty_views = views;
143 }
144
145 pub fn not_drawing(&self) -> bool {
146 self.inner.borrow().draw_phase == DrawPhase::None
147 }
148
149 #[track_caller]
150 pub fn debug_assert_paint(&self) {
151 debug_assert!(
152 matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
153 "this method can only be called during paint"
154 );
155 }
156
157 #[track_caller]
158 pub fn debug_assert_prepaint(&self) {
159 debug_assert!(
160 matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
161 "this method can only be called during request_layout, or prepaint"
162 );
163 }
164
165 #[track_caller]
166 pub fn debug_assert_paint_or_prepaint(&self) {
167 debug_assert!(
168 matches!(
169 self.inner.borrow().draw_phase,
170 DrawPhase::Paint | DrawPhase::Prepaint
171 ),
172 "this method can only be called during request_layout, prepaint, or paint"
173 );
174 }
175}
176
177type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
178
179pub(crate) type AnyWindowFocusListener =
180 Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
181
182pub(crate) struct WindowFocusEvent {
183 pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
184 pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
185}
186
187impl WindowFocusEvent {
188 pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
189 !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
190 }
191
192 pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
193 self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
194 }
195}
196
197/// This is provided when subscribing for `Context::on_focus_out` events.
198pub struct FocusOutEvent {
199 /// A weak focus handle representing what was blurred.
200 pub blurred: WeakFocusHandle,
201}
202
203slotmap::new_key_type! {
204 /// A globally unique identifier for a focusable element.
205 pub struct FocusId;
206}
207
208thread_local! {
209 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(1024 * 1024));
210}
211
212/// Returned when the element arena has been used and so must be cleared before the next draw.
213#[must_use]
214pub struct ArenaClearNeeded;
215
216impl ArenaClearNeeded {
217 /// Clear the element arena.
218 pub fn clear(self) {
219 ELEMENT_ARENA.with_borrow_mut(|element_arena| {
220 element_arena.clear();
221 });
222 }
223}
224
225pub(crate) type FocusMap = RwLock<SlotMap<FocusId, AtomicUsize>>;
226
227impl FocusId {
228 /// Obtains whether the element associated with this handle is currently focused.
229 pub fn is_focused(&self, window: &Window) -> bool {
230 window.focus == Some(*self)
231 }
232
233 /// Obtains whether the element associated with this handle contains the focused
234 /// element or is itself focused.
235 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
236 window
237 .focused(cx)
238 .map_or(false, |focused| self.contains(focused.id, window))
239 }
240
241 /// Obtains whether the element associated with this handle is contained within the
242 /// focused element or is itself focused.
243 pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
244 let focused = window.focused(cx);
245 focused.map_or(false, |focused| focused.id.contains(*self, window))
246 }
247
248 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
249 pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
250 window
251 .rendered_frame
252 .dispatch_tree
253 .focus_contains(*self, other)
254 }
255}
256
257/// A handle which can be used to track and manipulate the focused element in a window.
258pub struct FocusHandle {
259 pub(crate) id: FocusId,
260 handles: Arc<FocusMap>,
261}
262
263impl std::fmt::Debug for FocusHandle {
264 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
265 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
266 }
267}
268
269impl FocusHandle {
270 pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
271 let id = handles.write().insert(AtomicUsize::new(1));
272 Self {
273 id,
274 handles: handles.clone(),
275 }
276 }
277
278 pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
279 let lock = handles.read();
280 let ref_count = lock.get(id)?;
281 if atomic_incr_if_not_zero(ref_count) == 0 {
282 return None;
283 }
284 Some(Self {
285 id,
286 handles: handles.clone(),
287 })
288 }
289
290 /// Converts this focus handle into a weak variant, which does not prevent it from being released.
291 pub fn downgrade(&self) -> WeakFocusHandle {
292 WeakFocusHandle {
293 id: self.id,
294 handles: Arc::downgrade(&self.handles),
295 }
296 }
297
298 /// Moves the focus to the element associated with this handle.
299 pub fn focus(&self, window: &mut Window) {
300 window.focus(self)
301 }
302
303 /// Obtains whether the element associated with this handle is currently focused.
304 pub fn is_focused(&self, window: &Window) -> bool {
305 self.id.is_focused(window)
306 }
307
308 /// Obtains whether the element associated with this handle contains the focused
309 /// element or is itself focused.
310 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
311 self.id.contains_focused(window, cx)
312 }
313
314 /// Obtains whether the element associated with this handle is contained within the
315 /// focused element or is itself focused.
316 pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
317 self.id.within_focused(window, cx)
318 }
319
320 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
321 pub fn contains(&self, other: &Self, window: &Window) -> bool {
322 self.id.contains(other.id, window)
323 }
324
325 /// Dispatch an action on the element that rendered this focus handle
326 pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
327 if let Some(node_id) = window
328 .rendered_frame
329 .dispatch_tree
330 .focusable_node_id(self.id)
331 {
332 window.dispatch_action_on_node(node_id, action, cx)
333 }
334 }
335}
336
337impl Clone for FocusHandle {
338 fn clone(&self) -> Self {
339 Self::for_id(self.id, &self.handles).unwrap()
340 }
341}
342
343impl PartialEq for FocusHandle {
344 fn eq(&self, other: &Self) -> bool {
345 self.id == other.id
346 }
347}
348
349impl Eq for FocusHandle {}
350
351impl Drop for FocusHandle {
352 fn drop(&mut self) {
353 self.handles
354 .read()
355 .get(self.id)
356 .unwrap()
357 .fetch_sub(1, SeqCst);
358 }
359}
360
361/// A weak reference to a focus handle.
362#[derive(Clone, Debug)]
363pub struct WeakFocusHandle {
364 pub(crate) id: FocusId,
365 pub(crate) handles: Weak<FocusMap>,
366}
367
368impl WeakFocusHandle {
369 /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
370 pub fn upgrade(&self) -> Option<FocusHandle> {
371 let handles = self.handles.upgrade()?;
372 FocusHandle::for_id(self.id, &handles)
373 }
374}
375
376impl PartialEq for WeakFocusHandle {
377 fn eq(&self, other: &WeakFocusHandle) -> bool {
378 self.id == other.id
379 }
380}
381
382impl Eq for WeakFocusHandle {}
383
384impl PartialEq<FocusHandle> for WeakFocusHandle {
385 fn eq(&self, other: &FocusHandle) -> bool {
386 self.id == other.id
387 }
388}
389
390impl PartialEq<WeakFocusHandle> for FocusHandle {
391 fn eq(&self, other: &WeakFocusHandle) -> bool {
392 self.id == other.id
393 }
394}
395
396/// Focusable allows users of your view to easily
397/// focus it (using window.focus_view(cx, view))
398pub trait Focusable: 'static {
399 /// Returns the focus handle associated with this view.
400 fn focus_handle(&self, cx: &App) -> FocusHandle;
401}
402
403impl<V: Focusable> Focusable for Entity<V> {
404 fn focus_handle(&self, cx: &App) -> FocusHandle {
405 self.read(cx).focus_handle(cx)
406 }
407}
408
409/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
410/// where the lifecycle of the view is handled by another view.
411pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
412
413impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
414
415/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
416pub struct DismissEvent;
417
418type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
419
420pub(crate) type AnyMouseListener =
421 Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
422
423#[derive(Clone)]
424pub(crate) struct CursorStyleRequest {
425 pub(crate) hitbox_id: Option<HitboxId>,
426 pub(crate) style: CursorStyle,
427}
428
429#[derive(Default, Eq, PartialEq)]
430pub(crate) struct HitTest {
431 pub(crate) ids: SmallVec<[HitboxId; 8]>,
432 pub(crate) hover_hitbox_count: usize,
433}
434
435/// A type of window control area that corresponds to the platform window.
436#[derive(Clone, Copy, Debug, Eq, PartialEq)]
437pub enum WindowControlArea {
438 /// An area that allows dragging of the platform window.
439 Drag,
440 /// An area that allows closing of the platform window.
441 Close,
442 /// An area that allows maximizing of the platform window.
443 Max,
444 /// An area that allows minimizing of the platform window.
445 Min,
446}
447
448/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
449#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
450pub struct HitboxId(u64);
451
452impl HitboxId {
453 /// Checks if the hitbox with this ID is currently hovered. Except when handling
454 /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
455 /// events or paint hover styles.
456 ///
457 /// See [`Hitbox::is_hovered`] for details.
458 pub fn is_hovered(self, window: &Window) -> bool {
459 let hit_test = &window.mouse_hit_test;
460 for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
461 if self == *id {
462 return true;
463 }
464 }
465 return false;
466 }
467
468 /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
469 /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
470 /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
471 /// this distinction.
472 pub fn should_handle_scroll(self, window: &Window) -> bool {
473 window.mouse_hit_test.ids.contains(&self)
474 }
475
476 fn next(mut self) -> HitboxId {
477 HitboxId(self.0.wrapping_add(1))
478 }
479}
480
481/// A rectangular region that potentially blocks hitboxes inserted prior.
482/// See [Window::insert_hitbox] for more details.
483#[derive(Clone, Debug, Deref)]
484pub struct Hitbox {
485 /// A unique identifier for the hitbox.
486 pub id: HitboxId,
487 /// The bounds of the hitbox.
488 #[deref]
489 pub bounds: Bounds<Pixels>,
490 /// The content mask when the hitbox was inserted.
491 pub content_mask: ContentMask<Pixels>,
492 /// Flags that specify hitbox behavior.
493 pub behavior: HitboxBehavior,
494}
495
496impl Hitbox {
497 /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
498 /// typically what you want when determining whether to handle mouse events or paint hover
499 /// styles.
500 ///
501 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
502 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
503 /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
504 ///
505 /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
506 /// Concretely, this is due to use-cases like overlays that cause the elements under to be
507 /// non-interactive while still allowing scrolling. More abstractly, this is because
508 /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
509 /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
510 /// container.
511 pub fn is_hovered(&self, window: &Window) -> bool {
512 self.id.is_hovered(window)
513 }
514
515 /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
516 /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
517 /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
518 ///
519 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
520 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
521 pub fn should_handle_scroll(&self, window: &Window) -> bool {
522 self.id.should_handle_scroll(window)
523 }
524}
525
526/// How the hitbox affects mouse behavior.
527#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
528pub enum HitboxBehavior {
529 /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
530 #[default]
531 Normal,
532
533 /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
534 /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
535 /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
536 /// [`InteractiveElement::occlude`].
537 ///
538 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
539 /// bubble-phase handler for every mouse event type:
540 ///
541 /// ```
542 /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
543 /// if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
544 /// cx.stop_propagation();
545 /// }
546 /// }
547 /// ```
548 ///
549 /// This has effects beyond event handling - any use of hitbox checking, such as hover
550 /// styles and tooltops. These other behaviors are the main point of this mechanism. An
551 /// alternative might be to not affect mouse event handling - but this would allow
552 /// inconsistent UI where clicks and moves interact with elements that are not considered to
553 /// be hovered.
554 BlockMouse,
555
556 /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
557 /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
558 /// interaction except scroll events to be ignored - see the documentation of
559 /// [`Hitbox::is_hovered`] for details. This flag is set by
560 /// [`InteractiveElement::block_mouse_except_scroll`].
561 ///
562 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
563 /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
564 ///
565 /// ```
566 /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, _cx| {
567 /// if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
568 /// cx.stop_propagation();
569 /// }
570 /// }
571 /// ```
572 ///
573 /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
574 /// handled differently than other mouse events. If also blocking these scroll events is
575 /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
576 ///
577 /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
578 /// hover styles and tooltops. These other behaviors are the main point of this mechanism.
579 /// An alternative might be to not affect mouse event handling - but this would allow
580 /// inconsistent UI where clicks and moves interact with elements that are not considered to
581 /// be hovered.
582 BlockMouseExceptScroll,
583}
584
585/// An identifier for a tooltip.
586#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
587pub struct TooltipId(usize);
588
589impl TooltipId {
590 /// Checks if the tooltip is currently hovered.
591 pub fn is_hovered(&self, window: &Window) -> bool {
592 window
593 .tooltip_bounds
594 .as_ref()
595 .map_or(false, |tooltip_bounds| {
596 tooltip_bounds.id == *self
597 && tooltip_bounds.bounds.contains(&window.mouse_position())
598 })
599 }
600}
601
602pub(crate) struct TooltipBounds {
603 id: TooltipId,
604 bounds: Bounds<Pixels>,
605}
606
607#[derive(Clone)]
608pub(crate) struct TooltipRequest {
609 id: TooltipId,
610 tooltip: AnyTooltip,
611}
612
613pub(crate) struct DeferredDraw {
614 current_view: EntityId,
615 priority: usize,
616 parent_node: DispatchNodeId,
617 element_id_stack: SmallVec<[ElementId; 32]>,
618 text_style_stack: Vec<TextStyleRefinement>,
619 element: Option<AnyElement>,
620 absolute_offset: Point<Pixels>,
621 prepaint_range: Range<PrepaintStateIndex>,
622 paint_range: Range<PaintIndex>,
623}
624
625pub(crate) struct Frame {
626 pub(crate) focus: Option<FocusId>,
627 pub(crate) window_active: bool,
628 pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
629 accessed_element_states: Vec<(GlobalElementId, TypeId)>,
630 pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
631 pub(crate) dispatch_tree: DispatchTree,
632 pub(crate) scene: Scene,
633 pub(crate) hitboxes: Vec<Hitbox>,
634 pub(crate) window_control_hitboxes: Vec<(WindowControlArea, Hitbox)>,
635 pub(crate) deferred_draws: Vec<DeferredDraw>,
636 pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
637 pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
638 pub(crate) cursor_styles: Vec<CursorStyleRequest>,
639 #[cfg(any(test, feature = "test-support"))]
640 pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
641 #[cfg(any(feature = "inspector", debug_assertions))]
642 pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
643 #[cfg(any(feature = "inspector", debug_assertions))]
644 pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
645}
646
647#[derive(Clone, Default)]
648pub(crate) struct PrepaintStateIndex {
649 hitboxes_index: usize,
650 tooltips_index: usize,
651 deferred_draws_index: usize,
652 dispatch_tree_index: usize,
653 accessed_element_states_index: usize,
654 line_layout_index: LineLayoutIndex,
655}
656
657#[derive(Clone, Default)]
658pub(crate) struct PaintIndex {
659 scene_index: usize,
660 mouse_listeners_index: usize,
661 input_handlers_index: usize,
662 cursor_styles_index: usize,
663 accessed_element_states_index: usize,
664 line_layout_index: LineLayoutIndex,
665}
666
667impl Frame {
668 pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
669 Frame {
670 focus: None,
671 window_active: false,
672 element_states: FxHashMap::default(),
673 accessed_element_states: Vec::new(),
674 mouse_listeners: Vec::new(),
675 dispatch_tree,
676 scene: Scene::default(),
677 hitboxes: Vec::new(),
678 window_control_hitboxes: Vec::new(),
679 deferred_draws: Vec::new(),
680 input_handlers: Vec::new(),
681 tooltip_requests: Vec::new(),
682 cursor_styles: Vec::new(),
683
684 #[cfg(any(test, feature = "test-support"))]
685 debug_bounds: FxHashMap::default(),
686
687 #[cfg(any(feature = "inspector", debug_assertions))]
688 next_inspector_instance_ids: FxHashMap::default(),
689
690 #[cfg(any(feature = "inspector", debug_assertions))]
691 inspector_hitboxes: FxHashMap::default(),
692 }
693 }
694
695 pub(crate) fn clear(&mut self) {
696 self.element_states.clear();
697 self.accessed_element_states.clear();
698 self.mouse_listeners.clear();
699 self.dispatch_tree.clear();
700 self.scene.clear();
701 self.input_handlers.clear();
702 self.tooltip_requests.clear();
703 self.cursor_styles.clear();
704 self.hitboxes.clear();
705 self.window_control_hitboxes.clear();
706 self.deferred_draws.clear();
707 self.focus = None;
708
709 #[cfg(any(feature = "inspector", debug_assertions))]
710 {
711 self.next_inspector_instance_ids.clear();
712 self.inspector_hitboxes.clear();
713 }
714 }
715
716 pub(crate) fn cursor_style(&self, window: &Window) -> Option<CursorStyle> {
717 self.cursor_styles
718 .iter()
719 .rev()
720 .fold_while(None, |style, request| match request.hitbox_id {
721 None => Done(Some(request.style)),
722 Some(hitbox_id) => Continue(
723 style.or_else(|| hitbox_id.is_hovered(window).then_some(request.style)),
724 ),
725 })
726 .into_inner()
727 }
728
729 pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
730 let mut set_hover_hitbox_count = false;
731 let mut hit_test = HitTest::default();
732 for hitbox in self.hitboxes.iter().rev() {
733 let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
734 if bounds.contains(&position) {
735 hit_test.ids.push(hitbox.id);
736 if !set_hover_hitbox_count
737 && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
738 {
739 hit_test.hover_hitbox_count = hit_test.ids.len();
740 set_hover_hitbox_count = true;
741 }
742 if hitbox.behavior == HitboxBehavior::BlockMouse {
743 break;
744 }
745 }
746 }
747 if !set_hover_hitbox_count {
748 hit_test.hover_hitbox_count = hit_test.ids.len();
749 }
750 hit_test
751 }
752
753 pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
754 self.focus
755 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
756 .unwrap_or_default()
757 }
758
759 pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
760 for element_state_key in &self.accessed_element_states {
761 if let Some((element_state_key, element_state)) =
762 prev_frame.element_states.remove_entry(element_state_key)
763 {
764 self.element_states.insert(element_state_key, element_state);
765 }
766 }
767
768 self.scene.finish();
769 }
770}
771
772/// Holds the state for a specific window.
773pub struct Window {
774 pub(crate) handle: AnyWindowHandle,
775 pub(crate) invalidator: WindowInvalidator,
776 pub(crate) removed: bool,
777 pub(crate) platform_window: Box<dyn PlatformWindow>,
778 display_id: Option<DisplayId>,
779 sprite_atlas: Arc<dyn PlatformAtlas>,
780 text_system: Arc<WindowTextSystem>,
781 rem_size: Pixels,
782 /// The stack of override values for the window's rem size.
783 ///
784 /// This is used by `with_rem_size` to allow rendering an element tree with
785 /// a given rem size.
786 rem_size_override_stack: SmallVec<[Pixels; 8]>,
787 pub(crate) viewport_size: Size<Pixels>,
788 layout_engine: Option<TaffyLayoutEngine>,
789 pub(crate) root: Option<AnyView>,
790 pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
791 pub(crate) text_style_stack: Vec<TextStyleRefinement>,
792 pub(crate) rendered_entity_stack: Vec<EntityId>,
793 pub(crate) element_offset_stack: Vec<Point<Pixels>>,
794 pub(crate) element_opacity: Option<f32>,
795 pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
796 pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
797 pub(crate) image_cache_stack: Vec<AnyImageCache>,
798 pub(crate) rendered_frame: Frame,
799 pub(crate) next_frame: Frame,
800 next_hitbox_id: HitboxId,
801 pub(crate) next_tooltip_id: TooltipId,
802 pub(crate) tooltip_bounds: Option<TooltipBounds>,
803 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
804 pub(crate) dirty_views: FxHashSet<EntityId>,
805 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
806 pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
807 default_prevented: bool,
808 mouse_position: Point<Pixels>,
809 mouse_hit_test: HitTest,
810 modifiers: Modifiers,
811 capslock: Capslock,
812 scale_factor: f32,
813 pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
814 appearance: WindowAppearance,
815 pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
816 active: Rc<Cell<bool>>,
817 hovered: Rc<Cell<bool>>,
818 pub(crate) needs_present: Rc<Cell<bool>>,
819 pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
820 pub(crate) refreshing: bool,
821 pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
822 pub(crate) focus: Option<FocusId>,
823 focus_enabled: bool,
824 pending_input: Option<PendingInput>,
825 pending_modifier: ModifierState,
826 pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
827 prompt: Option<RenderablePromptHandle>,
828 pub(crate) client_inset: Option<Pixels>,
829 #[cfg(any(feature = "inspector", debug_assertions))]
830 inspector: Option<Entity<Inspector>>,
831}
832
833#[derive(Clone, Debug, Default)]
834struct ModifierState {
835 modifiers: Modifiers,
836 saw_keystroke: bool,
837}
838
839#[derive(Clone, Copy, Debug, Eq, PartialEq)]
840pub(crate) enum DrawPhase {
841 None,
842 Prepaint,
843 Paint,
844 Focus,
845}
846
847#[derive(Default, Debug)]
848struct PendingInput {
849 keystrokes: SmallVec<[Keystroke; 1]>,
850 focus: Option<FocusId>,
851 timer: Option<Task<()>>,
852}
853
854pub(crate) struct ElementStateBox {
855 pub(crate) inner: Box<dyn Any>,
856 #[cfg(debug_assertions)]
857 pub(crate) type_name: &'static str,
858}
859
860fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> Bounds<Pixels> {
861 const DEFAULT_WINDOW_OFFSET: Point<Pixels> = point(px(0.), px(35.));
862
863 // TODO, BUG: if you open a window with the currently active window
864 // on the stack, this will erroneously select the 'unwrap_or_else'
865 // code path
866 cx.active_window()
867 .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok())
868 .map(|mut bounds| {
869 bounds.origin += DEFAULT_WINDOW_OFFSET;
870 bounds
871 })
872 .unwrap_or_else(|| {
873 let display = display_id
874 .map(|id| cx.find_display(id))
875 .unwrap_or_else(|| cx.primary_display());
876
877 display
878 .map(|display| display.default_bounds())
879 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE))
880 })
881}
882
883impl Window {
884 pub(crate) fn new(
885 handle: AnyWindowHandle,
886 options: WindowOptions,
887 cx: &mut App,
888 ) -> Result<Self> {
889 let WindowOptions {
890 window_bounds,
891 titlebar,
892 focus,
893 show,
894 kind,
895 is_movable,
896 display_id,
897 window_background,
898 app_id,
899 window_min_size,
900 window_decorations,
901 } = options;
902
903 let bounds = window_bounds
904 .map(|bounds| bounds.get_bounds())
905 .unwrap_or_else(|| default_bounds(display_id, cx));
906 let mut platform_window = cx.platform.open_window(
907 handle,
908 WindowParams {
909 bounds,
910 titlebar,
911 kind,
912 is_movable,
913 focus,
914 show,
915 display_id,
916 window_min_size,
917 },
918 )?;
919 let display_id = platform_window.display().map(|display| display.id());
920 let sprite_atlas = platform_window.sprite_atlas();
921 let mouse_position = platform_window.mouse_position();
922 let modifiers = platform_window.modifiers();
923 let capslock = platform_window.capslock();
924 let content_size = platform_window.content_size();
925 let scale_factor = platform_window.scale_factor();
926 let appearance = platform_window.appearance();
927 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
928 let invalidator = WindowInvalidator::new();
929 let active = Rc::new(Cell::new(platform_window.is_active()));
930 let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
931 let needs_present = Rc::new(Cell::new(false));
932 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
933 let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
934
935 platform_window
936 .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
937 platform_window.set_background_appearance(window_background);
938
939 if let Some(ref window_open_state) = window_bounds {
940 match window_open_state {
941 WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
942 WindowBounds::Maximized(_) => platform_window.zoom(),
943 WindowBounds::Windowed(_) => {}
944 }
945 }
946
947 platform_window.on_close(Box::new({
948 let mut cx = cx.to_async();
949 move || {
950 let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
951 }
952 }));
953 platform_window.on_request_frame(Box::new({
954 let mut cx = cx.to_async();
955 let invalidator = invalidator.clone();
956 let active = active.clone();
957 let needs_present = needs_present.clone();
958 let next_frame_callbacks = next_frame_callbacks.clone();
959 let last_input_timestamp = last_input_timestamp.clone();
960 move |request_frame_options| {
961 let next_frame_callbacks = next_frame_callbacks.take();
962 if !next_frame_callbacks.is_empty() {
963 handle
964 .update(&mut cx, |_, window, cx| {
965 for callback in next_frame_callbacks {
966 callback(window, cx);
967 }
968 })
969 .log_err();
970 }
971
972 // Keep presenting the current scene for 1 extra second since the
973 // last input to prevent the display from underclocking the refresh rate.
974 let needs_present = request_frame_options.require_presentation
975 || needs_present.get()
976 || (active.get()
977 && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
978
979 if invalidator.is_dirty() {
980 measure("frame duration", || {
981 handle
982 .update(&mut cx, |_, window, cx| {
983 let arena_clear_needed = window.draw(cx);
984 window.present();
985 // drop the arena elements after present to reduce latency
986 arena_clear_needed.clear();
987 })
988 .log_err();
989 })
990 } else if needs_present {
991 handle
992 .update(&mut cx, |_, window, _| window.present())
993 .log_err();
994 }
995
996 handle
997 .update(&mut cx, |_, window, _| {
998 window.complete_frame();
999 })
1000 .log_err();
1001 }
1002 }));
1003 platform_window.on_resize(Box::new({
1004 let mut cx = cx.to_async();
1005 move |_, _| {
1006 handle
1007 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1008 .log_err();
1009 }
1010 }));
1011 platform_window.on_moved(Box::new({
1012 let mut cx = cx.to_async();
1013 move || {
1014 handle
1015 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1016 .log_err();
1017 }
1018 }));
1019 platform_window.on_appearance_changed(Box::new({
1020 let mut cx = cx.to_async();
1021 move || {
1022 handle
1023 .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
1024 .log_err();
1025 }
1026 }));
1027 platform_window.on_active_status_change(Box::new({
1028 let mut cx = cx.to_async();
1029 move |active| {
1030 handle
1031 .update(&mut cx, |_, window, cx| {
1032 window.active.set(active);
1033 window.modifiers = window.platform_window.modifiers();
1034 window.capslock = window.platform_window.capslock();
1035 window
1036 .activation_observers
1037 .clone()
1038 .retain(&(), |callback| callback(window, cx));
1039 window.refresh();
1040 })
1041 .log_err();
1042 }
1043 }));
1044 platform_window.on_hover_status_change(Box::new({
1045 let mut cx = cx.to_async();
1046 move |active| {
1047 handle
1048 .update(&mut cx, |_, window, _| {
1049 window.hovered.set(active);
1050 window.refresh();
1051 })
1052 .log_err();
1053 }
1054 }));
1055 platform_window.on_input({
1056 let mut cx = cx.to_async();
1057 Box::new(move |event| {
1058 handle
1059 .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1060 .log_err()
1061 .unwrap_or(DispatchEventResult::default())
1062 })
1063 });
1064 platform_window.on_hit_test_window_control({
1065 let mut cx = cx.to_async();
1066 Box::new(move || {
1067 handle
1068 .update(&mut cx, |_, window, _cx| {
1069 for (area, hitbox) in &window.rendered_frame.window_control_hitboxes {
1070 if window.mouse_hit_test.ids.contains(&hitbox.id) {
1071 return Some(*area);
1072 }
1073 }
1074 None
1075 })
1076 .log_err()
1077 .unwrap_or(None)
1078 })
1079 });
1080
1081 if let Some(app_id) = app_id {
1082 platform_window.set_app_id(&app_id);
1083 }
1084
1085 platform_window.map_window().unwrap();
1086
1087 Ok(Window {
1088 handle,
1089 invalidator,
1090 removed: false,
1091 platform_window,
1092 display_id,
1093 sprite_atlas,
1094 text_system,
1095 rem_size: px(16.),
1096 rem_size_override_stack: SmallVec::new(),
1097 viewport_size: content_size,
1098 layout_engine: Some(TaffyLayoutEngine::new()),
1099 root: None,
1100 element_id_stack: SmallVec::default(),
1101 text_style_stack: Vec::new(),
1102 rendered_entity_stack: Vec::new(),
1103 element_offset_stack: Vec::new(),
1104 content_mask_stack: Vec::new(),
1105 element_opacity: None,
1106 requested_autoscroll: None,
1107 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1108 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1109 next_frame_callbacks,
1110 next_hitbox_id: HitboxId(0),
1111 next_tooltip_id: TooltipId::default(),
1112 tooltip_bounds: None,
1113 dirty_views: FxHashSet::default(),
1114 focus_listeners: SubscriberSet::new(),
1115 focus_lost_listeners: SubscriberSet::new(),
1116 default_prevented: true,
1117 mouse_position,
1118 mouse_hit_test: HitTest::default(),
1119 modifiers,
1120 capslock,
1121 scale_factor,
1122 bounds_observers: SubscriberSet::new(),
1123 appearance,
1124 appearance_observers: SubscriberSet::new(),
1125 active,
1126 hovered,
1127 needs_present,
1128 last_input_timestamp,
1129 refreshing: false,
1130 activation_observers: SubscriberSet::new(),
1131 focus: None,
1132 focus_enabled: true,
1133 pending_input: None,
1134 pending_modifier: ModifierState::default(),
1135 pending_input_observers: SubscriberSet::new(),
1136 prompt: None,
1137 client_inset: None,
1138 image_cache_stack: Vec::new(),
1139 #[cfg(any(feature = "inspector", debug_assertions))]
1140 inspector: None,
1141 })
1142 }
1143
1144 pub(crate) fn new_focus_listener(
1145 &self,
1146 value: AnyWindowFocusListener,
1147 ) -> (Subscription, impl FnOnce() + use<>) {
1148 self.focus_listeners.insert((), value)
1149 }
1150}
1151
1152#[derive(Clone, Debug, Default, PartialEq, Eq)]
1153pub(crate) struct DispatchEventResult {
1154 pub propagate: bool,
1155 pub default_prevented: bool,
1156}
1157
1158/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1159/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1160/// to leave room to support more complex shapes in the future.
1161#[derive(Clone, Debug, Default, PartialEq, Eq)]
1162#[repr(C)]
1163pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1164 /// The bounds
1165 pub bounds: Bounds<P>,
1166}
1167
1168impl ContentMask<Pixels> {
1169 /// Scale the content mask's pixel units by the given scaling factor.
1170 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1171 ContentMask {
1172 bounds: self.bounds.scale(factor),
1173 }
1174 }
1175
1176 /// Intersect the content mask with the given content mask.
1177 pub fn intersect(&self, other: &Self) -> Self {
1178 let bounds = self.bounds.intersect(&other.bounds);
1179 ContentMask { bounds }
1180 }
1181}
1182
1183impl Window {
1184 fn mark_view_dirty(&mut self, view_id: EntityId) {
1185 // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1186 // should already be dirty.
1187 for view_id in self
1188 .rendered_frame
1189 .dispatch_tree
1190 .view_path(view_id)
1191 .into_iter()
1192 .rev()
1193 {
1194 if !self.dirty_views.insert(view_id) {
1195 break;
1196 }
1197 }
1198 }
1199
1200 /// Registers a callback to be invoked when the window appearance changes.
1201 pub fn observe_window_appearance(
1202 &self,
1203 mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1204 ) -> Subscription {
1205 let (subscription, activate) = self.appearance_observers.insert(
1206 (),
1207 Box::new(move |window, cx| {
1208 callback(window, cx);
1209 true
1210 }),
1211 );
1212 activate();
1213 subscription
1214 }
1215
1216 /// Replaces the root entity of the window with a new one.
1217 pub fn replace_root<E>(
1218 &mut self,
1219 cx: &mut App,
1220 build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1221 ) -> Entity<E>
1222 where
1223 E: 'static + Render,
1224 {
1225 let view = cx.new(|cx| build_view(self, cx));
1226 self.root = Some(view.clone().into());
1227 self.refresh();
1228 view
1229 }
1230
1231 /// Returns the root entity of the window, if it has one.
1232 pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1233 where
1234 E: 'static + Render,
1235 {
1236 self.root
1237 .as_ref()
1238 .map(|view| view.clone().downcast::<E>().ok())
1239 }
1240
1241 /// Obtain a handle to the window that belongs to this context.
1242 pub fn window_handle(&self) -> AnyWindowHandle {
1243 self.handle
1244 }
1245
1246 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1247 pub fn refresh(&mut self) {
1248 if self.invalidator.not_drawing() {
1249 self.refreshing = true;
1250 self.invalidator.set_dirty(true);
1251 }
1252 }
1253
1254 /// Close this window.
1255 pub fn remove_window(&mut self) {
1256 self.removed = true;
1257 }
1258
1259 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1260 pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1261 self.focus
1262 .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1263 }
1264
1265 /// Move focus to the element associated with the given [`FocusHandle`].
1266 pub fn focus(&mut self, handle: &FocusHandle) {
1267 println!(
1268 "Setting focus to {:?} on platform {:?}",
1269 handle.id,
1270 std::env::consts::OS
1271 );
1272
1273 if !self.focus_enabled || self.focus == Some(handle.id) {
1274 return;
1275 }
1276
1277 self.focus = Some(handle.id);
1278 self.clear_pending_keystrokes();
1279 self.refresh();
1280 }
1281
1282 /// Remove focus from all elements within this context's window.
1283 pub fn blur(&mut self) {
1284 if !self.focus_enabled {
1285 return;
1286 }
1287
1288 self.focus = None;
1289 self.refresh();
1290 }
1291
1292 /// Blur the window and don't allow anything in it to be focused again.
1293 pub fn disable_focus(&mut self) {
1294 self.blur();
1295 self.focus_enabled = false;
1296 }
1297
1298 /// Accessor for the text system.
1299 pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1300 &self.text_system
1301 }
1302
1303 /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1304 pub fn text_style(&self) -> TextStyle {
1305 let mut style = TextStyle::default();
1306 for refinement in &self.text_style_stack {
1307 style.refine(refinement);
1308 }
1309 style
1310 }
1311
1312 /// Check if the platform window is maximized
1313 /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1314 pub fn is_maximized(&self) -> bool {
1315 self.platform_window.is_maximized()
1316 }
1317
1318 /// request a certain window decoration (Wayland)
1319 pub fn request_decorations(&self, decorations: WindowDecorations) {
1320 self.platform_window.request_decorations(decorations);
1321 }
1322
1323 /// Start a window resize operation (Wayland)
1324 pub fn start_window_resize(&self, edge: ResizeEdge) {
1325 self.platform_window.start_window_resize(edge);
1326 }
1327
1328 /// Return the `WindowBounds` to indicate that how a window should be opened
1329 /// after it has been closed
1330 pub fn window_bounds(&self) -> WindowBounds {
1331 self.platform_window.window_bounds()
1332 }
1333
1334 /// Return the `WindowBounds` excluding insets (Wayland and X11)
1335 pub fn inner_window_bounds(&self) -> WindowBounds {
1336 self.platform_window.inner_window_bounds()
1337 }
1338
1339 /// Dispatch the given action on the currently focused element.
1340 pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1341 let focus_id = self.focused(cx).map(|handle| handle.id);
1342 dbg!(&focus_id);
1343 let window = self.handle;
1344 cx.defer(move |cx| {
1345 window
1346 .update(cx, |_, window, cx| {
1347 let node_id = window.focus_node_id_in_rendered_frame(focus_id);
1348 dbg!(&node_id);
1349 window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1350 })
1351 .log_err();
1352 })
1353 }
1354
1355 pub(crate) fn dispatch_keystroke_observers(
1356 &mut self,
1357 event: &dyn Any,
1358 action: Option<Box<dyn Action>>,
1359 context_stack: Vec<KeyContext>,
1360 cx: &mut App,
1361 ) {
1362 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1363 return;
1364 };
1365
1366 cx.keystroke_observers.clone().retain(&(), move |callback| {
1367 (callback)(
1368 &KeystrokeEvent {
1369 keystroke: key_down_event.keystroke.clone(),
1370 action: action.as_ref().map(|action| action.boxed_clone()),
1371 context_stack: context_stack.clone(),
1372 },
1373 self,
1374 cx,
1375 )
1376 });
1377 }
1378
1379 pub(crate) fn dispatch_keystroke_interceptors(
1380 &mut self,
1381 event: &dyn Any,
1382 context_stack: Vec<KeyContext>,
1383 cx: &mut App,
1384 ) {
1385 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1386 return;
1387 };
1388
1389 cx.keystroke_interceptors
1390 .clone()
1391 .retain(&(), move |callback| {
1392 (callback)(
1393 &KeystrokeEvent {
1394 keystroke: key_down_event.keystroke.clone(),
1395 action: None,
1396 context_stack: context_stack.clone(),
1397 },
1398 self,
1399 cx,
1400 )
1401 });
1402 }
1403
1404 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1405 /// that are currently on the stack to be returned to the app.
1406 pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1407 let handle = self.handle;
1408 cx.defer(move |cx| {
1409 handle.update(cx, |_, window, cx| f(window, cx)).ok();
1410 });
1411 }
1412
1413 /// Subscribe to events emitted by a entity.
1414 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1415 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1416 pub fn observe<T: 'static>(
1417 &mut self,
1418 observed: &Entity<T>,
1419 cx: &mut App,
1420 mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1421 ) -> Subscription {
1422 let entity_id = observed.entity_id();
1423 let observed = observed.downgrade();
1424 let window_handle = self.handle;
1425 cx.new_observer(
1426 entity_id,
1427 Box::new(move |cx| {
1428 window_handle
1429 .update(cx, |_, window, cx| {
1430 if let Some(handle) = observed.upgrade() {
1431 on_notify(handle, window, cx);
1432 true
1433 } else {
1434 false
1435 }
1436 })
1437 .unwrap_or(false)
1438 }),
1439 )
1440 }
1441
1442 /// Subscribe to events emitted by a entity.
1443 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1444 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1445 pub fn subscribe<Emitter, Evt>(
1446 &mut self,
1447 entity: &Entity<Emitter>,
1448 cx: &mut App,
1449 mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1450 ) -> Subscription
1451 where
1452 Emitter: EventEmitter<Evt>,
1453 Evt: 'static,
1454 {
1455 let entity_id = entity.entity_id();
1456 let handle = entity.downgrade();
1457 let window_handle = self.handle;
1458 cx.new_subscription(
1459 entity_id,
1460 (
1461 TypeId::of::<Evt>(),
1462 Box::new(move |event, cx| {
1463 window_handle
1464 .update(cx, |_, window, cx| {
1465 if let Some(entity) = handle.upgrade() {
1466 let event = event.downcast_ref().expect("invalid event type");
1467 on_event(entity, event, window, cx);
1468 true
1469 } else {
1470 false
1471 }
1472 })
1473 .unwrap_or(false)
1474 }),
1475 ),
1476 )
1477 }
1478
1479 /// Register a callback to be invoked when the given `Entity` is released.
1480 pub fn observe_release<T>(
1481 &self,
1482 entity: &Entity<T>,
1483 cx: &mut App,
1484 mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1485 ) -> Subscription
1486 where
1487 T: 'static,
1488 {
1489 let entity_id = entity.entity_id();
1490 let window_handle = self.handle;
1491 let (subscription, activate) = cx.release_listeners.insert(
1492 entity_id,
1493 Box::new(move |entity, cx| {
1494 let entity = entity.downcast_mut().expect("invalid entity type");
1495 let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1496 }),
1497 );
1498 activate();
1499 subscription
1500 }
1501
1502 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1503 /// await points in async code.
1504 pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1505 AsyncWindowContext::new_context(cx.to_async(), self.handle)
1506 }
1507
1508 /// Schedule the given closure to be run directly after the current frame is rendered.
1509 pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1510 RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1511 }
1512
1513 /// Schedule a frame to be drawn on the next animation frame.
1514 ///
1515 /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1516 /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1517 ///
1518 /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1519 pub fn request_animation_frame(&self) {
1520 let entity = self.current_view();
1521 self.on_next_frame(move |_, cx| cx.notify(entity));
1522 }
1523
1524 /// Spawn the future returned by the given closure on the application thread pool.
1525 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1526 /// use within your future.
1527 #[track_caller]
1528 pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1529 where
1530 R: 'static,
1531 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1532 {
1533 let handle = self.handle;
1534 cx.spawn(async move |app| {
1535 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1536 f(&mut async_window_cx).await
1537 })
1538 }
1539
1540 fn bounds_changed(&mut self, cx: &mut App) {
1541 self.scale_factor = self.platform_window.scale_factor();
1542 self.viewport_size = self.platform_window.content_size();
1543 self.display_id = self.platform_window.display().map(|display| display.id());
1544
1545 self.refresh();
1546
1547 self.bounds_observers
1548 .clone()
1549 .retain(&(), |callback| callback(self, cx));
1550 }
1551
1552 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1553 pub fn bounds(&self) -> Bounds<Pixels> {
1554 self.platform_window.bounds()
1555 }
1556
1557 /// Set the content size of the window.
1558 pub fn resize(&mut self, size: Size<Pixels>) {
1559 self.platform_window.resize(size);
1560 }
1561
1562 /// Returns whether or not the window is currently fullscreen
1563 pub fn is_fullscreen(&self) -> bool {
1564 self.platform_window.is_fullscreen()
1565 }
1566
1567 pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1568 self.appearance = self.platform_window.appearance();
1569
1570 self.appearance_observers
1571 .clone()
1572 .retain(&(), |callback| callback(self, cx));
1573 }
1574
1575 /// Returns the appearance of the current window.
1576 pub fn appearance(&self) -> WindowAppearance {
1577 self.appearance
1578 }
1579
1580 /// Returns the size of the drawable area within the window.
1581 pub fn viewport_size(&self) -> Size<Pixels> {
1582 self.viewport_size
1583 }
1584
1585 /// Returns whether this window is focused by the operating system (receiving key events).
1586 pub fn is_window_active(&self) -> bool {
1587 self.active.get()
1588 }
1589
1590 /// Returns whether this window is considered to be the window
1591 /// that currently owns the mouse cursor.
1592 /// On mac, this is equivalent to `is_window_active`.
1593 pub fn is_window_hovered(&self) -> bool {
1594 if cfg!(any(
1595 target_os = "windows",
1596 target_os = "linux",
1597 target_os = "freebsd"
1598 )) {
1599 self.hovered.get()
1600 } else {
1601 self.is_window_active()
1602 }
1603 }
1604
1605 /// Toggle zoom on the window.
1606 pub fn zoom_window(&self) {
1607 self.platform_window.zoom();
1608 }
1609
1610 /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1611 pub fn show_window_menu(&self, position: Point<Pixels>) {
1612 self.platform_window.show_window_menu(position)
1613 }
1614
1615 /// Tells the compositor to take control of window movement (Wayland and X11)
1616 ///
1617 /// Events may not be received during a move operation.
1618 pub fn start_window_move(&self) {
1619 self.platform_window.start_window_move()
1620 }
1621
1622 /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1623 pub fn set_client_inset(&mut self, inset: Pixels) {
1624 self.client_inset = Some(inset);
1625 self.platform_window.set_client_inset(inset);
1626 }
1627
1628 /// Returns the client_inset value by [`Self::set_client_inset`].
1629 pub fn client_inset(&self) -> Option<Pixels> {
1630 self.client_inset
1631 }
1632
1633 /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1634 pub fn window_decorations(&self) -> Decorations {
1635 self.platform_window.window_decorations()
1636 }
1637
1638 /// Returns which window controls are currently visible (Wayland)
1639 pub fn window_controls(&self) -> WindowControls {
1640 self.platform_window.window_controls()
1641 }
1642
1643 /// Updates the window's title at the platform level.
1644 pub fn set_window_title(&mut self, title: &str) {
1645 self.platform_window.set_title(title);
1646 }
1647
1648 /// Sets the application identifier.
1649 pub fn set_app_id(&mut self, app_id: &str) {
1650 self.platform_window.set_app_id(app_id);
1651 }
1652
1653 /// Sets the window background appearance.
1654 pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1655 self.platform_window
1656 .set_background_appearance(background_appearance);
1657 }
1658
1659 /// Mark the window as dirty at the platform level.
1660 pub fn set_window_edited(&mut self, edited: bool) {
1661 self.platform_window.set_edited(edited);
1662 }
1663
1664 /// Determine the display on which the window is visible.
1665 pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1666 cx.platform
1667 .displays()
1668 .into_iter()
1669 .find(|display| Some(display.id()) == self.display_id)
1670 }
1671
1672 /// Show the platform character palette.
1673 pub fn show_character_palette(&self) {
1674 self.platform_window.show_character_palette();
1675 }
1676
1677 /// The scale factor of the display associated with the window. For example, it could
1678 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1679 /// be rendered as two pixels on screen.
1680 pub fn scale_factor(&self) -> f32 {
1681 self.scale_factor
1682 }
1683
1684 /// The size of an em for the base font of the application. Adjusting this value allows the
1685 /// UI to scale, just like zooming a web page.
1686 pub fn rem_size(&self) -> Pixels {
1687 self.rem_size_override_stack
1688 .last()
1689 .copied()
1690 .unwrap_or(self.rem_size)
1691 }
1692
1693 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1694 /// UI to scale, just like zooming a web page.
1695 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1696 self.rem_size = rem_size.into();
1697 }
1698
1699 /// Acquire a globally unique identifier for the given ElementId.
1700 /// Only valid for the duration of the provided closure.
1701 pub fn with_global_id<R>(
1702 &mut self,
1703 element_id: ElementId,
1704 f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1705 ) -> R {
1706 self.element_id_stack.push(element_id);
1707 let global_id = GlobalElementId(self.element_id_stack.clone());
1708 let result = f(&global_id, self);
1709 self.element_id_stack.pop();
1710 result
1711 }
1712
1713 /// Executes the provided function with the specified rem size.
1714 ///
1715 /// This method must only be called as part of element drawing.
1716 pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1717 where
1718 F: FnOnce(&mut Self) -> R,
1719 {
1720 self.invalidator.debug_assert_paint_or_prepaint();
1721
1722 if let Some(rem_size) = rem_size {
1723 self.rem_size_override_stack.push(rem_size.into());
1724 let result = f(self);
1725 self.rem_size_override_stack.pop();
1726 result
1727 } else {
1728 f(self)
1729 }
1730 }
1731
1732 /// The line height associated with the current text style.
1733 pub fn line_height(&self) -> Pixels {
1734 self.text_style().line_height_in_pixels(self.rem_size())
1735 }
1736
1737 /// Call to prevent the default action of an event. Currently only used to prevent
1738 /// parent elements from becoming focused on mouse down.
1739 pub fn prevent_default(&mut self) {
1740 self.default_prevented = true;
1741 }
1742
1743 /// Obtain whether default has been prevented for the event currently being dispatched.
1744 pub fn default_prevented(&self) -> bool {
1745 self.default_prevented
1746 }
1747
1748 /// Determine whether the given action is available along the dispatch path to the currently focused element.
1749 pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1750 let node_id =
1751 self.focus_node_id_in_rendered_frame(self.focused(cx).map(|handle| handle.id));
1752 self.rendered_frame
1753 .dispatch_tree
1754 .is_action_available(action, node_id)
1755 }
1756
1757 /// The position of the mouse relative to the window.
1758 pub fn mouse_position(&self) -> Point<Pixels> {
1759 self.mouse_position
1760 }
1761
1762 /// The current state of the keyboard's modifiers
1763 pub fn modifiers(&self) -> Modifiers {
1764 self.modifiers
1765 }
1766
1767 /// The current state of the keyboard's capslock
1768 pub fn capslock(&self) -> Capslock {
1769 self.capslock
1770 }
1771
1772 fn complete_frame(&self) {
1773 self.platform_window.completed_frame();
1774 }
1775
1776 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1777 /// the contents of the new [Scene], use [present].
1778 #[profiling::function]
1779 pub fn draw(&mut self, cx: &mut App) -> ArenaClearNeeded {
1780 self.invalidate_entities();
1781 cx.entities.clear_accessed();
1782 debug_assert!(self.rendered_entity_stack.is_empty());
1783 self.invalidator.set_dirty(false);
1784 self.requested_autoscroll = None;
1785
1786 // Restore the previously-used input handler.
1787 if let Some(input_handler) = self.platform_window.take_input_handler() {
1788 self.rendered_frame.input_handlers.push(Some(input_handler));
1789 }
1790 self.draw_roots(cx);
1791 self.dirty_views.clear();
1792 self.next_frame.window_active = self.active.get();
1793
1794 // Register requested input handler with the platform window.
1795 if let Some(input_handler) = self.next_frame.input_handlers.pop() {
1796 self.platform_window
1797 .set_input_handler(input_handler.unwrap());
1798 }
1799
1800 self.layout_engine.as_mut().unwrap().clear();
1801 self.text_system().finish_frame();
1802 self.next_frame.finish(&mut self.rendered_frame);
1803
1804 self.invalidator.set_phase(DrawPhase::Focus);
1805 let previous_focus_path = self.rendered_frame.focus_path();
1806 let previous_window_active = self.rendered_frame.window_active;
1807 mem::swap(&mut self.rendered_frame, &mut self.next_frame);
1808 self.next_frame.clear();
1809 let current_focus_path = self.rendered_frame.focus_path();
1810 let current_window_active = self.rendered_frame.window_active;
1811
1812 if previous_focus_path != current_focus_path
1813 || previous_window_active != current_window_active
1814 {
1815 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
1816 self.focus_lost_listeners
1817 .clone()
1818 .retain(&(), |listener| listener(self, cx));
1819 }
1820
1821 let event = WindowFocusEvent {
1822 previous_focus_path: if previous_window_active {
1823 previous_focus_path
1824 } else {
1825 Default::default()
1826 },
1827 current_focus_path: if current_window_active {
1828 current_focus_path
1829 } else {
1830 Default::default()
1831 },
1832 };
1833 self.focus_listeners
1834 .clone()
1835 .retain(&(), |listener| listener(&event, self, cx));
1836 }
1837
1838 debug_assert!(self.rendered_entity_stack.is_empty());
1839 self.record_entities_accessed(cx);
1840 self.reset_cursor_style(cx);
1841 self.refreshing = false;
1842 self.invalidator.set_phase(DrawPhase::None);
1843 self.needs_present.set(true);
1844
1845 ArenaClearNeeded
1846 }
1847
1848 fn record_entities_accessed(&mut self, cx: &mut App) {
1849 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1850 let mut entities = mem::take(entities_ref.deref_mut());
1851 drop(entities_ref);
1852 let handle = self.handle;
1853 cx.record_entities_accessed(
1854 handle,
1855 // Try moving window invalidator into the Window
1856 self.invalidator.clone(),
1857 &entities,
1858 );
1859 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1860 mem::swap(&mut entities, entities_ref.deref_mut());
1861 }
1862
1863 fn invalidate_entities(&mut self) {
1864 let mut views = self.invalidator.take_views();
1865 for entity in views.drain() {
1866 self.mark_view_dirty(entity);
1867 }
1868 self.invalidator.replace_views(views);
1869 }
1870
1871 #[profiling::function]
1872 fn present(&self) {
1873 self.platform_window.draw(&self.rendered_frame.scene);
1874 self.needs_present.set(false);
1875 profiling::finish_frame!();
1876 }
1877
1878 fn draw_roots(&mut self, cx: &mut App) {
1879 self.invalidator.set_phase(DrawPhase::Prepaint);
1880 self.tooltip_bounds.take();
1881
1882 let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
1883 let root_size = {
1884 #[cfg(any(feature = "inspector", debug_assertions))]
1885 {
1886 if self.inspector.is_some() {
1887 let mut size = self.viewport_size;
1888 size.width = (size.width - _inspector_width).max(px(0.0));
1889 size
1890 } else {
1891 self.viewport_size
1892 }
1893 }
1894 #[cfg(not(any(feature = "inspector", debug_assertions)))]
1895 {
1896 self.viewport_size
1897 }
1898 };
1899
1900 // Layout all root elements.
1901 let mut root_element = self.root.as_ref().unwrap().clone().into_any();
1902 root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
1903
1904 #[cfg(any(feature = "inspector", debug_assertions))]
1905 let inspector_element = self.prepaint_inspector(_inspector_width, cx);
1906
1907 let mut sorted_deferred_draws =
1908 (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
1909 sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
1910 self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
1911
1912 let mut prompt_element = None;
1913 let mut active_drag_element = None;
1914 let mut tooltip_element = None;
1915 if let Some(prompt) = self.prompt.take() {
1916 let mut element = prompt.view.any_view().into_any();
1917 element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
1918 prompt_element = Some(element);
1919 self.prompt = Some(prompt);
1920 } else if let Some(active_drag) = cx.active_drag.take() {
1921 let mut element = active_drag.view.clone().into_any();
1922 let offset = self.mouse_position() - active_drag.cursor_offset;
1923 element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
1924 active_drag_element = Some(element);
1925 cx.active_drag = Some(active_drag);
1926 } else {
1927 tooltip_element = self.prepaint_tooltip(cx);
1928 }
1929
1930 self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
1931
1932 // Now actually paint the elements.
1933 self.invalidator.set_phase(DrawPhase::Paint);
1934 root_element.paint(self, cx);
1935
1936 #[cfg(any(feature = "inspector", debug_assertions))]
1937 self.paint_inspector(inspector_element, cx);
1938
1939 self.paint_deferred_draws(&sorted_deferred_draws, cx);
1940
1941 if let Some(mut prompt_element) = prompt_element {
1942 prompt_element.paint(self, cx);
1943 } else if let Some(mut drag_element) = active_drag_element {
1944 drag_element.paint(self, cx);
1945 } else if let Some(mut tooltip_element) = tooltip_element {
1946 tooltip_element.paint(self, cx);
1947 }
1948
1949 #[cfg(any(feature = "inspector", debug_assertions))]
1950 self.paint_inspector_hitbox(cx);
1951 }
1952
1953 fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
1954 // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
1955 for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
1956 let Some(Some(tooltip_request)) = self
1957 .next_frame
1958 .tooltip_requests
1959 .get(tooltip_request_index)
1960 .cloned()
1961 else {
1962 log::error!("Unexpectedly absent TooltipRequest");
1963 continue;
1964 };
1965 let mut element = tooltip_request.tooltip.view.clone().into_any();
1966 let mouse_position = tooltip_request.tooltip.mouse_position;
1967 let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
1968
1969 let mut tooltip_bounds =
1970 Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
1971 let window_bounds = Bounds {
1972 origin: Point::default(),
1973 size: self.viewport_size(),
1974 };
1975
1976 if tooltip_bounds.right() > window_bounds.right() {
1977 let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
1978 if new_x >= Pixels::ZERO {
1979 tooltip_bounds.origin.x = new_x;
1980 } else {
1981 tooltip_bounds.origin.x = cmp::max(
1982 Pixels::ZERO,
1983 tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
1984 );
1985 }
1986 }
1987
1988 if tooltip_bounds.bottom() > window_bounds.bottom() {
1989 let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
1990 if new_y >= Pixels::ZERO {
1991 tooltip_bounds.origin.y = new_y;
1992 } else {
1993 tooltip_bounds.origin.y = cmp::max(
1994 Pixels::ZERO,
1995 tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
1996 );
1997 }
1998 }
1999
2000 // It's possible for an element to have an active tooltip while not being painted (e.g.
2001 // via the `visible_on_hover` method). Since mouse listeners are not active in this
2002 // case, instead update the tooltip's visibility here.
2003 let is_visible =
2004 (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
2005 if !is_visible {
2006 continue;
2007 }
2008
2009 self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
2010 element.prepaint(window, cx)
2011 });
2012
2013 self.tooltip_bounds = Some(TooltipBounds {
2014 id: tooltip_request.id,
2015 bounds: tooltip_bounds,
2016 });
2017 return Some(element);
2018 }
2019 None
2020 }
2021
2022 fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2023 assert_eq!(self.element_id_stack.len(), 0);
2024
2025 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2026 for deferred_draw_ix in deferred_draw_indices {
2027 let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2028 self.element_id_stack
2029 .clone_from(&deferred_draw.element_id_stack);
2030 self.text_style_stack
2031 .clone_from(&deferred_draw.text_style_stack);
2032 self.next_frame
2033 .dispatch_tree
2034 .set_active_node(deferred_draw.parent_node);
2035
2036 let prepaint_start = self.prepaint_index();
2037 if let Some(element) = deferred_draw.element.as_mut() {
2038 self.with_rendered_view(deferred_draw.current_view, |window| {
2039 window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
2040 element.prepaint(window, cx)
2041 });
2042 })
2043 } else {
2044 self.reuse_prepaint(deferred_draw.prepaint_range.clone());
2045 }
2046 let prepaint_end = self.prepaint_index();
2047 deferred_draw.prepaint_range = prepaint_start..prepaint_end;
2048 }
2049 assert_eq!(
2050 self.next_frame.deferred_draws.len(),
2051 0,
2052 "cannot call defer_draw during deferred drawing"
2053 );
2054 self.next_frame.deferred_draws = deferred_draws;
2055 self.element_id_stack.clear();
2056 self.text_style_stack.clear();
2057 }
2058
2059 fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2060 assert_eq!(self.element_id_stack.len(), 0);
2061
2062 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2063 for deferred_draw_ix in deferred_draw_indices {
2064 let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2065 self.element_id_stack
2066 .clone_from(&deferred_draw.element_id_stack);
2067 self.next_frame
2068 .dispatch_tree
2069 .set_active_node(deferred_draw.parent_node);
2070
2071 let paint_start = self.paint_index();
2072 if let Some(element) = deferred_draw.element.as_mut() {
2073 self.with_rendered_view(deferred_draw.current_view, |window| {
2074 element.paint(window, cx);
2075 })
2076 } else {
2077 self.reuse_paint(deferred_draw.paint_range.clone());
2078 }
2079 let paint_end = self.paint_index();
2080 deferred_draw.paint_range = paint_start..paint_end;
2081 }
2082 self.next_frame.deferred_draws = deferred_draws;
2083 self.element_id_stack.clear();
2084 }
2085
2086 pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2087 PrepaintStateIndex {
2088 hitboxes_index: self.next_frame.hitboxes.len(),
2089 tooltips_index: self.next_frame.tooltip_requests.len(),
2090 deferred_draws_index: self.next_frame.deferred_draws.len(),
2091 dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2092 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2093 line_layout_index: self.text_system.layout_index(),
2094 }
2095 }
2096
2097 pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2098 self.next_frame.hitboxes.extend(
2099 self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2100 .iter()
2101 .cloned(),
2102 );
2103 self.next_frame.tooltip_requests.extend(
2104 self.rendered_frame.tooltip_requests
2105 [range.start.tooltips_index..range.end.tooltips_index]
2106 .iter_mut()
2107 .map(|request| request.take()),
2108 );
2109 self.next_frame.accessed_element_states.extend(
2110 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2111 ..range.end.accessed_element_states_index]
2112 .iter()
2113 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2114 );
2115 self.text_system
2116 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2117
2118 let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2119 range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2120 &mut self.rendered_frame.dispatch_tree,
2121 self.focus,
2122 );
2123
2124 if reused_subtree.contains_focus() {
2125 self.next_frame.focus = self.focus;
2126 }
2127
2128 self.next_frame.deferred_draws.extend(
2129 self.rendered_frame.deferred_draws
2130 [range.start.deferred_draws_index..range.end.deferred_draws_index]
2131 .iter()
2132 .map(|deferred_draw| DeferredDraw {
2133 current_view: deferred_draw.current_view,
2134 parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2135 element_id_stack: deferred_draw.element_id_stack.clone(),
2136 text_style_stack: deferred_draw.text_style_stack.clone(),
2137 priority: deferred_draw.priority,
2138 element: None,
2139 absolute_offset: deferred_draw.absolute_offset,
2140 prepaint_range: deferred_draw.prepaint_range.clone(),
2141 paint_range: deferred_draw.paint_range.clone(),
2142 }),
2143 );
2144 }
2145
2146 pub(crate) fn paint_index(&self) -> PaintIndex {
2147 PaintIndex {
2148 scene_index: self.next_frame.scene.len(),
2149 mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2150 input_handlers_index: self.next_frame.input_handlers.len(),
2151 cursor_styles_index: self.next_frame.cursor_styles.len(),
2152 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2153 line_layout_index: self.text_system.layout_index(),
2154 }
2155 }
2156
2157 pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2158 self.next_frame.cursor_styles.extend(
2159 self.rendered_frame.cursor_styles
2160 [range.start.cursor_styles_index..range.end.cursor_styles_index]
2161 .iter()
2162 .cloned(),
2163 );
2164 self.next_frame.input_handlers.extend(
2165 self.rendered_frame.input_handlers
2166 [range.start.input_handlers_index..range.end.input_handlers_index]
2167 .iter_mut()
2168 .map(|handler| handler.take()),
2169 );
2170 self.next_frame.mouse_listeners.extend(
2171 self.rendered_frame.mouse_listeners
2172 [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2173 .iter_mut()
2174 .map(|listener| listener.take()),
2175 );
2176 self.next_frame.accessed_element_states.extend(
2177 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2178 ..range.end.accessed_element_states_index]
2179 .iter()
2180 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2181 );
2182
2183 self.text_system
2184 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2185 self.next_frame.scene.replay(
2186 range.start.scene_index..range.end.scene_index,
2187 &self.rendered_frame.scene,
2188 );
2189 }
2190
2191 /// Push a text style onto the stack, and call a function with that style active.
2192 /// Use [`Window::text_style`] to get the current, combined text style. This method
2193 /// should only be called as part of element drawing.
2194 pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2195 where
2196 F: FnOnce(&mut Self) -> R,
2197 {
2198 self.invalidator.debug_assert_paint_or_prepaint();
2199 if let Some(style) = style {
2200 self.text_style_stack.push(style);
2201 let result = f(self);
2202 self.text_style_stack.pop();
2203 result
2204 } else {
2205 f(self)
2206 }
2207 }
2208
2209 /// Updates the cursor style at the platform level. This method should only be called
2210 /// during the prepaint phase of element drawing.
2211 pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
2212 self.invalidator.debug_assert_paint();
2213 self.next_frame.cursor_styles.push(CursorStyleRequest {
2214 hitbox_id: Some(hitbox.id),
2215 style,
2216 });
2217 }
2218
2219 /// Updates the cursor style for the entire window at the platform level. A cursor
2220 /// style using this method will have precedence over any cursor style set using
2221 /// `set_cursor_style`. This method should only be called during the prepaint
2222 /// phase of element drawing.
2223 pub fn set_window_cursor_style(&mut self, style: CursorStyle) {
2224 self.invalidator.debug_assert_paint();
2225 self.next_frame.cursor_styles.push(CursorStyleRequest {
2226 hitbox_id: None,
2227 style,
2228 })
2229 }
2230
2231 /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2232 /// during the paint phase of element drawing.
2233 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2234 self.invalidator.debug_assert_prepaint();
2235 let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2236 self.next_frame
2237 .tooltip_requests
2238 .push(Some(TooltipRequest { id, tooltip }));
2239 id
2240 }
2241
2242 /// Invoke the given function with the given content mask after intersecting it
2243 /// with the current mask. This method should only be called during element drawing.
2244 pub fn with_content_mask<R>(
2245 &mut self,
2246 mask: Option<ContentMask<Pixels>>,
2247 f: impl FnOnce(&mut Self) -> R,
2248 ) -> R {
2249 self.invalidator.debug_assert_paint_or_prepaint();
2250 if let Some(mask) = mask {
2251 let mask = mask.intersect(&self.content_mask());
2252 self.content_mask_stack.push(mask);
2253 let result = f(self);
2254 self.content_mask_stack.pop();
2255 result
2256 } else {
2257 f(self)
2258 }
2259 }
2260
2261 /// Updates the global element offset relative to the current offset. This is used to implement
2262 /// scrolling. This method should only be called during the prepaint phase of element drawing.
2263 pub fn with_element_offset<R>(
2264 &mut self,
2265 offset: Point<Pixels>,
2266 f: impl FnOnce(&mut Self) -> R,
2267 ) -> R {
2268 self.invalidator.debug_assert_prepaint();
2269
2270 if offset.is_zero() {
2271 return f(self);
2272 };
2273
2274 let abs_offset = self.element_offset() + offset;
2275 self.with_absolute_element_offset(abs_offset, f)
2276 }
2277
2278 /// Updates the global element offset based on the given offset. This is used to implement
2279 /// drag handles and other manual painting of elements. This method should only be called during
2280 /// the prepaint phase of element drawing.
2281 pub fn with_absolute_element_offset<R>(
2282 &mut self,
2283 offset: Point<Pixels>,
2284 f: impl FnOnce(&mut Self) -> R,
2285 ) -> R {
2286 self.invalidator.debug_assert_prepaint();
2287 self.element_offset_stack.push(offset);
2288 let result = f(self);
2289 self.element_offset_stack.pop();
2290 result
2291 }
2292
2293 pub(crate) fn with_element_opacity<R>(
2294 &mut self,
2295 opacity: Option<f32>,
2296 f: impl FnOnce(&mut Self) -> R,
2297 ) -> R {
2298 if opacity.is_none() {
2299 return f(self);
2300 }
2301
2302 self.invalidator.debug_assert_paint_or_prepaint();
2303 self.element_opacity = opacity;
2304 let result = f(self);
2305 self.element_opacity = None;
2306 result
2307 }
2308
2309 /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2310 /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2311 /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2312 /// element offset and prepaint again. See [`List`] for an example. This method should only be
2313 /// called during the prepaint phase of element drawing.
2314 pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2315 self.invalidator.debug_assert_prepaint();
2316 let index = self.prepaint_index();
2317 let result = f(self);
2318 if result.is_err() {
2319 self.next_frame.hitboxes.truncate(index.hitboxes_index);
2320 self.next_frame
2321 .tooltip_requests
2322 .truncate(index.tooltips_index);
2323 self.next_frame
2324 .deferred_draws
2325 .truncate(index.deferred_draws_index);
2326 self.next_frame
2327 .dispatch_tree
2328 .truncate(index.dispatch_tree_index);
2329 self.next_frame
2330 .accessed_element_states
2331 .truncate(index.accessed_element_states_index);
2332 self.text_system.truncate_layouts(index.line_layout_index);
2333 }
2334 result
2335 }
2336
2337 /// When you call this method during [`prepaint`], containing elements will attempt to
2338 /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2339 /// [`prepaint`] again with a new set of bounds. See [`List`] for an example of an element
2340 /// that supports this method being called on the elements it contains. This method should only be
2341 /// called during the prepaint phase of element drawing.
2342 pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2343 self.invalidator.debug_assert_prepaint();
2344 self.requested_autoscroll = Some(bounds);
2345 }
2346
2347 /// This method can be called from a containing element such as [`List`] to support the autoscroll behavior
2348 /// described in [`request_autoscroll`].
2349 pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2350 self.invalidator.debug_assert_prepaint();
2351 self.requested_autoscroll.take()
2352 }
2353
2354 /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2355 /// Your view will be re-drawn once the asset has finished loading.
2356 ///
2357 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2358 /// time.
2359 pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2360 let (task, is_first) = cx.fetch_asset::<A>(source);
2361 task.clone().now_or_never().or_else(|| {
2362 if is_first {
2363 let entity_id = self.current_view();
2364 self.spawn(cx, {
2365 let task = task.clone();
2366 async move |cx| {
2367 task.await;
2368
2369 cx.on_next_frame(move |_, cx| {
2370 cx.notify(entity_id);
2371 });
2372 }
2373 })
2374 .detach();
2375 }
2376
2377 None
2378 })
2379 }
2380
2381 /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2382 /// Your view will not be re-drawn once the asset has finished loading.
2383 ///
2384 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2385 /// time.
2386 pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2387 let (task, _) = cx.fetch_asset::<A>(source);
2388 task.clone().now_or_never()
2389 }
2390 /// Obtain the current element offset. This method should only be called during the
2391 /// prepaint phase of element drawing.
2392 pub fn element_offset(&self) -> Point<Pixels> {
2393 self.invalidator.debug_assert_prepaint();
2394 self.element_offset_stack
2395 .last()
2396 .copied()
2397 .unwrap_or_default()
2398 }
2399
2400 /// Obtain the current element opacity. This method should only be called during the
2401 /// prepaint phase of element drawing.
2402 pub(crate) fn element_opacity(&self) -> f32 {
2403 self.invalidator.debug_assert_paint_or_prepaint();
2404 self.element_opacity.unwrap_or(1.0)
2405 }
2406
2407 /// Obtain the current content mask. This method should only be called during element drawing.
2408 pub fn content_mask(&self) -> ContentMask<Pixels> {
2409 self.invalidator.debug_assert_paint_or_prepaint();
2410 self.content_mask_stack
2411 .last()
2412 .cloned()
2413 .unwrap_or_else(|| ContentMask {
2414 bounds: Bounds {
2415 origin: Point::default(),
2416 size: self.viewport_size,
2417 },
2418 })
2419 }
2420
2421 /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2422 /// This can be used within a custom element to distinguish multiple sets of child elements.
2423 pub fn with_element_namespace<R>(
2424 &mut self,
2425 element_id: impl Into<ElementId>,
2426 f: impl FnOnce(&mut Self) -> R,
2427 ) -> R {
2428 self.element_id_stack.push(element_id.into());
2429 let result = f(self);
2430 self.element_id_stack.pop();
2431 result
2432 }
2433
2434 /// Updates or initializes state for an element with the given id that lives across multiple
2435 /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2436 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2437 /// when drawing the next frame. This method should only be called as part of element drawing.
2438 pub fn with_element_state<S, R>(
2439 &mut self,
2440 global_id: &GlobalElementId,
2441 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2442 ) -> R
2443 where
2444 S: 'static,
2445 {
2446 self.invalidator.debug_assert_paint_or_prepaint();
2447
2448 let key = (GlobalElementId(global_id.0.clone()), TypeId::of::<S>());
2449 self.next_frame
2450 .accessed_element_states
2451 .push((GlobalElementId(key.0.clone()), TypeId::of::<S>()));
2452
2453 if let Some(any) = self
2454 .next_frame
2455 .element_states
2456 .remove(&key)
2457 .or_else(|| self.rendered_frame.element_states.remove(&key))
2458 {
2459 let ElementStateBox {
2460 inner,
2461 #[cfg(debug_assertions)]
2462 type_name,
2463 } = any;
2464 // Using the extra inner option to avoid needing to reallocate a new box.
2465 let mut state_box = inner
2466 .downcast::<Option<S>>()
2467 .map_err(|_| {
2468 #[cfg(debug_assertions)]
2469 {
2470 anyhow::anyhow!(
2471 "invalid element state type for id, requested {:?}, actual: {:?}",
2472 std::any::type_name::<S>(),
2473 type_name
2474 )
2475 }
2476
2477 #[cfg(not(debug_assertions))]
2478 {
2479 anyhow::anyhow!(
2480 "invalid element state type for id, requested {:?}",
2481 std::any::type_name::<S>(),
2482 )
2483 }
2484 })
2485 .unwrap();
2486
2487 let state = state_box.take().expect(
2488 "reentrant call to with_element_state for the same state type and element id",
2489 );
2490 let (result, state) = f(Some(state), self);
2491 state_box.replace(state);
2492 self.next_frame.element_states.insert(
2493 key,
2494 ElementStateBox {
2495 inner: state_box,
2496 #[cfg(debug_assertions)]
2497 type_name,
2498 },
2499 );
2500 result
2501 } else {
2502 let (result, state) = f(None, self);
2503 self.next_frame.element_states.insert(
2504 key,
2505 ElementStateBox {
2506 inner: Box::new(Some(state)),
2507 #[cfg(debug_assertions)]
2508 type_name: std::any::type_name::<S>(),
2509 },
2510 );
2511 result
2512 }
2513 }
2514
2515 /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2516 /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2517 /// when the element is guaranteed to have an id.
2518 ///
2519 /// The first option means 'no ID provided'
2520 /// The second option means 'not yet initialized'
2521 pub fn with_optional_element_state<S, R>(
2522 &mut self,
2523 global_id: Option<&GlobalElementId>,
2524 f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2525 ) -> R
2526 where
2527 S: 'static,
2528 {
2529 self.invalidator.debug_assert_paint_or_prepaint();
2530
2531 if let Some(global_id) = global_id {
2532 self.with_element_state(global_id, |state, cx| {
2533 let (result, state) = f(Some(state), cx);
2534 let state =
2535 state.expect("you must return some state when you pass some element id");
2536 (result, state)
2537 })
2538 } else {
2539 let (result, state) = f(None, self);
2540 debug_assert!(
2541 state.is_none(),
2542 "you must not return an element state when passing None for the global id"
2543 );
2544 result
2545 }
2546 }
2547
2548 /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2549 /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2550 /// with higher values being drawn on top.
2551 ///
2552 /// This method should only be called as part of the prepaint phase of element drawing.
2553 pub fn defer_draw(
2554 &mut self,
2555 element: AnyElement,
2556 absolute_offset: Point<Pixels>,
2557 priority: usize,
2558 ) {
2559 self.invalidator.debug_assert_prepaint();
2560 let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2561 self.next_frame.deferred_draws.push(DeferredDraw {
2562 current_view: self.current_view(),
2563 parent_node,
2564 element_id_stack: self.element_id_stack.clone(),
2565 text_style_stack: self.text_style_stack.clone(),
2566 priority,
2567 element: Some(element),
2568 absolute_offset,
2569 prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2570 paint_range: PaintIndex::default()..PaintIndex::default(),
2571 });
2572 }
2573
2574 /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2575 /// of geometry that are non-overlapping and have the same draw order. This is typically used
2576 /// for performance reasons.
2577 ///
2578 /// This method should only be called as part of the paint phase of element drawing.
2579 pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2580 self.invalidator.debug_assert_paint();
2581
2582 let scale_factor = self.scale_factor();
2583 let content_mask = self.content_mask();
2584 let clipped_bounds = bounds.intersect(&content_mask.bounds);
2585 if !clipped_bounds.is_empty() {
2586 self.next_frame
2587 .scene
2588 .push_layer(clipped_bounds.scale(scale_factor));
2589 }
2590
2591 let result = f(self);
2592
2593 if !clipped_bounds.is_empty() {
2594 self.next_frame.scene.pop_layer();
2595 }
2596
2597 result
2598 }
2599
2600 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2601 ///
2602 /// This method should only be called as part of the paint phase of element drawing.
2603 pub fn paint_shadows(
2604 &mut self,
2605 bounds: Bounds<Pixels>,
2606 corner_radii: Corners<Pixels>,
2607 shadows: &[BoxShadow],
2608 ) {
2609 self.invalidator.debug_assert_paint();
2610
2611 let scale_factor = self.scale_factor();
2612 let content_mask = self.content_mask();
2613 let opacity = self.element_opacity();
2614 for shadow in shadows {
2615 let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2616 self.next_frame.scene.insert_primitive(Shadow {
2617 order: 0,
2618 blur_radius: shadow.blur_radius.scale(scale_factor),
2619 bounds: shadow_bounds.scale(scale_factor),
2620 content_mask: content_mask.scale(scale_factor),
2621 corner_radii: corner_radii.scale(scale_factor),
2622 color: shadow.color.opacity(opacity),
2623 });
2624 }
2625 }
2626
2627 /// Paint one or more quads into the scene for the next frame at the current stacking context.
2628 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2629 /// see [`fill`](crate::fill), [`outline`](crate::outline), and [`quad`](crate::quad) to construct this type.
2630 ///
2631 /// This method should only be called as part of the paint phase of element drawing.
2632 ///
2633 /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2634 /// where the circular arcs meet. This will not display well when combined with dashed borders.
2635 /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2636 pub fn paint_quad(&mut self, quad: PaintQuad) {
2637 self.invalidator.debug_assert_paint();
2638
2639 let scale_factor = self.scale_factor();
2640 let content_mask = self.content_mask();
2641 let opacity = self.element_opacity();
2642 self.next_frame.scene.insert_primitive(Quad {
2643 order: 0,
2644 bounds: quad.bounds.scale(scale_factor),
2645 content_mask: content_mask.scale(scale_factor),
2646 background: quad.background.opacity(opacity),
2647 border_color: quad.border_color.opacity(opacity),
2648 corner_radii: quad.corner_radii.scale(scale_factor),
2649 border_widths: quad.border_widths.scale(scale_factor),
2650 border_style: quad.border_style,
2651 });
2652 }
2653
2654 /// Paint the given `Path` into the scene for the next frame at the current z-index.
2655 ///
2656 /// This method should only be called as part of the paint phase of element drawing.
2657 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2658 self.invalidator.debug_assert_paint();
2659
2660 let scale_factor = self.scale_factor();
2661 let content_mask = self.content_mask();
2662 let opacity = self.element_opacity();
2663 path.content_mask = content_mask;
2664 let color: Background = color.into();
2665 path.color = color.opacity(opacity);
2666 self.next_frame
2667 .scene
2668 .insert_primitive(path.apply_scale(scale_factor));
2669 }
2670
2671 /// Paint an underline into the scene for the next frame at the current z-index.
2672 ///
2673 /// This method should only be called as part of the paint phase of element drawing.
2674 pub fn paint_underline(
2675 &mut self,
2676 origin: Point<Pixels>,
2677 width: Pixels,
2678 style: &UnderlineStyle,
2679 ) {
2680 self.invalidator.debug_assert_paint();
2681
2682 let scale_factor = self.scale_factor();
2683 let height = if style.wavy {
2684 style.thickness * 3.
2685 } else {
2686 style.thickness
2687 };
2688 let bounds = Bounds {
2689 origin,
2690 size: size(width, height),
2691 };
2692 let content_mask = self.content_mask();
2693 let element_opacity = self.element_opacity();
2694
2695 self.next_frame.scene.insert_primitive(Underline {
2696 order: 0,
2697 pad: 0,
2698 bounds: bounds.scale(scale_factor),
2699 content_mask: content_mask.scale(scale_factor),
2700 color: style.color.unwrap_or_default().opacity(element_opacity),
2701 thickness: style.thickness.scale(scale_factor),
2702 wavy: style.wavy,
2703 });
2704 }
2705
2706 /// Paint a strikethrough into the scene for the next frame at the current z-index.
2707 ///
2708 /// This method should only be called as part of the paint phase of element drawing.
2709 pub fn paint_strikethrough(
2710 &mut self,
2711 origin: Point<Pixels>,
2712 width: Pixels,
2713 style: &StrikethroughStyle,
2714 ) {
2715 self.invalidator.debug_assert_paint();
2716
2717 let scale_factor = self.scale_factor();
2718 let height = style.thickness;
2719 let bounds = Bounds {
2720 origin,
2721 size: size(width, height),
2722 };
2723 let content_mask = self.content_mask();
2724 let opacity = self.element_opacity();
2725
2726 self.next_frame.scene.insert_primitive(Underline {
2727 order: 0,
2728 pad: 0,
2729 bounds: bounds.scale(scale_factor),
2730 content_mask: content_mask.scale(scale_factor),
2731 thickness: style.thickness.scale(scale_factor),
2732 color: style.color.unwrap_or_default().opacity(opacity),
2733 wavy: false,
2734 });
2735 }
2736
2737 /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
2738 ///
2739 /// The y component of the origin is the baseline of the glyph.
2740 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2741 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2742 /// This method is only useful if you need to paint a single glyph that has already been shaped.
2743 ///
2744 /// This method should only be called as part of the paint phase of element drawing.
2745 pub fn paint_glyph(
2746 &mut self,
2747 origin: Point<Pixels>,
2748 font_id: FontId,
2749 glyph_id: GlyphId,
2750 font_size: Pixels,
2751 color: Hsla,
2752 ) -> Result<()> {
2753 self.invalidator.debug_assert_paint();
2754
2755 let element_opacity = self.element_opacity();
2756 let scale_factor = self.scale_factor();
2757 let glyph_origin = origin.scale(scale_factor);
2758 let subpixel_variant = Point {
2759 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2760 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2761 };
2762 let params = RenderGlyphParams {
2763 font_id,
2764 glyph_id,
2765 font_size,
2766 subpixel_variant,
2767 scale_factor,
2768 is_emoji: false,
2769 };
2770
2771 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2772 if !raster_bounds.is_zero() {
2773 let tile = self
2774 .sprite_atlas
2775 .get_or_insert_with(¶ms.clone().into(), &mut || {
2776 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2777 Ok(Some((size, Cow::Owned(bytes))))
2778 })?
2779 .expect("Callback above only errors or returns Some");
2780 let bounds = Bounds {
2781 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2782 size: tile.bounds.size.map(Into::into),
2783 };
2784 let content_mask = self.content_mask().scale(scale_factor);
2785 self.next_frame.scene.insert_primitive(MonochromeSprite {
2786 order: 0,
2787 pad: 0,
2788 bounds,
2789 content_mask,
2790 color: color.opacity(element_opacity),
2791 tile,
2792 transformation: TransformationMatrix::unit(),
2793 });
2794 }
2795 Ok(())
2796 }
2797
2798 /// Paints an emoji glyph into the scene for the next frame at the current z-index.
2799 ///
2800 /// The y component of the origin is the baseline of the glyph.
2801 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2802 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2803 /// This method is only useful if you need to paint a single emoji that has already been shaped.
2804 ///
2805 /// This method should only be called as part of the paint phase of element drawing.
2806 pub fn paint_emoji(
2807 &mut self,
2808 origin: Point<Pixels>,
2809 font_id: FontId,
2810 glyph_id: GlyphId,
2811 font_size: Pixels,
2812 ) -> Result<()> {
2813 self.invalidator.debug_assert_paint();
2814
2815 let scale_factor = self.scale_factor();
2816 let glyph_origin = origin.scale(scale_factor);
2817 let params = RenderGlyphParams {
2818 font_id,
2819 glyph_id,
2820 font_size,
2821 // We don't render emojis with subpixel variants.
2822 subpixel_variant: Default::default(),
2823 scale_factor,
2824 is_emoji: true,
2825 };
2826
2827 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2828 if !raster_bounds.is_zero() {
2829 let tile = self
2830 .sprite_atlas
2831 .get_or_insert_with(¶ms.clone().into(), &mut || {
2832 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2833 Ok(Some((size, Cow::Owned(bytes))))
2834 })?
2835 .expect("Callback above only errors or returns Some");
2836
2837 let bounds = Bounds {
2838 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2839 size: tile.bounds.size.map(Into::into),
2840 };
2841 let content_mask = self.content_mask().scale(scale_factor);
2842 let opacity = self.element_opacity();
2843
2844 self.next_frame.scene.insert_primitive(PolychromeSprite {
2845 order: 0,
2846 pad: 0,
2847 grayscale: false,
2848 bounds,
2849 corner_radii: Default::default(),
2850 content_mask,
2851 tile,
2852 opacity,
2853 });
2854 }
2855 Ok(())
2856 }
2857
2858 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
2859 ///
2860 /// This method should only be called as part of the paint phase of element drawing.
2861 pub fn paint_svg(
2862 &mut self,
2863 bounds: Bounds<Pixels>,
2864 path: SharedString,
2865 transformation: TransformationMatrix,
2866 color: Hsla,
2867 cx: &App,
2868 ) -> Result<()> {
2869 self.invalidator.debug_assert_paint();
2870
2871 let element_opacity = self.element_opacity();
2872 let scale_factor = self.scale_factor();
2873 let bounds = bounds.scale(scale_factor);
2874 let params = RenderSvgParams {
2875 path,
2876 size: bounds.size.map(|pixels| {
2877 DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
2878 }),
2879 };
2880
2881 let Some(tile) =
2882 self.sprite_atlas
2883 .get_or_insert_with(¶ms.clone().into(), &mut || {
2884 let Some(bytes) = cx.svg_renderer.render(¶ms)? else {
2885 return Ok(None);
2886 };
2887 Ok(Some((params.size, Cow::Owned(bytes))))
2888 })?
2889 else {
2890 return Ok(());
2891 };
2892 let content_mask = self.content_mask().scale(scale_factor);
2893
2894 self.next_frame.scene.insert_primitive(MonochromeSprite {
2895 order: 0,
2896 pad: 0,
2897 bounds: bounds
2898 .map_origin(|origin| origin.floor())
2899 .map_size(|size| size.ceil()),
2900 content_mask,
2901 color: color.opacity(element_opacity),
2902 tile,
2903 transformation,
2904 });
2905
2906 Ok(())
2907 }
2908
2909 /// Paint an image into the scene for the next frame at the current z-index.
2910 /// This method will panic if the frame_index is not valid
2911 ///
2912 /// This method should only be called as part of the paint phase of element drawing.
2913 pub fn paint_image(
2914 &mut self,
2915 bounds: Bounds<Pixels>,
2916 corner_radii: Corners<Pixels>,
2917 data: Arc<RenderImage>,
2918 frame_index: usize,
2919 grayscale: bool,
2920 ) -> Result<()> {
2921 self.invalidator.debug_assert_paint();
2922
2923 let scale_factor = self.scale_factor();
2924 let bounds = bounds.scale(scale_factor);
2925 let params = RenderImageParams {
2926 image_id: data.id,
2927 frame_index,
2928 };
2929
2930 let tile = self
2931 .sprite_atlas
2932 .get_or_insert_with(¶ms.clone().into(), &mut || {
2933 Ok(Some((
2934 data.size(frame_index),
2935 Cow::Borrowed(
2936 data.as_bytes(frame_index)
2937 .expect("It's the caller's job to pass a valid frame index"),
2938 ),
2939 )))
2940 })?
2941 .expect("Callback above only returns Some");
2942 let content_mask = self.content_mask().scale(scale_factor);
2943 let corner_radii = corner_radii.scale(scale_factor);
2944 let opacity = self.element_opacity();
2945
2946 self.next_frame.scene.insert_primitive(PolychromeSprite {
2947 order: 0,
2948 pad: 0,
2949 grayscale,
2950 bounds: bounds
2951 .map_origin(|origin| origin.floor())
2952 .map_size(|size| size.ceil()),
2953 content_mask,
2954 corner_radii,
2955 tile,
2956 opacity,
2957 });
2958 Ok(())
2959 }
2960
2961 /// Paint a surface into the scene for the next frame at the current z-index.
2962 ///
2963 /// This method should only be called as part of the paint phase of element drawing.
2964 #[cfg(target_os = "macos")]
2965 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
2966 use crate::PaintSurface;
2967
2968 self.invalidator.debug_assert_paint();
2969
2970 let scale_factor = self.scale_factor();
2971 let bounds = bounds.scale(scale_factor);
2972 let content_mask = self.content_mask().scale(scale_factor);
2973 self.next_frame.scene.insert_primitive(PaintSurface {
2974 order: 0,
2975 bounds,
2976 content_mask,
2977 image_buffer,
2978 });
2979 }
2980
2981 /// Removes an image from the sprite atlas.
2982 pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
2983 for frame_index in 0..data.frame_count() {
2984 let params = RenderImageParams {
2985 image_id: data.id,
2986 frame_index,
2987 };
2988
2989 self.sprite_atlas.remove(¶ms.clone().into());
2990 }
2991
2992 Ok(())
2993 }
2994
2995 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
2996 /// layout is being requested, along with the layout ids of any children. This method is called during
2997 /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
2998 ///
2999 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3000 #[must_use]
3001 pub fn request_layout(
3002 &mut self,
3003 style: Style,
3004 children: impl IntoIterator<Item = LayoutId>,
3005 cx: &mut App,
3006 ) -> LayoutId {
3007 self.invalidator.debug_assert_prepaint();
3008
3009 cx.layout_id_buffer.clear();
3010 cx.layout_id_buffer.extend(children);
3011 let rem_size = self.rem_size();
3012
3013 self.layout_engine
3014 .as_mut()
3015 .unwrap()
3016 .request_layout(style, rem_size, &cx.layout_id_buffer)
3017 }
3018
3019 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
3020 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
3021 /// determine the element's size. One place this is used internally is when measuring text.
3022 ///
3023 /// The given closure is invoked at layout time with the known dimensions and available space and
3024 /// returns a `Size`.
3025 ///
3026 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3027 pub fn request_measured_layout<
3028 F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
3029 + 'static,
3030 >(
3031 &mut self,
3032 style: Style,
3033 measure: F,
3034 ) -> LayoutId {
3035 self.invalidator.debug_assert_prepaint();
3036
3037 let rem_size = self.rem_size();
3038 self.layout_engine
3039 .as_mut()
3040 .unwrap()
3041 .request_measured_layout(style, rem_size, measure)
3042 }
3043
3044 /// Compute the layout for the given id within the given available space.
3045 /// This method is called for its side effect, typically by the framework prior to painting.
3046 /// After calling it, you can request the bounds of the given layout node id or any descendant.
3047 ///
3048 /// This method should only be called as part of the prepaint phase of element drawing.
3049 pub fn compute_layout(
3050 &mut self,
3051 layout_id: LayoutId,
3052 available_space: Size<AvailableSpace>,
3053 cx: &mut App,
3054 ) {
3055 self.invalidator.debug_assert_prepaint();
3056
3057 let mut layout_engine = self.layout_engine.take().unwrap();
3058 layout_engine.compute_layout(layout_id, available_space, self, cx);
3059 self.layout_engine = Some(layout_engine);
3060 }
3061
3062 /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
3063 /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
3064 ///
3065 /// This method should only be called as part of element drawing.
3066 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
3067 self.invalidator.debug_assert_prepaint();
3068
3069 let mut bounds = self
3070 .layout_engine
3071 .as_mut()
3072 .unwrap()
3073 .layout_bounds(layout_id)
3074 .map(Into::into);
3075 bounds.origin += self.element_offset();
3076 bounds
3077 }
3078
3079 /// This method should be called during `prepaint`. You can use
3080 /// the returned [Hitbox] during `paint` or in an event handler
3081 /// to determine whether the inserted hitbox was the topmost.
3082 ///
3083 /// This method should only be called as part of the prepaint phase of element drawing.
3084 pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
3085 self.invalidator.debug_assert_prepaint();
3086
3087 let content_mask = self.content_mask();
3088 let mut id = self.next_hitbox_id;
3089 self.next_hitbox_id = self.next_hitbox_id.next();
3090 let hitbox = Hitbox {
3091 id,
3092 bounds,
3093 content_mask,
3094 behavior,
3095 };
3096 self.next_frame.hitboxes.push(hitbox.clone());
3097 hitbox
3098 }
3099
3100 /// Set a hitbox which will act as a control area of the platform window.
3101 ///
3102 /// This method should only be called as part of the paint phase of element drawing.
3103 pub fn insert_window_control_hitbox(&mut self, area: WindowControlArea, hitbox: Hitbox) {
3104 self.invalidator.debug_assert_paint();
3105 self.next_frame.window_control_hitboxes.push((area, hitbox));
3106 }
3107
3108 /// Sets the key context for the current element. This context will be used to translate
3109 /// keybindings into actions.
3110 ///
3111 /// This method should only be called as part of the paint phase of element drawing.
3112 pub fn set_key_context(&mut self, context: KeyContext) {
3113 self.invalidator.debug_assert_paint();
3114 self.next_frame.dispatch_tree.set_key_context(context);
3115 }
3116
3117 /// Sets the focus handle for the current element. This handle will be used to manage focus state
3118 /// and keyboard event dispatch for the element.
3119 ///
3120 /// This method should only be called as part of the prepaint phase of element drawing.
3121 pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3122 self.invalidator.debug_assert_prepaint();
3123 if focus_handle.is_focused(self) {
3124 self.next_frame.focus = Some(focus_handle.id);
3125 }
3126 self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3127 }
3128
3129 /// Sets the view id for the current element, which will be used to manage view caching.
3130 ///
3131 /// This method should only be called as part of element prepaint. We plan on removing this
3132 /// method eventually when we solve some issues that require us to construct editor elements
3133 /// directly instead of always using editors via views.
3134 pub fn set_view_id(&mut self, view_id: EntityId) {
3135 self.invalidator.debug_assert_prepaint();
3136 self.next_frame.dispatch_tree.set_view_id(view_id);
3137 }
3138
3139 /// Get the entity ID for the currently rendering view
3140 pub fn current_view(&self) -> EntityId {
3141 self.invalidator.debug_assert_paint_or_prepaint();
3142 self.rendered_entity_stack.last().copied().unwrap()
3143 }
3144
3145 pub(crate) fn with_rendered_view<R>(
3146 &mut self,
3147 id: EntityId,
3148 f: impl FnOnce(&mut Self) -> R,
3149 ) -> R {
3150 self.rendered_entity_stack.push(id);
3151 let result = f(self);
3152 self.rendered_entity_stack.pop();
3153 result
3154 }
3155
3156 /// Executes the provided function with the specified image cache.
3157 pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3158 where
3159 F: FnOnce(&mut Self) -> R,
3160 {
3161 if let Some(image_cache) = image_cache {
3162 self.image_cache_stack.push(image_cache);
3163 let result = f(self);
3164 self.image_cache_stack.pop();
3165 result
3166 } else {
3167 f(self)
3168 }
3169 }
3170
3171 /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3172 /// platform to receive textual input with proper integration with concerns such
3173 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3174 /// rendered.
3175 ///
3176 /// This method should only be called as part of the paint phase of element drawing.
3177 ///
3178 /// [element_input_handler]: crate::ElementInputHandler
3179 pub fn handle_input(
3180 &mut self,
3181 focus_handle: &FocusHandle,
3182 input_handler: impl InputHandler,
3183 cx: &App,
3184 ) {
3185 self.invalidator.debug_assert_paint();
3186
3187 if focus_handle.is_focused(self) {
3188 let cx = self.to_async(cx);
3189 self.next_frame
3190 .input_handlers
3191 .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3192 }
3193 }
3194
3195 /// Register a mouse event listener on the window for the next frame. The type of event
3196 /// is determined by the first parameter of the given listener. When the next frame is rendered
3197 /// the listener will be cleared.
3198 ///
3199 /// This method should only be called as part of the paint phase of element drawing.
3200 pub fn on_mouse_event<Event: MouseEvent>(
3201 &mut self,
3202 mut handler: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3203 ) {
3204 self.invalidator.debug_assert_paint();
3205
3206 self.next_frame.mouse_listeners.push(Some(Box::new(
3207 move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3208 if let Some(event) = event.downcast_ref() {
3209 handler(event, phase, window, cx)
3210 }
3211 },
3212 )));
3213 }
3214
3215 /// Register a key event listener on the window for the next frame. The type of event
3216 /// is determined by the first parameter of the given listener. When the next frame is rendered
3217 /// the listener will be cleared.
3218 ///
3219 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3220 /// a specific need to register a global listener.
3221 ///
3222 /// This method should only be called as part of the paint phase of element drawing.
3223 pub fn on_key_event<Event: KeyEvent>(
3224 &mut self,
3225 listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3226 ) {
3227 self.invalidator.debug_assert_paint();
3228
3229 self.next_frame.dispatch_tree.on_key_event(Rc::new(
3230 move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3231 if let Some(event) = event.downcast_ref::<Event>() {
3232 listener(event, phase, window, cx)
3233 }
3234 },
3235 ));
3236 }
3237
3238 /// Register a modifiers changed event listener on the window for the next frame.
3239 ///
3240 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3241 /// a specific need to register a global listener.
3242 ///
3243 /// This method should only be called as part of the paint phase of element drawing.
3244 pub fn on_modifiers_changed(
3245 &mut self,
3246 listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3247 ) {
3248 self.invalidator.debug_assert_paint();
3249
3250 self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3251 move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3252 listener(event, window, cx)
3253 },
3254 ));
3255 }
3256
3257 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3258 /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3259 /// Returns a subscription and persists until the subscription is dropped.
3260 pub fn on_focus_in(
3261 &mut self,
3262 handle: &FocusHandle,
3263 cx: &mut App,
3264 mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3265 ) -> Subscription {
3266 let focus_id = handle.id;
3267 let (subscription, activate) =
3268 self.new_focus_listener(Box::new(move |event, window, cx| {
3269 if event.is_focus_in(focus_id) {
3270 listener(window, cx);
3271 }
3272 true
3273 }));
3274 cx.defer(move |_| activate());
3275 subscription
3276 }
3277
3278 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3279 /// Returns a subscription and persists until the subscription is dropped.
3280 pub fn on_focus_out(
3281 &mut self,
3282 handle: &FocusHandle,
3283 cx: &mut App,
3284 mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3285 ) -> Subscription {
3286 let focus_id = handle.id;
3287 let (subscription, activate) =
3288 self.new_focus_listener(Box::new(move |event, window, cx| {
3289 if let Some(blurred_id) = event.previous_focus_path.last().copied() {
3290 if event.is_focus_out(focus_id) {
3291 let event = FocusOutEvent {
3292 blurred: WeakFocusHandle {
3293 id: blurred_id,
3294 handles: Arc::downgrade(&cx.focus_handles),
3295 },
3296 };
3297 listener(event, window, cx)
3298 }
3299 }
3300 true
3301 }));
3302 cx.defer(move |_| activate());
3303 subscription
3304 }
3305
3306 fn reset_cursor_style(&self, cx: &mut App) {
3307 // Set the cursor only if we're the active window.
3308 if self.is_window_hovered() {
3309 let style = self
3310 .rendered_frame
3311 .cursor_style(self)
3312 .unwrap_or(CursorStyle::Arrow);
3313 cx.platform.set_cursor_style(style);
3314 }
3315 }
3316
3317 /// Dispatch a given keystroke as though the user had typed it.
3318 /// You can create a keystroke with Keystroke::parse("").
3319 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3320 let keystroke = keystroke.with_simulated_ime();
3321 let result = self.dispatch_event(
3322 PlatformInput::KeyDown(KeyDownEvent {
3323 keystroke: keystroke.clone(),
3324 is_held: false,
3325 }),
3326 cx,
3327 );
3328 if !result.propagate {
3329 return true;
3330 }
3331
3332 if let Some(input) = keystroke.key_char {
3333 if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3334 input_handler.dispatch_input(&input, self, cx);
3335 self.platform_window.set_input_handler(input_handler);
3336 return true;
3337 }
3338 }
3339
3340 false
3341 }
3342
3343 /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3344 /// binding for the action (last binding added to the keymap).
3345 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3346 self.highest_precedence_binding_for_action(action)
3347 .map(|binding| {
3348 binding
3349 .keystrokes()
3350 .iter()
3351 .map(ToString::to_string)
3352 .collect::<Vec<_>>()
3353 .join(" ")
3354 })
3355 .unwrap_or_else(|| action.name().to_string())
3356 }
3357
3358 /// Dispatch a mouse or keyboard event on the window.
3359 #[profiling::function]
3360 pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3361 self.last_input_timestamp.set(Instant::now());
3362 // Handlers may set this to false by calling `stop_propagation`.
3363 cx.propagate_event = true;
3364 // Handlers may set this to true by calling `prevent_default`.
3365 self.default_prevented = false;
3366
3367 let event = match event {
3368 // Track the mouse position with our own state, since accessing the platform
3369 // API for the mouse position can only occur on the main thread.
3370 PlatformInput::MouseMove(mouse_move) => {
3371 self.mouse_position = mouse_move.position;
3372 self.modifiers = mouse_move.modifiers;
3373 PlatformInput::MouseMove(mouse_move)
3374 }
3375 PlatformInput::MouseDown(mouse_down) => {
3376 self.mouse_position = mouse_down.position;
3377 self.modifiers = mouse_down.modifiers;
3378 PlatformInput::MouseDown(mouse_down)
3379 }
3380 PlatformInput::MouseUp(mouse_up) => {
3381 self.mouse_position = mouse_up.position;
3382 self.modifiers = mouse_up.modifiers;
3383 PlatformInput::MouseUp(mouse_up)
3384 }
3385 PlatformInput::MouseExited(mouse_exited) => {
3386 self.modifiers = mouse_exited.modifiers;
3387 PlatformInput::MouseExited(mouse_exited)
3388 }
3389 PlatformInput::ModifiersChanged(modifiers_changed) => {
3390 self.modifiers = modifiers_changed.modifiers;
3391 self.capslock = modifiers_changed.capslock;
3392 PlatformInput::ModifiersChanged(modifiers_changed)
3393 }
3394 PlatformInput::ScrollWheel(scroll_wheel) => {
3395 self.mouse_position = scroll_wheel.position;
3396 self.modifiers = scroll_wheel.modifiers;
3397 PlatformInput::ScrollWheel(scroll_wheel)
3398 }
3399 // Translate dragging and dropping of external files from the operating system
3400 // to internal drag and drop events.
3401 PlatformInput::FileDrop(file_drop) => match file_drop {
3402 FileDropEvent::Entered { position, paths } => {
3403 self.mouse_position = position;
3404 if cx.active_drag.is_none() {
3405 cx.active_drag = Some(AnyDrag {
3406 value: Arc::new(paths.clone()),
3407 view: cx.new(|_| paths).into(),
3408 cursor_offset: position,
3409 cursor_style: None,
3410 });
3411 }
3412 PlatformInput::MouseMove(MouseMoveEvent {
3413 position,
3414 pressed_button: Some(MouseButton::Left),
3415 modifiers: Modifiers::default(),
3416 })
3417 }
3418 FileDropEvent::Pending { position } => {
3419 self.mouse_position = position;
3420 PlatformInput::MouseMove(MouseMoveEvent {
3421 position,
3422 pressed_button: Some(MouseButton::Left),
3423 modifiers: Modifiers::default(),
3424 })
3425 }
3426 FileDropEvent::Submit { position } => {
3427 cx.activate(true);
3428 self.mouse_position = position;
3429 PlatformInput::MouseUp(MouseUpEvent {
3430 button: MouseButton::Left,
3431 position,
3432 modifiers: Modifiers::default(),
3433 click_count: 1,
3434 })
3435 }
3436 FileDropEvent::Exited => {
3437 cx.active_drag.take();
3438 PlatformInput::FileDrop(FileDropEvent::Exited)
3439 }
3440 },
3441 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3442 };
3443
3444 if let Some(any_mouse_event) = event.mouse_event() {
3445 self.dispatch_mouse_event(any_mouse_event, cx);
3446 } else if let Some(any_key_event) = event.keyboard_event() {
3447 self.dispatch_key_event(any_key_event, cx);
3448 }
3449
3450 DispatchEventResult {
3451 propagate: cx.propagate_event,
3452 default_prevented: self.default_prevented,
3453 }
3454 }
3455
3456 fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3457 let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3458 if hit_test != self.mouse_hit_test {
3459 self.mouse_hit_test = hit_test;
3460 self.reset_cursor_style(cx);
3461 }
3462
3463 #[cfg(any(feature = "inspector", debug_assertions))]
3464 if self.is_inspector_picking(cx) {
3465 self.handle_inspector_mouse_event(event, cx);
3466 // When inspector is picking, all other mouse handling is skipped.
3467 return;
3468 }
3469
3470 let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3471
3472 // Capture phase, events bubble from back to front. Handlers for this phase are used for
3473 // special purposes, such as detecting events outside of a given Bounds.
3474 for listener in &mut mouse_listeners {
3475 let listener = listener.as_mut().unwrap();
3476 listener(event, DispatchPhase::Capture, self, cx);
3477 if !cx.propagate_event {
3478 break;
3479 }
3480 }
3481
3482 // Bubble phase, where most normal handlers do their work.
3483 if cx.propagate_event {
3484 for listener in mouse_listeners.iter_mut().rev() {
3485 let listener = listener.as_mut().unwrap();
3486 listener(event, DispatchPhase::Bubble, self, cx);
3487 if !cx.propagate_event {
3488 break;
3489 }
3490 }
3491 }
3492
3493 self.rendered_frame.mouse_listeners = mouse_listeners;
3494
3495 if cx.has_active_drag() {
3496 if event.is::<MouseMoveEvent>() {
3497 // If this was a mouse move event, redraw the window so that the
3498 // active drag can follow the mouse cursor.
3499 self.refresh();
3500 } else if event.is::<MouseUpEvent>() {
3501 // If this was a mouse up event, cancel the active drag and redraw
3502 // the window.
3503 cx.active_drag = None;
3504 self.refresh();
3505 }
3506 }
3507 }
3508
3509 fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3510 if self.invalidator.is_dirty() {
3511 self.draw(cx).clear();
3512 }
3513
3514 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3515 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3516
3517 let mut keystroke: Option<Keystroke> = None;
3518
3519 if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3520 if event.modifiers.number_of_modifiers() == 0
3521 && self.pending_modifier.modifiers.number_of_modifiers() == 1
3522 && !self.pending_modifier.saw_keystroke
3523 {
3524 let key = match self.pending_modifier.modifiers {
3525 modifiers if modifiers.shift => Some("shift"),
3526 modifiers if modifiers.control => Some("control"),
3527 modifiers if modifiers.alt => Some("alt"),
3528 modifiers if modifiers.platform => Some("platform"),
3529 modifiers if modifiers.function => Some("function"),
3530 _ => None,
3531 };
3532 if let Some(key) = key {
3533 keystroke = Some(Keystroke {
3534 key: key.to_string(),
3535 key_char: None,
3536 modifiers: Modifiers::default(),
3537 });
3538 }
3539 }
3540
3541 if self.pending_modifier.modifiers.number_of_modifiers() == 0
3542 && event.modifiers.number_of_modifiers() == 1
3543 {
3544 self.pending_modifier.saw_keystroke = false
3545 }
3546 self.pending_modifier.modifiers = event.modifiers
3547 } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3548 self.pending_modifier.saw_keystroke = true;
3549 keystroke = Some(key_down_event.keystroke.clone());
3550 }
3551
3552 let Some(keystroke) = keystroke else {
3553 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3554 return;
3555 };
3556
3557 cx.propagate_event = true;
3558 self.dispatch_keystroke_interceptors(event, self.context_stack(), cx);
3559 if !cx.propagate_event {
3560 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3561 return;
3562 }
3563
3564 let mut currently_pending = self.pending_input.take().unwrap_or_default();
3565 if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3566 currently_pending = PendingInput::default();
3567 }
3568
3569 let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3570 currently_pending.keystrokes,
3571 keystroke,
3572 &dispatch_path,
3573 );
3574
3575 if !match_result.to_replay.is_empty() {
3576 self.replay_pending_input(match_result.to_replay, cx)
3577 }
3578
3579 if !match_result.pending.is_empty() {
3580 currently_pending.keystrokes = match_result.pending;
3581 currently_pending.focus = self.focus;
3582 currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3583 cx.background_executor.timer(Duration::from_secs(1)).await;
3584 cx.update(move |window, cx| {
3585 let Some(currently_pending) = window
3586 .pending_input
3587 .take()
3588 .filter(|pending| pending.focus == window.focus)
3589 else {
3590 return;
3591 };
3592
3593 let node_id = window.focus_node_id_in_rendered_frame(window.focus);
3594 let dispatch_path = window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3595
3596 let to_replay = window
3597 .rendered_frame
3598 .dispatch_tree
3599 .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3600
3601 window.pending_input_changed(cx);
3602 window.replay_pending_input(to_replay, cx)
3603 })
3604 .log_err();
3605 }));
3606 self.pending_input = Some(currently_pending);
3607 self.pending_input_changed(cx);
3608 cx.propagate_event = false;
3609 return;
3610 }
3611
3612 for binding in match_result.bindings {
3613 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3614 if !cx.propagate_event {
3615 self.dispatch_keystroke_observers(
3616 event,
3617 Some(binding.action),
3618 match_result.context_stack.clone(),
3619 cx,
3620 );
3621 self.pending_input_changed(cx);
3622 return;
3623 }
3624 }
3625
3626 self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
3627 self.pending_input_changed(cx);
3628 }
3629
3630 fn finish_dispatch_key_event(
3631 &mut self,
3632 event: &dyn Any,
3633 dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3634 context_stack: Vec<KeyContext>,
3635 cx: &mut App,
3636 ) {
3637 self.dispatch_key_down_up_event(event, &dispatch_path, cx);
3638 if !cx.propagate_event {
3639 return;
3640 }
3641
3642 self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
3643 if !cx.propagate_event {
3644 return;
3645 }
3646
3647 self.dispatch_keystroke_observers(event, None, context_stack, cx);
3648 }
3649
3650 fn pending_input_changed(&mut self, cx: &mut App) {
3651 self.pending_input_observers
3652 .clone()
3653 .retain(&(), |callback| callback(self, cx));
3654 }
3655
3656 fn dispatch_key_down_up_event(
3657 &mut self,
3658 event: &dyn Any,
3659 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3660 cx: &mut App,
3661 ) {
3662 // Capture phase
3663 for node_id in dispatch_path {
3664 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3665
3666 for key_listener in node.key_listeners.clone() {
3667 key_listener(event, DispatchPhase::Capture, self, cx);
3668 if !cx.propagate_event {
3669 return;
3670 }
3671 }
3672 }
3673
3674 // Bubble phase
3675 for node_id in dispatch_path.iter().rev() {
3676 // Handle low level key events
3677 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3678 for key_listener in node.key_listeners.clone() {
3679 key_listener(event, DispatchPhase::Bubble, self, cx);
3680 if !cx.propagate_event {
3681 return;
3682 }
3683 }
3684 }
3685 }
3686
3687 fn dispatch_modifiers_changed_event(
3688 &mut self,
3689 event: &dyn Any,
3690 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3691 cx: &mut App,
3692 ) {
3693 let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
3694 return;
3695 };
3696 for node_id in dispatch_path.iter().rev() {
3697 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3698 for listener in node.modifiers_changed_listeners.clone() {
3699 listener(event, self, cx);
3700 if !cx.propagate_event {
3701 return;
3702 }
3703 }
3704 }
3705 }
3706
3707 /// Determine whether a potential multi-stroke key binding is in progress on this window.
3708 pub fn has_pending_keystrokes(&self) -> bool {
3709 self.pending_input.is_some()
3710 }
3711
3712 pub(crate) fn clear_pending_keystrokes(&mut self) {
3713 self.pending_input.take();
3714 }
3715
3716 /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
3717 pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
3718 self.pending_input
3719 .as_ref()
3720 .map(|pending_input| pending_input.keystrokes.as_slice())
3721 }
3722
3723 fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
3724 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3725 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3726
3727 'replay: for replay in replays {
3728 let event = KeyDownEvent {
3729 keystroke: replay.keystroke.clone(),
3730 is_held: false,
3731 };
3732
3733 cx.propagate_event = true;
3734 for binding in replay.bindings {
3735 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3736 if !cx.propagate_event {
3737 self.dispatch_keystroke_observers(
3738 &event,
3739 Some(binding.action),
3740 Vec::default(),
3741 cx,
3742 );
3743 continue 'replay;
3744 }
3745 }
3746
3747 self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
3748 if !cx.propagate_event {
3749 continue 'replay;
3750 }
3751 if let Some(input) = replay.keystroke.key_char.as_ref().cloned() {
3752 if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3753 input_handler.dispatch_input(&input, self, cx);
3754 self.platform_window.set_input_handler(input_handler)
3755 }
3756 }
3757 }
3758 }
3759
3760 fn focus_node_id_in_rendered_frame(&self, focus_id: Option<FocusId>) -> DispatchNodeId {
3761 focus_id
3762 .and_then(|focus_id| {
3763 self.rendered_frame
3764 .dispatch_tree
3765 .focusable_node_id(focus_id)
3766 })
3767 .unwrap_or_else(|| {
3768 println!("root node id");
3769 self.rendered_frame.dispatch_tree.root_node_id()
3770 })
3771 }
3772
3773 fn dispatch_action_on_node(
3774 &mut self,
3775 node_id: DispatchNodeId,
3776 action: &dyn Action,
3777 cx: &mut App,
3778 ) {
3779 dbg!("dispatch_action_on_node");
3780 dbg!(action.name());
3781 dbg!(action.as_any().type_id());
3782 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3783 dbg!(&dispatch_path);
3784
3785 // Capture phase for global actions.
3786 cx.propagate_event = true;
3787 if let Some(mut global_listeners) = cx
3788 .global_action_listeners
3789 .remove(&action.as_any().type_id())
3790 {
3791 dbg!(
3792 "Found global listeners for capture phase",
3793 global_listeners.len()
3794 );
3795 for listener in &global_listeners {
3796 dbg!("Executing global listener in capture phase");
3797 listener(action.as_any(), DispatchPhase::Capture, cx);
3798 if !cx.propagate_event {
3799 dbg!("Event propagation stopped in global capture phase");
3800 break;
3801 }
3802 }
3803
3804 global_listeners.extend(
3805 cx.global_action_listeners
3806 .remove(&action.as_any().type_id())
3807 .unwrap_or_default(),
3808 );
3809
3810 cx.global_action_listeners
3811 .insert(action.as_any().type_id(), global_listeners);
3812 }
3813
3814 if !cx.propagate_event {
3815 return;
3816 }
3817
3818 // Capture phase for window actions.
3819 for node_id in &dispatch_path {
3820 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3821 for DispatchActionListener {
3822 action_type,
3823 listener,
3824 } in node.action_listeners.clone()
3825 {
3826 let any_action = action.as_any();
3827 if action_type == any_action.type_id() {
3828 dbg!("Found window action listener in capture phase", node_id);
3829 listener(any_action, DispatchPhase::Capture, self, cx);
3830
3831 if !cx.propagate_event {
3832 dbg!("Event propagation stopped in window capture phase");
3833 return;
3834 }
3835 }
3836 }
3837 }
3838
3839 // Bubble phase for window actions.
3840 for node_id in dispatch_path.iter().rev() {
3841 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3842 for DispatchActionListener {
3843 action_type,
3844 listener,
3845 } in node.action_listeners.clone()
3846 {
3847 let any_action = action.as_any();
3848 if action_type == any_action.type_id() {
3849 dbg!("Found window action listener in bubble phase", node_id);
3850 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3851 listener(any_action, DispatchPhase::Bubble, self, cx);
3852
3853 if !cx.propagate_event {
3854 dbg!("Event propagation stopped in window bubble phase");
3855 return;
3856 }
3857 }
3858 }
3859 }
3860
3861 // Bubble phase for global actions.
3862 if let Some(mut global_listeners) = cx
3863 .global_action_listeners
3864 .remove(&action.as_any().type_id())
3865 {
3866 dbg!(
3867 "Found global listeners for bubble phase",
3868 global_listeners.len()
3869 );
3870 for listener in global_listeners.iter().rev() {
3871 dbg!("Executing global listener in bubble phase");
3872 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3873
3874 listener(action.as_any(), DispatchPhase::Bubble, cx);
3875 if !cx.propagate_event {
3876 dbg!("Event propagation stopped in global bubble phase");
3877 break;
3878 }
3879 }
3880
3881 global_listeners.extend(
3882 cx.global_action_listeners
3883 .remove(&action.as_any().type_id())
3884 .unwrap_or_default(),
3885 );
3886
3887 cx.global_action_listeners
3888 .insert(action.as_any().type_id(), global_listeners);
3889 }
3890 }
3891
3892 /// Register the given handler to be invoked whenever the global of the given type
3893 /// is updated.
3894 pub fn observe_global<G: Global>(
3895 &mut self,
3896 cx: &mut App,
3897 f: impl Fn(&mut Window, &mut App) + 'static,
3898 ) -> Subscription {
3899 let window_handle = self.handle;
3900 let (subscription, activate) = cx.global_observers.insert(
3901 TypeId::of::<G>(),
3902 Box::new(move |cx| {
3903 window_handle
3904 .update(cx, |_, window, cx| f(window, cx))
3905 .is_ok()
3906 }),
3907 );
3908 cx.defer(move |_| activate());
3909 subscription
3910 }
3911
3912 /// Focus the current window and bring it to the foreground at the platform level.
3913 pub fn activate_window(&self) {
3914 self.platform_window.activate();
3915 }
3916
3917 /// Minimize the current window at the platform level.
3918 pub fn minimize_window(&self) {
3919 self.platform_window.minimize();
3920 }
3921
3922 /// Toggle full screen status on the current window at the platform level.
3923 pub fn toggle_fullscreen(&self) {
3924 self.platform_window.toggle_fullscreen();
3925 }
3926
3927 /// Updates the IME panel position suggestions for languages like japanese, chinese.
3928 pub fn invalidate_character_coordinates(&self) {
3929 self.on_next_frame(|window, cx| {
3930 if let Some(mut input_handler) = window.platform_window.take_input_handler() {
3931 if let Some(bounds) = input_handler.selected_bounds(window, cx) {
3932 window
3933 .platform_window
3934 .update_ime_position(bounds.scale(window.scale_factor()));
3935 }
3936 window.platform_window.set_input_handler(input_handler);
3937 }
3938 });
3939 }
3940
3941 /// Present a platform dialog.
3942 /// The provided message will be presented, along with buttons for each answer.
3943 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
3944 pub fn prompt<T>(
3945 &mut self,
3946 level: PromptLevel,
3947 message: &str,
3948 detail: Option<&str>,
3949 answers: &[T],
3950 cx: &mut App,
3951 ) -> oneshot::Receiver<usize>
3952 where
3953 T: Clone + Into<PromptButton>,
3954 {
3955 let prompt_builder = cx.prompt_builder.take();
3956 let Some(prompt_builder) = prompt_builder else {
3957 unreachable!("Re-entrant window prompting is not supported by GPUI");
3958 };
3959
3960 let answers = answers
3961 .iter()
3962 .map(|answer| answer.clone().into())
3963 .collect::<Vec<_>>();
3964
3965 let receiver = match &prompt_builder {
3966 PromptBuilder::Default => self
3967 .platform_window
3968 .prompt(level, message, detail, &answers)
3969 .unwrap_or_else(|| {
3970 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
3971 }),
3972 PromptBuilder::Custom(_) => {
3973 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
3974 }
3975 };
3976
3977 cx.prompt_builder = Some(prompt_builder);
3978
3979 receiver
3980 }
3981
3982 fn build_custom_prompt(
3983 &mut self,
3984 prompt_builder: &PromptBuilder,
3985 level: PromptLevel,
3986 message: &str,
3987 detail: Option<&str>,
3988 answers: &[PromptButton],
3989 cx: &mut App,
3990 ) -> oneshot::Receiver<usize> {
3991 let (sender, receiver) = oneshot::channel();
3992 let handle = PromptHandle::new(sender);
3993 let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
3994 self.prompt = Some(handle);
3995 receiver
3996 }
3997
3998 /// Returns the current context stack.
3999 pub fn context_stack(&self) -> Vec<KeyContext> {
4000 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4001 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4002 dispatch_tree
4003 .dispatch_path(node_id)
4004 .iter()
4005 .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
4006 .collect()
4007 }
4008
4009 /// Returns all available actions for the focused element.
4010 pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
4011 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4012 let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
4013 for action_type in cx.global_action_listeners.keys() {
4014 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
4015 let action = cx.actions.build_action_type(action_type).ok();
4016 if let Some(action) = action {
4017 actions.insert(ix, action);
4018 }
4019 }
4020 }
4021 actions
4022 }
4023
4024 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
4025 /// returned in the order they were added. For display, the last binding should take precedence.
4026 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
4027 self.rendered_frame
4028 .dispatch_tree
4029 .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
4030 }
4031
4032 /// Returns the highest precedence key binding that invokes an action on the currently focused
4033 /// element. This is more efficient than getting the last result of `bindings_for_action`.
4034 pub fn highest_precedence_binding_for_action(&self, action: &dyn Action) -> Option<KeyBinding> {
4035 self.rendered_frame
4036 .dispatch_tree
4037 .highest_precedence_binding_for_action(
4038 action,
4039 &self.rendered_frame.dispatch_tree.context_stack,
4040 )
4041 }
4042
4043 /// Returns the key bindings for an action in a context.
4044 pub fn bindings_for_action_in_context(
4045 &self,
4046 action: &dyn Action,
4047 context: KeyContext,
4048 ) -> Vec<KeyBinding> {
4049 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4050 dispatch_tree.bindings_for_action(action, &[context])
4051 }
4052
4053 /// Returns the highest precedence key binding for an action in a context. This is more
4054 /// efficient than getting the last result of `bindings_for_action_in_context`.
4055 pub fn highest_precedence_binding_for_action_in_context(
4056 &self,
4057 action: &dyn Action,
4058 context: KeyContext,
4059 ) -> Option<KeyBinding> {
4060 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4061 dispatch_tree.highest_precedence_binding_for_action(action, &[context])
4062 }
4063
4064 /// Returns any bindings that would invoke an action on the given focus handle if it were
4065 /// focused. Bindings are returned in the order they were added. For display, the last binding
4066 /// should take precedence.
4067 pub fn bindings_for_action_in(
4068 &self,
4069 action: &dyn Action,
4070 focus_handle: &FocusHandle,
4071 ) -> Vec<KeyBinding> {
4072 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4073 let Some(context_stack) = self.context_stack_for_focus_handle(focus_handle) else {
4074 return vec![];
4075 };
4076 dispatch_tree.bindings_for_action(action, &context_stack)
4077 }
4078
4079 /// Returns the highest precedence key binding that would invoke an action on the given focus
4080 /// handle if it were focused. This is more efficient than getting the last result of
4081 /// `bindings_for_action_in`.
4082 pub fn highest_precedence_binding_for_action_in(
4083 &self,
4084 action: &dyn Action,
4085 focus_handle: &FocusHandle,
4086 ) -> Option<KeyBinding> {
4087 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4088 let context_stack = self.context_stack_for_focus_handle(focus_handle)?;
4089 dispatch_tree.highest_precedence_binding_for_action(action, &context_stack)
4090 }
4091
4092 fn context_stack_for_focus_handle(
4093 &self,
4094 focus_handle: &FocusHandle,
4095 ) -> Option<Vec<KeyContext>> {
4096 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4097 let node_id = dispatch_tree.focusable_node_id(focus_handle.id)?;
4098 let context_stack: Vec<_> = dispatch_tree
4099 .dispatch_path(node_id)
4100 .into_iter()
4101 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
4102 .collect();
4103 Some(context_stack)
4104 }
4105
4106 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
4107 pub fn listener_for<V: Render, E>(
4108 &self,
4109 view: &Entity<V>,
4110 f: impl Fn(&mut V, &E, &mut Window, &mut Context<V>) + 'static,
4111 ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
4112 let view = view.downgrade();
4113 move |e: &E, window: &mut Window, cx: &mut App| {
4114 view.update(cx, |view, cx| f(view, e, window, cx)).ok();
4115 }
4116 }
4117
4118 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
4119 pub fn handler_for<V: Render, Callback: Fn(&mut V, &mut Window, &mut Context<V>) + 'static>(
4120 &self,
4121 view: &Entity<V>,
4122 f: Callback,
4123 ) -> impl Fn(&mut Window, &mut App) + use<V, Callback> {
4124 let view = view.downgrade();
4125 move |window: &mut Window, cx: &mut App| {
4126 view.update(cx, |view, cx| f(view, window, cx)).ok();
4127 }
4128 }
4129
4130 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
4131 /// If the callback returns false, the window won't be closed.
4132 pub fn on_window_should_close(
4133 &self,
4134 cx: &App,
4135 f: impl Fn(&mut Window, &mut App) -> bool + 'static,
4136 ) {
4137 let mut cx = self.to_async(cx);
4138 self.platform_window.on_should_close(Box::new(move || {
4139 cx.update(|window, cx| f(window, cx)).unwrap_or(true)
4140 }))
4141 }
4142
4143 /// Register an action listener on the window for the next frame. The type of action
4144 /// is determined by the first parameter of the given listener. When the next frame is rendered
4145 /// the listener will be cleared.
4146 ///
4147 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4148 /// a specific need to register a global listener.
4149 pub fn on_action(
4150 &mut self,
4151 action_type: TypeId,
4152 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4153 ) {
4154 self.next_frame
4155 .dispatch_tree
4156 .on_action(action_type, Rc::new(listener));
4157 }
4158
4159 /// Read information about the GPU backing this window.
4160 /// Currently returns None on Mac and Windows.
4161 pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4162 self.platform_window.gpu_specs()
4163 }
4164
4165 /// Perform titlebar double-click action.
4166 /// This is MacOS specific.
4167 pub fn titlebar_double_click(&self) {
4168 self.platform_window.titlebar_double_click();
4169 }
4170
4171 /// Toggles the inspector mode on this window.
4172 #[cfg(any(feature = "inspector", debug_assertions))]
4173 pub fn toggle_inspector(&mut self, cx: &mut App) {
4174 self.inspector = match self.inspector {
4175 None => Some(cx.new(|_| Inspector::new())),
4176 Some(_) => None,
4177 };
4178 self.refresh();
4179 }
4180
4181 /// Returns true if the window is in inspector mode.
4182 pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4183 #[cfg(any(feature = "inspector", debug_assertions))]
4184 {
4185 if let Some(inspector) = &self.inspector {
4186 return inspector.read(_cx).is_picking();
4187 }
4188 }
4189 false
4190 }
4191
4192 /// Executes the provided function with mutable access to an inspector state.
4193 #[cfg(any(feature = "inspector", debug_assertions))]
4194 pub fn with_inspector_state<T: 'static, R>(
4195 &mut self,
4196 _inspector_id: Option<&crate::InspectorElementId>,
4197 cx: &mut App,
4198 f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4199 ) -> R {
4200 if let Some(inspector_id) = _inspector_id {
4201 if let Some(inspector) = &self.inspector {
4202 let inspector = inspector.clone();
4203 let active_element_id = inspector.read(cx).active_element_id();
4204 if Some(inspector_id) == active_element_id {
4205 return inspector.update(cx, |inspector, _cx| {
4206 inspector.with_active_element_state(self, f)
4207 });
4208 }
4209 }
4210 }
4211 f(&mut None, self)
4212 }
4213
4214 #[cfg(any(feature = "inspector", debug_assertions))]
4215 pub(crate) fn build_inspector_element_id(
4216 &mut self,
4217 path: crate::InspectorElementPath,
4218 ) -> crate::InspectorElementId {
4219 self.invalidator.debug_assert_paint_or_prepaint();
4220 let path = Rc::new(path);
4221 let next_instance_id = self
4222 .next_frame
4223 .next_inspector_instance_ids
4224 .entry(path.clone())
4225 .or_insert(0);
4226 let instance_id = *next_instance_id;
4227 *next_instance_id += 1;
4228 crate::InspectorElementId { path, instance_id }
4229 }
4230
4231 #[cfg(any(feature = "inspector", debug_assertions))]
4232 fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4233 if let Some(inspector) = self.inspector.take() {
4234 let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4235 inspector_element.prepaint_as_root(
4236 point(self.viewport_size.width - inspector_width, px(0.0)),
4237 size(inspector_width, self.viewport_size.height).into(),
4238 self,
4239 cx,
4240 );
4241 self.inspector = Some(inspector);
4242 Some(inspector_element)
4243 } else {
4244 None
4245 }
4246 }
4247
4248 #[cfg(any(feature = "inspector", debug_assertions))]
4249 fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4250 if let Some(mut inspector_element) = inspector_element {
4251 inspector_element.paint(self, cx);
4252 };
4253 }
4254
4255 /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4256 /// inspect UI elements by clicking on them.
4257 #[cfg(any(feature = "inspector", debug_assertions))]
4258 pub fn insert_inspector_hitbox(
4259 &mut self,
4260 hitbox_id: HitboxId,
4261 inspector_id: Option<&crate::InspectorElementId>,
4262 cx: &App,
4263 ) {
4264 self.invalidator.debug_assert_paint_or_prepaint();
4265 if !self.is_inspector_picking(cx) {
4266 return;
4267 }
4268 if let Some(inspector_id) = inspector_id {
4269 self.next_frame
4270 .inspector_hitboxes
4271 .insert(hitbox_id, inspector_id.clone());
4272 }
4273 }
4274
4275 #[cfg(any(feature = "inspector", debug_assertions))]
4276 fn paint_inspector_hitbox(&mut self, cx: &App) {
4277 if let Some(inspector) = self.inspector.as_ref() {
4278 let inspector = inspector.read(cx);
4279 if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
4280 {
4281 if let Some(hitbox) = self
4282 .next_frame
4283 .hitboxes
4284 .iter()
4285 .find(|hitbox| hitbox.id == hitbox_id)
4286 {
4287 self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4288 }
4289 }
4290 }
4291 }
4292
4293 #[cfg(any(feature = "inspector", debug_assertions))]
4294 fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4295 let Some(inspector) = self.inspector.clone() else {
4296 return;
4297 };
4298 if event.downcast_ref::<MouseMoveEvent>().is_some() {
4299 inspector.update(cx, |inspector, _cx| {
4300 if let Some((_, inspector_id)) =
4301 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4302 {
4303 inspector.hover(inspector_id, self);
4304 }
4305 });
4306 } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4307 inspector.update(cx, |inspector, _cx| {
4308 if let Some((_, inspector_id)) =
4309 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4310 {
4311 inspector.select(inspector_id, self);
4312 }
4313 });
4314 } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4315 // This should be kept in sync with SCROLL_LINES in x11 platform.
4316 const SCROLL_LINES: f32 = 3.0;
4317 const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4318 let delta_y = event
4319 .delta
4320 .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4321 .y;
4322 if let Some(inspector) = self.inspector.clone() {
4323 inspector.update(cx, |inspector, _cx| {
4324 if let Some(depth) = inspector.pick_depth.as_mut() {
4325 *depth += delta_y.0 / SCROLL_PIXELS_PER_LAYER;
4326 let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4327 if *depth < 0.0 {
4328 *depth = 0.0;
4329 } else if *depth > max_depth {
4330 *depth = max_depth;
4331 }
4332 if let Some((_, inspector_id)) =
4333 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4334 {
4335 inspector.set_active_element_id(inspector_id.clone(), self);
4336 }
4337 }
4338 });
4339 }
4340 }
4341 }
4342
4343 #[cfg(any(feature = "inspector", debug_assertions))]
4344 fn hovered_inspector_hitbox(
4345 &self,
4346 inspector: &Inspector,
4347 frame: &Frame,
4348 ) -> Option<(HitboxId, crate::InspectorElementId)> {
4349 if let Some(pick_depth) = inspector.pick_depth {
4350 let depth = (pick_depth as i64).try_into().unwrap_or(0);
4351 let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4352 let skip_count = (depth as usize).min(max_skipped);
4353 for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4354 if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4355 return Some((*hitbox_id, inspector_id.clone()));
4356 }
4357 }
4358 }
4359 return None;
4360 }
4361}
4362
4363// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4364slotmap::new_key_type! {
4365 /// A unique identifier for a window.
4366 pub struct WindowId;
4367}
4368
4369impl WindowId {
4370 /// Converts this window ID to a `u64`.
4371 pub fn as_u64(&self) -> u64 {
4372 self.0.as_ffi()
4373 }
4374}
4375
4376impl From<u64> for WindowId {
4377 fn from(value: u64) -> Self {
4378 WindowId(slotmap::KeyData::from_ffi(value))
4379 }
4380}
4381
4382/// A handle to a window with a specific root view type.
4383/// Note that this does not keep the window alive on its own.
4384#[derive(Deref, DerefMut)]
4385pub struct WindowHandle<V> {
4386 #[deref]
4387 #[deref_mut]
4388 pub(crate) any_handle: AnyWindowHandle,
4389 state_type: PhantomData<V>,
4390}
4391
4392impl<V: 'static + Render> WindowHandle<V> {
4393 /// Creates a new handle from a window ID.
4394 /// This does not check if the root type of the window is `V`.
4395 pub fn new(id: WindowId) -> Self {
4396 WindowHandle {
4397 any_handle: AnyWindowHandle {
4398 id,
4399 state_type: TypeId::of::<V>(),
4400 },
4401 state_type: PhantomData,
4402 }
4403 }
4404
4405 /// Get the root view out of this window.
4406 ///
4407 /// This will fail if the window is closed or if the root view's type does not match `V`.
4408 #[cfg(any(test, feature = "test-support"))]
4409 pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4410 where
4411 C: AppContext,
4412 {
4413 crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4414 root_view
4415 .downcast::<V>()
4416 .map_err(|_| anyhow!("the type of the window's root view has changed"))
4417 }))
4418 }
4419
4420 /// Updates the root view of this window.
4421 ///
4422 /// This will fail if the window has been closed or if the root view's type does not match
4423 pub fn update<C, R>(
4424 &self,
4425 cx: &mut C,
4426 update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4427 ) -> Result<R>
4428 where
4429 C: AppContext,
4430 {
4431 cx.update_window(self.any_handle, |root_view, window, cx| {
4432 let view = root_view
4433 .downcast::<V>()
4434 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4435
4436 Ok(view.update(cx, |view, cx| update(view, window, cx)))
4437 })?
4438 }
4439
4440 /// Read the root view out of this window.
4441 ///
4442 /// This will fail if the window is closed or if the root view's type does not match `V`.
4443 pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
4444 let x = cx
4445 .windows
4446 .get(self.id)
4447 .and_then(|window| {
4448 window
4449 .as_ref()
4450 .and_then(|window| window.root.clone())
4451 .map(|root_view| root_view.downcast::<V>())
4452 })
4453 .context("window not found")?
4454 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4455
4456 Ok(x.read(cx))
4457 }
4458
4459 /// Read the root view out of this window, with a callback
4460 ///
4461 /// This will fail if the window is closed or if the root view's type does not match `V`.
4462 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4463 where
4464 C: AppContext,
4465 {
4466 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
4467 }
4468
4469 /// Read the root view pointer off of this window.
4470 ///
4471 /// This will fail if the window is closed or if the root view's type does not match `V`.
4472 pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4473 where
4474 C: AppContext,
4475 {
4476 cx.read_window(self, |root_view, _cx| root_view.clone())
4477 }
4478
4479 /// Check if this window is 'active'.
4480 ///
4481 /// Will return `None` if the window is closed or currently
4482 /// borrowed.
4483 pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4484 cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4485 .ok()
4486 }
4487}
4488
4489impl<V> Copy for WindowHandle<V> {}
4490
4491impl<V> Clone for WindowHandle<V> {
4492 fn clone(&self) -> Self {
4493 *self
4494 }
4495}
4496
4497impl<V> PartialEq for WindowHandle<V> {
4498 fn eq(&self, other: &Self) -> bool {
4499 self.any_handle == other.any_handle
4500 }
4501}
4502
4503impl<V> Eq for WindowHandle<V> {}
4504
4505impl<V> Hash for WindowHandle<V> {
4506 fn hash<H: Hasher>(&self, state: &mut H) {
4507 self.any_handle.hash(state);
4508 }
4509}
4510
4511impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
4512 fn from(val: WindowHandle<V>) -> Self {
4513 val.any_handle
4514 }
4515}
4516
4517unsafe impl<V> Send for WindowHandle<V> {}
4518unsafe impl<V> Sync for WindowHandle<V> {}
4519
4520/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
4521#[derive(Copy, Clone, PartialEq, Eq, Hash)]
4522pub struct AnyWindowHandle {
4523 pub(crate) id: WindowId,
4524 state_type: TypeId,
4525}
4526
4527impl AnyWindowHandle {
4528 /// Get the ID of this window.
4529 pub fn window_id(&self) -> WindowId {
4530 self.id
4531 }
4532
4533 /// Attempt to convert this handle to a window handle with a specific root view type.
4534 /// If the types do not match, this will return `None`.
4535 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
4536 if TypeId::of::<T>() == self.state_type {
4537 Some(WindowHandle {
4538 any_handle: *self,
4539 state_type: PhantomData,
4540 })
4541 } else {
4542 None
4543 }
4544 }
4545
4546 /// Updates the state of the root view of this window.
4547 ///
4548 /// This will fail if the window has been closed.
4549 pub fn update<C, R>(
4550 self,
4551 cx: &mut C,
4552 update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
4553 ) -> Result<R>
4554 where
4555 C: AppContext,
4556 {
4557 cx.update_window(self, update)
4558 }
4559
4560 /// Read the state of the root view of this window.
4561 ///
4562 /// This will fail if the window has been closed.
4563 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
4564 where
4565 C: AppContext,
4566 T: 'static,
4567 {
4568 let view = self
4569 .downcast::<T>()
4570 .context("the type of the window's root view has changed")?;
4571
4572 cx.read_window(&view, read)
4573 }
4574}
4575
4576impl HasWindowHandle for Window {
4577 fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
4578 self.platform_window.window_handle()
4579 }
4580}
4581
4582impl HasDisplayHandle for Window {
4583 fn display_handle(
4584 &self,
4585 ) -> std::result::Result<raw_window_handle::DisplayHandle<'_>, HandleError> {
4586 self.platform_window.display_handle()
4587 }
4588}
4589
4590/// An identifier for an [`Element`](crate::Element).
4591///
4592/// Can be constructed with a string, a number, or both, as well
4593/// as other internal representations.
4594#[derive(Clone, Debug, Eq, PartialEq, Hash)]
4595pub enum ElementId {
4596 /// The ID of a View element
4597 View(EntityId),
4598 /// An integer ID.
4599 Integer(u64),
4600 /// A string based ID.
4601 Name(SharedString),
4602 /// A UUID.
4603 Uuid(Uuid),
4604 /// An ID that's equated with a focus handle.
4605 FocusHandle(FocusId),
4606 /// A combination of a name and an integer.
4607 NamedInteger(SharedString, u64),
4608 /// A path.
4609 Path(Arc<std::path::Path>),
4610}
4611
4612impl ElementId {
4613 /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
4614 pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
4615 Self::NamedInteger(name.into(), integer as u64)
4616 }
4617}
4618
4619impl Display for ElementId {
4620 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4621 match self {
4622 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
4623 ElementId::Integer(ix) => write!(f, "{}", ix)?,
4624 ElementId::Name(name) => write!(f, "{}", name)?,
4625 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
4626 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
4627 ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
4628 ElementId::Path(path) => write!(f, "{}", path.display())?,
4629 }
4630
4631 Ok(())
4632 }
4633}
4634
4635impl TryInto<SharedString> for ElementId {
4636 type Error = anyhow::Error;
4637
4638 fn try_into(self) -> anyhow::Result<SharedString> {
4639 if let ElementId::Name(name) = self {
4640 Ok(name)
4641 } else {
4642 anyhow::bail!("element id is not string")
4643 }
4644 }
4645}
4646
4647impl From<usize> for ElementId {
4648 fn from(id: usize) -> Self {
4649 ElementId::Integer(id as u64)
4650 }
4651}
4652
4653impl From<i32> for ElementId {
4654 fn from(id: i32) -> Self {
4655 Self::Integer(id as u64)
4656 }
4657}
4658
4659impl From<SharedString> for ElementId {
4660 fn from(name: SharedString) -> Self {
4661 ElementId::Name(name)
4662 }
4663}
4664
4665impl From<Arc<std::path::Path>> for ElementId {
4666 fn from(path: Arc<std::path::Path>) -> Self {
4667 ElementId::Path(path)
4668 }
4669}
4670
4671impl From<&'static str> for ElementId {
4672 fn from(name: &'static str) -> Self {
4673 ElementId::Name(name.into())
4674 }
4675}
4676
4677impl<'a> From<&'a FocusHandle> for ElementId {
4678 fn from(handle: &'a FocusHandle) -> Self {
4679 ElementId::FocusHandle(handle.id)
4680 }
4681}
4682
4683impl From<(&'static str, EntityId)> for ElementId {
4684 fn from((name, id): (&'static str, EntityId)) -> Self {
4685 ElementId::NamedInteger(name.into(), id.as_u64())
4686 }
4687}
4688
4689impl From<(&'static str, usize)> for ElementId {
4690 fn from((name, id): (&'static str, usize)) -> Self {
4691 ElementId::NamedInteger(name.into(), id as u64)
4692 }
4693}
4694
4695impl From<(SharedString, usize)> for ElementId {
4696 fn from((name, id): (SharedString, usize)) -> Self {
4697 ElementId::NamedInteger(name, id as u64)
4698 }
4699}
4700
4701impl From<(&'static str, u64)> for ElementId {
4702 fn from((name, id): (&'static str, u64)) -> Self {
4703 ElementId::NamedInteger(name.into(), id)
4704 }
4705}
4706
4707impl From<Uuid> for ElementId {
4708 fn from(value: Uuid) -> Self {
4709 Self::Uuid(value)
4710 }
4711}
4712
4713impl From<(&'static str, u32)> for ElementId {
4714 fn from((name, id): (&'static str, u32)) -> Self {
4715 ElementId::NamedInteger(name.into(), id.into())
4716 }
4717}
4718
4719/// A rectangle to be rendered in the window at the given position and size.
4720/// Passed as an argument [`Window::paint_quad`].
4721#[derive(Clone)]
4722pub struct PaintQuad {
4723 /// The bounds of the quad within the window.
4724 pub bounds: Bounds<Pixels>,
4725 /// The radii of the quad's corners.
4726 pub corner_radii: Corners<Pixels>,
4727 /// The background color of the quad.
4728 pub background: Background,
4729 /// The widths of the quad's borders.
4730 pub border_widths: Edges<Pixels>,
4731 /// The color of the quad's borders.
4732 pub border_color: Hsla,
4733 /// The style of the quad's borders.
4734 pub border_style: BorderStyle,
4735}
4736
4737impl PaintQuad {
4738 /// Sets the corner radii of the quad.
4739 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
4740 PaintQuad {
4741 corner_radii: corner_radii.into(),
4742 ..self
4743 }
4744 }
4745
4746 /// Sets the border widths of the quad.
4747 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
4748 PaintQuad {
4749 border_widths: border_widths.into(),
4750 ..self
4751 }
4752 }
4753
4754 /// Sets the border color of the quad.
4755 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
4756 PaintQuad {
4757 border_color: border_color.into(),
4758 ..self
4759 }
4760 }
4761
4762 /// Sets the background color of the quad.
4763 pub fn background(self, background: impl Into<Background>) -> Self {
4764 PaintQuad {
4765 background: background.into(),
4766 ..self
4767 }
4768 }
4769}
4770
4771/// Creates a quad with the given parameters.
4772pub fn quad(
4773 bounds: Bounds<Pixels>,
4774 corner_radii: impl Into<Corners<Pixels>>,
4775 background: impl Into<Background>,
4776 border_widths: impl Into<Edges<Pixels>>,
4777 border_color: impl Into<Hsla>,
4778 border_style: BorderStyle,
4779) -> PaintQuad {
4780 PaintQuad {
4781 bounds,
4782 corner_radii: corner_radii.into(),
4783 background: background.into(),
4784 border_widths: border_widths.into(),
4785 border_color: border_color.into(),
4786 border_style,
4787 }
4788}
4789
4790/// Creates a filled quad with the given bounds and background color.
4791pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
4792 PaintQuad {
4793 bounds: bounds.into(),
4794 corner_radii: (0.).into(),
4795 background: background.into(),
4796 border_widths: (0.).into(),
4797 border_color: transparent_black(),
4798 border_style: BorderStyle::default(),
4799 }
4800}
4801
4802/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
4803pub fn outline(
4804 bounds: impl Into<Bounds<Pixels>>,
4805 border_color: impl Into<Hsla>,
4806 border_style: BorderStyle,
4807) -> PaintQuad {
4808 PaintQuad {
4809 bounds: bounds.into(),
4810 corner_radii: (0.).into(),
4811 background: transparent_black().into(),
4812 border_widths: (1.).into(),
4813 border_color: border_color.into(),
4814 border_style,
4815 }
4816}