1#[cfg(any(feature = "inspector", debug_assertions))]
2use crate::Inspector;
3use crate::{
4 Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
5 AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Capslock,
6 Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
7 DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
8 FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
9 KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
10 LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
11 MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
12 PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptButton, PromptLevel, Quad,
13 Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge,
14 SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS, ScaledPixels, Scene, Shadow, SharedString, Size,
15 StrikethroughStyle, Style, SubscriberSet, Subscription, TaffyLayoutEngine, Task, TextStyle,
16 TextStyleRefinement, TransformationMatrix, Underline, UnderlineStyle, WindowAppearance,
17 WindowBackgroundAppearance, WindowBounds, WindowControls, WindowDecorations, WindowOptions,
18 WindowParams, WindowTextSystem, point, prelude::*, px, rems, size, transparent_black,
19};
20use anyhow::{Context as _, Result, anyhow};
21use collections::{FxHashMap, FxHashSet};
22#[cfg(target_os = "macos")]
23use core_video::pixel_buffer::CVPixelBuffer;
24use derive_more::{Deref, DerefMut};
25use futures::FutureExt;
26use futures::channel::oneshot;
27use itertools::FoldWhile::{Continue, Done};
28use itertools::Itertools;
29use parking_lot::RwLock;
30use raw_window_handle::{HandleError, HasDisplayHandle, HasWindowHandle};
31use refineable::Refineable;
32use slotmap::SlotMap;
33use smallvec::SmallVec;
34use std::{
35 any::{Any, TypeId},
36 borrow::Cow,
37 cell::{Cell, RefCell},
38 cmp,
39 fmt::{Debug, Display},
40 hash::{Hash, Hasher},
41 marker::PhantomData,
42 mem,
43 ops::{DerefMut, Range},
44 rc::Rc,
45 sync::{
46 Arc, Weak,
47 atomic::{AtomicUsize, Ordering::SeqCst},
48 },
49 time::{Duration, Instant},
50};
51use util::post_inc;
52use util::{ResultExt, measure};
53use uuid::Uuid;
54
55mod prompts;
56
57use crate::util::atomic_incr_if_not_zero;
58pub use prompts::*;
59
60pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1024.), px(700.));
61
62/// Represents the two different phases when dispatching events.
63#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
64pub enum DispatchPhase {
65 /// After the capture phase comes the bubble phase, in which mouse event listeners are
66 /// invoked front to back and keyboard event listeners are invoked from the focused element
67 /// to the root of the element tree. This is the phase you'll most commonly want to use when
68 /// registering event listeners.
69 #[default]
70 Bubble,
71 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
72 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
73 /// is used for special purposes such as clearing the "pressed" state for click events. If
74 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
75 /// outside of the immediate region may rely on detecting non-local events during this phase.
76 Capture,
77}
78
79impl DispatchPhase {
80 /// Returns true if this represents the "bubble" phase.
81 pub fn bubble(self) -> bool {
82 self == DispatchPhase::Bubble
83 }
84
85 /// Returns true if this represents the "capture" phase.
86 pub fn capture(self) -> bool {
87 self == DispatchPhase::Capture
88 }
89}
90
91struct WindowInvalidatorInner {
92 pub dirty: bool,
93 pub draw_phase: DrawPhase,
94 pub dirty_views: FxHashSet<EntityId>,
95}
96
97#[derive(Clone)]
98pub(crate) struct WindowInvalidator {
99 inner: Rc<RefCell<WindowInvalidatorInner>>,
100}
101
102impl WindowInvalidator {
103 pub fn new() -> Self {
104 WindowInvalidator {
105 inner: Rc::new(RefCell::new(WindowInvalidatorInner {
106 dirty: true,
107 draw_phase: DrawPhase::None,
108 dirty_views: FxHashSet::default(),
109 })),
110 }
111 }
112
113 pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
114 let mut inner = self.inner.borrow_mut();
115 inner.dirty_views.insert(entity);
116 if inner.draw_phase == DrawPhase::None {
117 inner.dirty = true;
118 cx.push_effect(Effect::Notify { emitter: entity });
119 true
120 } else {
121 false
122 }
123 }
124
125 pub fn is_dirty(&self) -> bool {
126 self.inner.borrow().dirty
127 }
128
129 pub fn set_dirty(&self, dirty: bool) {
130 self.inner.borrow_mut().dirty = dirty
131 }
132
133 pub fn set_phase(&self, phase: DrawPhase) {
134 self.inner.borrow_mut().draw_phase = phase
135 }
136
137 pub fn take_views(&self) -> FxHashSet<EntityId> {
138 mem::take(&mut self.inner.borrow_mut().dirty_views)
139 }
140
141 pub fn replace_views(&self, views: FxHashSet<EntityId>) {
142 self.inner.borrow_mut().dirty_views = views;
143 }
144
145 pub fn not_drawing(&self) -> bool {
146 self.inner.borrow().draw_phase == DrawPhase::None
147 }
148
149 #[track_caller]
150 pub fn debug_assert_paint(&self) {
151 debug_assert!(
152 matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
153 "this method can only be called during paint"
154 );
155 }
156
157 #[track_caller]
158 pub fn debug_assert_prepaint(&self) {
159 debug_assert!(
160 matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
161 "this method can only be called during request_layout, or prepaint"
162 );
163 }
164
165 #[track_caller]
166 pub fn debug_assert_paint_or_prepaint(&self) {
167 debug_assert!(
168 matches!(
169 self.inner.borrow().draw_phase,
170 DrawPhase::Paint | DrawPhase::Prepaint
171 ),
172 "this method can only be called during request_layout, prepaint, or paint"
173 );
174 }
175}
176
177type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
178
179pub(crate) type AnyWindowFocusListener =
180 Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
181
182pub(crate) struct WindowFocusEvent {
183 pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
184 pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
185}
186
187impl WindowFocusEvent {
188 pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
189 !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
190 }
191
192 pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
193 self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
194 }
195}
196
197/// This is provided when subscribing for `Context::on_focus_out` events.
198pub struct FocusOutEvent {
199 /// A weak focus handle representing what was blurred.
200 pub blurred: WeakFocusHandle,
201}
202
203slotmap::new_key_type! {
204 /// A globally unique identifier for a focusable element.
205 pub struct FocusId;
206}
207
208thread_local! {
209 /// 8MB wasn't quite enough...
210 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(32 * 1024 * 1024));
211}
212
213/// Returned when the element arena has been used and so must be cleared before the next draw.
214#[must_use]
215pub struct ArenaClearNeeded;
216
217impl ArenaClearNeeded {
218 /// Clear the element arena.
219 pub fn clear(self) {
220 ELEMENT_ARENA.with_borrow_mut(|element_arena| {
221 let percentage = (element_arena.len() as f32 / element_arena.capacity() as f32) * 100.;
222 if percentage >= 80. {
223 log::warn!("elevated element arena occupation: {}.", percentage);
224 }
225 element_arena.clear();
226 })
227 }
228}
229
230pub(crate) type FocusMap = RwLock<SlotMap<FocusId, AtomicUsize>>;
231
232impl FocusId {
233 /// Obtains whether the element associated with this handle is currently focused.
234 pub fn is_focused(&self, window: &Window) -> bool {
235 window.focus == Some(*self)
236 }
237
238 /// Obtains whether the element associated with this handle contains the focused
239 /// element or is itself focused.
240 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
241 window
242 .focused(cx)
243 .map_or(false, |focused| self.contains(focused.id, window))
244 }
245
246 /// Obtains whether the element associated with this handle is contained within the
247 /// focused element or is itself focused.
248 pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
249 let focused = window.focused(cx);
250 focused.map_or(false, |focused| focused.id.contains(*self, window))
251 }
252
253 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
254 pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
255 window
256 .rendered_frame
257 .dispatch_tree
258 .focus_contains(*self, other)
259 }
260}
261
262/// A handle which can be used to track and manipulate the focused element in a window.
263pub struct FocusHandle {
264 pub(crate) id: FocusId,
265 handles: Arc<FocusMap>,
266}
267
268impl std::fmt::Debug for FocusHandle {
269 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
270 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
271 }
272}
273
274impl FocusHandle {
275 pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
276 let id = handles.write().insert(AtomicUsize::new(1));
277 Self {
278 id,
279 handles: handles.clone(),
280 }
281 }
282
283 pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
284 let lock = handles.read();
285 let ref_count = lock.get(id)?;
286 if atomic_incr_if_not_zero(ref_count) == 0 {
287 return None;
288 }
289 Some(Self {
290 id,
291 handles: handles.clone(),
292 })
293 }
294
295 /// Converts this focus handle into a weak variant, which does not prevent it from being released.
296 pub fn downgrade(&self) -> WeakFocusHandle {
297 WeakFocusHandle {
298 id: self.id,
299 handles: Arc::downgrade(&self.handles),
300 }
301 }
302
303 /// Moves the focus to the element associated with this handle.
304 pub fn focus(&self, window: &mut Window) {
305 window.focus(self)
306 }
307
308 /// Obtains whether the element associated with this handle is currently focused.
309 pub fn is_focused(&self, window: &Window) -> bool {
310 self.id.is_focused(window)
311 }
312
313 /// Obtains whether the element associated with this handle contains the focused
314 /// element or is itself focused.
315 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
316 self.id.contains_focused(window, cx)
317 }
318
319 /// Obtains whether the element associated with this handle is contained within the
320 /// focused element or is itself focused.
321 pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
322 self.id.within_focused(window, cx)
323 }
324
325 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
326 pub fn contains(&self, other: &Self, window: &Window) -> bool {
327 self.id.contains(other.id, window)
328 }
329
330 /// Dispatch an action on the element that rendered this focus handle
331 pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
332 if let Some(node_id) = window
333 .rendered_frame
334 .dispatch_tree
335 .focusable_node_id(self.id)
336 {
337 window.dispatch_action_on_node(node_id, action, cx)
338 }
339 }
340}
341
342impl Clone for FocusHandle {
343 fn clone(&self) -> Self {
344 Self::for_id(self.id, &self.handles).unwrap()
345 }
346}
347
348impl PartialEq for FocusHandle {
349 fn eq(&self, other: &Self) -> bool {
350 self.id == other.id
351 }
352}
353
354impl Eq for FocusHandle {}
355
356impl Drop for FocusHandle {
357 fn drop(&mut self) {
358 self.handles
359 .read()
360 .get(self.id)
361 .unwrap()
362 .fetch_sub(1, SeqCst);
363 }
364}
365
366/// A weak reference to a focus handle.
367#[derive(Clone, Debug)]
368pub struct WeakFocusHandle {
369 pub(crate) id: FocusId,
370 pub(crate) handles: Weak<FocusMap>,
371}
372
373impl WeakFocusHandle {
374 /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
375 pub fn upgrade(&self) -> Option<FocusHandle> {
376 let handles = self.handles.upgrade()?;
377 FocusHandle::for_id(self.id, &handles)
378 }
379}
380
381impl PartialEq for WeakFocusHandle {
382 fn eq(&self, other: &WeakFocusHandle) -> bool {
383 self.id == other.id
384 }
385}
386
387impl Eq for WeakFocusHandle {}
388
389impl PartialEq<FocusHandle> for WeakFocusHandle {
390 fn eq(&self, other: &FocusHandle) -> bool {
391 self.id == other.id
392 }
393}
394
395impl PartialEq<WeakFocusHandle> for FocusHandle {
396 fn eq(&self, other: &WeakFocusHandle) -> bool {
397 self.id == other.id
398 }
399}
400
401/// Focusable allows users of your view to easily
402/// focus it (using window.focus_view(cx, view))
403pub trait Focusable: 'static {
404 /// Returns the focus handle associated with this view.
405 fn focus_handle(&self, cx: &App) -> FocusHandle;
406}
407
408impl<V: Focusable> Focusable for Entity<V> {
409 fn focus_handle(&self, cx: &App) -> FocusHandle {
410 self.read(cx).focus_handle(cx)
411 }
412}
413
414/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
415/// where the lifecycle of the view is handled by another view.
416pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
417
418impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
419
420/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
421pub struct DismissEvent;
422
423type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
424
425pub(crate) type AnyMouseListener =
426 Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
427
428#[derive(Clone)]
429pub(crate) struct CursorStyleRequest {
430 pub(crate) hitbox_id: Option<HitboxId>,
431 pub(crate) style: CursorStyle,
432}
433
434#[derive(Default, Eq, PartialEq)]
435pub(crate) struct HitTest {
436 pub(crate) ids: SmallVec<[HitboxId; 8]>,
437 pub(crate) hover_hitbox_count: usize,
438}
439
440/// A type of window control area that corresponds to the platform window.
441#[derive(Clone, Copy, Debug, Eq, PartialEq)]
442pub enum WindowControlArea {
443 /// An area that allows dragging of the platform window.
444 Drag,
445 /// An area that allows closing of the platform window.
446 Close,
447 /// An area that allows maximizing of the platform window.
448 Max,
449 /// An area that allows minimizing of the platform window.
450 Min,
451}
452
453/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
454#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
455pub struct HitboxId(u64);
456
457impl HitboxId {
458 /// Checks if the hitbox with this ID is currently hovered. Except when handling
459 /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
460 /// events or paint hover styles.
461 ///
462 /// See [`Hitbox::is_hovered`] for details.
463 pub fn is_hovered(self, window: &Window) -> bool {
464 let hit_test = &window.mouse_hit_test;
465 for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
466 if self == *id {
467 return true;
468 }
469 }
470 return false;
471 }
472
473 /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
474 /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
475 /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
476 /// this distinction.
477 pub fn should_handle_scroll(self, window: &Window) -> bool {
478 window.mouse_hit_test.ids.contains(&self)
479 }
480
481 fn next(mut self) -> HitboxId {
482 HitboxId(self.0.wrapping_add(1))
483 }
484}
485
486/// A rectangular region that potentially blocks hitboxes inserted prior.
487/// See [Window::insert_hitbox] for more details.
488#[derive(Clone, Debug, Deref)]
489pub struct Hitbox {
490 /// A unique identifier for the hitbox.
491 pub id: HitboxId,
492 /// The bounds of the hitbox.
493 #[deref]
494 pub bounds: Bounds<Pixels>,
495 /// The content mask when the hitbox was inserted.
496 pub content_mask: ContentMask<Pixels>,
497 /// Flags that specify hitbox behavior.
498 pub behavior: HitboxBehavior,
499}
500
501impl Hitbox {
502 /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
503 /// typically what you want when determining whether to handle mouse events or paint hover
504 /// styles.
505 ///
506 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
507 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
508 /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
509 ///
510 /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
511 /// Concretely, this is due to use-cases like overlays that cause the elements under to be
512 /// non-interactive while still allowing scrolling. More abstractly, this is because
513 /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
514 /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
515 /// container.
516 pub fn is_hovered(&self, window: &Window) -> bool {
517 self.id.is_hovered(window)
518 }
519
520 /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
521 /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
522 /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
523 ///
524 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
525 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
526 pub fn should_handle_scroll(&self, window: &Window) -> bool {
527 self.id.should_handle_scroll(window)
528 }
529}
530
531/// How the hitbox affects mouse behavior.
532#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
533pub enum HitboxBehavior {
534 /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
535 #[default]
536 Normal,
537
538 /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
539 /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
540 /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
541 /// [`InteractiveElement::occlude`].
542 ///
543 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
544 /// bubble-phase handler for every mouse event type:
545 ///
546 /// ```
547 /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
548 /// if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
549 /// cx.stop_propagation();
550 /// }
551 /// }
552 /// ```
553 ///
554 /// This has effects beyond event handling - any use of hitbox checking, such as hover
555 /// styles and tooltops. These other behaviors are the main point of this mechanism. An
556 /// alternative might be to not affect mouse event handling - but this would allow
557 /// inconsistent UI where clicks and moves interact with elements that are not considered to
558 /// be hovered.
559 BlockMouse,
560
561 /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
562 /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
563 /// interaction except scroll events to be ignored - see the documentation of
564 /// [`Hitbox::is_hovered`] for details. This flag is set by
565 /// [`InteractiveElement::block_mouse_except_scroll`].
566 ///
567 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
568 /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
569 ///
570 /// ```
571 /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, _cx| {
572 /// if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
573 /// cx.stop_propagation();
574 /// }
575 /// }
576 /// ```
577 ///
578 /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
579 /// handled differently than other mouse events. If also blocking these scroll events is
580 /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
581 ///
582 /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
583 /// hover styles and tooltops. These other behaviors are the main point of this mechanism.
584 /// An alternative might be to not affect mouse event handling - but this would allow
585 /// inconsistent UI where clicks and moves interact with elements that are not considered to
586 /// be hovered.
587 BlockMouseExceptScroll,
588}
589
590/// An identifier for a tooltip.
591#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
592pub struct TooltipId(usize);
593
594impl TooltipId {
595 /// Checks if the tooltip is currently hovered.
596 pub fn is_hovered(&self, window: &Window) -> bool {
597 window
598 .tooltip_bounds
599 .as_ref()
600 .map_or(false, |tooltip_bounds| {
601 tooltip_bounds.id == *self
602 && tooltip_bounds.bounds.contains(&window.mouse_position())
603 })
604 }
605}
606
607pub(crate) struct TooltipBounds {
608 id: TooltipId,
609 bounds: Bounds<Pixels>,
610}
611
612#[derive(Clone)]
613pub(crate) struct TooltipRequest {
614 id: TooltipId,
615 tooltip: AnyTooltip,
616}
617
618pub(crate) struct DeferredDraw {
619 current_view: EntityId,
620 priority: usize,
621 parent_node: DispatchNodeId,
622 element_id_stack: SmallVec<[ElementId; 32]>,
623 text_style_stack: Vec<TextStyleRefinement>,
624 element: Option<AnyElement>,
625 absolute_offset: Point<Pixels>,
626 prepaint_range: Range<PrepaintStateIndex>,
627 paint_range: Range<PaintIndex>,
628}
629
630pub(crate) struct Frame {
631 pub(crate) focus: Option<FocusId>,
632 pub(crate) window_active: bool,
633 pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
634 accessed_element_states: Vec<(GlobalElementId, TypeId)>,
635 pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
636 pub(crate) dispatch_tree: DispatchTree,
637 pub(crate) scene: Scene,
638 pub(crate) hitboxes: Vec<Hitbox>,
639 pub(crate) window_control_hitboxes: Vec<(WindowControlArea, Hitbox)>,
640 pub(crate) deferred_draws: Vec<DeferredDraw>,
641 pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
642 pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
643 pub(crate) cursor_styles: Vec<CursorStyleRequest>,
644 #[cfg(any(test, feature = "test-support"))]
645 pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
646 #[cfg(any(feature = "inspector", debug_assertions))]
647 pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
648 #[cfg(any(feature = "inspector", debug_assertions))]
649 pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
650}
651
652#[derive(Clone, Default)]
653pub(crate) struct PrepaintStateIndex {
654 hitboxes_index: usize,
655 tooltips_index: usize,
656 deferred_draws_index: usize,
657 dispatch_tree_index: usize,
658 accessed_element_states_index: usize,
659 line_layout_index: LineLayoutIndex,
660}
661
662#[derive(Clone, Default)]
663pub(crate) struct PaintIndex {
664 scene_index: usize,
665 mouse_listeners_index: usize,
666 input_handlers_index: usize,
667 cursor_styles_index: usize,
668 accessed_element_states_index: usize,
669 line_layout_index: LineLayoutIndex,
670}
671
672impl Frame {
673 pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
674 Frame {
675 focus: None,
676 window_active: false,
677 element_states: FxHashMap::default(),
678 accessed_element_states: Vec::new(),
679 mouse_listeners: Vec::new(),
680 dispatch_tree,
681 scene: Scene::default(),
682 hitboxes: Vec::new(),
683 window_control_hitboxes: Vec::new(),
684 deferred_draws: Vec::new(),
685 input_handlers: Vec::new(),
686 tooltip_requests: Vec::new(),
687 cursor_styles: Vec::new(),
688
689 #[cfg(any(test, feature = "test-support"))]
690 debug_bounds: FxHashMap::default(),
691
692 #[cfg(any(feature = "inspector", debug_assertions))]
693 next_inspector_instance_ids: FxHashMap::default(),
694
695 #[cfg(any(feature = "inspector", debug_assertions))]
696 inspector_hitboxes: FxHashMap::default(),
697 }
698 }
699
700 pub(crate) fn clear(&mut self) {
701 self.element_states.clear();
702 self.accessed_element_states.clear();
703 self.mouse_listeners.clear();
704 self.dispatch_tree.clear();
705 self.scene.clear();
706 self.input_handlers.clear();
707 self.tooltip_requests.clear();
708 self.cursor_styles.clear();
709 self.hitboxes.clear();
710 self.window_control_hitboxes.clear();
711 self.deferred_draws.clear();
712 self.focus = None;
713
714 #[cfg(any(feature = "inspector", debug_assertions))]
715 {
716 self.next_inspector_instance_ids.clear();
717 self.inspector_hitboxes.clear();
718 }
719 }
720
721 pub(crate) fn cursor_style(&self, window: &Window) -> Option<CursorStyle> {
722 self.cursor_styles
723 .iter()
724 .rev()
725 .fold_while(None, |style, request| match request.hitbox_id {
726 None => Done(Some(request.style)),
727 Some(hitbox_id) => Continue(
728 style.or_else(|| hitbox_id.is_hovered(window).then_some(request.style)),
729 ),
730 })
731 .into_inner()
732 }
733
734 pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
735 let mut set_hover_hitbox_count = false;
736 let mut hit_test = HitTest::default();
737 for hitbox in self.hitboxes.iter().rev() {
738 let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
739 if bounds.contains(&position) {
740 hit_test.ids.push(hitbox.id);
741 if !set_hover_hitbox_count
742 && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
743 {
744 hit_test.hover_hitbox_count = hit_test.ids.len();
745 set_hover_hitbox_count = true;
746 }
747 if hitbox.behavior == HitboxBehavior::BlockMouse {
748 break;
749 }
750 }
751 }
752 if !set_hover_hitbox_count {
753 hit_test.hover_hitbox_count = hit_test.ids.len();
754 }
755 hit_test
756 }
757
758 pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
759 self.focus
760 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
761 .unwrap_or_default()
762 }
763
764 pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
765 for element_state_key in &self.accessed_element_states {
766 if let Some((element_state_key, element_state)) =
767 prev_frame.element_states.remove_entry(element_state_key)
768 {
769 self.element_states.insert(element_state_key, element_state);
770 }
771 }
772
773 self.scene.finish();
774 }
775}
776
777/// Holds the state for a specific window.
778pub struct Window {
779 pub(crate) handle: AnyWindowHandle,
780 pub(crate) invalidator: WindowInvalidator,
781 pub(crate) removed: bool,
782 pub(crate) platform_window: Box<dyn PlatformWindow>,
783 display_id: Option<DisplayId>,
784 sprite_atlas: Arc<dyn PlatformAtlas>,
785 text_system: Arc<WindowTextSystem>,
786 rem_size: Pixels,
787 /// The stack of override values for the window's rem size.
788 ///
789 /// This is used by `with_rem_size` to allow rendering an element tree with
790 /// a given rem size.
791 rem_size_override_stack: SmallVec<[Pixels; 8]>,
792 pub(crate) viewport_size: Size<Pixels>,
793 layout_engine: Option<TaffyLayoutEngine>,
794 pub(crate) root: Option<AnyView>,
795 pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
796 pub(crate) text_style_stack: Vec<TextStyleRefinement>,
797 pub(crate) rendered_entity_stack: Vec<EntityId>,
798 pub(crate) element_offset_stack: Vec<Point<Pixels>>,
799 pub(crate) element_opacity: Option<f32>,
800 pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
801 pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
802 pub(crate) image_cache_stack: Vec<AnyImageCache>,
803 pub(crate) rendered_frame: Frame,
804 pub(crate) next_frame: Frame,
805 next_hitbox_id: HitboxId,
806 pub(crate) next_tooltip_id: TooltipId,
807 pub(crate) tooltip_bounds: Option<TooltipBounds>,
808 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
809 pub(crate) dirty_views: FxHashSet<EntityId>,
810 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
811 pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
812 default_prevented: bool,
813 mouse_position: Point<Pixels>,
814 mouse_hit_test: HitTest,
815 modifiers: Modifiers,
816 capslock: Capslock,
817 scale_factor: f32,
818 pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
819 appearance: WindowAppearance,
820 pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
821 active: Rc<Cell<bool>>,
822 hovered: Rc<Cell<bool>>,
823 pub(crate) needs_present: Rc<Cell<bool>>,
824 pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
825 pub(crate) refreshing: bool,
826 pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
827 pub(crate) focus: Option<FocusId>,
828 focus_enabled: bool,
829 pending_input: Option<PendingInput>,
830 pending_modifier: ModifierState,
831 pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
832 prompt: Option<RenderablePromptHandle>,
833 pub(crate) client_inset: Option<Pixels>,
834 #[cfg(any(feature = "inspector", debug_assertions))]
835 inspector: Option<Entity<Inspector>>,
836}
837
838#[derive(Clone, Debug, Default)]
839struct ModifierState {
840 modifiers: Modifiers,
841 saw_keystroke: bool,
842}
843
844#[derive(Clone, Copy, Debug, Eq, PartialEq)]
845pub(crate) enum DrawPhase {
846 None,
847 Prepaint,
848 Paint,
849 Focus,
850}
851
852#[derive(Default, Debug)]
853struct PendingInput {
854 keystrokes: SmallVec<[Keystroke; 1]>,
855 focus: Option<FocusId>,
856 timer: Option<Task<()>>,
857}
858
859pub(crate) struct ElementStateBox {
860 pub(crate) inner: Box<dyn Any>,
861 #[cfg(debug_assertions)]
862 pub(crate) type_name: &'static str,
863}
864
865fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> Bounds<Pixels> {
866 const DEFAULT_WINDOW_OFFSET: Point<Pixels> = point(px(0.), px(35.));
867
868 // TODO, BUG: if you open a window with the currently active window
869 // on the stack, this will erroneously select the 'unwrap_or_else'
870 // code path
871 cx.active_window()
872 .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok())
873 .map(|mut bounds| {
874 bounds.origin += DEFAULT_WINDOW_OFFSET;
875 bounds
876 })
877 .unwrap_or_else(|| {
878 let display = display_id
879 .map(|id| cx.find_display(id))
880 .unwrap_or_else(|| cx.primary_display());
881
882 display
883 .map(|display| display.default_bounds())
884 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE))
885 })
886}
887
888impl Window {
889 pub(crate) fn new(
890 handle: AnyWindowHandle,
891 options: WindowOptions,
892 cx: &mut App,
893 ) -> Result<Self> {
894 let WindowOptions {
895 window_bounds,
896 titlebar,
897 focus,
898 show,
899 kind,
900 is_movable,
901 display_id,
902 window_background,
903 app_id,
904 window_min_size,
905 window_decorations,
906 } = options;
907
908 let bounds = window_bounds
909 .map(|bounds| bounds.get_bounds())
910 .unwrap_or_else(|| default_bounds(display_id, cx));
911 let mut platform_window = cx.platform.open_window(
912 handle,
913 WindowParams {
914 bounds,
915 titlebar,
916 kind,
917 is_movable,
918 focus,
919 show,
920 display_id,
921 window_min_size,
922 },
923 )?;
924 let display_id = platform_window.display().map(|display| display.id());
925 let sprite_atlas = platform_window.sprite_atlas();
926 let mouse_position = platform_window.mouse_position();
927 let modifiers = platform_window.modifiers();
928 let capslock = platform_window.capslock();
929 let content_size = platform_window.content_size();
930 let scale_factor = platform_window.scale_factor();
931 let appearance = platform_window.appearance();
932 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
933 let invalidator = WindowInvalidator::new();
934 let active = Rc::new(Cell::new(platform_window.is_active()));
935 let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
936 let needs_present = Rc::new(Cell::new(false));
937 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
938 let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
939
940 platform_window
941 .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
942 platform_window.set_background_appearance(window_background);
943
944 if let Some(ref window_open_state) = window_bounds {
945 match window_open_state {
946 WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
947 WindowBounds::Maximized(_) => platform_window.zoom(),
948 WindowBounds::Windowed(_) => {}
949 }
950 }
951
952 platform_window.on_close(Box::new({
953 let mut cx = cx.to_async();
954 move || {
955 let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
956 }
957 }));
958 platform_window.on_request_frame(Box::new({
959 let mut cx = cx.to_async();
960 let invalidator = invalidator.clone();
961 let active = active.clone();
962 let needs_present = needs_present.clone();
963 let next_frame_callbacks = next_frame_callbacks.clone();
964 let last_input_timestamp = last_input_timestamp.clone();
965 move |request_frame_options| {
966 let next_frame_callbacks = next_frame_callbacks.take();
967 if !next_frame_callbacks.is_empty() {
968 handle
969 .update(&mut cx, |_, window, cx| {
970 for callback in next_frame_callbacks {
971 callback(window, cx);
972 }
973 })
974 .log_err();
975 }
976
977 // Keep presenting the current scene for 1 extra second since the
978 // last input to prevent the display from underclocking the refresh rate.
979 let needs_present = request_frame_options.require_presentation
980 || needs_present.get()
981 || (active.get()
982 && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
983
984 if invalidator.is_dirty() {
985 measure("frame duration", || {
986 handle
987 .update(&mut cx, |_, window, cx| {
988 let arena_clear_needed = window.draw(cx);
989 window.present();
990 // drop the arena elements after present to reduce latency
991 arena_clear_needed.clear();
992 })
993 .log_err();
994 })
995 } else if needs_present {
996 handle
997 .update(&mut cx, |_, window, _| window.present())
998 .log_err();
999 }
1000
1001 handle
1002 .update(&mut cx, |_, window, _| {
1003 window.complete_frame();
1004 })
1005 .log_err();
1006 }
1007 }));
1008 platform_window.on_resize(Box::new({
1009 let mut cx = cx.to_async();
1010 move |_, _| {
1011 handle
1012 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1013 .log_err();
1014 }
1015 }));
1016 platform_window.on_moved(Box::new({
1017 let mut cx = cx.to_async();
1018 move || {
1019 handle
1020 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1021 .log_err();
1022 }
1023 }));
1024 platform_window.on_appearance_changed(Box::new({
1025 let mut cx = cx.to_async();
1026 move || {
1027 handle
1028 .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
1029 .log_err();
1030 }
1031 }));
1032 platform_window.on_active_status_change(Box::new({
1033 let mut cx = cx.to_async();
1034 move |active| {
1035 handle
1036 .update(&mut cx, |_, window, cx| {
1037 window.active.set(active);
1038 window.modifiers = window.platform_window.modifiers();
1039 window.capslock = window.platform_window.capslock();
1040 window
1041 .activation_observers
1042 .clone()
1043 .retain(&(), |callback| callback(window, cx));
1044 window.refresh();
1045 })
1046 .log_err();
1047 }
1048 }));
1049 platform_window.on_hover_status_change(Box::new({
1050 let mut cx = cx.to_async();
1051 move |active| {
1052 handle
1053 .update(&mut cx, |_, window, _| {
1054 window.hovered.set(active);
1055 window.refresh();
1056 })
1057 .log_err();
1058 }
1059 }));
1060 platform_window.on_input({
1061 let mut cx = cx.to_async();
1062 Box::new(move |event| {
1063 handle
1064 .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1065 .log_err()
1066 .unwrap_or(DispatchEventResult::default())
1067 })
1068 });
1069 platform_window.on_hit_test_window_control({
1070 let mut cx = cx.to_async();
1071 Box::new(move || {
1072 handle
1073 .update(&mut cx, |_, window, _cx| {
1074 for (area, hitbox) in &window.rendered_frame.window_control_hitboxes {
1075 if window.mouse_hit_test.ids.contains(&hitbox.id) {
1076 return Some(*area);
1077 }
1078 }
1079 None
1080 })
1081 .log_err()
1082 .unwrap_or(None)
1083 })
1084 });
1085
1086 if let Some(app_id) = app_id {
1087 platform_window.set_app_id(&app_id);
1088 }
1089
1090 platform_window.map_window().unwrap();
1091
1092 Ok(Window {
1093 handle,
1094 invalidator,
1095 removed: false,
1096 platform_window,
1097 display_id,
1098 sprite_atlas,
1099 text_system,
1100 rem_size: px(16.),
1101 rem_size_override_stack: SmallVec::new(),
1102 viewport_size: content_size,
1103 layout_engine: Some(TaffyLayoutEngine::new()),
1104 root: None,
1105 element_id_stack: SmallVec::default(),
1106 text_style_stack: Vec::new(),
1107 rendered_entity_stack: Vec::new(),
1108 element_offset_stack: Vec::new(),
1109 content_mask_stack: Vec::new(),
1110 element_opacity: None,
1111 requested_autoscroll: None,
1112 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1113 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1114 next_frame_callbacks,
1115 next_hitbox_id: HitboxId(0),
1116 next_tooltip_id: TooltipId::default(),
1117 tooltip_bounds: None,
1118 dirty_views: FxHashSet::default(),
1119 focus_listeners: SubscriberSet::new(),
1120 focus_lost_listeners: SubscriberSet::new(),
1121 default_prevented: true,
1122 mouse_position,
1123 mouse_hit_test: HitTest::default(),
1124 modifiers,
1125 capslock,
1126 scale_factor,
1127 bounds_observers: SubscriberSet::new(),
1128 appearance,
1129 appearance_observers: SubscriberSet::new(),
1130 active,
1131 hovered,
1132 needs_present,
1133 last_input_timestamp,
1134 refreshing: false,
1135 activation_observers: SubscriberSet::new(),
1136 focus: None,
1137 focus_enabled: true,
1138 pending_input: None,
1139 pending_modifier: ModifierState::default(),
1140 pending_input_observers: SubscriberSet::new(),
1141 prompt: None,
1142 client_inset: None,
1143 image_cache_stack: Vec::new(),
1144 #[cfg(any(feature = "inspector", debug_assertions))]
1145 inspector: None,
1146 })
1147 }
1148
1149 pub(crate) fn new_focus_listener(
1150 &self,
1151 value: AnyWindowFocusListener,
1152 ) -> (Subscription, impl FnOnce() + use<>) {
1153 self.focus_listeners.insert((), value)
1154 }
1155}
1156
1157#[derive(Clone, Debug, Default, PartialEq, Eq)]
1158pub(crate) struct DispatchEventResult {
1159 pub propagate: bool,
1160 pub default_prevented: bool,
1161}
1162
1163/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1164/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1165/// to leave room to support more complex shapes in the future.
1166#[derive(Clone, Debug, Default, PartialEq, Eq)]
1167#[repr(C)]
1168pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1169 /// The bounds
1170 pub bounds: Bounds<P>,
1171}
1172
1173impl ContentMask<Pixels> {
1174 /// Scale the content mask's pixel units by the given scaling factor.
1175 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1176 ContentMask {
1177 bounds: self.bounds.scale(factor),
1178 }
1179 }
1180
1181 /// Intersect the content mask with the given content mask.
1182 pub fn intersect(&self, other: &Self) -> Self {
1183 let bounds = self.bounds.intersect(&other.bounds);
1184 ContentMask { bounds }
1185 }
1186}
1187
1188impl Window {
1189 fn mark_view_dirty(&mut self, view_id: EntityId) {
1190 // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1191 // should already be dirty.
1192 for view_id in self
1193 .rendered_frame
1194 .dispatch_tree
1195 .view_path(view_id)
1196 .into_iter()
1197 .rev()
1198 {
1199 if !self.dirty_views.insert(view_id) {
1200 break;
1201 }
1202 }
1203 }
1204
1205 /// Registers a callback to be invoked when the window appearance changes.
1206 pub fn observe_window_appearance(
1207 &self,
1208 mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1209 ) -> Subscription {
1210 let (subscription, activate) = self.appearance_observers.insert(
1211 (),
1212 Box::new(move |window, cx| {
1213 callback(window, cx);
1214 true
1215 }),
1216 );
1217 activate();
1218 subscription
1219 }
1220
1221 /// Replaces the root entity of the window with a new one.
1222 pub fn replace_root<E>(
1223 &mut self,
1224 cx: &mut App,
1225 build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1226 ) -> Entity<E>
1227 where
1228 E: 'static + Render,
1229 {
1230 let view = cx.new(|cx| build_view(self, cx));
1231 self.root = Some(view.clone().into());
1232 self.refresh();
1233 view
1234 }
1235
1236 /// Returns the root entity of the window, if it has one.
1237 pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1238 where
1239 E: 'static + Render,
1240 {
1241 self.root
1242 .as_ref()
1243 .map(|view| view.clone().downcast::<E>().ok())
1244 }
1245
1246 /// Obtain a handle to the window that belongs to this context.
1247 pub fn window_handle(&self) -> AnyWindowHandle {
1248 self.handle
1249 }
1250
1251 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1252 pub fn refresh(&mut self) {
1253 if self.invalidator.not_drawing() {
1254 self.refreshing = true;
1255 self.invalidator.set_dirty(true);
1256 }
1257 }
1258
1259 /// Close this window.
1260 pub fn remove_window(&mut self) {
1261 self.removed = true;
1262 }
1263
1264 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1265 pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1266 self.focus
1267 .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1268 }
1269
1270 /// Move focus to the element associated with the given [`FocusHandle`].
1271 pub fn focus(&mut self, handle: &FocusHandle) {
1272 if !self.focus_enabled || self.focus == Some(handle.id) {
1273 return;
1274 }
1275
1276 self.focus = Some(handle.id);
1277 self.clear_pending_keystrokes();
1278 self.refresh();
1279 }
1280
1281 /// Remove focus from all elements within this context's window.
1282 pub fn blur(&mut self) {
1283 if !self.focus_enabled {
1284 return;
1285 }
1286
1287 self.focus = None;
1288 self.refresh();
1289 }
1290
1291 /// Blur the window and don't allow anything in it to be focused again.
1292 pub fn disable_focus(&mut self) {
1293 self.blur();
1294 self.focus_enabled = false;
1295 }
1296
1297 /// Accessor for the text system.
1298 pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1299 &self.text_system
1300 }
1301
1302 /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1303 pub fn text_style(&self) -> TextStyle {
1304 let mut style = TextStyle::default();
1305 for refinement in &self.text_style_stack {
1306 style.refine(refinement);
1307 }
1308 style
1309 }
1310
1311 /// Check if the platform window is maximized
1312 /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1313 pub fn is_maximized(&self) -> bool {
1314 self.platform_window.is_maximized()
1315 }
1316
1317 /// request a certain window decoration (Wayland)
1318 pub fn request_decorations(&self, decorations: WindowDecorations) {
1319 self.platform_window.request_decorations(decorations);
1320 }
1321
1322 /// Start a window resize operation (Wayland)
1323 pub fn start_window_resize(&self, edge: ResizeEdge) {
1324 self.platform_window.start_window_resize(edge);
1325 }
1326
1327 /// Return the `WindowBounds` to indicate that how a window should be opened
1328 /// after it has been closed
1329 pub fn window_bounds(&self) -> WindowBounds {
1330 self.platform_window.window_bounds()
1331 }
1332
1333 /// Return the `WindowBounds` excluding insets (Wayland and X11)
1334 pub fn inner_window_bounds(&self) -> WindowBounds {
1335 self.platform_window.inner_window_bounds()
1336 }
1337
1338 /// Dispatch the given action on the currently focused element.
1339 pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1340 let focus_id = self.focused(cx).map(|handle| handle.id);
1341
1342 let window = self.handle;
1343 cx.defer(move |cx| {
1344 window
1345 .update(cx, |_, window, cx| {
1346 let node_id = window.focus_node_id_in_rendered_frame(focus_id);
1347 window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1348 })
1349 .log_err();
1350 })
1351 }
1352
1353 pub(crate) fn dispatch_keystroke_observers(
1354 &mut self,
1355 event: &dyn Any,
1356 action: Option<Box<dyn Action>>,
1357 context_stack: Vec<KeyContext>,
1358 cx: &mut App,
1359 ) {
1360 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1361 return;
1362 };
1363
1364 cx.keystroke_observers.clone().retain(&(), move |callback| {
1365 (callback)(
1366 &KeystrokeEvent {
1367 keystroke: key_down_event.keystroke.clone(),
1368 action: action.as_ref().map(|action| action.boxed_clone()),
1369 context_stack: context_stack.clone(),
1370 },
1371 self,
1372 cx,
1373 )
1374 });
1375 }
1376
1377 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1378 /// that are currently on the stack to be returned to the app.
1379 pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1380 let handle = self.handle;
1381 cx.defer(move |cx| {
1382 handle.update(cx, |_, window, cx| f(window, cx)).ok();
1383 });
1384 }
1385
1386 /// Subscribe to events emitted by a entity.
1387 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1388 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1389 pub fn observe<T: 'static>(
1390 &mut self,
1391 observed: &Entity<T>,
1392 cx: &mut App,
1393 mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1394 ) -> Subscription {
1395 let entity_id = observed.entity_id();
1396 let observed = observed.downgrade();
1397 let window_handle = self.handle;
1398 cx.new_observer(
1399 entity_id,
1400 Box::new(move |cx| {
1401 window_handle
1402 .update(cx, |_, window, cx| {
1403 if let Some(handle) = observed.upgrade() {
1404 on_notify(handle, window, cx);
1405 true
1406 } else {
1407 false
1408 }
1409 })
1410 .unwrap_or(false)
1411 }),
1412 )
1413 }
1414
1415 /// Subscribe to events emitted by a entity.
1416 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1417 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1418 pub fn subscribe<Emitter, Evt>(
1419 &mut self,
1420 entity: &Entity<Emitter>,
1421 cx: &mut App,
1422 mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1423 ) -> Subscription
1424 where
1425 Emitter: EventEmitter<Evt>,
1426 Evt: 'static,
1427 {
1428 let entity_id = entity.entity_id();
1429 let handle = entity.downgrade();
1430 let window_handle = self.handle;
1431 cx.new_subscription(
1432 entity_id,
1433 (
1434 TypeId::of::<Evt>(),
1435 Box::new(move |event, cx| {
1436 window_handle
1437 .update(cx, |_, window, cx| {
1438 if let Some(entity) = handle.upgrade() {
1439 let event = event.downcast_ref().expect("invalid event type");
1440 on_event(entity, event, window, cx);
1441 true
1442 } else {
1443 false
1444 }
1445 })
1446 .unwrap_or(false)
1447 }),
1448 ),
1449 )
1450 }
1451
1452 /// Register a callback to be invoked when the given `Entity` is released.
1453 pub fn observe_release<T>(
1454 &self,
1455 entity: &Entity<T>,
1456 cx: &mut App,
1457 mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1458 ) -> Subscription
1459 where
1460 T: 'static,
1461 {
1462 let entity_id = entity.entity_id();
1463 let window_handle = self.handle;
1464 let (subscription, activate) = cx.release_listeners.insert(
1465 entity_id,
1466 Box::new(move |entity, cx| {
1467 let entity = entity.downcast_mut().expect("invalid entity type");
1468 let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1469 }),
1470 );
1471 activate();
1472 subscription
1473 }
1474
1475 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1476 /// await points in async code.
1477 pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1478 AsyncWindowContext::new_context(cx.to_async(), self.handle)
1479 }
1480
1481 /// Schedule the given closure to be run directly after the current frame is rendered.
1482 pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1483 RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1484 }
1485
1486 /// Schedule a frame to be drawn on the next animation frame.
1487 ///
1488 /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1489 /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1490 ///
1491 /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1492 pub fn request_animation_frame(&self) {
1493 let entity = self.current_view();
1494 self.on_next_frame(move |_, cx| cx.notify(entity));
1495 }
1496
1497 /// Spawn the future returned by the given closure on the application thread pool.
1498 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1499 /// use within your future.
1500 #[track_caller]
1501 pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1502 where
1503 R: 'static,
1504 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1505 {
1506 let handle = self.handle;
1507 cx.spawn(async move |app| {
1508 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1509 f(&mut async_window_cx).await
1510 })
1511 }
1512
1513 fn bounds_changed(&mut self, cx: &mut App) {
1514 self.scale_factor = self.platform_window.scale_factor();
1515 self.viewport_size = self.platform_window.content_size();
1516 self.display_id = self.platform_window.display().map(|display| display.id());
1517
1518 self.refresh();
1519
1520 self.bounds_observers
1521 .clone()
1522 .retain(&(), |callback| callback(self, cx));
1523 }
1524
1525 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1526 pub fn bounds(&self) -> Bounds<Pixels> {
1527 self.platform_window.bounds()
1528 }
1529
1530 /// Set the content size of the window.
1531 pub fn resize(&mut self, size: Size<Pixels>) {
1532 self.platform_window.resize(size);
1533 }
1534
1535 /// Returns whether or not the window is currently fullscreen
1536 pub fn is_fullscreen(&self) -> bool {
1537 self.platform_window.is_fullscreen()
1538 }
1539
1540 pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1541 self.appearance = self.platform_window.appearance();
1542
1543 self.appearance_observers
1544 .clone()
1545 .retain(&(), |callback| callback(self, cx));
1546 }
1547
1548 /// Returns the appearance of the current window.
1549 pub fn appearance(&self) -> WindowAppearance {
1550 self.appearance
1551 }
1552
1553 /// Returns the size of the drawable area within the window.
1554 pub fn viewport_size(&self) -> Size<Pixels> {
1555 self.viewport_size
1556 }
1557
1558 /// Returns whether this window is focused by the operating system (receiving key events).
1559 pub fn is_window_active(&self) -> bool {
1560 self.active.get()
1561 }
1562
1563 /// Returns whether this window is considered to be the window
1564 /// that currently owns the mouse cursor.
1565 /// On mac, this is equivalent to `is_window_active`.
1566 pub fn is_window_hovered(&self) -> bool {
1567 if cfg!(any(
1568 target_os = "windows",
1569 target_os = "linux",
1570 target_os = "freebsd"
1571 )) {
1572 self.hovered.get()
1573 } else {
1574 self.is_window_active()
1575 }
1576 }
1577
1578 /// Toggle zoom on the window.
1579 pub fn zoom_window(&self) {
1580 self.platform_window.zoom();
1581 }
1582
1583 /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1584 pub fn show_window_menu(&self, position: Point<Pixels>) {
1585 self.platform_window.show_window_menu(position)
1586 }
1587
1588 /// Tells the compositor to take control of window movement (Wayland and X11)
1589 ///
1590 /// Events may not be received during a move operation.
1591 pub fn start_window_move(&self) {
1592 self.platform_window.start_window_move()
1593 }
1594
1595 /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1596 pub fn set_client_inset(&mut self, inset: Pixels) {
1597 self.client_inset = Some(inset);
1598 self.platform_window.set_client_inset(inset);
1599 }
1600
1601 /// Returns the client_inset value by [`Self::set_client_inset`].
1602 pub fn client_inset(&self) -> Option<Pixels> {
1603 self.client_inset
1604 }
1605
1606 /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1607 pub fn window_decorations(&self) -> Decorations {
1608 self.platform_window.window_decorations()
1609 }
1610
1611 /// Returns which window controls are currently visible (Wayland)
1612 pub fn window_controls(&self) -> WindowControls {
1613 self.platform_window.window_controls()
1614 }
1615
1616 /// Updates the window's title at the platform level.
1617 pub fn set_window_title(&mut self, title: &str) {
1618 self.platform_window.set_title(title);
1619 }
1620
1621 /// Sets the application identifier.
1622 pub fn set_app_id(&mut self, app_id: &str) {
1623 self.platform_window.set_app_id(app_id);
1624 }
1625
1626 /// Sets the window background appearance.
1627 pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1628 self.platform_window
1629 .set_background_appearance(background_appearance);
1630 }
1631
1632 /// Mark the window as dirty at the platform level.
1633 pub fn set_window_edited(&mut self, edited: bool) {
1634 self.platform_window.set_edited(edited);
1635 }
1636
1637 /// Determine the display on which the window is visible.
1638 pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1639 cx.platform
1640 .displays()
1641 .into_iter()
1642 .find(|display| Some(display.id()) == self.display_id)
1643 }
1644
1645 /// Show the platform character palette.
1646 pub fn show_character_palette(&self) {
1647 self.platform_window.show_character_palette();
1648 }
1649
1650 /// The scale factor of the display associated with the window. For example, it could
1651 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1652 /// be rendered as two pixels on screen.
1653 pub fn scale_factor(&self) -> f32 {
1654 self.scale_factor
1655 }
1656
1657 /// The size of an em for the base font of the application. Adjusting this value allows the
1658 /// UI to scale, just like zooming a web page.
1659 pub fn rem_size(&self) -> Pixels {
1660 self.rem_size_override_stack
1661 .last()
1662 .copied()
1663 .unwrap_or(self.rem_size)
1664 }
1665
1666 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1667 /// UI to scale, just like zooming a web page.
1668 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1669 self.rem_size = rem_size.into();
1670 }
1671
1672 /// Acquire a globally unique identifier for the given ElementId.
1673 /// Only valid for the duration of the provided closure.
1674 pub fn with_global_id<R>(
1675 &mut self,
1676 element_id: ElementId,
1677 f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1678 ) -> R {
1679 self.element_id_stack.push(element_id);
1680 let global_id = GlobalElementId(self.element_id_stack.clone());
1681 let result = f(&global_id, self);
1682 self.element_id_stack.pop();
1683 result
1684 }
1685
1686 /// Executes the provided function with the specified rem size.
1687 ///
1688 /// This method must only be called as part of element drawing.
1689 pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1690 where
1691 F: FnOnce(&mut Self) -> R,
1692 {
1693 self.invalidator.debug_assert_paint_or_prepaint();
1694
1695 if let Some(rem_size) = rem_size {
1696 self.rem_size_override_stack.push(rem_size.into());
1697 let result = f(self);
1698 self.rem_size_override_stack.pop();
1699 result
1700 } else {
1701 f(self)
1702 }
1703 }
1704
1705 /// The line height associated with the current text style.
1706 pub fn line_height(&self) -> Pixels {
1707 self.text_style().line_height_in_pixels(self.rem_size())
1708 }
1709
1710 /// Call to prevent the default action of an event. Currently only used to prevent
1711 /// parent elements from becoming focused on mouse down.
1712 pub fn prevent_default(&mut self) {
1713 self.default_prevented = true;
1714 }
1715
1716 /// Obtain whether default has been prevented for the event currently being dispatched.
1717 pub fn default_prevented(&self) -> bool {
1718 self.default_prevented
1719 }
1720
1721 /// Determine whether the given action is available along the dispatch path to the currently focused element.
1722 pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1723 let node_id =
1724 self.focus_node_id_in_rendered_frame(self.focused(cx).map(|handle| handle.id));
1725 self.rendered_frame
1726 .dispatch_tree
1727 .is_action_available(action, node_id)
1728 }
1729
1730 /// The position of the mouse relative to the window.
1731 pub fn mouse_position(&self) -> Point<Pixels> {
1732 self.mouse_position
1733 }
1734
1735 /// The current state of the keyboard's modifiers
1736 pub fn modifiers(&self) -> Modifiers {
1737 self.modifiers
1738 }
1739
1740 /// The current state of the keyboard's capslock
1741 pub fn capslock(&self) -> Capslock {
1742 self.capslock
1743 }
1744
1745 fn complete_frame(&self) {
1746 self.platform_window.completed_frame();
1747 }
1748
1749 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1750 /// the contents of the new [Scene], use [present].
1751 #[profiling::function]
1752 pub fn draw(&mut self, cx: &mut App) -> ArenaClearNeeded {
1753 self.invalidate_entities();
1754 cx.entities.clear_accessed();
1755 debug_assert!(self.rendered_entity_stack.is_empty());
1756 self.invalidator.set_dirty(false);
1757 self.requested_autoscroll = None;
1758
1759 // Restore the previously-used input handler.
1760 if let Some(input_handler) = self.platform_window.take_input_handler() {
1761 self.rendered_frame.input_handlers.push(Some(input_handler));
1762 }
1763 self.draw_roots(cx);
1764 self.dirty_views.clear();
1765 self.next_frame.window_active = self.active.get();
1766
1767 // Register requested input handler with the platform window.
1768 if let Some(input_handler) = self.next_frame.input_handlers.pop() {
1769 self.platform_window
1770 .set_input_handler(input_handler.unwrap());
1771 }
1772
1773 self.layout_engine.as_mut().unwrap().clear();
1774 self.text_system().finish_frame();
1775 self.next_frame.finish(&mut self.rendered_frame);
1776
1777 self.invalidator.set_phase(DrawPhase::Focus);
1778 let previous_focus_path = self.rendered_frame.focus_path();
1779 let previous_window_active = self.rendered_frame.window_active;
1780 mem::swap(&mut self.rendered_frame, &mut self.next_frame);
1781 self.next_frame.clear();
1782 let current_focus_path = self.rendered_frame.focus_path();
1783 let current_window_active = self.rendered_frame.window_active;
1784
1785 if previous_focus_path != current_focus_path
1786 || previous_window_active != current_window_active
1787 {
1788 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
1789 self.focus_lost_listeners
1790 .clone()
1791 .retain(&(), |listener| listener(self, cx));
1792 }
1793
1794 let event = WindowFocusEvent {
1795 previous_focus_path: if previous_window_active {
1796 previous_focus_path
1797 } else {
1798 Default::default()
1799 },
1800 current_focus_path: if current_window_active {
1801 current_focus_path
1802 } else {
1803 Default::default()
1804 },
1805 };
1806 self.focus_listeners
1807 .clone()
1808 .retain(&(), |listener| listener(&event, self, cx));
1809 }
1810
1811 debug_assert!(self.rendered_entity_stack.is_empty());
1812 self.record_entities_accessed(cx);
1813 self.reset_cursor_style(cx);
1814 self.refreshing = false;
1815 self.invalidator.set_phase(DrawPhase::None);
1816 self.needs_present.set(true);
1817
1818 ArenaClearNeeded
1819 }
1820
1821 fn record_entities_accessed(&mut self, cx: &mut App) {
1822 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1823 let mut entities = mem::take(entities_ref.deref_mut());
1824 drop(entities_ref);
1825 let handle = self.handle;
1826 cx.record_entities_accessed(
1827 handle,
1828 // Try moving window invalidator into the Window
1829 self.invalidator.clone(),
1830 &entities,
1831 );
1832 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1833 mem::swap(&mut entities, entities_ref.deref_mut());
1834 }
1835
1836 fn invalidate_entities(&mut self) {
1837 let mut views = self.invalidator.take_views();
1838 for entity in views.drain() {
1839 self.mark_view_dirty(entity);
1840 }
1841 self.invalidator.replace_views(views);
1842 }
1843
1844 #[profiling::function]
1845 fn present(&self) {
1846 self.platform_window.draw(&self.rendered_frame.scene);
1847 self.needs_present.set(false);
1848 profiling::finish_frame!();
1849 }
1850
1851 fn draw_roots(&mut self, cx: &mut App) {
1852 self.invalidator.set_phase(DrawPhase::Prepaint);
1853 self.tooltip_bounds.take();
1854
1855 let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
1856 let root_size = {
1857 #[cfg(any(feature = "inspector", debug_assertions))]
1858 {
1859 if self.inspector.is_some() {
1860 let mut size = self.viewport_size;
1861 size.width = (size.width - _inspector_width).max(px(0.0));
1862 size
1863 } else {
1864 self.viewport_size
1865 }
1866 }
1867 #[cfg(not(any(feature = "inspector", debug_assertions)))]
1868 {
1869 self.viewport_size
1870 }
1871 };
1872
1873 // Layout all root elements.
1874 let mut root_element = self.root.as_ref().unwrap().clone().into_any();
1875 root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
1876
1877 #[cfg(any(feature = "inspector", debug_assertions))]
1878 let inspector_element = self.prepaint_inspector(_inspector_width, cx);
1879
1880 let mut sorted_deferred_draws =
1881 (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
1882 sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
1883 self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
1884
1885 let mut prompt_element = None;
1886 let mut active_drag_element = None;
1887 let mut tooltip_element = None;
1888 if let Some(prompt) = self.prompt.take() {
1889 let mut element = prompt.view.any_view().into_any();
1890 element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
1891 prompt_element = Some(element);
1892 self.prompt = Some(prompt);
1893 } else if let Some(active_drag) = cx.active_drag.take() {
1894 let mut element = active_drag.view.clone().into_any();
1895 let offset = self.mouse_position() - active_drag.cursor_offset;
1896 element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
1897 active_drag_element = Some(element);
1898 cx.active_drag = Some(active_drag);
1899 } else {
1900 tooltip_element = self.prepaint_tooltip(cx);
1901 }
1902
1903 self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
1904
1905 // Now actually paint the elements.
1906 self.invalidator.set_phase(DrawPhase::Paint);
1907 root_element.paint(self, cx);
1908
1909 #[cfg(any(feature = "inspector", debug_assertions))]
1910 self.paint_inspector(inspector_element, cx);
1911
1912 self.paint_deferred_draws(&sorted_deferred_draws, cx);
1913
1914 if let Some(mut prompt_element) = prompt_element {
1915 prompt_element.paint(self, cx);
1916 } else if let Some(mut drag_element) = active_drag_element {
1917 drag_element.paint(self, cx);
1918 } else if let Some(mut tooltip_element) = tooltip_element {
1919 tooltip_element.paint(self, cx);
1920 }
1921
1922 #[cfg(any(feature = "inspector", debug_assertions))]
1923 self.paint_inspector_hitbox(cx);
1924 }
1925
1926 fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
1927 // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
1928 for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
1929 let Some(Some(tooltip_request)) = self
1930 .next_frame
1931 .tooltip_requests
1932 .get(tooltip_request_index)
1933 .cloned()
1934 else {
1935 log::error!("Unexpectedly absent TooltipRequest");
1936 continue;
1937 };
1938 let mut element = tooltip_request.tooltip.view.clone().into_any();
1939 let mouse_position = tooltip_request.tooltip.mouse_position;
1940 let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
1941
1942 let mut tooltip_bounds =
1943 Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
1944 let window_bounds = Bounds {
1945 origin: Point::default(),
1946 size: self.viewport_size(),
1947 };
1948
1949 if tooltip_bounds.right() > window_bounds.right() {
1950 let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
1951 if new_x >= Pixels::ZERO {
1952 tooltip_bounds.origin.x = new_x;
1953 } else {
1954 tooltip_bounds.origin.x = cmp::max(
1955 Pixels::ZERO,
1956 tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
1957 );
1958 }
1959 }
1960
1961 if tooltip_bounds.bottom() > window_bounds.bottom() {
1962 let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
1963 if new_y >= Pixels::ZERO {
1964 tooltip_bounds.origin.y = new_y;
1965 } else {
1966 tooltip_bounds.origin.y = cmp::max(
1967 Pixels::ZERO,
1968 tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
1969 );
1970 }
1971 }
1972
1973 // It's possible for an element to have an active tooltip while not being painted (e.g.
1974 // via the `visible_on_hover` method). Since mouse listeners are not active in this
1975 // case, instead update the tooltip's visibility here.
1976 let is_visible =
1977 (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
1978 if !is_visible {
1979 continue;
1980 }
1981
1982 self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
1983 element.prepaint(window, cx)
1984 });
1985
1986 self.tooltip_bounds = Some(TooltipBounds {
1987 id: tooltip_request.id,
1988 bounds: tooltip_bounds,
1989 });
1990 return Some(element);
1991 }
1992 None
1993 }
1994
1995 fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
1996 assert_eq!(self.element_id_stack.len(), 0);
1997
1998 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
1999 for deferred_draw_ix in deferred_draw_indices {
2000 let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2001 self.element_id_stack
2002 .clone_from(&deferred_draw.element_id_stack);
2003 self.text_style_stack
2004 .clone_from(&deferred_draw.text_style_stack);
2005 self.next_frame
2006 .dispatch_tree
2007 .set_active_node(deferred_draw.parent_node);
2008
2009 let prepaint_start = self.prepaint_index();
2010 if let Some(element) = deferred_draw.element.as_mut() {
2011 self.with_rendered_view(deferred_draw.current_view, |window| {
2012 window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
2013 element.prepaint(window, cx)
2014 });
2015 })
2016 } else {
2017 self.reuse_prepaint(deferred_draw.prepaint_range.clone());
2018 }
2019 let prepaint_end = self.prepaint_index();
2020 deferred_draw.prepaint_range = prepaint_start..prepaint_end;
2021 }
2022 assert_eq!(
2023 self.next_frame.deferred_draws.len(),
2024 0,
2025 "cannot call defer_draw during deferred drawing"
2026 );
2027 self.next_frame.deferred_draws = deferred_draws;
2028 self.element_id_stack.clear();
2029 self.text_style_stack.clear();
2030 }
2031
2032 fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2033 assert_eq!(self.element_id_stack.len(), 0);
2034
2035 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2036 for deferred_draw_ix in deferred_draw_indices {
2037 let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2038 self.element_id_stack
2039 .clone_from(&deferred_draw.element_id_stack);
2040 self.next_frame
2041 .dispatch_tree
2042 .set_active_node(deferred_draw.parent_node);
2043
2044 let paint_start = self.paint_index();
2045 if let Some(element) = deferred_draw.element.as_mut() {
2046 self.with_rendered_view(deferred_draw.current_view, |window| {
2047 element.paint(window, cx);
2048 })
2049 } else {
2050 self.reuse_paint(deferred_draw.paint_range.clone());
2051 }
2052 let paint_end = self.paint_index();
2053 deferred_draw.paint_range = paint_start..paint_end;
2054 }
2055 self.next_frame.deferred_draws = deferred_draws;
2056 self.element_id_stack.clear();
2057 }
2058
2059 pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2060 PrepaintStateIndex {
2061 hitboxes_index: self.next_frame.hitboxes.len(),
2062 tooltips_index: self.next_frame.tooltip_requests.len(),
2063 deferred_draws_index: self.next_frame.deferred_draws.len(),
2064 dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2065 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2066 line_layout_index: self.text_system.layout_index(),
2067 }
2068 }
2069
2070 pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2071 self.next_frame.hitboxes.extend(
2072 self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2073 .iter()
2074 .cloned(),
2075 );
2076 self.next_frame.tooltip_requests.extend(
2077 self.rendered_frame.tooltip_requests
2078 [range.start.tooltips_index..range.end.tooltips_index]
2079 .iter_mut()
2080 .map(|request| request.take()),
2081 );
2082 self.next_frame.accessed_element_states.extend(
2083 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2084 ..range.end.accessed_element_states_index]
2085 .iter()
2086 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2087 );
2088 self.text_system
2089 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2090
2091 let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2092 range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2093 &mut self.rendered_frame.dispatch_tree,
2094 self.focus,
2095 );
2096
2097 if reused_subtree.contains_focus() {
2098 self.next_frame.focus = self.focus;
2099 }
2100
2101 self.next_frame.deferred_draws.extend(
2102 self.rendered_frame.deferred_draws
2103 [range.start.deferred_draws_index..range.end.deferred_draws_index]
2104 .iter()
2105 .map(|deferred_draw| DeferredDraw {
2106 current_view: deferred_draw.current_view,
2107 parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2108 element_id_stack: deferred_draw.element_id_stack.clone(),
2109 text_style_stack: deferred_draw.text_style_stack.clone(),
2110 priority: deferred_draw.priority,
2111 element: None,
2112 absolute_offset: deferred_draw.absolute_offset,
2113 prepaint_range: deferred_draw.prepaint_range.clone(),
2114 paint_range: deferred_draw.paint_range.clone(),
2115 }),
2116 );
2117 }
2118
2119 pub(crate) fn paint_index(&self) -> PaintIndex {
2120 PaintIndex {
2121 scene_index: self.next_frame.scene.len(),
2122 mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2123 input_handlers_index: self.next_frame.input_handlers.len(),
2124 cursor_styles_index: self.next_frame.cursor_styles.len(),
2125 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2126 line_layout_index: self.text_system.layout_index(),
2127 }
2128 }
2129
2130 pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2131 self.next_frame.cursor_styles.extend(
2132 self.rendered_frame.cursor_styles
2133 [range.start.cursor_styles_index..range.end.cursor_styles_index]
2134 .iter()
2135 .cloned(),
2136 );
2137 self.next_frame.input_handlers.extend(
2138 self.rendered_frame.input_handlers
2139 [range.start.input_handlers_index..range.end.input_handlers_index]
2140 .iter_mut()
2141 .map(|handler| handler.take()),
2142 );
2143 self.next_frame.mouse_listeners.extend(
2144 self.rendered_frame.mouse_listeners
2145 [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2146 .iter_mut()
2147 .map(|listener| listener.take()),
2148 );
2149 self.next_frame.accessed_element_states.extend(
2150 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2151 ..range.end.accessed_element_states_index]
2152 .iter()
2153 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2154 );
2155
2156 self.text_system
2157 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2158 self.next_frame.scene.replay(
2159 range.start.scene_index..range.end.scene_index,
2160 &self.rendered_frame.scene,
2161 );
2162 }
2163
2164 /// Push a text style onto the stack, and call a function with that style active.
2165 /// Use [`Window::text_style`] to get the current, combined text style. This method
2166 /// should only be called as part of element drawing.
2167 pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2168 where
2169 F: FnOnce(&mut Self) -> R,
2170 {
2171 self.invalidator.debug_assert_paint_or_prepaint();
2172 if let Some(style) = style {
2173 self.text_style_stack.push(style);
2174 let result = f(self);
2175 self.text_style_stack.pop();
2176 result
2177 } else {
2178 f(self)
2179 }
2180 }
2181
2182 /// Updates the cursor style at the platform level. This method should only be called
2183 /// during the prepaint phase of element drawing.
2184 pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
2185 self.invalidator.debug_assert_paint();
2186 self.next_frame.cursor_styles.push(CursorStyleRequest {
2187 hitbox_id: Some(hitbox.id),
2188 style,
2189 });
2190 }
2191
2192 /// Updates the cursor style for the entire window at the platform level. A cursor
2193 /// style using this method will have precedence over any cursor style set using
2194 /// `set_cursor_style`. This method should only be called during the prepaint
2195 /// phase of element drawing.
2196 pub fn set_window_cursor_style(&mut self, style: CursorStyle) {
2197 self.invalidator.debug_assert_paint();
2198 self.next_frame.cursor_styles.push(CursorStyleRequest {
2199 hitbox_id: None,
2200 style,
2201 })
2202 }
2203
2204 /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2205 /// during the paint phase of element drawing.
2206 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2207 self.invalidator.debug_assert_prepaint();
2208 let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2209 self.next_frame
2210 .tooltip_requests
2211 .push(Some(TooltipRequest { id, tooltip }));
2212 id
2213 }
2214
2215 /// Invoke the given function with the given content mask after intersecting it
2216 /// with the current mask. This method should only be called during element drawing.
2217 pub fn with_content_mask<R>(
2218 &mut self,
2219 mask: Option<ContentMask<Pixels>>,
2220 f: impl FnOnce(&mut Self) -> R,
2221 ) -> R {
2222 self.invalidator.debug_assert_paint_or_prepaint();
2223 if let Some(mask) = mask {
2224 let mask = mask.intersect(&self.content_mask());
2225 self.content_mask_stack.push(mask);
2226 let result = f(self);
2227 self.content_mask_stack.pop();
2228 result
2229 } else {
2230 f(self)
2231 }
2232 }
2233
2234 /// Updates the global element offset relative to the current offset. This is used to implement
2235 /// scrolling. This method should only be called during the prepaint phase of element drawing.
2236 pub fn with_element_offset<R>(
2237 &mut self,
2238 offset: Point<Pixels>,
2239 f: impl FnOnce(&mut Self) -> R,
2240 ) -> R {
2241 self.invalidator.debug_assert_prepaint();
2242
2243 if offset.is_zero() {
2244 return f(self);
2245 };
2246
2247 let abs_offset = self.element_offset() + offset;
2248 self.with_absolute_element_offset(abs_offset, f)
2249 }
2250
2251 /// Updates the global element offset based on the given offset. This is used to implement
2252 /// drag handles and other manual painting of elements. This method should only be called during
2253 /// the prepaint phase of element drawing.
2254 pub fn with_absolute_element_offset<R>(
2255 &mut self,
2256 offset: Point<Pixels>,
2257 f: impl FnOnce(&mut Self) -> R,
2258 ) -> R {
2259 self.invalidator.debug_assert_prepaint();
2260 self.element_offset_stack.push(offset);
2261 let result = f(self);
2262 self.element_offset_stack.pop();
2263 result
2264 }
2265
2266 pub(crate) fn with_element_opacity<R>(
2267 &mut self,
2268 opacity: Option<f32>,
2269 f: impl FnOnce(&mut Self) -> R,
2270 ) -> R {
2271 if opacity.is_none() {
2272 return f(self);
2273 }
2274
2275 self.invalidator.debug_assert_paint_or_prepaint();
2276 self.element_opacity = opacity;
2277 let result = f(self);
2278 self.element_opacity = None;
2279 result
2280 }
2281
2282 /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2283 /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2284 /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2285 /// element offset and prepaint again. See [`List`] for an example. This method should only be
2286 /// called during the prepaint phase of element drawing.
2287 pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2288 self.invalidator.debug_assert_prepaint();
2289 let index = self.prepaint_index();
2290 let result = f(self);
2291 if result.is_err() {
2292 self.next_frame.hitboxes.truncate(index.hitboxes_index);
2293 self.next_frame
2294 .tooltip_requests
2295 .truncate(index.tooltips_index);
2296 self.next_frame
2297 .deferred_draws
2298 .truncate(index.deferred_draws_index);
2299 self.next_frame
2300 .dispatch_tree
2301 .truncate(index.dispatch_tree_index);
2302 self.next_frame
2303 .accessed_element_states
2304 .truncate(index.accessed_element_states_index);
2305 self.text_system.truncate_layouts(index.line_layout_index);
2306 }
2307 result
2308 }
2309
2310 /// When you call this method during [`prepaint`], containing elements will attempt to
2311 /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2312 /// [`prepaint`] again with a new set of bounds. See [`List`] for an example of an element
2313 /// that supports this method being called on the elements it contains. This method should only be
2314 /// called during the prepaint phase of element drawing.
2315 pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2316 self.invalidator.debug_assert_prepaint();
2317 self.requested_autoscroll = Some(bounds);
2318 }
2319
2320 /// This method can be called from a containing element such as [`List`] to support the autoscroll behavior
2321 /// described in [`request_autoscroll`].
2322 pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2323 self.invalidator.debug_assert_prepaint();
2324 self.requested_autoscroll.take()
2325 }
2326
2327 /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2328 /// Your view will be re-drawn once the asset has finished loading.
2329 ///
2330 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2331 /// time.
2332 pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2333 let (task, is_first) = cx.fetch_asset::<A>(source);
2334 task.clone().now_or_never().or_else(|| {
2335 if is_first {
2336 let entity_id = self.current_view();
2337 self.spawn(cx, {
2338 let task = task.clone();
2339 async move |cx| {
2340 task.await;
2341
2342 cx.on_next_frame(move |_, cx| {
2343 cx.notify(entity_id);
2344 });
2345 }
2346 })
2347 .detach();
2348 }
2349
2350 None
2351 })
2352 }
2353
2354 /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2355 /// Your view will not be re-drawn once the asset has finished loading.
2356 ///
2357 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2358 /// time.
2359 pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2360 let (task, _) = cx.fetch_asset::<A>(source);
2361 task.clone().now_or_never()
2362 }
2363 /// Obtain the current element offset. This method should only be called during the
2364 /// prepaint phase of element drawing.
2365 pub fn element_offset(&self) -> Point<Pixels> {
2366 self.invalidator.debug_assert_prepaint();
2367 self.element_offset_stack
2368 .last()
2369 .copied()
2370 .unwrap_or_default()
2371 }
2372
2373 /// Obtain the current element opacity. This method should only be called during the
2374 /// prepaint phase of element drawing.
2375 pub(crate) fn element_opacity(&self) -> f32 {
2376 self.invalidator.debug_assert_paint_or_prepaint();
2377 self.element_opacity.unwrap_or(1.0)
2378 }
2379
2380 /// Obtain the current content mask. This method should only be called during element drawing.
2381 pub fn content_mask(&self) -> ContentMask<Pixels> {
2382 self.invalidator.debug_assert_paint_or_prepaint();
2383 self.content_mask_stack
2384 .last()
2385 .cloned()
2386 .unwrap_or_else(|| ContentMask {
2387 bounds: Bounds {
2388 origin: Point::default(),
2389 size: self.viewport_size,
2390 },
2391 })
2392 }
2393
2394 /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2395 /// This can be used within a custom element to distinguish multiple sets of child elements.
2396 pub fn with_element_namespace<R>(
2397 &mut self,
2398 element_id: impl Into<ElementId>,
2399 f: impl FnOnce(&mut Self) -> R,
2400 ) -> R {
2401 self.element_id_stack.push(element_id.into());
2402 let result = f(self);
2403 self.element_id_stack.pop();
2404 result
2405 }
2406
2407 /// Updates or initializes state for an element with the given id that lives across multiple
2408 /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2409 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2410 /// when drawing the next frame. This method should only be called as part of element drawing.
2411 pub fn with_element_state<S, R>(
2412 &mut self,
2413 global_id: &GlobalElementId,
2414 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2415 ) -> R
2416 where
2417 S: 'static,
2418 {
2419 self.invalidator.debug_assert_paint_or_prepaint();
2420
2421 let key = (GlobalElementId(global_id.0.clone()), TypeId::of::<S>());
2422 self.next_frame
2423 .accessed_element_states
2424 .push((GlobalElementId(key.0.clone()), TypeId::of::<S>()));
2425
2426 if let Some(any) = self
2427 .next_frame
2428 .element_states
2429 .remove(&key)
2430 .or_else(|| self.rendered_frame.element_states.remove(&key))
2431 {
2432 let ElementStateBox {
2433 inner,
2434 #[cfg(debug_assertions)]
2435 type_name,
2436 } = any;
2437 // Using the extra inner option to avoid needing to reallocate a new box.
2438 let mut state_box = inner
2439 .downcast::<Option<S>>()
2440 .map_err(|_| {
2441 #[cfg(debug_assertions)]
2442 {
2443 anyhow::anyhow!(
2444 "invalid element state type for id, requested {:?}, actual: {:?}",
2445 std::any::type_name::<S>(),
2446 type_name
2447 )
2448 }
2449
2450 #[cfg(not(debug_assertions))]
2451 {
2452 anyhow::anyhow!(
2453 "invalid element state type for id, requested {:?}",
2454 std::any::type_name::<S>(),
2455 )
2456 }
2457 })
2458 .unwrap();
2459
2460 let state = state_box.take().expect(
2461 "reentrant call to with_element_state for the same state type and element id",
2462 );
2463 let (result, state) = f(Some(state), self);
2464 state_box.replace(state);
2465 self.next_frame.element_states.insert(
2466 key,
2467 ElementStateBox {
2468 inner: state_box,
2469 #[cfg(debug_assertions)]
2470 type_name,
2471 },
2472 );
2473 result
2474 } else {
2475 let (result, state) = f(None, self);
2476 self.next_frame.element_states.insert(
2477 key,
2478 ElementStateBox {
2479 inner: Box::new(Some(state)),
2480 #[cfg(debug_assertions)]
2481 type_name: std::any::type_name::<S>(),
2482 },
2483 );
2484 result
2485 }
2486 }
2487
2488 /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2489 /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2490 /// when the element is guaranteed to have an id.
2491 ///
2492 /// The first option means 'no ID provided'
2493 /// The second option means 'not yet initialized'
2494 pub fn with_optional_element_state<S, R>(
2495 &mut self,
2496 global_id: Option<&GlobalElementId>,
2497 f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2498 ) -> R
2499 where
2500 S: 'static,
2501 {
2502 self.invalidator.debug_assert_paint_or_prepaint();
2503
2504 if let Some(global_id) = global_id {
2505 self.with_element_state(global_id, |state, cx| {
2506 let (result, state) = f(Some(state), cx);
2507 let state =
2508 state.expect("you must return some state when you pass some element id");
2509 (result, state)
2510 })
2511 } else {
2512 let (result, state) = f(None, self);
2513 debug_assert!(
2514 state.is_none(),
2515 "you must not return an element state when passing None for the global id"
2516 );
2517 result
2518 }
2519 }
2520
2521 /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2522 /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2523 /// with higher values being drawn on top.
2524 ///
2525 /// This method should only be called as part of the prepaint phase of element drawing.
2526 pub fn defer_draw(
2527 &mut self,
2528 element: AnyElement,
2529 absolute_offset: Point<Pixels>,
2530 priority: usize,
2531 ) {
2532 self.invalidator.debug_assert_prepaint();
2533 let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2534 self.next_frame.deferred_draws.push(DeferredDraw {
2535 current_view: self.current_view(),
2536 parent_node,
2537 element_id_stack: self.element_id_stack.clone(),
2538 text_style_stack: self.text_style_stack.clone(),
2539 priority,
2540 element: Some(element),
2541 absolute_offset,
2542 prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2543 paint_range: PaintIndex::default()..PaintIndex::default(),
2544 });
2545 }
2546
2547 /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2548 /// of geometry that are non-overlapping and have the same draw order. This is typically used
2549 /// for performance reasons.
2550 ///
2551 /// This method should only be called as part of the paint phase of element drawing.
2552 pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2553 self.invalidator.debug_assert_paint();
2554
2555 let scale_factor = self.scale_factor();
2556 let content_mask = self.content_mask();
2557 let clipped_bounds = bounds.intersect(&content_mask.bounds);
2558 if !clipped_bounds.is_empty() {
2559 self.next_frame
2560 .scene
2561 .push_layer(clipped_bounds.scale(scale_factor));
2562 }
2563
2564 let result = f(self);
2565
2566 if !clipped_bounds.is_empty() {
2567 self.next_frame.scene.pop_layer();
2568 }
2569
2570 result
2571 }
2572
2573 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2574 ///
2575 /// This method should only be called as part of the paint phase of element drawing.
2576 pub fn paint_shadows(
2577 &mut self,
2578 bounds: Bounds<Pixels>,
2579 corner_radii: Corners<Pixels>,
2580 shadows: &[BoxShadow],
2581 ) {
2582 self.invalidator.debug_assert_paint();
2583
2584 let scale_factor = self.scale_factor();
2585 let content_mask = self.content_mask();
2586 let opacity = self.element_opacity();
2587 for shadow in shadows {
2588 let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2589 self.next_frame.scene.insert_primitive(Shadow {
2590 order: 0,
2591 blur_radius: shadow.blur_radius.scale(scale_factor),
2592 bounds: shadow_bounds.scale(scale_factor),
2593 content_mask: content_mask.scale(scale_factor),
2594 corner_radii: corner_radii.scale(scale_factor),
2595 color: shadow.color.opacity(opacity),
2596 });
2597 }
2598 }
2599
2600 /// Paint one or more quads into the scene for the next frame at the current stacking context.
2601 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2602 /// see [`fill`](crate::fill), [`outline`](crate::outline), and [`quad`](crate::quad) to construct this type.
2603 ///
2604 /// This method should only be called as part of the paint phase of element drawing.
2605 ///
2606 /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2607 /// where the circular arcs meet. This will not display well when combined with dashed borders.
2608 /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2609 pub fn paint_quad(&mut self, quad: PaintQuad) {
2610 self.invalidator.debug_assert_paint();
2611
2612 let scale_factor = self.scale_factor();
2613 let content_mask = self.content_mask();
2614 let opacity = self.element_opacity();
2615 self.next_frame.scene.insert_primitive(Quad {
2616 order: 0,
2617 bounds: quad.bounds.scale(scale_factor),
2618 content_mask: content_mask.scale(scale_factor),
2619 background: quad.background.opacity(opacity),
2620 border_color: quad.border_color.opacity(opacity),
2621 corner_radii: quad.corner_radii.scale(scale_factor),
2622 border_widths: quad.border_widths.scale(scale_factor),
2623 border_style: quad.border_style,
2624 });
2625 }
2626
2627 /// Paint the given `Path` into the scene for the next frame at the current z-index.
2628 ///
2629 /// This method should only be called as part of the paint phase of element drawing.
2630 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2631 self.invalidator.debug_assert_paint();
2632
2633 let scale_factor = self.scale_factor();
2634 let content_mask = self.content_mask();
2635 let opacity = self.element_opacity();
2636 path.content_mask = content_mask;
2637 let color: Background = color.into();
2638 path.color = color.opacity(opacity);
2639 self.next_frame
2640 .scene
2641 .insert_primitive(path.scale(scale_factor));
2642 }
2643
2644 /// Paint an underline into the scene for the next frame at the current z-index.
2645 ///
2646 /// This method should only be called as part of the paint phase of element drawing.
2647 pub fn paint_underline(
2648 &mut self,
2649 origin: Point<Pixels>,
2650 width: Pixels,
2651 style: &UnderlineStyle,
2652 ) {
2653 self.invalidator.debug_assert_paint();
2654
2655 let scale_factor = self.scale_factor();
2656 let height = if style.wavy {
2657 style.thickness * 3.
2658 } else {
2659 style.thickness
2660 };
2661 let bounds = Bounds {
2662 origin,
2663 size: size(width, height),
2664 };
2665 let content_mask = self.content_mask();
2666 let element_opacity = self.element_opacity();
2667
2668 self.next_frame.scene.insert_primitive(Underline {
2669 order: 0,
2670 pad: 0,
2671 bounds: bounds.scale(scale_factor),
2672 content_mask: content_mask.scale(scale_factor),
2673 color: style.color.unwrap_or_default().opacity(element_opacity),
2674 thickness: style.thickness.scale(scale_factor),
2675 wavy: style.wavy,
2676 });
2677 }
2678
2679 /// Paint a strikethrough into the scene for the next frame at the current z-index.
2680 ///
2681 /// This method should only be called as part of the paint phase of element drawing.
2682 pub fn paint_strikethrough(
2683 &mut self,
2684 origin: Point<Pixels>,
2685 width: Pixels,
2686 style: &StrikethroughStyle,
2687 ) {
2688 self.invalidator.debug_assert_paint();
2689
2690 let scale_factor = self.scale_factor();
2691 let height = style.thickness;
2692 let bounds = Bounds {
2693 origin,
2694 size: size(width, height),
2695 };
2696 let content_mask = self.content_mask();
2697 let opacity = self.element_opacity();
2698
2699 self.next_frame.scene.insert_primitive(Underline {
2700 order: 0,
2701 pad: 0,
2702 bounds: bounds.scale(scale_factor),
2703 content_mask: content_mask.scale(scale_factor),
2704 thickness: style.thickness.scale(scale_factor),
2705 color: style.color.unwrap_or_default().opacity(opacity),
2706 wavy: false,
2707 });
2708 }
2709
2710 /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
2711 ///
2712 /// The y component of the origin is the baseline of the glyph.
2713 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2714 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2715 /// This method is only useful if you need to paint a single glyph that has already been shaped.
2716 ///
2717 /// This method should only be called as part of the paint phase of element drawing.
2718 pub fn paint_glyph(
2719 &mut self,
2720 origin: Point<Pixels>,
2721 font_id: FontId,
2722 glyph_id: GlyphId,
2723 font_size: Pixels,
2724 color: Hsla,
2725 ) -> Result<()> {
2726 self.invalidator.debug_assert_paint();
2727
2728 let element_opacity = self.element_opacity();
2729 let scale_factor = self.scale_factor();
2730 let glyph_origin = origin.scale(scale_factor);
2731 let subpixel_variant = Point {
2732 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2733 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2734 };
2735 let params = RenderGlyphParams {
2736 font_id,
2737 glyph_id,
2738 font_size,
2739 subpixel_variant,
2740 scale_factor,
2741 is_emoji: false,
2742 };
2743
2744 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2745 if !raster_bounds.is_zero() {
2746 let tile = self
2747 .sprite_atlas
2748 .get_or_insert_with(¶ms.clone().into(), &mut || {
2749 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2750 Ok(Some((size, Cow::Owned(bytes))))
2751 })?
2752 .expect("Callback above only errors or returns Some");
2753 let bounds = Bounds {
2754 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2755 size: tile.bounds.size.map(Into::into),
2756 };
2757 let content_mask = self.content_mask().scale(scale_factor);
2758 self.next_frame.scene.insert_primitive(MonochromeSprite {
2759 order: 0,
2760 pad: 0,
2761 bounds,
2762 content_mask,
2763 color: color.opacity(element_opacity),
2764 tile,
2765 transformation: TransformationMatrix::unit(),
2766 });
2767 }
2768 Ok(())
2769 }
2770
2771 /// Paints an emoji glyph into the scene for the next frame at the current z-index.
2772 ///
2773 /// The y component of the origin is the baseline of the glyph.
2774 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2775 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2776 /// This method is only useful if you need to paint a single emoji that has already been shaped.
2777 ///
2778 /// This method should only be called as part of the paint phase of element drawing.
2779 pub fn paint_emoji(
2780 &mut self,
2781 origin: Point<Pixels>,
2782 font_id: FontId,
2783 glyph_id: GlyphId,
2784 font_size: Pixels,
2785 ) -> Result<()> {
2786 self.invalidator.debug_assert_paint();
2787
2788 let scale_factor = self.scale_factor();
2789 let glyph_origin = origin.scale(scale_factor);
2790 let params = RenderGlyphParams {
2791 font_id,
2792 glyph_id,
2793 font_size,
2794 // We don't render emojis with subpixel variants.
2795 subpixel_variant: Default::default(),
2796 scale_factor,
2797 is_emoji: true,
2798 };
2799
2800 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2801 if !raster_bounds.is_zero() {
2802 let tile = self
2803 .sprite_atlas
2804 .get_or_insert_with(¶ms.clone().into(), &mut || {
2805 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2806 Ok(Some((size, Cow::Owned(bytes))))
2807 })?
2808 .expect("Callback above only errors or returns Some");
2809
2810 let bounds = Bounds {
2811 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2812 size: tile.bounds.size.map(Into::into),
2813 };
2814 let content_mask = self.content_mask().scale(scale_factor);
2815 let opacity = self.element_opacity();
2816
2817 self.next_frame.scene.insert_primitive(PolychromeSprite {
2818 order: 0,
2819 pad: 0,
2820 grayscale: false,
2821 bounds,
2822 corner_radii: Default::default(),
2823 content_mask,
2824 tile,
2825 opacity,
2826 });
2827 }
2828 Ok(())
2829 }
2830
2831 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
2832 ///
2833 /// This method should only be called as part of the paint phase of element drawing.
2834 pub fn paint_svg(
2835 &mut self,
2836 bounds: Bounds<Pixels>,
2837 path: SharedString,
2838 transformation: TransformationMatrix,
2839 color: Hsla,
2840 cx: &App,
2841 ) -> Result<()> {
2842 self.invalidator.debug_assert_paint();
2843
2844 let element_opacity = self.element_opacity();
2845 let scale_factor = self.scale_factor();
2846 let bounds = bounds.scale(scale_factor);
2847 let params = RenderSvgParams {
2848 path,
2849 size: bounds.size.map(|pixels| {
2850 DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
2851 }),
2852 };
2853
2854 let Some(tile) =
2855 self.sprite_atlas
2856 .get_or_insert_with(¶ms.clone().into(), &mut || {
2857 let Some(bytes) = cx.svg_renderer.render(¶ms)? else {
2858 return Ok(None);
2859 };
2860 Ok(Some((params.size, Cow::Owned(bytes))))
2861 })?
2862 else {
2863 return Ok(());
2864 };
2865 let content_mask = self.content_mask().scale(scale_factor);
2866
2867 self.next_frame.scene.insert_primitive(MonochromeSprite {
2868 order: 0,
2869 pad: 0,
2870 bounds: bounds
2871 .map_origin(|origin| origin.floor())
2872 .map_size(|size| size.ceil()),
2873 content_mask,
2874 color: color.opacity(element_opacity),
2875 tile,
2876 transformation,
2877 });
2878
2879 Ok(())
2880 }
2881
2882 /// Paint an image into the scene for the next frame at the current z-index.
2883 /// This method will panic if the frame_index is not valid
2884 ///
2885 /// This method should only be called as part of the paint phase of element drawing.
2886 pub fn paint_image(
2887 &mut self,
2888 bounds: Bounds<Pixels>,
2889 corner_radii: Corners<Pixels>,
2890 data: Arc<RenderImage>,
2891 frame_index: usize,
2892 grayscale: bool,
2893 ) -> Result<()> {
2894 self.invalidator.debug_assert_paint();
2895
2896 let scale_factor = self.scale_factor();
2897 let bounds = bounds.scale(scale_factor);
2898 let params = RenderImageParams {
2899 image_id: data.id,
2900 frame_index,
2901 };
2902
2903 let tile = self
2904 .sprite_atlas
2905 .get_or_insert_with(¶ms.clone().into(), &mut || {
2906 Ok(Some((
2907 data.size(frame_index),
2908 Cow::Borrowed(
2909 data.as_bytes(frame_index)
2910 .expect("It's the caller's job to pass a valid frame index"),
2911 ),
2912 )))
2913 })?
2914 .expect("Callback above only returns Some");
2915 let content_mask = self.content_mask().scale(scale_factor);
2916 let corner_radii = corner_radii.scale(scale_factor);
2917 let opacity = self.element_opacity();
2918
2919 self.next_frame.scene.insert_primitive(PolychromeSprite {
2920 order: 0,
2921 pad: 0,
2922 grayscale,
2923 bounds: bounds
2924 .map_origin(|origin| origin.floor())
2925 .map_size(|size| size.ceil()),
2926 content_mask,
2927 corner_radii,
2928 tile,
2929 opacity,
2930 });
2931 Ok(())
2932 }
2933
2934 /// Paint a surface into the scene for the next frame at the current z-index.
2935 ///
2936 /// This method should only be called as part of the paint phase of element drawing.
2937 #[cfg(target_os = "macos")]
2938 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
2939 use crate::PaintSurface;
2940
2941 self.invalidator.debug_assert_paint();
2942
2943 let scale_factor = self.scale_factor();
2944 let bounds = bounds.scale(scale_factor);
2945 let content_mask = self.content_mask().scale(scale_factor);
2946 self.next_frame.scene.insert_primitive(PaintSurface {
2947 order: 0,
2948 bounds,
2949 content_mask,
2950 image_buffer,
2951 });
2952 }
2953
2954 /// Removes an image from the sprite atlas.
2955 pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
2956 for frame_index in 0..data.frame_count() {
2957 let params = RenderImageParams {
2958 image_id: data.id,
2959 frame_index,
2960 };
2961
2962 self.sprite_atlas.remove(¶ms.clone().into());
2963 }
2964
2965 Ok(())
2966 }
2967
2968 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
2969 /// layout is being requested, along with the layout ids of any children. This method is called during
2970 /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
2971 ///
2972 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
2973 #[must_use]
2974 pub fn request_layout(
2975 &mut self,
2976 style: Style,
2977 children: impl IntoIterator<Item = LayoutId>,
2978 cx: &mut App,
2979 ) -> LayoutId {
2980 self.invalidator.debug_assert_prepaint();
2981
2982 cx.layout_id_buffer.clear();
2983 cx.layout_id_buffer.extend(children);
2984 let rem_size = self.rem_size();
2985
2986 self.layout_engine
2987 .as_mut()
2988 .unwrap()
2989 .request_layout(style, rem_size, &cx.layout_id_buffer)
2990 }
2991
2992 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
2993 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
2994 /// determine the element's size. One place this is used internally is when measuring text.
2995 ///
2996 /// The given closure is invoked at layout time with the known dimensions and available space and
2997 /// returns a `Size`.
2998 ///
2999 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3000 pub fn request_measured_layout<
3001 F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
3002 + 'static,
3003 >(
3004 &mut self,
3005 style: Style,
3006 measure: F,
3007 ) -> LayoutId {
3008 self.invalidator.debug_assert_prepaint();
3009
3010 let rem_size = self.rem_size();
3011 self.layout_engine
3012 .as_mut()
3013 .unwrap()
3014 .request_measured_layout(style, rem_size, measure)
3015 }
3016
3017 /// Compute the layout for the given id within the given available space.
3018 /// This method is called for its side effect, typically by the framework prior to painting.
3019 /// After calling it, you can request the bounds of the given layout node id or any descendant.
3020 ///
3021 /// This method should only be called as part of the prepaint phase of element drawing.
3022 pub fn compute_layout(
3023 &mut self,
3024 layout_id: LayoutId,
3025 available_space: Size<AvailableSpace>,
3026 cx: &mut App,
3027 ) {
3028 self.invalidator.debug_assert_prepaint();
3029
3030 let mut layout_engine = self.layout_engine.take().unwrap();
3031 layout_engine.compute_layout(layout_id, available_space, self, cx);
3032 self.layout_engine = Some(layout_engine);
3033 }
3034
3035 /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
3036 /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
3037 ///
3038 /// This method should only be called as part of element drawing.
3039 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
3040 self.invalidator.debug_assert_prepaint();
3041
3042 let mut bounds = self
3043 .layout_engine
3044 .as_mut()
3045 .unwrap()
3046 .layout_bounds(layout_id)
3047 .map(Into::into);
3048 bounds.origin += self.element_offset();
3049 bounds
3050 }
3051
3052 /// This method should be called during `prepaint`. You can use
3053 /// the returned [Hitbox] during `paint` or in an event handler
3054 /// to determine whether the inserted hitbox was the topmost.
3055 ///
3056 /// This method should only be called as part of the prepaint phase of element drawing.
3057 pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
3058 self.invalidator.debug_assert_prepaint();
3059
3060 let content_mask = self.content_mask();
3061 let mut id = self.next_hitbox_id;
3062 self.next_hitbox_id = self.next_hitbox_id.next();
3063 let hitbox = Hitbox {
3064 id,
3065 bounds,
3066 content_mask,
3067 behavior,
3068 };
3069 self.next_frame.hitboxes.push(hitbox.clone());
3070 hitbox
3071 }
3072
3073 /// Set a hitbox which will act as a control area of the platform window.
3074 ///
3075 /// This method should only be called as part of the paint phase of element drawing.
3076 pub fn insert_window_control_hitbox(&mut self, area: WindowControlArea, hitbox: Hitbox) {
3077 self.invalidator.debug_assert_paint();
3078 self.next_frame.window_control_hitboxes.push((area, hitbox));
3079 }
3080
3081 /// Sets the key context for the current element. This context will be used to translate
3082 /// keybindings into actions.
3083 ///
3084 /// This method should only be called as part of the paint phase of element drawing.
3085 pub fn set_key_context(&mut self, context: KeyContext) {
3086 self.invalidator.debug_assert_paint();
3087 self.next_frame.dispatch_tree.set_key_context(context);
3088 }
3089
3090 /// Sets the focus handle for the current element. This handle will be used to manage focus state
3091 /// and keyboard event dispatch for the element.
3092 ///
3093 /// This method should only be called as part of the prepaint phase of element drawing.
3094 pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3095 self.invalidator.debug_assert_prepaint();
3096 if focus_handle.is_focused(self) {
3097 self.next_frame.focus = Some(focus_handle.id);
3098 }
3099 self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3100 }
3101
3102 /// Sets the view id for the current element, which will be used to manage view caching.
3103 ///
3104 /// This method should only be called as part of element prepaint. We plan on removing this
3105 /// method eventually when we solve some issues that require us to construct editor elements
3106 /// directly instead of always using editors via views.
3107 pub fn set_view_id(&mut self, view_id: EntityId) {
3108 self.invalidator.debug_assert_prepaint();
3109 self.next_frame.dispatch_tree.set_view_id(view_id);
3110 }
3111
3112 /// Get the entity ID for the currently rendering view
3113 pub fn current_view(&self) -> EntityId {
3114 self.invalidator.debug_assert_paint_or_prepaint();
3115 self.rendered_entity_stack.last().copied().unwrap()
3116 }
3117
3118 pub(crate) fn with_rendered_view<R>(
3119 &mut self,
3120 id: EntityId,
3121 f: impl FnOnce(&mut Self) -> R,
3122 ) -> R {
3123 self.rendered_entity_stack.push(id);
3124 let result = f(self);
3125 self.rendered_entity_stack.pop();
3126 result
3127 }
3128
3129 /// Executes the provided function with the specified image cache.
3130 pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3131 where
3132 F: FnOnce(&mut Self) -> R,
3133 {
3134 if let Some(image_cache) = image_cache {
3135 self.image_cache_stack.push(image_cache);
3136 let result = f(self);
3137 self.image_cache_stack.pop();
3138 result
3139 } else {
3140 f(self)
3141 }
3142 }
3143
3144 /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3145 /// platform to receive textual input with proper integration with concerns such
3146 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3147 /// rendered.
3148 ///
3149 /// This method should only be called as part of the paint phase of element drawing.
3150 ///
3151 /// [element_input_handler]: crate::ElementInputHandler
3152 pub fn handle_input(
3153 &mut self,
3154 focus_handle: &FocusHandle,
3155 input_handler: impl InputHandler,
3156 cx: &App,
3157 ) {
3158 self.invalidator.debug_assert_paint();
3159
3160 if focus_handle.is_focused(self) {
3161 let cx = self.to_async(cx);
3162 self.next_frame
3163 .input_handlers
3164 .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3165 }
3166 }
3167
3168 /// Register a mouse event listener on the window for the next frame. The type of event
3169 /// is determined by the first parameter of the given listener. When the next frame is rendered
3170 /// the listener will be cleared.
3171 ///
3172 /// This method should only be called as part of the paint phase of element drawing.
3173 pub fn on_mouse_event<Event: MouseEvent>(
3174 &mut self,
3175 mut handler: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3176 ) {
3177 self.invalidator.debug_assert_paint();
3178
3179 self.next_frame.mouse_listeners.push(Some(Box::new(
3180 move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3181 if let Some(event) = event.downcast_ref() {
3182 handler(event, phase, window, cx)
3183 }
3184 },
3185 )));
3186 }
3187
3188 /// Register a key event listener on the window for the next frame. The type of event
3189 /// is determined by the first parameter of the given listener. When the next frame is rendered
3190 /// the listener will be cleared.
3191 ///
3192 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3193 /// a specific need to register a global listener.
3194 ///
3195 /// This method should only be called as part of the paint phase of element drawing.
3196 pub fn on_key_event<Event: KeyEvent>(
3197 &mut self,
3198 listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3199 ) {
3200 self.invalidator.debug_assert_paint();
3201
3202 self.next_frame.dispatch_tree.on_key_event(Rc::new(
3203 move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3204 if let Some(event) = event.downcast_ref::<Event>() {
3205 listener(event, phase, window, cx)
3206 }
3207 },
3208 ));
3209 }
3210
3211 /// Register a modifiers changed event listener on the window for the next frame.
3212 ///
3213 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3214 /// a specific need to register a global listener.
3215 ///
3216 /// This method should only be called as part of the paint phase of element drawing.
3217 pub fn on_modifiers_changed(
3218 &mut self,
3219 listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3220 ) {
3221 self.invalidator.debug_assert_paint();
3222
3223 self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3224 move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3225 listener(event, window, cx)
3226 },
3227 ));
3228 }
3229
3230 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3231 /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3232 /// Returns a subscription and persists until the subscription is dropped.
3233 pub fn on_focus_in(
3234 &mut self,
3235 handle: &FocusHandle,
3236 cx: &mut App,
3237 mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3238 ) -> Subscription {
3239 let focus_id = handle.id;
3240 let (subscription, activate) =
3241 self.new_focus_listener(Box::new(move |event, window, cx| {
3242 if event.is_focus_in(focus_id) {
3243 listener(window, cx);
3244 }
3245 true
3246 }));
3247 cx.defer(move |_| activate());
3248 subscription
3249 }
3250
3251 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3252 /// Returns a subscription and persists until the subscription is dropped.
3253 pub fn on_focus_out(
3254 &mut self,
3255 handle: &FocusHandle,
3256 cx: &mut App,
3257 mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3258 ) -> Subscription {
3259 let focus_id = handle.id;
3260 let (subscription, activate) =
3261 self.new_focus_listener(Box::new(move |event, window, cx| {
3262 if let Some(blurred_id) = event.previous_focus_path.last().copied() {
3263 if event.is_focus_out(focus_id) {
3264 let event = FocusOutEvent {
3265 blurred: WeakFocusHandle {
3266 id: blurred_id,
3267 handles: Arc::downgrade(&cx.focus_handles),
3268 },
3269 };
3270 listener(event, window, cx)
3271 }
3272 }
3273 true
3274 }));
3275 cx.defer(move |_| activate());
3276 subscription
3277 }
3278
3279 fn reset_cursor_style(&self, cx: &mut App) {
3280 // Set the cursor only if we're the active window.
3281 if self.is_window_hovered() {
3282 let style = self
3283 .rendered_frame
3284 .cursor_style(self)
3285 .unwrap_or(CursorStyle::Arrow);
3286 cx.platform.set_cursor_style(style);
3287 }
3288 }
3289
3290 /// Dispatch a given keystroke as though the user had typed it.
3291 /// You can create a keystroke with Keystroke::parse("").
3292 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3293 let keystroke = keystroke.with_simulated_ime();
3294 let result = self.dispatch_event(
3295 PlatformInput::KeyDown(KeyDownEvent {
3296 keystroke: keystroke.clone(),
3297 is_held: false,
3298 }),
3299 cx,
3300 );
3301 if !result.propagate {
3302 return true;
3303 }
3304
3305 if let Some(input) = keystroke.key_char {
3306 if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3307 input_handler.dispatch_input(&input, self, cx);
3308 self.platform_window.set_input_handler(input_handler);
3309 return true;
3310 }
3311 }
3312
3313 false
3314 }
3315
3316 /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3317 /// binding for the action (last binding added to the keymap).
3318 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3319 self.highest_precedence_binding_for_action(action)
3320 .map(|binding| {
3321 binding
3322 .keystrokes()
3323 .iter()
3324 .map(ToString::to_string)
3325 .collect::<Vec<_>>()
3326 .join(" ")
3327 })
3328 .unwrap_or_else(|| action.name().to_string())
3329 }
3330
3331 /// Dispatch a mouse or keyboard event on the window.
3332 #[profiling::function]
3333 pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3334 self.last_input_timestamp.set(Instant::now());
3335 // Handlers may set this to false by calling `stop_propagation`.
3336 cx.propagate_event = true;
3337 // Handlers may set this to true by calling `prevent_default`.
3338 self.default_prevented = false;
3339
3340 let event = match event {
3341 // Track the mouse position with our own state, since accessing the platform
3342 // API for the mouse position can only occur on the main thread.
3343 PlatformInput::MouseMove(mouse_move) => {
3344 self.mouse_position = mouse_move.position;
3345 self.modifiers = mouse_move.modifiers;
3346 PlatformInput::MouseMove(mouse_move)
3347 }
3348 PlatformInput::MouseDown(mouse_down) => {
3349 self.mouse_position = mouse_down.position;
3350 self.modifiers = mouse_down.modifiers;
3351 PlatformInput::MouseDown(mouse_down)
3352 }
3353 PlatformInput::MouseUp(mouse_up) => {
3354 self.mouse_position = mouse_up.position;
3355 self.modifiers = mouse_up.modifiers;
3356 PlatformInput::MouseUp(mouse_up)
3357 }
3358 PlatformInput::MouseExited(mouse_exited) => {
3359 self.modifiers = mouse_exited.modifiers;
3360 PlatformInput::MouseExited(mouse_exited)
3361 }
3362 PlatformInput::ModifiersChanged(modifiers_changed) => {
3363 self.modifiers = modifiers_changed.modifiers;
3364 self.capslock = modifiers_changed.capslock;
3365 PlatformInput::ModifiersChanged(modifiers_changed)
3366 }
3367 PlatformInput::ScrollWheel(scroll_wheel) => {
3368 self.mouse_position = scroll_wheel.position;
3369 self.modifiers = scroll_wheel.modifiers;
3370 PlatformInput::ScrollWheel(scroll_wheel)
3371 }
3372 // Translate dragging and dropping of external files from the operating system
3373 // to internal drag and drop events.
3374 PlatformInput::FileDrop(file_drop) => match file_drop {
3375 FileDropEvent::Entered { position, paths } => {
3376 self.mouse_position = position;
3377 if cx.active_drag.is_none() {
3378 cx.active_drag = Some(AnyDrag {
3379 value: Arc::new(paths.clone()),
3380 view: cx.new(|_| paths).into(),
3381 cursor_offset: position,
3382 cursor_style: None,
3383 });
3384 }
3385 PlatformInput::MouseMove(MouseMoveEvent {
3386 position,
3387 pressed_button: Some(MouseButton::Left),
3388 modifiers: Modifiers::default(),
3389 })
3390 }
3391 FileDropEvent::Pending { position } => {
3392 self.mouse_position = position;
3393 PlatformInput::MouseMove(MouseMoveEvent {
3394 position,
3395 pressed_button: Some(MouseButton::Left),
3396 modifiers: Modifiers::default(),
3397 })
3398 }
3399 FileDropEvent::Submit { position } => {
3400 cx.activate(true);
3401 self.mouse_position = position;
3402 PlatformInput::MouseUp(MouseUpEvent {
3403 button: MouseButton::Left,
3404 position,
3405 modifiers: Modifiers::default(),
3406 click_count: 1,
3407 })
3408 }
3409 FileDropEvent::Exited => {
3410 cx.active_drag.take();
3411 PlatformInput::FileDrop(FileDropEvent::Exited)
3412 }
3413 },
3414 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3415 };
3416
3417 if let Some(any_mouse_event) = event.mouse_event() {
3418 self.dispatch_mouse_event(any_mouse_event, cx);
3419 } else if let Some(any_key_event) = event.keyboard_event() {
3420 self.dispatch_key_event(any_key_event, cx);
3421 }
3422
3423 DispatchEventResult {
3424 propagate: cx.propagate_event,
3425 default_prevented: self.default_prevented,
3426 }
3427 }
3428
3429 fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3430 let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3431 if hit_test != self.mouse_hit_test {
3432 self.mouse_hit_test = hit_test;
3433 self.reset_cursor_style(cx);
3434 }
3435
3436 #[cfg(any(feature = "inspector", debug_assertions))]
3437 if self.is_inspector_picking(cx) {
3438 self.handle_inspector_mouse_event(event, cx);
3439 // When inspector is picking, all other mouse handling is skipped.
3440 return;
3441 }
3442
3443 let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3444
3445 // Capture phase, events bubble from back to front. Handlers for this phase are used for
3446 // special purposes, such as detecting events outside of a given Bounds.
3447 for listener in &mut mouse_listeners {
3448 let listener = listener.as_mut().unwrap();
3449 listener(event, DispatchPhase::Capture, self, cx);
3450 if !cx.propagate_event {
3451 break;
3452 }
3453 }
3454
3455 // Bubble phase, where most normal handlers do their work.
3456 if cx.propagate_event {
3457 for listener in mouse_listeners.iter_mut().rev() {
3458 let listener = listener.as_mut().unwrap();
3459 listener(event, DispatchPhase::Bubble, self, cx);
3460 if !cx.propagate_event {
3461 break;
3462 }
3463 }
3464 }
3465
3466 self.rendered_frame.mouse_listeners = mouse_listeners;
3467
3468 if cx.has_active_drag() {
3469 if event.is::<MouseMoveEvent>() {
3470 // If this was a mouse move event, redraw the window so that the
3471 // active drag can follow the mouse cursor.
3472 self.refresh();
3473 } else if event.is::<MouseUpEvent>() {
3474 // If this was a mouse up event, cancel the active drag and redraw
3475 // the window.
3476 cx.active_drag = None;
3477 self.refresh();
3478 }
3479 }
3480 }
3481
3482 fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3483 if self.invalidator.is_dirty() {
3484 self.draw(cx).clear();
3485 }
3486
3487 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3488 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3489
3490 let mut keystroke: Option<Keystroke> = None;
3491
3492 if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3493 if event.modifiers.number_of_modifiers() == 0
3494 && self.pending_modifier.modifiers.number_of_modifiers() == 1
3495 && !self.pending_modifier.saw_keystroke
3496 {
3497 let key = match self.pending_modifier.modifiers {
3498 modifiers if modifiers.shift => Some("shift"),
3499 modifiers if modifiers.control => Some("control"),
3500 modifiers if modifiers.alt => Some("alt"),
3501 modifiers if modifiers.platform => Some("platform"),
3502 modifiers if modifiers.function => Some("function"),
3503 _ => None,
3504 };
3505 if let Some(key) = key {
3506 keystroke = Some(Keystroke {
3507 key: key.to_string(),
3508 key_char: None,
3509 modifiers: Modifiers::default(),
3510 });
3511 }
3512 }
3513
3514 if self.pending_modifier.modifiers.number_of_modifiers() == 0
3515 && event.modifiers.number_of_modifiers() == 1
3516 {
3517 self.pending_modifier.saw_keystroke = false
3518 }
3519 self.pending_modifier.modifiers = event.modifiers
3520 } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3521 self.pending_modifier.saw_keystroke = true;
3522 keystroke = Some(key_down_event.keystroke.clone());
3523 }
3524
3525 let Some(keystroke) = keystroke else {
3526 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3527 return;
3528 };
3529
3530 let mut currently_pending = self.pending_input.take().unwrap_or_default();
3531 if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3532 currently_pending = PendingInput::default();
3533 }
3534
3535 let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3536 currently_pending.keystrokes,
3537 keystroke,
3538 &dispatch_path,
3539 );
3540
3541 if !match_result.to_replay.is_empty() {
3542 self.replay_pending_input(match_result.to_replay, cx)
3543 }
3544
3545 if !match_result.pending.is_empty() {
3546 currently_pending.keystrokes = match_result.pending;
3547 currently_pending.focus = self.focus;
3548 currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3549 cx.background_executor.timer(Duration::from_secs(1)).await;
3550 cx.update(move |window, cx| {
3551 let Some(currently_pending) = window
3552 .pending_input
3553 .take()
3554 .filter(|pending| pending.focus == window.focus)
3555 else {
3556 return;
3557 };
3558
3559 let node_id = window.focus_node_id_in_rendered_frame(window.focus);
3560 let dispatch_path = window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3561
3562 let to_replay = window
3563 .rendered_frame
3564 .dispatch_tree
3565 .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3566
3567 window.pending_input_changed(cx);
3568 window.replay_pending_input(to_replay, cx)
3569 })
3570 .log_err();
3571 }));
3572 self.pending_input = Some(currently_pending);
3573 self.pending_input_changed(cx);
3574 cx.propagate_event = false;
3575 return;
3576 }
3577
3578 cx.propagate_event = true;
3579 for binding in match_result.bindings {
3580 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3581 if !cx.propagate_event {
3582 self.dispatch_keystroke_observers(
3583 event,
3584 Some(binding.action),
3585 match_result.context_stack.clone(),
3586 cx,
3587 );
3588 self.pending_input_changed(cx);
3589 return;
3590 }
3591 }
3592
3593 self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
3594 self.pending_input_changed(cx);
3595 }
3596
3597 fn finish_dispatch_key_event(
3598 &mut self,
3599 event: &dyn Any,
3600 dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3601 context_stack: Vec<KeyContext>,
3602 cx: &mut App,
3603 ) {
3604 self.dispatch_key_down_up_event(event, &dispatch_path, cx);
3605 if !cx.propagate_event {
3606 return;
3607 }
3608
3609 self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
3610 if !cx.propagate_event {
3611 return;
3612 }
3613
3614 self.dispatch_keystroke_observers(event, None, context_stack, cx);
3615 }
3616
3617 fn pending_input_changed(&mut self, cx: &mut App) {
3618 self.pending_input_observers
3619 .clone()
3620 .retain(&(), |callback| callback(self, cx));
3621 }
3622
3623 fn dispatch_key_down_up_event(
3624 &mut self,
3625 event: &dyn Any,
3626 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3627 cx: &mut App,
3628 ) {
3629 // Capture phase
3630 for node_id in dispatch_path {
3631 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3632
3633 for key_listener in node.key_listeners.clone() {
3634 key_listener(event, DispatchPhase::Capture, self, cx);
3635 if !cx.propagate_event {
3636 return;
3637 }
3638 }
3639 }
3640
3641 // Bubble phase
3642 for node_id in dispatch_path.iter().rev() {
3643 // Handle low level key events
3644 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3645 for key_listener in node.key_listeners.clone() {
3646 key_listener(event, DispatchPhase::Bubble, self, cx);
3647 if !cx.propagate_event {
3648 return;
3649 }
3650 }
3651 }
3652 }
3653
3654 fn dispatch_modifiers_changed_event(
3655 &mut self,
3656 event: &dyn Any,
3657 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3658 cx: &mut App,
3659 ) {
3660 let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
3661 return;
3662 };
3663 for node_id in dispatch_path.iter().rev() {
3664 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3665 for listener in node.modifiers_changed_listeners.clone() {
3666 listener(event, self, cx);
3667 if !cx.propagate_event {
3668 return;
3669 }
3670 }
3671 }
3672 }
3673
3674 /// Determine whether a potential multi-stroke key binding is in progress on this window.
3675 pub fn has_pending_keystrokes(&self) -> bool {
3676 self.pending_input.is_some()
3677 }
3678
3679 pub(crate) fn clear_pending_keystrokes(&mut self) {
3680 self.pending_input.take();
3681 }
3682
3683 /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
3684 pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
3685 self.pending_input
3686 .as_ref()
3687 .map(|pending_input| pending_input.keystrokes.as_slice())
3688 }
3689
3690 fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
3691 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3692 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3693
3694 'replay: for replay in replays {
3695 let event = KeyDownEvent {
3696 keystroke: replay.keystroke.clone(),
3697 is_held: false,
3698 };
3699
3700 cx.propagate_event = true;
3701 for binding in replay.bindings {
3702 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3703 if !cx.propagate_event {
3704 self.dispatch_keystroke_observers(
3705 &event,
3706 Some(binding.action),
3707 Vec::default(),
3708 cx,
3709 );
3710 continue 'replay;
3711 }
3712 }
3713
3714 self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
3715 if !cx.propagate_event {
3716 continue 'replay;
3717 }
3718 if let Some(input) = replay.keystroke.key_char.as_ref().cloned() {
3719 if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3720 input_handler.dispatch_input(&input, self, cx);
3721 self.platform_window.set_input_handler(input_handler)
3722 }
3723 }
3724 }
3725 }
3726
3727 fn focus_node_id_in_rendered_frame(&self, focus_id: Option<FocusId>) -> DispatchNodeId {
3728 focus_id
3729 .and_then(|focus_id| {
3730 self.rendered_frame
3731 .dispatch_tree
3732 .focusable_node_id(focus_id)
3733 })
3734 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id())
3735 }
3736
3737 fn dispatch_action_on_node(
3738 &mut self,
3739 node_id: DispatchNodeId,
3740 action: &dyn Action,
3741 cx: &mut App,
3742 ) {
3743 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3744
3745 // Capture phase for global actions.
3746 cx.propagate_event = true;
3747 if let Some(mut global_listeners) = cx
3748 .global_action_listeners
3749 .remove(&action.as_any().type_id())
3750 {
3751 for listener in &global_listeners {
3752 listener(action.as_any(), DispatchPhase::Capture, cx);
3753 if !cx.propagate_event {
3754 break;
3755 }
3756 }
3757
3758 global_listeners.extend(
3759 cx.global_action_listeners
3760 .remove(&action.as_any().type_id())
3761 .unwrap_or_default(),
3762 );
3763
3764 cx.global_action_listeners
3765 .insert(action.as_any().type_id(), global_listeners);
3766 }
3767
3768 if !cx.propagate_event {
3769 return;
3770 }
3771
3772 // Capture phase for window actions.
3773 for node_id in &dispatch_path {
3774 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3775 for DispatchActionListener {
3776 action_type,
3777 listener,
3778 } in node.action_listeners.clone()
3779 {
3780 let any_action = action.as_any();
3781 if action_type == any_action.type_id() {
3782 listener(any_action, DispatchPhase::Capture, self, cx);
3783
3784 if !cx.propagate_event {
3785 return;
3786 }
3787 }
3788 }
3789 }
3790
3791 // Bubble phase for window actions.
3792 for node_id in dispatch_path.iter().rev() {
3793 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3794 for DispatchActionListener {
3795 action_type,
3796 listener,
3797 } in node.action_listeners.clone()
3798 {
3799 let any_action = action.as_any();
3800 if action_type == any_action.type_id() {
3801 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3802 listener(any_action, DispatchPhase::Bubble, self, cx);
3803
3804 if !cx.propagate_event {
3805 return;
3806 }
3807 }
3808 }
3809 }
3810
3811 // Bubble phase for global actions.
3812 if let Some(mut global_listeners) = cx
3813 .global_action_listeners
3814 .remove(&action.as_any().type_id())
3815 {
3816 for listener in global_listeners.iter().rev() {
3817 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3818
3819 listener(action.as_any(), DispatchPhase::Bubble, cx);
3820 if !cx.propagate_event {
3821 break;
3822 }
3823 }
3824
3825 global_listeners.extend(
3826 cx.global_action_listeners
3827 .remove(&action.as_any().type_id())
3828 .unwrap_or_default(),
3829 );
3830
3831 cx.global_action_listeners
3832 .insert(action.as_any().type_id(), global_listeners);
3833 }
3834 }
3835
3836 /// Register the given handler to be invoked whenever the global of the given type
3837 /// is updated.
3838 pub fn observe_global<G: Global>(
3839 &mut self,
3840 cx: &mut App,
3841 f: impl Fn(&mut Window, &mut App) + 'static,
3842 ) -> Subscription {
3843 let window_handle = self.handle;
3844 let (subscription, activate) = cx.global_observers.insert(
3845 TypeId::of::<G>(),
3846 Box::new(move |cx| {
3847 window_handle
3848 .update(cx, |_, window, cx| f(window, cx))
3849 .is_ok()
3850 }),
3851 );
3852 cx.defer(move |_| activate());
3853 subscription
3854 }
3855
3856 /// Focus the current window and bring it to the foreground at the platform level.
3857 pub fn activate_window(&self) {
3858 self.platform_window.activate();
3859 }
3860
3861 /// Minimize the current window at the platform level.
3862 pub fn minimize_window(&self) {
3863 self.platform_window.minimize();
3864 }
3865
3866 /// Toggle full screen status on the current window at the platform level.
3867 pub fn toggle_fullscreen(&self) {
3868 self.platform_window.toggle_fullscreen();
3869 }
3870
3871 /// Updates the IME panel position suggestions for languages like japanese, chinese.
3872 pub fn invalidate_character_coordinates(&self) {
3873 self.on_next_frame(|window, cx| {
3874 if let Some(mut input_handler) = window.platform_window.take_input_handler() {
3875 if let Some(bounds) = input_handler.selected_bounds(window, cx) {
3876 window
3877 .platform_window
3878 .update_ime_position(bounds.scale(window.scale_factor()));
3879 }
3880 window.platform_window.set_input_handler(input_handler);
3881 }
3882 });
3883 }
3884
3885 /// Present a platform dialog.
3886 /// The provided message will be presented, along with buttons for each answer.
3887 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
3888 pub fn prompt<T>(
3889 &mut self,
3890 level: PromptLevel,
3891 message: &str,
3892 detail: Option<&str>,
3893 answers: &[T],
3894 cx: &mut App,
3895 ) -> oneshot::Receiver<usize>
3896 where
3897 T: Clone + Into<PromptButton>,
3898 {
3899 let prompt_builder = cx.prompt_builder.take();
3900 let Some(prompt_builder) = prompt_builder else {
3901 unreachable!("Re-entrant window prompting is not supported by GPUI");
3902 };
3903
3904 let answers = answers
3905 .iter()
3906 .map(|answer| answer.clone().into())
3907 .collect::<Vec<_>>();
3908
3909 let receiver = match &prompt_builder {
3910 PromptBuilder::Default => self
3911 .platform_window
3912 .prompt(level, message, detail, &answers)
3913 .unwrap_or_else(|| {
3914 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
3915 }),
3916 PromptBuilder::Custom(_) => {
3917 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
3918 }
3919 };
3920
3921 cx.prompt_builder = Some(prompt_builder);
3922
3923 receiver
3924 }
3925
3926 fn build_custom_prompt(
3927 &mut self,
3928 prompt_builder: &PromptBuilder,
3929 level: PromptLevel,
3930 message: &str,
3931 detail: Option<&str>,
3932 answers: &[PromptButton],
3933 cx: &mut App,
3934 ) -> oneshot::Receiver<usize> {
3935 let (sender, receiver) = oneshot::channel();
3936 let handle = PromptHandle::new(sender);
3937 let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
3938 self.prompt = Some(handle);
3939 receiver
3940 }
3941
3942 /// Returns the current context stack.
3943 pub fn context_stack(&self) -> Vec<KeyContext> {
3944 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3945 let dispatch_tree = &self.rendered_frame.dispatch_tree;
3946 dispatch_tree
3947 .dispatch_path(node_id)
3948 .iter()
3949 .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
3950 .collect()
3951 }
3952
3953 /// Returns all available actions for the focused element.
3954 pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
3955 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3956 let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
3957 for action_type in cx.global_action_listeners.keys() {
3958 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
3959 let action = cx.actions.build_action_type(action_type).ok();
3960 if let Some(action) = action {
3961 actions.insert(ix, action);
3962 }
3963 }
3964 }
3965 actions
3966 }
3967
3968 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
3969 /// returned in the order they were added. For display, the last binding should take precedence.
3970 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
3971 self.rendered_frame
3972 .dispatch_tree
3973 .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
3974 }
3975
3976 /// Returns the highest precedence key binding that invokes an action on the currently focused
3977 /// element. This is more efficient than getting the last result of `bindings_for_action`.
3978 pub fn highest_precedence_binding_for_action(&self, action: &dyn Action) -> Option<KeyBinding> {
3979 self.rendered_frame
3980 .dispatch_tree
3981 .highest_precedence_binding_for_action(
3982 action,
3983 &self.rendered_frame.dispatch_tree.context_stack,
3984 )
3985 }
3986
3987 /// Returns the key bindings for an action in a context.
3988 pub fn bindings_for_action_in_context(
3989 &self,
3990 action: &dyn Action,
3991 context: KeyContext,
3992 ) -> Vec<KeyBinding> {
3993 let dispatch_tree = &self.rendered_frame.dispatch_tree;
3994 dispatch_tree.bindings_for_action(action, &[context])
3995 }
3996
3997 /// Returns the highest precedence key binding for an action in a context. This is more
3998 /// efficient than getting the last result of `bindings_for_action_in_context`.
3999 pub fn highest_precedence_binding_for_action_in_context(
4000 &self,
4001 action: &dyn Action,
4002 context: KeyContext,
4003 ) -> Option<KeyBinding> {
4004 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4005 dispatch_tree.highest_precedence_binding_for_action(action, &[context])
4006 }
4007
4008 /// Returns any bindings that would invoke an action on the given focus handle if it were
4009 /// focused. Bindings are returned in the order they were added. For display, the last binding
4010 /// should take precedence.
4011 pub fn bindings_for_action_in(
4012 &self,
4013 action: &dyn Action,
4014 focus_handle: &FocusHandle,
4015 ) -> Vec<KeyBinding> {
4016 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4017 let Some(context_stack) = self.context_stack_for_focus_handle(focus_handle) else {
4018 return vec![];
4019 };
4020 dispatch_tree.bindings_for_action(action, &context_stack)
4021 }
4022
4023 /// Returns the highest precedence key binding that would invoke an action on the given focus
4024 /// handle if it were focused. This is more efficient than getting the last result of
4025 /// `bindings_for_action_in`.
4026 pub fn highest_precedence_binding_for_action_in(
4027 &self,
4028 action: &dyn Action,
4029 focus_handle: &FocusHandle,
4030 ) -> Option<KeyBinding> {
4031 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4032 let context_stack = self.context_stack_for_focus_handle(focus_handle)?;
4033 dispatch_tree.highest_precedence_binding_for_action(action, &context_stack)
4034 }
4035
4036 fn context_stack_for_focus_handle(
4037 &self,
4038 focus_handle: &FocusHandle,
4039 ) -> Option<Vec<KeyContext>> {
4040 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4041 let node_id = dispatch_tree.focusable_node_id(focus_handle.id)?;
4042 let context_stack: Vec<_> = dispatch_tree
4043 .dispatch_path(node_id)
4044 .into_iter()
4045 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
4046 .collect();
4047 Some(context_stack)
4048 }
4049
4050 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
4051 pub fn listener_for<V: Render, E>(
4052 &self,
4053 view: &Entity<V>,
4054 f: impl Fn(&mut V, &E, &mut Window, &mut Context<V>) + 'static,
4055 ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
4056 let view = view.downgrade();
4057 move |e: &E, window: &mut Window, cx: &mut App| {
4058 view.update(cx, |view, cx| f(view, e, window, cx)).ok();
4059 }
4060 }
4061
4062 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
4063 pub fn handler_for<V: Render, Callback: Fn(&mut V, &mut Window, &mut Context<V>) + 'static>(
4064 &self,
4065 view: &Entity<V>,
4066 f: Callback,
4067 ) -> impl Fn(&mut Window, &mut App) + use<V, Callback> {
4068 let view = view.downgrade();
4069 move |window: &mut Window, cx: &mut App| {
4070 view.update(cx, |view, cx| f(view, window, cx)).ok();
4071 }
4072 }
4073
4074 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
4075 /// If the callback returns false, the window won't be closed.
4076 pub fn on_window_should_close(
4077 &self,
4078 cx: &App,
4079 f: impl Fn(&mut Window, &mut App) -> bool + 'static,
4080 ) {
4081 let mut cx = self.to_async(cx);
4082 self.platform_window.on_should_close(Box::new(move || {
4083 cx.update(|window, cx| f(window, cx)).unwrap_or(true)
4084 }))
4085 }
4086
4087 /// Register an action listener on the window for the next frame. The type of action
4088 /// is determined by the first parameter of the given listener. When the next frame is rendered
4089 /// the listener will be cleared.
4090 ///
4091 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4092 /// a specific need to register a global listener.
4093 pub fn on_action(
4094 &mut self,
4095 action_type: TypeId,
4096 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4097 ) {
4098 self.next_frame
4099 .dispatch_tree
4100 .on_action(action_type, Rc::new(listener));
4101 }
4102
4103 /// Read information about the GPU backing this window.
4104 /// Currently returns None on Mac and Windows.
4105 pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4106 self.platform_window.gpu_specs()
4107 }
4108
4109 /// Perform titlebar double-click action.
4110 /// This is MacOS specific.
4111 pub fn titlebar_double_click(&self) {
4112 self.platform_window.titlebar_double_click();
4113 }
4114
4115 /// Toggles the inspector mode on this window.
4116 #[cfg(any(feature = "inspector", debug_assertions))]
4117 pub fn toggle_inspector(&mut self, cx: &mut App) {
4118 self.inspector = match self.inspector {
4119 None => Some(cx.new(|_| Inspector::new())),
4120 Some(_) => None,
4121 };
4122 self.refresh();
4123 }
4124
4125 /// Returns true if the window is in inspector mode.
4126 pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4127 #[cfg(any(feature = "inspector", debug_assertions))]
4128 {
4129 if let Some(inspector) = &self.inspector {
4130 return inspector.read(_cx).is_picking();
4131 }
4132 }
4133 false
4134 }
4135
4136 /// Executes the provided function with mutable access to an inspector state.
4137 #[cfg(any(feature = "inspector", debug_assertions))]
4138 pub fn with_inspector_state<T: 'static, R>(
4139 &mut self,
4140 _inspector_id: Option<&crate::InspectorElementId>,
4141 cx: &mut App,
4142 f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4143 ) -> R {
4144 if let Some(inspector_id) = _inspector_id {
4145 if let Some(inspector) = &self.inspector {
4146 let inspector = inspector.clone();
4147 let active_element_id = inspector.read(cx).active_element_id();
4148 if Some(inspector_id) == active_element_id {
4149 return inspector.update(cx, |inspector, _cx| {
4150 inspector.with_active_element_state(self, f)
4151 });
4152 }
4153 }
4154 }
4155 f(&mut None, self)
4156 }
4157
4158 #[cfg(any(feature = "inspector", debug_assertions))]
4159 pub(crate) fn build_inspector_element_id(
4160 &mut self,
4161 path: crate::InspectorElementPath,
4162 ) -> crate::InspectorElementId {
4163 self.invalidator.debug_assert_paint_or_prepaint();
4164 let path = Rc::new(path);
4165 let next_instance_id = self
4166 .next_frame
4167 .next_inspector_instance_ids
4168 .entry(path.clone())
4169 .or_insert(0);
4170 let instance_id = *next_instance_id;
4171 *next_instance_id += 1;
4172 crate::InspectorElementId { path, instance_id }
4173 }
4174
4175 #[cfg(any(feature = "inspector", debug_assertions))]
4176 fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4177 if let Some(inspector) = self.inspector.take() {
4178 let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4179 inspector_element.prepaint_as_root(
4180 point(self.viewport_size.width - inspector_width, px(0.0)),
4181 size(inspector_width, self.viewport_size.height).into(),
4182 self,
4183 cx,
4184 );
4185 self.inspector = Some(inspector);
4186 Some(inspector_element)
4187 } else {
4188 None
4189 }
4190 }
4191
4192 #[cfg(any(feature = "inspector", debug_assertions))]
4193 fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4194 if let Some(mut inspector_element) = inspector_element {
4195 inspector_element.paint(self, cx);
4196 };
4197 }
4198
4199 /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4200 /// inspect UI elements by clicking on them.
4201 #[cfg(any(feature = "inspector", debug_assertions))]
4202 pub fn insert_inspector_hitbox(
4203 &mut self,
4204 hitbox_id: HitboxId,
4205 inspector_id: Option<&crate::InspectorElementId>,
4206 cx: &App,
4207 ) {
4208 self.invalidator.debug_assert_paint_or_prepaint();
4209 if !self.is_inspector_picking(cx) {
4210 return;
4211 }
4212 if let Some(inspector_id) = inspector_id {
4213 self.next_frame
4214 .inspector_hitboxes
4215 .insert(hitbox_id, inspector_id.clone());
4216 }
4217 }
4218
4219 #[cfg(any(feature = "inspector", debug_assertions))]
4220 fn paint_inspector_hitbox(&mut self, cx: &App) {
4221 if let Some(inspector) = self.inspector.as_ref() {
4222 let inspector = inspector.read(cx);
4223 if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
4224 {
4225 if let Some(hitbox) = self
4226 .next_frame
4227 .hitboxes
4228 .iter()
4229 .find(|hitbox| hitbox.id == hitbox_id)
4230 {
4231 self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4232 }
4233 }
4234 }
4235 }
4236
4237 #[cfg(any(feature = "inspector", debug_assertions))]
4238 fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4239 let Some(inspector) = self.inspector.clone() else {
4240 return;
4241 };
4242 if event.downcast_ref::<MouseMoveEvent>().is_some() {
4243 inspector.update(cx, |inspector, _cx| {
4244 if let Some((_, inspector_id)) =
4245 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4246 {
4247 inspector.hover(inspector_id, self);
4248 }
4249 });
4250 } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4251 inspector.update(cx, |inspector, _cx| {
4252 if let Some((_, inspector_id)) =
4253 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4254 {
4255 inspector.select(inspector_id, self);
4256 }
4257 });
4258 } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4259 // This should be kept in sync with SCROLL_LINES in x11 platform.
4260 const SCROLL_LINES: f32 = 3.0;
4261 const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4262 let delta_y = event
4263 .delta
4264 .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4265 .y;
4266 if let Some(inspector) = self.inspector.clone() {
4267 inspector.update(cx, |inspector, _cx| {
4268 if let Some(depth) = inspector.pick_depth.as_mut() {
4269 *depth += delta_y.0 / SCROLL_PIXELS_PER_LAYER;
4270 let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4271 if *depth < 0.0 {
4272 *depth = 0.0;
4273 } else if *depth > max_depth {
4274 *depth = max_depth;
4275 }
4276 if let Some((_, inspector_id)) =
4277 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4278 {
4279 inspector.set_active_element_id(inspector_id.clone(), self);
4280 }
4281 }
4282 });
4283 }
4284 }
4285 }
4286
4287 #[cfg(any(feature = "inspector", debug_assertions))]
4288 fn hovered_inspector_hitbox(
4289 &self,
4290 inspector: &Inspector,
4291 frame: &Frame,
4292 ) -> Option<(HitboxId, crate::InspectorElementId)> {
4293 if let Some(pick_depth) = inspector.pick_depth {
4294 let depth = (pick_depth as i64).try_into().unwrap_or(0);
4295 let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4296 let skip_count = (depth as usize).min(max_skipped);
4297 for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4298 if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4299 return Some((*hitbox_id, inspector_id.clone()));
4300 }
4301 }
4302 }
4303 return None;
4304 }
4305}
4306
4307// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4308slotmap::new_key_type! {
4309 /// A unique identifier for a window.
4310 pub struct WindowId;
4311}
4312
4313impl WindowId {
4314 /// Converts this window ID to a `u64`.
4315 pub fn as_u64(&self) -> u64 {
4316 self.0.as_ffi()
4317 }
4318}
4319
4320impl From<u64> for WindowId {
4321 fn from(value: u64) -> Self {
4322 WindowId(slotmap::KeyData::from_ffi(value))
4323 }
4324}
4325
4326/// A handle to a window with a specific root view type.
4327/// Note that this does not keep the window alive on its own.
4328#[derive(Deref, DerefMut)]
4329pub struct WindowHandle<V> {
4330 #[deref]
4331 #[deref_mut]
4332 pub(crate) any_handle: AnyWindowHandle,
4333 state_type: PhantomData<V>,
4334}
4335
4336impl<V: 'static + Render> WindowHandle<V> {
4337 /// Creates a new handle from a window ID.
4338 /// This does not check if the root type of the window is `V`.
4339 pub fn new(id: WindowId) -> Self {
4340 WindowHandle {
4341 any_handle: AnyWindowHandle {
4342 id,
4343 state_type: TypeId::of::<V>(),
4344 },
4345 state_type: PhantomData,
4346 }
4347 }
4348
4349 /// Get the root view out of this window.
4350 ///
4351 /// This will fail if the window is closed or if the root view's type does not match `V`.
4352 #[cfg(any(test, feature = "test-support"))]
4353 pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4354 where
4355 C: AppContext,
4356 {
4357 crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4358 root_view
4359 .downcast::<V>()
4360 .map_err(|_| anyhow!("the type of the window's root view has changed"))
4361 }))
4362 }
4363
4364 /// Updates the root view of this window.
4365 ///
4366 /// This will fail if the window has been closed or if the root view's type does not match
4367 pub fn update<C, R>(
4368 &self,
4369 cx: &mut C,
4370 update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4371 ) -> Result<R>
4372 where
4373 C: AppContext,
4374 {
4375 cx.update_window(self.any_handle, |root_view, window, cx| {
4376 let view = root_view
4377 .downcast::<V>()
4378 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4379
4380 Ok(view.update(cx, |view, cx| update(view, window, cx)))
4381 })?
4382 }
4383
4384 /// Read the root view out of this window.
4385 ///
4386 /// This will fail if the window is closed or if the root view's type does not match `V`.
4387 pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
4388 let x = cx
4389 .windows
4390 .get(self.id)
4391 .and_then(|window| {
4392 window
4393 .as_ref()
4394 .and_then(|window| window.root.clone())
4395 .map(|root_view| root_view.downcast::<V>())
4396 })
4397 .context("window not found")?
4398 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4399
4400 Ok(x.read(cx))
4401 }
4402
4403 /// Read the root view out of this window, with a callback
4404 ///
4405 /// This will fail if the window is closed or if the root view's type does not match `V`.
4406 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4407 where
4408 C: AppContext,
4409 {
4410 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
4411 }
4412
4413 /// Read the root view pointer off of this window.
4414 ///
4415 /// This will fail if the window is closed or if the root view's type does not match `V`.
4416 pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4417 where
4418 C: AppContext,
4419 {
4420 cx.read_window(self, |root_view, _cx| root_view.clone())
4421 }
4422
4423 /// Check if this window is 'active'.
4424 ///
4425 /// Will return `None` if the window is closed or currently
4426 /// borrowed.
4427 pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4428 cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4429 .ok()
4430 }
4431}
4432
4433impl<V> Copy for WindowHandle<V> {}
4434
4435impl<V> Clone for WindowHandle<V> {
4436 fn clone(&self) -> Self {
4437 *self
4438 }
4439}
4440
4441impl<V> PartialEq for WindowHandle<V> {
4442 fn eq(&self, other: &Self) -> bool {
4443 self.any_handle == other.any_handle
4444 }
4445}
4446
4447impl<V> Eq for WindowHandle<V> {}
4448
4449impl<V> Hash for WindowHandle<V> {
4450 fn hash<H: Hasher>(&self, state: &mut H) {
4451 self.any_handle.hash(state);
4452 }
4453}
4454
4455impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
4456 fn from(val: WindowHandle<V>) -> Self {
4457 val.any_handle
4458 }
4459}
4460
4461unsafe impl<V> Send for WindowHandle<V> {}
4462unsafe impl<V> Sync for WindowHandle<V> {}
4463
4464/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
4465#[derive(Copy, Clone, PartialEq, Eq, Hash)]
4466pub struct AnyWindowHandle {
4467 pub(crate) id: WindowId,
4468 state_type: TypeId,
4469}
4470
4471impl AnyWindowHandle {
4472 /// Get the ID of this window.
4473 pub fn window_id(&self) -> WindowId {
4474 self.id
4475 }
4476
4477 /// Attempt to convert this handle to a window handle with a specific root view type.
4478 /// If the types do not match, this will return `None`.
4479 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
4480 if TypeId::of::<T>() == self.state_type {
4481 Some(WindowHandle {
4482 any_handle: *self,
4483 state_type: PhantomData,
4484 })
4485 } else {
4486 None
4487 }
4488 }
4489
4490 /// Updates the state of the root view of this window.
4491 ///
4492 /// This will fail if the window has been closed.
4493 pub fn update<C, R>(
4494 self,
4495 cx: &mut C,
4496 update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
4497 ) -> Result<R>
4498 where
4499 C: AppContext,
4500 {
4501 cx.update_window(self, update)
4502 }
4503
4504 /// Read the state of the root view of this window.
4505 ///
4506 /// This will fail if the window has been closed.
4507 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
4508 where
4509 C: AppContext,
4510 T: 'static,
4511 {
4512 let view = self
4513 .downcast::<T>()
4514 .context("the type of the window's root view has changed")?;
4515
4516 cx.read_window(&view, read)
4517 }
4518}
4519
4520impl HasWindowHandle for Window {
4521 fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
4522 self.platform_window.window_handle()
4523 }
4524}
4525
4526impl HasDisplayHandle for Window {
4527 fn display_handle(
4528 &self,
4529 ) -> std::result::Result<raw_window_handle::DisplayHandle<'_>, HandleError> {
4530 self.platform_window.display_handle()
4531 }
4532}
4533
4534/// An identifier for an [`Element`](crate::Element).
4535///
4536/// Can be constructed with a string, a number, or both, as well
4537/// as other internal representations.
4538#[derive(Clone, Debug, Eq, PartialEq, Hash)]
4539pub enum ElementId {
4540 /// The ID of a View element
4541 View(EntityId),
4542 /// An integer ID.
4543 Integer(u64),
4544 /// A string based ID.
4545 Name(SharedString),
4546 /// A UUID.
4547 Uuid(Uuid),
4548 /// An ID that's equated with a focus handle.
4549 FocusHandle(FocusId),
4550 /// A combination of a name and an integer.
4551 NamedInteger(SharedString, u64),
4552 /// A path.
4553 Path(Arc<std::path::Path>),
4554}
4555
4556impl ElementId {
4557 /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
4558 pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
4559 Self::NamedInteger(name.into(), integer as u64)
4560 }
4561}
4562
4563impl Display for ElementId {
4564 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4565 match self {
4566 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
4567 ElementId::Integer(ix) => write!(f, "{}", ix)?,
4568 ElementId::Name(name) => write!(f, "{}", name)?,
4569 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
4570 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
4571 ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
4572 ElementId::Path(path) => write!(f, "{}", path.display())?,
4573 }
4574
4575 Ok(())
4576 }
4577}
4578
4579impl TryInto<SharedString> for ElementId {
4580 type Error = anyhow::Error;
4581
4582 fn try_into(self) -> anyhow::Result<SharedString> {
4583 if let ElementId::Name(name) = self {
4584 Ok(name)
4585 } else {
4586 anyhow::bail!("element id is not string")
4587 }
4588 }
4589}
4590
4591impl From<usize> for ElementId {
4592 fn from(id: usize) -> Self {
4593 ElementId::Integer(id as u64)
4594 }
4595}
4596
4597impl From<i32> for ElementId {
4598 fn from(id: i32) -> Self {
4599 Self::Integer(id as u64)
4600 }
4601}
4602
4603impl From<SharedString> for ElementId {
4604 fn from(name: SharedString) -> Self {
4605 ElementId::Name(name)
4606 }
4607}
4608
4609impl From<Arc<std::path::Path>> for ElementId {
4610 fn from(path: Arc<std::path::Path>) -> Self {
4611 ElementId::Path(path)
4612 }
4613}
4614
4615impl From<&'static str> for ElementId {
4616 fn from(name: &'static str) -> Self {
4617 ElementId::Name(name.into())
4618 }
4619}
4620
4621impl<'a> From<&'a FocusHandle> for ElementId {
4622 fn from(handle: &'a FocusHandle) -> Self {
4623 ElementId::FocusHandle(handle.id)
4624 }
4625}
4626
4627impl From<(&'static str, EntityId)> for ElementId {
4628 fn from((name, id): (&'static str, EntityId)) -> Self {
4629 ElementId::NamedInteger(name.into(), id.as_u64())
4630 }
4631}
4632
4633impl From<(&'static str, usize)> for ElementId {
4634 fn from((name, id): (&'static str, usize)) -> Self {
4635 ElementId::NamedInteger(name.into(), id as u64)
4636 }
4637}
4638
4639impl From<(SharedString, usize)> for ElementId {
4640 fn from((name, id): (SharedString, usize)) -> Self {
4641 ElementId::NamedInteger(name, id as u64)
4642 }
4643}
4644
4645impl From<(&'static str, u64)> for ElementId {
4646 fn from((name, id): (&'static str, u64)) -> Self {
4647 ElementId::NamedInteger(name.into(), id)
4648 }
4649}
4650
4651impl From<Uuid> for ElementId {
4652 fn from(value: Uuid) -> Self {
4653 Self::Uuid(value)
4654 }
4655}
4656
4657impl From<(&'static str, u32)> for ElementId {
4658 fn from((name, id): (&'static str, u32)) -> Self {
4659 ElementId::NamedInteger(name.into(), id.into())
4660 }
4661}
4662
4663/// A rectangle to be rendered in the window at the given position and size.
4664/// Passed as an argument [`Window::paint_quad`].
4665#[derive(Clone)]
4666pub struct PaintQuad {
4667 /// The bounds of the quad within the window.
4668 pub bounds: Bounds<Pixels>,
4669 /// The radii of the quad's corners.
4670 pub corner_radii: Corners<Pixels>,
4671 /// The background color of the quad.
4672 pub background: Background,
4673 /// The widths of the quad's borders.
4674 pub border_widths: Edges<Pixels>,
4675 /// The color of the quad's borders.
4676 pub border_color: Hsla,
4677 /// The style of the quad's borders.
4678 pub border_style: BorderStyle,
4679}
4680
4681impl PaintQuad {
4682 /// Sets the corner radii of the quad.
4683 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
4684 PaintQuad {
4685 corner_radii: corner_radii.into(),
4686 ..self
4687 }
4688 }
4689
4690 /// Sets the border widths of the quad.
4691 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
4692 PaintQuad {
4693 border_widths: border_widths.into(),
4694 ..self
4695 }
4696 }
4697
4698 /// Sets the border color of the quad.
4699 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
4700 PaintQuad {
4701 border_color: border_color.into(),
4702 ..self
4703 }
4704 }
4705
4706 /// Sets the background color of the quad.
4707 pub fn background(self, background: impl Into<Background>) -> Self {
4708 PaintQuad {
4709 background: background.into(),
4710 ..self
4711 }
4712 }
4713}
4714
4715/// Creates a quad with the given parameters.
4716pub fn quad(
4717 bounds: Bounds<Pixels>,
4718 corner_radii: impl Into<Corners<Pixels>>,
4719 background: impl Into<Background>,
4720 border_widths: impl Into<Edges<Pixels>>,
4721 border_color: impl Into<Hsla>,
4722 border_style: BorderStyle,
4723) -> PaintQuad {
4724 PaintQuad {
4725 bounds,
4726 corner_radii: corner_radii.into(),
4727 background: background.into(),
4728 border_widths: border_widths.into(),
4729 border_color: border_color.into(),
4730 border_style,
4731 }
4732}
4733
4734/// Creates a filled quad with the given bounds and background color.
4735pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
4736 PaintQuad {
4737 bounds: bounds.into(),
4738 corner_radii: (0.).into(),
4739 background: background.into(),
4740 border_widths: (0.).into(),
4741 border_color: transparent_black(),
4742 border_style: BorderStyle::default(),
4743 }
4744}
4745
4746/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
4747pub fn outline(
4748 bounds: impl Into<Bounds<Pixels>>,
4749 border_color: impl Into<Hsla>,
4750 border_style: BorderStyle,
4751) -> PaintQuad {
4752 PaintQuad {
4753 bounds: bounds.into(),
4754 corner_radii: (0.).into(),
4755 background: transparent_black().into(),
4756 border_widths: (1.).into(),
4757 border_color: border_color.into(),
4758 border_style,
4759 }
4760}