window.rs

   1use crate::{
   2    arena::{Arena, ArenaRef},
   3    key_dispatch::DispatchActionListener,
   4    px, size, transparent_black, Action, AnyDrag, AnyView, AppContext, AsyncWindowContext,
   5    AvailableSpace, Bounds, BoxShadow, Context, Corners, CursorStyle, DevicePixels, DispatchNodeId,
   6    DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter, FileDropEvent, Flatten,
   7    FontId, GlobalElementId, GlyphId, Hsla, ImageData, InputEvent, IsZero, KeyBinding, KeyContext,
   8    KeyDownEvent, KeystrokeEvent, LayoutId, Model, ModelContext, Modifiers, MonochromeSprite,
   9    MouseButton, MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay,
  10    PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptLevel, Quad, Render,
  11    RenderGlyphParams, RenderImageParams, RenderSvgParams, ScaledPixels, Scene, SceneBuilder,
  12    Shadow, SharedString, Size, Style, SubscriberSet, Subscription, Surface, TaffyLayoutEngine,
  13    Task, Underline, UnderlineStyle, View, VisualContext, WeakView, WindowBounds, WindowOptions,
  14    SUBPIXEL_VARIANTS,
  15};
  16use anyhow::{anyhow, Context as _, Result};
  17use collections::FxHashMap;
  18use derive_more::{Deref, DerefMut};
  19use futures::{
  20    channel::{mpsc, oneshot},
  21    StreamExt,
  22};
  23use media::core_video::CVImageBuffer;
  24use parking_lot::RwLock;
  25use slotmap::SlotMap;
  26use smallvec::SmallVec;
  27use std::{
  28    any::{Any, TypeId},
  29    borrow::{Borrow, BorrowMut, Cow},
  30    cell::RefCell,
  31    fmt::Debug,
  32    future::Future,
  33    hash::{Hash, Hasher},
  34    marker::PhantomData,
  35    mem,
  36    rc::Rc,
  37    sync::{
  38        atomic::{AtomicUsize, Ordering::SeqCst},
  39        Arc,
  40    },
  41};
  42use util::ResultExt;
  43
  44const ACTIVE_DRAG_Z_INDEX: u8 = 1;
  45
  46/// A global stacking order, which is created by stacking successive z-index values.
  47/// Each z-index will always be interpreted in the context of its parent z-index.
  48#[derive(Deref, DerefMut, Clone, Debug, Ord, PartialOrd, PartialEq, Eq)]
  49pub struct StackingOrder {
  50    #[deref]
  51    #[deref_mut]
  52    z_indices: SmallVec<[u8; 64]>,
  53}
  54
  55impl Default for StackingOrder {
  56    fn default() -> Self {
  57        StackingOrder {
  58            z_indices: SmallVec::new(),
  59        }
  60    }
  61}
  62
  63/// Represents the two different phases when dispatching events.
  64#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
  65pub enum DispatchPhase {
  66    /// After the capture phase comes the bubble phase, in which mouse event listeners are
  67    /// invoked front to back and keyboard event listeners are invoked from the focused element
  68    /// to the root of the element tree. This is the phase you'll most commonly want to use when
  69    /// registering event listeners.
  70    #[default]
  71    Bubble,
  72    /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
  73    /// listeners are invoked from the root of the tree downward toward the focused element. This phase
  74    /// is used for special purposes such as clearing the "pressed" state for click events. If
  75    /// you stop event propagation during this phase, you need to know what you're doing. Handlers
  76    /// outside of the immediate region may rely on detecting non-local events during this phase.
  77    Capture,
  78}
  79
  80impl DispatchPhase {
  81    pub fn bubble(self) -> bool {
  82        self == DispatchPhase::Bubble
  83    }
  84
  85    pub fn capture(self) -> bool {
  86        self == DispatchPhase::Capture
  87    }
  88}
  89
  90type AnyObserver = Box<dyn FnMut(&mut WindowContext) -> bool + 'static>;
  91type AnyMouseListener = ArenaRef<dyn FnMut(&dyn Any, DispatchPhase, &mut WindowContext) + 'static>;
  92type AnyWindowFocusListener = Box<dyn FnMut(&FocusEvent, &mut WindowContext) -> bool + 'static>;
  93
  94struct FocusEvent {
  95    previous_focus_path: SmallVec<[FocusId; 8]>,
  96    current_focus_path: SmallVec<[FocusId; 8]>,
  97}
  98
  99slotmap::new_key_type! { pub struct FocusId; }
 100
 101thread_local! {
 102    pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(4 * 1024 * 1024));
 103}
 104
 105impl FocusId {
 106    /// Obtains whether the element associated with this handle is currently focused.
 107    pub fn is_focused(&self, cx: &WindowContext) -> bool {
 108        cx.window.focus == Some(*self)
 109    }
 110
 111    /// Obtains whether the element associated with this handle contains the focused
 112    /// element or is itself focused.
 113    pub fn contains_focused(&self, cx: &WindowContext) -> bool {
 114        cx.focused()
 115            .map_or(false, |focused| self.contains(focused.id, cx))
 116    }
 117
 118    /// Obtains whether the element associated with this handle is contained within the
 119    /// focused element or is itself focused.
 120    pub fn within_focused(&self, cx: &WindowContext) -> bool {
 121        let focused = cx.focused();
 122        focused.map_or(false, |focused| focused.id.contains(*self, cx))
 123    }
 124
 125    /// Obtains whether this handle contains the given handle in the most recently rendered frame.
 126    pub(crate) fn contains(&self, other: Self, cx: &WindowContext) -> bool {
 127        cx.window
 128            .rendered_frame
 129            .dispatch_tree
 130            .focus_contains(*self, other)
 131    }
 132}
 133
 134/// A handle which can be used to track and manipulate the focused element in a window.
 135pub struct FocusHandle {
 136    pub(crate) id: FocusId,
 137    handles: Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
 138}
 139
 140impl std::fmt::Debug for FocusHandle {
 141    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 142        f.write_fmt(format_args!("FocusHandle({:?})", self.id))
 143    }
 144}
 145
 146impl FocusHandle {
 147    pub(crate) fn new(handles: &Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>) -> Self {
 148        let id = handles.write().insert(AtomicUsize::new(1));
 149        Self {
 150            id,
 151            handles: handles.clone(),
 152        }
 153    }
 154
 155    pub(crate) fn for_id(
 156        id: FocusId,
 157        handles: &Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
 158    ) -> Option<Self> {
 159        let lock = handles.read();
 160        let ref_count = lock.get(id)?;
 161        if ref_count.load(SeqCst) == 0 {
 162            None
 163        } else {
 164            ref_count.fetch_add(1, SeqCst);
 165            Some(Self {
 166                id,
 167                handles: handles.clone(),
 168            })
 169        }
 170    }
 171
 172    /// Moves the focus to the element associated with this handle.
 173    pub fn focus(&self, cx: &mut WindowContext) {
 174        cx.focus(self)
 175    }
 176
 177    /// Obtains whether the element associated with this handle is currently focused.
 178    pub fn is_focused(&self, cx: &WindowContext) -> bool {
 179        self.id.is_focused(cx)
 180    }
 181
 182    /// Obtains whether the element associated with this handle contains the focused
 183    /// element or is itself focused.
 184    pub fn contains_focused(&self, cx: &WindowContext) -> bool {
 185        self.id.contains_focused(cx)
 186    }
 187
 188    /// Obtains whether the element associated with this handle is contained within the
 189    /// focused element or is itself focused.
 190    pub fn within_focused(&self, cx: &WindowContext) -> bool {
 191        self.id.within_focused(cx)
 192    }
 193
 194    /// Obtains whether this handle contains the given handle in the most recently rendered frame.
 195    pub fn contains(&self, other: &Self, cx: &WindowContext) -> bool {
 196        self.id.contains(other.id, cx)
 197    }
 198}
 199
 200impl Clone for FocusHandle {
 201    fn clone(&self) -> Self {
 202        Self::for_id(self.id, &self.handles).unwrap()
 203    }
 204}
 205
 206impl PartialEq for FocusHandle {
 207    fn eq(&self, other: &Self) -> bool {
 208        self.id == other.id
 209    }
 210}
 211
 212impl Eq for FocusHandle {}
 213
 214impl Drop for FocusHandle {
 215    fn drop(&mut self) {
 216        self.handles
 217            .read()
 218            .get(self.id)
 219            .unwrap()
 220            .fetch_sub(1, SeqCst);
 221    }
 222}
 223
 224/// FocusableView allows users of your view to easily
 225/// focus it (using cx.focus_view(view))
 226pub trait FocusableView: 'static + Render {
 227    fn focus_handle(&self, cx: &AppContext) -> FocusHandle;
 228}
 229
 230/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
 231/// where the lifecycle of the view is handled by another view.
 232pub trait ManagedView: FocusableView + EventEmitter<DismissEvent> {}
 233
 234impl<M: FocusableView + EventEmitter<DismissEvent>> ManagedView for M {}
 235
 236pub struct DismissEvent;
 237
 238// Holds the state for a specific window.
 239pub struct Window {
 240    pub(crate) handle: AnyWindowHandle,
 241    pub(crate) removed: bool,
 242    pub(crate) platform_window: Box<dyn PlatformWindow>,
 243    display_id: DisplayId,
 244    sprite_atlas: Arc<dyn PlatformAtlas>,
 245    rem_size: Pixels,
 246    viewport_size: Size<Pixels>,
 247    layout_engine: Option<TaffyLayoutEngine>,
 248    pub(crate) root_view: Option<AnyView>,
 249    pub(crate) element_id_stack: GlobalElementId,
 250    pub(crate) rendered_frame: Frame,
 251    pub(crate) next_frame: Frame,
 252    frame_arena: Arena,
 253    pub(crate) focus_handles: Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
 254    focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
 255    blur_listeners: SubscriberSet<(), AnyObserver>,
 256    default_prevented: bool,
 257    mouse_position: Point<Pixels>,
 258    modifiers: Modifiers,
 259    requested_cursor_style: Option<CursorStyle>,
 260    scale_factor: f32,
 261    bounds: WindowBounds,
 262    bounds_observers: SubscriberSet<(), AnyObserver>,
 263    active: bool,
 264    pub(crate) dirty: bool,
 265    pub(crate) drawing: bool,
 266    activation_observers: SubscriberSet<(), AnyObserver>,
 267    pub(crate) focus: Option<FocusId>,
 268
 269    #[cfg(any(test, feature = "test-support"))]
 270    pub(crate) focus_invalidated: bool,
 271}
 272
 273pub(crate) struct ElementStateBox {
 274    inner: Box<dyn Any>,
 275    #[cfg(debug_assertions)]
 276    type_name: &'static str,
 277}
 278
 279pub(crate) struct Frame {
 280    focus: Option<FocusId>,
 281    pub(crate) element_states: FxHashMap<GlobalElementId, ElementStateBox>,
 282    mouse_listeners: FxHashMap<TypeId, Vec<(StackingOrder, AnyMouseListener)>>,
 283    pub(crate) dispatch_tree: DispatchTree,
 284    pub(crate) scene_builder: SceneBuilder,
 285    pub(crate) depth_map: Vec<(StackingOrder, Bounds<Pixels>)>,
 286    pub(crate) z_index_stack: StackingOrder,
 287    content_mask_stack: Vec<ContentMask<Pixels>>,
 288    element_offset_stack: Vec<Point<Pixels>>,
 289}
 290
 291impl Frame {
 292    fn new(dispatch_tree: DispatchTree) -> Self {
 293        Frame {
 294            focus: None,
 295            element_states: FxHashMap::default(),
 296            mouse_listeners: FxHashMap::default(),
 297            dispatch_tree,
 298            scene_builder: SceneBuilder::default(),
 299            z_index_stack: StackingOrder::default(),
 300            depth_map: Default::default(),
 301            content_mask_stack: Vec::new(),
 302            element_offset_stack: Vec::new(),
 303        }
 304    }
 305
 306    fn clear(&mut self) {
 307        self.element_states.clear();
 308        self.mouse_listeners.values_mut().for_each(Vec::clear);
 309        self.dispatch_tree.clear();
 310        self.depth_map.clear();
 311    }
 312
 313    fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
 314        self.focus
 315            .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
 316            .unwrap_or_default()
 317    }
 318}
 319
 320impl Window {
 321    pub(crate) fn new(
 322        handle: AnyWindowHandle,
 323        options: WindowOptions,
 324        cx: &mut AppContext,
 325    ) -> Self {
 326        let platform_window = cx.platform.open_window(
 327            handle,
 328            options,
 329            Box::new({
 330                let mut cx = cx.to_async();
 331                move || handle.update(&mut cx, |_, cx| cx.draw())
 332            }),
 333        );
 334        let display_id = platform_window.display().id();
 335        let sprite_atlas = platform_window.sprite_atlas();
 336        let mouse_position = platform_window.mouse_position();
 337        let modifiers = platform_window.modifiers();
 338        let content_size = platform_window.content_size();
 339        let scale_factor = platform_window.scale_factor();
 340        let bounds = platform_window.bounds();
 341
 342        platform_window.on_resize(Box::new({
 343            let mut cx = cx.to_async();
 344            move |_, _| {
 345                handle
 346                    .update(&mut cx, |_, cx| cx.window_bounds_changed())
 347                    .log_err();
 348            }
 349        }));
 350        platform_window.on_moved(Box::new({
 351            let mut cx = cx.to_async();
 352            move || {
 353                handle
 354                    .update(&mut cx, |_, cx| cx.window_bounds_changed())
 355                    .log_err();
 356            }
 357        }));
 358        platform_window.on_active_status_change(Box::new({
 359            let mut cx = cx.to_async();
 360            move |active| {
 361                handle
 362                    .update(&mut cx, |_, cx| {
 363                        cx.window.active = active;
 364                        cx.window
 365                            .activation_observers
 366                            .clone()
 367                            .retain(&(), |callback| callback(cx));
 368                    })
 369                    .log_err();
 370            }
 371        }));
 372
 373        platform_window.on_input({
 374            let mut cx = cx.to_async();
 375            Box::new(move |event| {
 376                handle
 377                    .update(&mut cx, |_, cx| cx.dispatch_event(event))
 378                    .log_err()
 379                    .unwrap_or(false)
 380            })
 381        });
 382
 383        Window {
 384            handle,
 385            removed: false,
 386            platform_window,
 387            display_id,
 388            sprite_atlas,
 389            rem_size: px(16.),
 390            viewport_size: content_size,
 391            layout_engine: Some(TaffyLayoutEngine::new()),
 392            root_view: None,
 393            element_id_stack: GlobalElementId::default(),
 394            rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
 395            next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
 396            frame_arena: Arena::new(1 * 1024 * 1024),
 397            focus_handles: Arc::new(RwLock::new(SlotMap::with_key())),
 398            focus_listeners: SubscriberSet::new(),
 399            blur_listeners: SubscriberSet::new(),
 400            default_prevented: true,
 401            mouse_position,
 402            modifiers,
 403            requested_cursor_style: None,
 404            scale_factor,
 405            bounds,
 406            bounds_observers: SubscriberSet::new(),
 407            active: false,
 408            dirty: false,
 409            drawing: false,
 410            activation_observers: SubscriberSet::new(),
 411            focus: None,
 412
 413            #[cfg(any(test, feature = "test-support"))]
 414            focus_invalidated: false,
 415        }
 416    }
 417}
 418
 419/// Indicates which region of the window is visible. Content falling outside of this mask will not be
 420/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
 421/// to leave room to support more complex shapes in the future.
 422#[derive(Clone, Debug, Default, PartialEq, Eq)]
 423#[repr(C)]
 424pub struct ContentMask<P: Clone + Default + Debug> {
 425    pub bounds: Bounds<P>,
 426}
 427
 428impl ContentMask<Pixels> {
 429    /// Scale the content mask's pixel units by the given scaling factor.
 430    pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
 431        ContentMask {
 432            bounds: self.bounds.scale(factor),
 433        }
 434    }
 435
 436    /// Intersect the content mask with the given content mask.
 437    pub fn intersect(&self, other: &Self) -> Self {
 438        let bounds = self.bounds.intersect(&other.bounds);
 439        ContentMask { bounds }
 440    }
 441}
 442
 443/// Provides access to application state in the context of a single window. Derefs
 444/// to an `AppContext`, so you can also pass a `WindowContext` to any method that takes
 445/// an `AppContext` and call any `AppContext` methods.
 446pub struct WindowContext<'a> {
 447    pub(crate) app: &'a mut AppContext,
 448    pub(crate) window: &'a mut Window,
 449}
 450
 451impl<'a> WindowContext<'a> {
 452    pub(crate) fn new(app: &'a mut AppContext, window: &'a mut Window) -> Self {
 453        Self { app, window }
 454    }
 455
 456    /// Obtain a handle to the window that belongs to this context.
 457    pub fn window_handle(&self) -> AnyWindowHandle {
 458        self.window.handle
 459    }
 460
 461    /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
 462    pub fn notify(&mut self) {
 463        if !self.window.drawing {
 464            self.window.dirty = true;
 465        }
 466    }
 467
 468    /// Close this window.
 469    pub fn remove_window(&mut self) {
 470        self.window.removed = true;
 471    }
 472
 473    /// Obtain a new `FocusHandle`, which allows you to track and manipulate the keyboard focus
 474    /// for elements rendered within this window.
 475    pub fn focus_handle(&mut self) -> FocusHandle {
 476        FocusHandle::new(&self.window.focus_handles)
 477    }
 478
 479    /// Obtain the currently focused `FocusHandle`. If no elements are focused, returns `None`.
 480    pub fn focused(&self) -> Option<FocusHandle> {
 481        self.window
 482            .focus
 483            .and_then(|id| FocusHandle::for_id(id, &self.window.focus_handles))
 484    }
 485
 486    /// Move focus to the element associated with the given `FocusHandle`.
 487    pub fn focus(&mut self, handle: &FocusHandle) {
 488        if self.window.focus == Some(handle.id) {
 489            return;
 490        }
 491
 492        self.window.focus = Some(handle.id);
 493        self.window
 494            .rendered_frame
 495            .dispatch_tree
 496            .clear_pending_keystrokes();
 497
 498        #[cfg(any(test, feature = "test-support"))]
 499        {
 500            self.window.focus_invalidated = true;
 501        }
 502
 503        self.notify();
 504    }
 505
 506    /// Remove focus from all elements within this context's window.
 507    pub fn blur(&mut self) {
 508        self.window.focus = None;
 509        self.notify();
 510    }
 511
 512    pub fn dispatch_action(&mut self, action: Box<dyn Action>) {
 513        let focus_handle = self.focused();
 514
 515        self.defer(move |cx| {
 516            let node_id = focus_handle
 517                .and_then(|handle| {
 518                    cx.window
 519                        .rendered_frame
 520                        .dispatch_tree
 521                        .focusable_node_id(handle.id)
 522                })
 523                .unwrap_or_else(|| cx.window.rendered_frame.dispatch_tree.root_node_id());
 524
 525            cx.propagate_event = true;
 526            cx.dispatch_action_on_node(node_id, action);
 527        })
 528    }
 529
 530    pub(crate) fn dispatch_keystroke_observers(
 531        &mut self,
 532        event: &dyn Any,
 533        action: Option<Box<dyn Action>>,
 534    ) {
 535        let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
 536            return;
 537        };
 538
 539        self.keystroke_observers
 540            .clone()
 541            .retain(&(), move |callback| {
 542                (callback)(
 543                    &KeystrokeEvent {
 544                        keystroke: key_down_event.keystroke.clone(),
 545                        action: action.as_ref().map(|action| action.boxed_clone()),
 546                    },
 547                    self,
 548                );
 549                true
 550            });
 551    }
 552
 553    /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
 554    /// that are currently on the stack to be returned to the app.
 555    pub fn defer(&mut self, f: impl FnOnce(&mut WindowContext) + 'static) {
 556        let handle = self.window.handle;
 557        self.app.defer(move |cx| {
 558            handle.update(cx, |_, cx| f(cx)).ok();
 559        });
 560    }
 561
 562    pub fn subscribe<Emitter, E, Evt>(
 563        &mut self,
 564        entity: &E,
 565        mut on_event: impl FnMut(E, &Evt, &mut WindowContext<'_>) + 'static,
 566    ) -> Subscription
 567    where
 568        Emitter: EventEmitter<Evt>,
 569        E: Entity<Emitter>,
 570        Evt: 'static,
 571    {
 572        let entity_id = entity.entity_id();
 573        let entity = entity.downgrade();
 574        let window_handle = self.window.handle;
 575        let (subscription, activate) = self.app.event_listeners.insert(
 576            entity_id,
 577            (
 578                TypeId::of::<Evt>(),
 579                Box::new(move |event, cx| {
 580                    window_handle
 581                        .update(cx, |_, cx| {
 582                            if let Some(handle) = E::upgrade_from(&entity) {
 583                                let event = event.downcast_ref().expect("invalid event type");
 584                                on_event(handle, event, cx);
 585                                true
 586                            } else {
 587                                false
 588                            }
 589                        })
 590                        .unwrap_or(false)
 591                }),
 592            ),
 593        );
 594        self.app.defer(move |_| activate());
 595        subscription
 596    }
 597
 598    /// Create an `AsyncWindowContext`, which has a static lifetime and can be held across
 599    /// await points in async code.
 600    pub fn to_async(&self) -> AsyncWindowContext {
 601        AsyncWindowContext::new(self.app.to_async(), self.window.handle)
 602    }
 603
 604    /// Schedule the given closure to be run directly after the current frame is rendered.
 605    pub fn on_next_frame(&mut self, callback: impl FnOnce(&mut WindowContext) + 'static) {
 606        let handle = self.window.handle;
 607        let display_id = self.window.display_id;
 608
 609        if !self.frame_consumers.contains_key(&display_id) {
 610            let (tx, mut rx) = mpsc::unbounded::<()>();
 611            self.platform.set_display_link_output_callback(
 612                display_id,
 613                Box::new(move |_current_time, _output_time| _ = tx.unbounded_send(())),
 614            );
 615
 616            let consumer_task = self.app.spawn(|cx| async move {
 617                while rx.next().await.is_some() {
 618                    cx.update(|cx| {
 619                        for callback in cx
 620                            .next_frame_callbacks
 621                            .get_mut(&display_id)
 622                            .unwrap()
 623                            .drain(..)
 624                            .collect::<SmallVec<[_; 32]>>()
 625                        {
 626                            callback(cx);
 627                        }
 628                    })
 629                    .ok();
 630
 631                    // Flush effects, then stop the display link if no new next_frame_callbacks have been added.
 632
 633                    cx.update(|cx| {
 634                        if cx.next_frame_callbacks.is_empty() {
 635                            cx.platform.stop_display_link(display_id);
 636                        }
 637                    })
 638                    .ok();
 639                }
 640            });
 641            self.frame_consumers.insert(display_id, consumer_task);
 642        }
 643
 644        if self.next_frame_callbacks.is_empty() {
 645            self.platform.start_display_link(display_id);
 646        }
 647
 648        self.next_frame_callbacks
 649            .entry(display_id)
 650            .or_default()
 651            .push(Box::new(move |cx: &mut AppContext| {
 652                cx.update_window(handle, |_root_view, cx| callback(cx)).ok();
 653            }));
 654    }
 655
 656    /// Spawn the future returned by the given closure on the application thread pool.
 657    /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
 658    /// use within your future.
 659    pub fn spawn<Fut, R>(&mut self, f: impl FnOnce(AsyncWindowContext) -> Fut) -> Task<R>
 660    where
 661        R: 'static,
 662        Fut: Future<Output = R> + 'static,
 663    {
 664        self.app
 665            .spawn(|app| f(AsyncWindowContext::new(app, self.window.handle)))
 666    }
 667
 668    /// Update the global of the given type. The given closure is given simultaneous mutable
 669    /// access both to the global and the context.
 670    pub fn update_global<G, R>(&mut self, f: impl FnOnce(&mut G, &mut Self) -> R) -> R
 671    where
 672        G: 'static,
 673    {
 674        let mut global = self.app.lease_global::<G>();
 675        let result = f(&mut global, self);
 676        self.app.end_global_lease(global);
 677        result
 678    }
 679
 680    #[must_use]
 681    /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
 682    /// layout is being requested, along with the layout ids of any children. This method is called during
 683    /// calls to the `Element::layout` trait method and enables any element to participate in layout.
 684    pub fn request_layout(
 685        &mut self,
 686        style: &Style,
 687        children: impl IntoIterator<Item = LayoutId>,
 688    ) -> LayoutId {
 689        self.app.layout_id_buffer.clear();
 690        self.app.layout_id_buffer.extend(children.into_iter());
 691        let rem_size = self.rem_size();
 692
 693        self.window.layout_engine.as_mut().unwrap().request_layout(
 694            style,
 695            rem_size,
 696            &self.app.layout_id_buffer,
 697        )
 698    }
 699
 700    /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
 701    /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
 702    /// determine the element's size. One place this is used internally is when measuring text.
 703    ///
 704    /// The given closure is invoked at layout time with the known dimensions and available space and
 705    /// returns a `Size`.
 706    pub fn request_measured_layout<
 707        F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut WindowContext) -> Size<Pixels>
 708            + 'static,
 709    >(
 710        &mut self,
 711        style: Style,
 712        measure: F,
 713    ) -> LayoutId {
 714        let rem_size = self.rem_size();
 715        self.window
 716            .layout_engine
 717            .as_mut()
 718            .unwrap()
 719            .request_measured_layout(style, rem_size, measure)
 720    }
 721
 722    pub fn compute_layout(&mut self, layout_id: LayoutId, available_space: Size<AvailableSpace>) {
 723        let mut layout_engine = self.window.layout_engine.take().unwrap();
 724        layout_engine.compute_layout(layout_id, available_space, self);
 725        self.window.layout_engine = Some(layout_engine);
 726    }
 727
 728    /// Obtain the bounds computed for the given LayoutId relative to the window. This method should not
 729    /// be invoked until the paint phase begins, and will usually be invoked by GPUI itself automatically
 730    /// in order to pass your element its `Bounds` automatically.
 731    pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
 732        let mut bounds = self
 733            .window
 734            .layout_engine
 735            .as_mut()
 736            .unwrap()
 737            .layout_bounds(layout_id)
 738            .map(Into::into);
 739        bounds.origin += self.element_offset();
 740        bounds
 741    }
 742
 743    fn window_bounds_changed(&mut self) {
 744        self.window.scale_factor = self.window.platform_window.scale_factor();
 745        self.window.viewport_size = self.window.platform_window.content_size();
 746        self.window.bounds = self.window.platform_window.bounds();
 747        self.window.display_id = self.window.platform_window.display().id();
 748        self.notify();
 749
 750        self.window
 751            .bounds_observers
 752            .clone()
 753            .retain(&(), |callback| callback(self));
 754    }
 755
 756    pub fn window_bounds(&self) -> WindowBounds {
 757        self.window.bounds
 758    }
 759
 760    pub fn viewport_size(&self) -> Size<Pixels> {
 761        self.window.viewport_size
 762    }
 763
 764    pub fn is_window_active(&self) -> bool {
 765        self.window.active
 766    }
 767
 768    pub fn zoom_window(&self) {
 769        self.window.platform_window.zoom();
 770    }
 771
 772    pub fn set_window_title(&mut self, title: &str) {
 773        self.window.platform_window.set_title(title);
 774    }
 775
 776    pub fn set_window_edited(&mut self, edited: bool) {
 777        self.window.platform_window.set_edited(edited);
 778    }
 779
 780    pub fn display(&self) -> Option<Rc<dyn PlatformDisplay>> {
 781        self.platform
 782            .displays()
 783            .into_iter()
 784            .find(|display| display.id() == self.window.display_id)
 785    }
 786
 787    pub fn show_character_palette(&self) {
 788        self.window.platform_window.show_character_palette();
 789    }
 790
 791    /// The scale factor of the display associated with the window. For example, it could
 792    /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
 793    /// be rendered as two pixels on screen.
 794    pub fn scale_factor(&self) -> f32 {
 795        self.window.scale_factor
 796    }
 797
 798    /// The size of an em for the base font of the application. Adjusting this value allows the
 799    /// UI to scale, just like zooming a web page.
 800    pub fn rem_size(&self) -> Pixels {
 801        self.window.rem_size
 802    }
 803
 804    /// Sets the size of an em for the base font of the application. Adjusting this value allows the
 805    /// UI to scale, just like zooming a web page.
 806    pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
 807        self.window.rem_size = rem_size.into();
 808    }
 809
 810    /// The line height associated with the current text style.
 811    pub fn line_height(&self) -> Pixels {
 812        let rem_size = self.rem_size();
 813        let text_style = self.text_style();
 814        text_style
 815            .line_height
 816            .to_pixels(text_style.font_size.into(), rem_size)
 817    }
 818
 819    /// Call to prevent the default action of an event. Currently only used to prevent
 820    /// parent elements from becoming focused on mouse down.
 821    pub fn prevent_default(&mut self) {
 822        self.window.default_prevented = true;
 823    }
 824
 825    /// Obtain whether default has been prevented for the event currently being dispatched.
 826    pub fn default_prevented(&self) -> bool {
 827        self.window.default_prevented
 828    }
 829
 830    /// Register a mouse event listener on the window for the next frame. The type of event
 831    /// is determined by the first parameter of the given listener. When the next frame is rendered
 832    /// the listener will be cleared.
 833    pub fn on_mouse_event<Event: 'static>(
 834        &mut self,
 835        mut handler: impl FnMut(&Event, DispatchPhase, &mut WindowContext) + 'static,
 836    ) {
 837        let order = self.window.next_frame.z_index_stack.clone();
 838        let handler = self
 839            .window
 840            .frame_arena
 841            .alloc(|| {
 842                move |event: &dyn Any, phase: DispatchPhase, cx: &mut WindowContext<'_>| {
 843                    handler(event.downcast_ref().unwrap(), phase, cx)
 844                }
 845            })
 846            .map(|handler| handler as _);
 847        self.window
 848            .next_frame
 849            .mouse_listeners
 850            .entry(TypeId::of::<Event>())
 851            .or_default()
 852            .push((order, handler))
 853    }
 854
 855    /// Register a key event listener on the window for the next frame. The type of event
 856    /// is determined by the first parameter of the given listener. When the next frame is rendered
 857    /// the listener will be cleared.
 858    ///
 859    /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
 860    /// a specific need to register a global listener.
 861    pub fn on_key_event<Event: 'static>(
 862        &mut self,
 863        listener: impl Fn(&Event, DispatchPhase, &mut WindowContext) + 'static,
 864    ) {
 865        let listener = self
 866            .window
 867            .frame_arena
 868            .alloc(|| {
 869                move |event: &dyn Any, phase, cx: &mut WindowContext<'_>| {
 870                    if let Some(event) = event.downcast_ref::<Event>() {
 871                        listener(event, phase, cx)
 872                    }
 873                }
 874            })
 875            .map(|handler| handler as _);
 876        self.window.next_frame.dispatch_tree.on_key_event(listener);
 877    }
 878
 879    /// Register an action listener on the window for the next frame. The type of action
 880    /// is determined by the first parameter of the given listener. When the next frame is rendered
 881    /// the listener will be cleared.
 882    ///
 883    /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
 884    /// a specific need to register a global listener.
 885    pub fn on_action(
 886        &mut self,
 887        action_type: TypeId,
 888        listener: impl Fn(&dyn Any, DispatchPhase, &mut WindowContext) + 'static,
 889    ) {
 890        let listener = self
 891            .window
 892            .frame_arena
 893            .alloc(|| listener)
 894            .map(|handler| handler as _);
 895        self.window
 896            .next_frame
 897            .dispatch_tree
 898            .on_action(action_type, listener);
 899    }
 900
 901    pub fn is_action_available(&self, action: &dyn Action) -> bool {
 902        let target = self
 903            .focused()
 904            .and_then(|focused_handle| {
 905                self.window
 906                    .rendered_frame
 907                    .dispatch_tree
 908                    .focusable_node_id(focused_handle.id)
 909            })
 910            .unwrap_or_else(|| self.window.rendered_frame.dispatch_tree.root_node_id());
 911        self.window
 912            .rendered_frame
 913            .dispatch_tree
 914            .is_action_available(action, target)
 915    }
 916
 917    /// The position of the mouse relative to the window.
 918    pub fn mouse_position(&self) -> Point<Pixels> {
 919        self.window.mouse_position
 920    }
 921
 922    /// The current state of the keyboard's modifiers
 923    pub fn modifiers(&self) -> Modifiers {
 924        self.window.modifiers
 925    }
 926
 927    pub fn set_cursor_style(&mut self, style: CursorStyle) {
 928        self.window.requested_cursor_style = Some(style)
 929    }
 930
 931    /// Called during painting to invoke the given closure in a new stacking context. The given
 932    /// z-index is interpreted relative to the previous call to `stack`.
 933    pub fn with_z_index<R>(&mut self, z_index: u8, f: impl FnOnce(&mut Self) -> R) -> R {
 934        self.window.next_frame.z_index_stack.push(z_index);
 935        let result = f(self);
 936        self.window.next_frame.z_index_stack.pop();
 937        result
 938    }
 939
 940    /// Called during painting to track which z-index is on top at each pixel position
 941    pub fn add_opaque_layer(&mut self, bounds: Bounds<Pixels>) {
 942        let stacking_order = self.window.next_frame.z_index_stack.clone();
 943        let depth_map = &mut self.window.next_frame.depth_map;
 944        match depth_map.binary_search_by(|(level, _)| stacking_order.cmp(&level)) {
 945            Ok(i) | Err(i) => depth_map.insert(i, (stacking_order, bounds)),
 946        }
 947    }
 948
 949    /// Returns true if the top-most opaque layer painted over this point was part of the
 950    /// same layer as the given stacking order.
 951    pub fn was_top_layer(&self, point: &Point<Pixels>, level: &StackingOrder) -> bool {
 952        for (stack, bounds) in self.window.rendered_frame.depth_map.iter() {
 953            if bounds.contains(point) {
 954                return level.starts_with(stack) || stack.starts_with(level);
 955            }
 956        }
 957
 958        false
 959    }
 960
 961    pub fn was_top_layer_under_active_drag(
 962        &self,
 963        point: &Point<Pixels>,
 964        level: &StackingOrder,
 965    ) -> bool {
 966        for (stack, bounds) in self.window.rendered_frame.depth_map.iter() {
 967            if stack.starts_with(&[ACTIVE_DRAG_Z_INDEX]) {
 968                continue;
 969            }
 970            if bounds.contains(point) {
 971                return level.starts_with(stack) || stack.starts_with(level);
 972            }
 973        }
 974
 975        false
 976    }
 977
 978    /// Called during painting to get the current stacking order.
 979    pub fn stacking_order(&self) -> &StackingOrder {
 980        &self.window.next_frame.z_index_stack
 981    }
 982
 983    /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
 984    pub fn paint_shadows(
 985        &mut self,
 986        bounds: Bounds<Pixels>,
 987        corner_radii: Corners<Pixels>,
 988        shadows: &[BoxShadow],
 989    ) {
 990        let scale_factor = self.scale_factor();
 991        let content_mask = self.content_mask();
 992        let window = &mut *self.window;
 993        for shadow in shadows {
 994            let mut shadow_bounds = bounds;
 995            shadow_bounds.origin += shadow.offset;
 996            shadow_bounds.dilate(shadow.spread_radius);
 997            window.next_frame.scene_builder.insert(
 998                &window.next_frame.z_index_stack,
 999                Shadow {
1000                    order: 0,
1001                    bounds: shadow_bounds.scale(scale_factor),
1002                    content_mask: content_mask.scale(scale_factor),
1003                    corner_radii: corner_radii.scale(scale_factor),
1004                    color: shadow.color,
1005                    blur_radius: shadow.blur_radius.scale(scale_factor),
1006                },
1007            );
1008        }
1009    }
1010
1011    /// Paint one or more quads into the scene for the next frame at the current stacking context.
1012    /// Quads are colored rectangular regions with an optional background, border, and corner radius.
1013    /// see [`fill`], [`outline`], and [`quad`] to construct this type.
1014    pub fn paint_quad(&mut self, quad: PaintQuad) {
1015        let scale_factor = self.scale_factor();
1016        let content_mask = self.content_mask();
1017
1018        let window = &mut *self.window;
1019        window.next_frame.scene_builder.insert(
1020            &window.next_frame.z_index_stack,
1021            Quad {
1022                order: 0,
1023                bounds: quad.bounds.scale(scale_factor),
1024                content_mask: content_mask.scale(scale_factor),
1025                background: quad.background,
1026                border_color: quad.border_color,
1027                corner_radii: quad.corner_radii.scale(scale_factor),
1028                border_widths: quad.border_widths.scale(scale_factor),
1029            },
1030        );
1031    }
1032
1033    /// Paint the given `Path` into the scene for the next frame at the current z-index.
1034    pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Hsla>) {
1035        let scale_factor = self.scale_factor();
1036        let content_mask = self.content_mask();
1037        path.content_mask = content_mask;
1038        path.color = color.into();
1039        let window = &mut *self.window;
1040        window
1041            .next_frame
1042            .scene_builder
1043            .insert(&window.next_frame.z_index_stack, path.scale(scale_factor));
1044    }
1045
1046    /// Paint an underline into the scene for the next frame at the current z-index.
1047    pub fn paint_underline(
1048        &mut self,
1049        origin: Point<Pixels>,
1050        width: Pixels,
1051        style: &UnderlineStyle,
1052    ) {
1053        let scale_factor = self.scale_factor();
1054        let height = if style.wavy {
1055            style.thickness * 3.
1056        } else {
1057            style.thickness
1058        };
1059        let bounds = Bounds {
1060            origin,
1061            size: size(width, height),
1062        };
1063        let content_mask = self.content_mask();
1064        let window = &mut *self.window;
1065        window.next_frame.scene_builder.insert(
1066            &window.next_frame.z_index_stack,
1067            Underline {
1068                order: 0,
1069                bounds: bounds.scale(scale_factor),
1070                content_mask: content_mask.scale(scale_factor),
1071                thickness: style.thickness.scale(scale_factor),
1072                color: style.color.unwrap_or_default(),
1073                wavy: style.wavy,
1074            },
1075        );
1076    }
1077
1078    /// Paint a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
1079    /// The y component of the origin is the baseline of the glyph.
1080    pub fn paint_glyph(
1081        &mut self,
1082        origin: Point<Pixels>,
1083        font_id: FontId,
1084        glyph_id: GlyphId,
1085        font_size: Pixels,
1086        color: Hsla,
1087    ) -> Result<()> {
1088        let scale_factor = self.scale_factor();
1089        let glyph_origin = origin.scale(scale_factor);
1090        let subpixel_variant = Point {
1091            x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
1092            y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
1093        };
1094        let params = RenderGlyphParams {
1095            font_id,
1096            glyph_id,
1097            font_size,
1098            subpixel_variant,
1099            scale_factor,
1100            is_emoji: false,
1101        };
1102
1103        let raster_bounds = self.text_system().raster_bounds(&params)?;
1104        if !raster_bounds.is_zero() {
1105            let tile =
1106                self.window
1107                    .sprite_atlas
1108                    .get_or_insert_with(&params.clone().into(), &mut || {
1109                        let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
1110                        Ok((size, Cow::Owned(bytes)))
1111                    })?;
1112            let bounds = Bounds {
1113                origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
1114                size: tile.bounds.size.map(Into::into),
1115            };
1116            let content_mask = self.content_mask().scale(scale_factor);
1117            let window = &mut *self.window;
1118            window.next_frame.scene_builder.insert(
1119                &window.next_frame.z_index_stack,
1120                MonochromeSprite {
1121                    order: 0,
1122                    bounds,
1123                    content_mask,
1124                    color,
1125                    tile,
1126                },
1127            );
1128        }
1129        Ok(())
1130    }
1131
1132    /// Paint an emoji glyph into the scene for the next frame at the current z-index.
1133    /// The y component of the origin is the baseline of the glyph.
1134    pub fn paint_emoji(
1135        &mut self,
1136        origin: Point<Pixels>,
1137        font_id: FontId,
1138        glyph_id: GlyphId,
1139        font_size: Pixels,
1140    ) -> Result<()> {
1141        let scale_factor = self.scale_factor();
1142        let glyph_origin = origin.scale(scale_factor);
1143        let params = RenderGlyphParams {
1144            font_id,
1145            glyph_id,
1146            font_size,
1147            // We don't render emojis with subpixel variants.
1148            subpixel_variant: Default::default(),
1149            scale_factor,
1150            is_emoji: true,
1151        };
1152
1153        let raster_bounds = self.text_system().raster_bounds(&params)?;
1154        if !raster_bounds.is_zero() {
1155            let tile =
1156                self.window
1157                    .sprite_atlas
1158                    .get_or_insert_with(&params.clone().into(), &mut || {
1159                        let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
1160                        Ok((size, Cow::Owned(bytes)))
1161                    })?;
1162            let bounds = Bounds {
1163                origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
1164                size: tile.bounds.size.map(Into::into),
1165            };
1166            let content_mask = self.content_mask().scale(scale_factor);
1167            let window = &mut *self.window;
1168
1169            window.next_frame.scene_builder.insert(
1170                &window.next_frame.z_index_stack,
1171                PolychromeSprite {
1172                    order: 0,
1173                    bounds,
1174                    corner_radii: Default::default(),
1175                    content_mask,
1176                    tile,
1177                    grayscale: false,
1178                },
1179            );
1180        }
1181        Ok(())
1182    }
1183
1184    /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
1185    pub fn paint_svg(
1186        &mut self,
1187        bounds: Bounds<Pixels>,
1188        path: SharedString,
1189        color: Hsla,
1190    ) -> Result<()> {
1191        let scale_factor = self.scale_factor();
1192        let bounds = bounds.scale(scale_factor);
1193        // Render the SVG at twice the size to get a higher quality result.
1194        let params = RenderSvgParams {
1195            path,
1196            size: bounds
1197                .size
1198                .map(|pixels| DevicePixels::from((pixels.0 * 2.).ceil() as i32)),
1199        };
1200
1201        let tile =
1202            self.window
1203                .sprite_atlas
1204                .get_or_insert_with(&params.clone().into(), &mut || {
1205                    let bytes = self.svg_renderer.render(&params)?;
1206                    Ok((params.size, Cow::Owned(bytes)))
1207                })?;
1208        let content_mask = self.content_mask().scale(scale_factor);
1209
1210        let window = &mut *self.window;
1211        window.next_frame.scene_builder.insert(
1212            &window.next_frame.z_index_stack,
1213            MonochromeSprite {
1214                order: 0,
1215                bounds,
1216                content_mask,
1217                color,
1218                tile,
1219            },
1220        );
1221
1222        Ok(())
1223    }
1224
1225    /// Paint an image into the scene for the next frame at the current z-index.
1226    pub fn paint_image(
1227        &mut self,
1228        bounds: Bounds<Pixels>,
1229        corner_radii: Corners<Pixels>,
1230        data: Arc<ImageData>,
1231        grayscale: bool,
1232    ) -> Result<()> {
1233        let scale_factor = self.scale_factor();
1234        let bounds = bounds.scale(scale_factor);
1235        let params = RenderImageParams { image_id: data.id };
1236
1237        let tile = self
1238            .window
1239            .sprite_atlas
1240            .get_or_insert_with(&params.clone().into(), &mut || {
1241                Ok((data.size(), Cow::Borrowed(data.as_bytes())))
1242            })?;
1243        let content_mask = self.content_mask().scale(scale_factor);
1244        let corner_radii = corner_radii.scale(scale_factor);
1245
1246        let window = &mut *self.window;
1247        window.next_frame.scene_builder.insert(
1248            &window.next_frame.z_index_stack,
1249            PolychromeSprite {
1250                order: 0,
1251                bounds,
1252                content_mask,
1253                corner_radii,
1254                tile,
1255                grayscale,
1256            },
1257        );
1258        Ok(())
1259    }
1260
1261    /// Paint a surface into the scene for the next frame at the current z-index.
1262    pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVImageBuffer) {
1263        let scale_factor = self.scale_factor();
1264        let bounds = bounds.scale(scale_factor);
1265        let content_mask = self.content_mask().scale(scale_factor);
1266        let window = &mut *self.window;
1267        window.next_frame.scene_builder.insert(
1268            &window.next_frame.z_index_stack,
1269            Surface {
1270                order: 0,
1271                bounds,
1272                content_mask,
1273                image_buffer,
1274            },
1275        );
1276    }
1277
1278    /// Draw pixels to the display for this window based on the contents of its scene.
1279    pub(crate) fn draw(&mut self) -> Scene {
1280        self.window.dirty = false;
1281        self.window.drawing = true;
1282
1283        #[cfg(any(test, feature = "test-support"))]
1284        {
1285            self.window.focus_invalidated = false;
1286        }
1287
1288        self.text_system().start_frame();
1289        self.window.platform_window.clear_input_handler();
1290        self.window.layout_engine.as_mut().unwrap().clear();
1291        self.window.next_frame.clear();
1292        self.window.frame_arena.clear();
1293        let root_view = self.window.root_view.take().unwrap();
1294
1295        self.with_z_index(0, |cx| {
1296            cx.with_key_dispatch(Some(KeyContext::default()), None, |_, cx| {
1297                for (action_type, action_listeners) in &cx.app.global_action_listeners {
1298                    for action_listener in action_listeners.iter().cloned() {
1299                        let listener = cx
1300                            .window
1301                            .frame_arena
1302                            .alloc(|| {
1303                                move |action: &dyn Any, phase, cx: &mut WindowContext<'_>| {
1304                                    action_listener(action, phase, cx)
1305                                }
1306                            })
1307                            .map(|listener| listener as _);
1308                        cx.window
1309                            .next_frame
1310                            .dispatch_tree
1311                            .on_action(*action_type, listener)
1312                    }
1313                }
1314
1315                let available_space = cx.window.viewport_size.map(Into::into);
1316                root_view.draw(Point::default(), available_space, cx);
1317            })
1318        });
1319
1320        if let Some(active_drag) = self.app.active_drag.take() {
1321            self.with_z_index(ACTIVE_DRAG_Z_INDEX, |cx| {
1322                let offset = cx.mouse_position() - active_drag.cursor_offset;
1323                let available_space = size(AvailableSpace::MinContent, AvailableSpace::MinContent);
1324                active_drag.view.draw(offset, available_space, cx);
1325            });
1326            self.active_drag = Some(active_drag);
1327        } else if let Some(active_tooltip) = self.app.active_tooltip.take() {
1328            self.with_z_index(1, |cx| {
1329                let available_space = size(AvailableSpace::MinContent, AvailableSpace::MinContent);
1330                active_tooltip
1331                    .view
1332                    .draw(active_tooltip.cursor_offset, available_space, cx);
1333            });
1334        }
1335
1336        self.window
1337            .next_frame
1338            .dispatch_tree
1339            .preserve_pending_keystrokes(
1340                &mut self.window.rendered_frame.dispatch_tree,
1341                self.window.focus,
1342            );
1343        self.window.next_frame.focus = self.window.focus;
1344        self.window.root_view = Some(root_view);
1345
1346        let previous_focus_path = self.window.rendered_frame.focus_path();
1347        mem::swap(&mut self.window.rendered_frame, &mut self.window.next_frame);
1348        let current_focus_path = self.window.rendered_frame.focus_path();
1349
1350        if previous_focus_path != current_focus_path {
1351            if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
1352                self.window
1353                    .blur_listeners
1354                    .clone()
1355                    .retain(&(), |listener| listener(self));
1356            }
1357
1358            let event = FocusEvent {
1359                previous_focus_path,
1360                current_focus_path,
1361            };
1362            self.window
1363                .focus_listeners
1364                .clone()
1365                .retain(&(), |listener| listener(&event, self));
1366        }
1367
1368        let scene = self.window.rendered_frame.scene_builder.build();
1369
1370        // Set the cursor only if we're the active window.
1371        let cursor_style = self
1372            .window
1373            .requested_cursor_style
1374            .take()
1375            .unwrap_or(CursorStyle::Arrow);
1376        if self.is_window_active() {
1377            self.platform.set_cursor_style(cursor_style);
1378        }
1379
1380        self.window.drawing = false;
1381        ELEMENT_ARENA.with_borrow_mut(|element_arena| element_arena.clear());
1382
1383        scene
1384    }
1385
1386    /// Dispatch a mouse or keyboard event on the window.
1387    pub fn dispatch_event(&mut self, event: InputEvent) -> bool {
1388        // Handlers may set this to false by calling `stop_propagation`.
1389        self.app.propagate_event = true;
1390        // Handlers may set this to true by calling `prevent_default`.
1391        self.window.default_prevented = false;
1392
1393        let event = match event {
1394            // Track the mouse position with our own state, since accessing the platform
1395            // API for the mouse position can only occur on the main thread.
1396            InputEvent::MouseMove(mouse_move) => {
1397                self.window.mouse_position = mouse_move.position;
1398                self.window.modifiers = mouse_move.modifiers;
1399                InputEvent::MouseMove(mouse_move)
1400            }
1401            InputEvent::MouseDown(mouse_down) => {
1402                self.window.mouse_position = mouse_down.position;
1403                self.window.modifiers = mouse_down.modifiers;
1404                InputEvent::MouseDown(mouse_down)
1405            }
1406            InputEvent::MouseUp(mouse_up) => {
1407                self.window.mouse_position = mouse_up.position;
1408                self.window.modifiers = mouse_up.modifiers;
1409                InputEvent::MouseUp(mouse_up)
1410            }
1411            InputEvent::MouseExited(mouse_exited) => {
1412                // todo!("Should we record that the mouse is outside of the window somehow? Or are these global pixels?")
1413                self.window.modifiers = mouse_exited.modifiers;
1414
1415                InputEvent::MouseExited(mouse_exited)
1416            }
1417            InputEvent::ModifiersChanged(modifiers_changed) => {
1418                self.window.modifiers = modifiers_changed.modifiers;
1419                InputEvent::ModifiersChanged(modifiers_changed)
1420            }
1421            InputEvent::ScrollWheel(scroll_wheel) => {
1422                self.window.mouse_position = scroll_wheel.position;
1423                self.window.modifiers = scroll_wheel.modifiers;
1424                InputEvent::ScrollWheel(scroll_wheel)
1425            }
1426            // Translate dragging and dropping of external files from the operating system
1427            // to internal drag and drop events.
1428            InputEvent::FileDrop(file_drop) => match file_drop {
1429                FileDropEvent::Entered { position, files } => {
1430                    self.window.mouse_position = position;
1431                    if self.active_drag.is_none() {
1432                        self.active_drag = Some(AnyDrag {
1433                            value: Box::new(files.clone()),
1434                            view: self.build_view(|_| files).into(),
1435                            cursor_offset: position,
1436                        });
1437                    }
1438                    InputEvent::MouseMove(MouseMoveEvent {
1439                        position,
1440                        pressed_button: Some(MouseButton::Left),
1441                        modifiers: Modifiers::default(),
1442                    })
1443                }
1444                FileDropEvent::Pending { position } => {
1445                    self.window.mouse_position = position;
1446                    InputEvent::MouseMove(MouseMoveEvent {
1447                        position,
1448                        pressed_button: Some(MouseButton::Left),
1449                        modifiers: Modifiers::default(),
1450                    })
1451                }
1452                FileDropEvent::Submit { position } => {
1453                    self.activate(true);
1454                    self.window.mouse_position = position;
1455                    InputEvent::MouseUp(MouseUpEvent {
1456                        button: MouseButton::Left,
1457                        position,
1458                        modifiers: Modifiers::default(),
1459                        click_count: 1,
1460                    })
1461                }
1462                FileDropEvent::Exited => InputEvent::MouseUp(MouseUpEvent {
1463                    button: MouseButton::Left,
1464                    position: Point::default(),
1465                    modifiers: Modifiers::default(),
1466                    click_count: 1,
1467                }),
1468            },
1469            InputEvent::KeyDown(_) | InputEvent::KeyUp(_) => event,
1470        };
1471
1472        if let Some(any_mouse_event) = event.mouse_event() {
1473            self.dispatch_mouse_event(any_mouse_event);
1474        } else if let Some(any_key_event) = event.keyboard_event() {
1475            self.dispatch_key_event(any_key_event);
1476        }
1477
1478        !self.app.propagate_event
1479    }
1480
1481    fn dispatch_mouse_event(&mut self, event: &dyn Any) {
1482        if let Some(mut handlers) = self
1483            .window
1484            .rendered_frame
1485            .mouse_listeners
1486            .remove(&event.type_id())
1487        {
1488            // Because handlers may add other handlers, we sort every time.
1489            handlers.sort_by(|(a, _), (b, _)| a.cmp(b));
1490
1491            // Capture phase, events bubble from back to front. Handlers for this phase are used for
1492            // special purposes, such as detecting events outside of a given Bounds.
1493            for (_, handler) in &mut handlers {
1494                handler(event, DispatchPhase::Capture, self);
1495                if !self.app.propagate_event {
1496                    break;
1497                }
1498            }
1499
1500            // Bubble phase, where most normal handlers do their work.
1501            if self.app.propagate_event {
1502                for (_, handler) in handlers.iter_mut().rev() {
1503                    handler(event, DispatchPhase::Bubble, self);
1504                    if !self.app.propagate_event {
1505                        break;
1506                    }
1507                }
1508            }
1509
1510            if self.app.propagate_event && event.downcast_ref::<MouseUpEvent>().is_some() {
1511                self.active_drag = None;
1512            }
1513
1514            self.window
1515                .rendered_frame
1516                .mouse_listeners
1517                .insert(event.type_id(), handlers);
1518        }
1519    }
1520
1521    fn dispatch_key_event(&mut self, event: &dyn Any) {
1522        let node_id = self
1523            .window
1524            .focus
1525            .and_then(|focus_id| {
1526                self.window
1527                    .rendered_frame
1528                    .dispatch_tree
1529                    .focusable_node_id(focus_id)
1530            })
1531            .unwrap_or_else(|| self.window.rendered_frame.dispatch_tree.root_node_id());
1532
1533        let dispatch_path = self
1534            .window
1535            .rendered_frame
1536            .dispatch_tree
1537            .dispatch_path(node_id);
1538
1539        let mut actions: Vec<Box<dyn Action>> = Vec::new();
1540
1541        // Capture phase
1542        let mut context_stack: SmallVec<[KeyContext; 16]> = SmallVec::new();
1543        self.propagate_event = true;
1544
1545        for node_id in &dispatch_path {
1546            let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
1547
1548            if let Some(context) = node.context.clone() {
1549                context_stack.push(context);
1550            }
1551
1552            for key_listener in node.key_listeners.clone() {
1553                key_listener(event, DispatchPhase::Capture, self);
1554                if !self.propagate_event {
1555                    return;
1556                }
1557            }
1558        }
1559
1560        // Bubble phase
1561        for node_id in dispatch_path.iter().rev() {
1562            // Handle low level key events
1563            let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
1564            for key_listener in node.key_listeners.clone() {
1565                key_listener(event, DispatchPhase::Bubble, self);
1566                if !self.propagate_event {
1567                    return;
1568                }
1569            }
1570
1571            // Match keystrokes
1572            let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
1573            if node.context.is_some() {
1574                if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
1575                    let mut new_actions = self
1576                        .window
1577                        .rendered_frame
1578                        .dispatch_tree
1579                        .dispatch_key(&key_down_event.keystroke, &context_stack);
1580                    actions.append(&mut new_actions);
1581                }
1582
1583                context_stack.pop();
1584            }
1585        }
1586
1587        for action in actions {
1588            self.dispatch_action_on_node(node_id, action.boxed_clone());
1589            if !self.propagate_event {
1590                self.dispatch_keystroke_observers(event, Some(action));
1591                return;
1592            }
1593        }
1594        self.dispatch_keystroke_observers(event, None);
1595    }
1596
1597    pub fn has_pending_keystrokes(&self) -> bool {
1598        self.window
1599            .rendered_frame
1600            .dispatch_tree
1601            .has_pending_keystrokes()
1602    }
1603
1604    fn dispatch_action_on_node(&mut self, node_id: DispatchNodeId, action: Box<dyn Action>) {
1605        let dispatch_path = self
1606            .window
1607            .rendered_frame
1608            .dispatch_tree
1609            .dispatch_path(node_id);
1610
1611        // Capture phase
1612        for node_id in &dispatch_path {
1613            let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
1614            for DispatchActionListener {
1615                action_type,
1616                listener,
1617            } in node.action_listeners.clone()
1618            {
1619                let any_action = action.as_any();
1620                if action_type == any_action.type_id() {
1621                    listener(any_action, DispatchPhase::Capture, self);
1622                    if !self.propagate_event {
1623                        return;
1624                    }
1625                }
1626            }
1627        }
1628        // Bubble phase
1629        for node_id in dispatch_path.iter().rev() {
1630            let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
1631            for DispatchActionListener {
1632                action_type,
1633                listener,
1634            } in node.action_listeners.clone()
1635            {
1636                let any_action = action.as_any();
1637                if action_type == any_action.type_id() {
1638                    self.propagate_event = false; // Actions stop propagation by default during the bubble phase
1639                    listener(any_action, DispatchPhase::Bubble, self);
1640                    if !self.propagate_event {
1641                        return;
1642                    }
1643                }
1644            }
1645        }
1646    }
1647
1648    /// Register the given handler to be invoked whenever the global of the given type
1649    /// is updated.
1650    pub fn observe_global<G: 'static>(
1651        &mut self,
1652        f: impl Fn(&mut WindowContext<'_>) + 'static,
1653    ) -> Subscription {
1654        let window_handle = self.window.handle;
1655        let (subscription, activate) = self.global_observers.insert(
1656            TypeId::of::<G>(),
1657            Box::new(move |cx| window_handle.update(cx, |_, cx| f(cx)).is_ok()),
1658        );
1659        self.app.defer(move |_| activate());
1660        subscription
1661    }
1662
1663    pub fn activate_window(&self) {
1664        self.window.platform_window.activate();
1665    }
1666
1667    pub fn minimize_window(&self) {
1668        self.window.platform_window.minimize();
1669    }
1670
1671    pub fn toggle_full_screen(&self) {
1672        self.window.platform_window.toggle_full_screen();
1673    }
1674
1675    pub fn prompt(
1676        &self,
1677        level: PromptLevel,
1678        msg: &str,
1679        answers: &[&str],
1680    ) -> oneshot::Receiver<usize> {
1681        self.window.platform_window.prompt(level, msg, answers)
1682    }
1683
1684    pub fn available_actions(&self) -> Vec<Box<dyn Action>> {
1685        let node_id = self
1686            .window
1687            .focus
1688            .and_then(|focus_id| {
1689                self.window
1690                    .rendered_frame
1691                    .dispatch_tree
1692                    .focusable_node_id(focus_id)
1693            })
1694            .unwrap_or_else(|| self.window.rendered_frame.dispatch_tree.root_node_id());
1695
1696        self.window
1697            .rendered_frame
1698            .dispatch_tree
1699            .available_actions(node_id)
1700    }
1701
1702    pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
1703        self.window
1704            .rendered_frame
1705            .dispatch_tree
1706            .bindings_for_action(
1707                action,
1708                &self.window.rendered_frame.dispatch_tree.context_stack,
1709            )
1710    }
1711
1712    pub fn bindings_for_action_in(
1713        &self,
1714        action: &dyn Action,
1715        focus_handle: &FocusHandle,
1716    ) -> Vec<KeyBinding> {
1717        let dispatch_tree = &self.window.rendered_frame.dispatch_tree;
1718
1719        let Some(node_id) = dispatch_tree.focusable_node_id(focus_handle.id) else {
1720            return vec![];
1721        };
1722        let context_stack = dispatch_tree
1723            .dispatch_path(node_id)
1724            .into_iter()
1725            .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
1726            .collect();
1727        dispatch_tree.bindings_for_action(action, &context_stack)
1728    }
1729
1730    pub fn listener_for<V: Render, E>(
1731        &self,
1732        view: &View<V>,
1733        f: impl Fn(&mut V, &E, &mut ViewContext<V>) + 'static,
1734    ) -> impl Fn(&E, &mut WindowContext) + 'static {
1735        let view = view.downgrade();
1736        move |e: &E, cx: &mut WindowContext| {
1737            view.update(cx, |view, cx| f(view, e, cx)).ok();
1738        }
1739    }
1740
1741    pub fn handler_for<V: Render>(
1742        &self,
1743        view: &View<V>,
1744        f: impl Fn(&mut V, &mut ViewContext<V>) + 'static,
1745    ) -> impl Fn(&mut WindowContext) {
1746        let view = view.downgrade();
1747        move |cx: &mut WindowContext| {
1748            view.update(cx, |view, cx| f(view, cx)).ok();
1749        }
1750    }
1751
1752    //========== ELEMENT RELATED FUNCTIONS ===========
1753    pub fn with_key_dispatch<R>(
1754        &mut self,
1755        context: Option<KeyContext>,
1756        focus_handle: Option<FocusHandle>,
1757        f: impl FnOnce(Option<FocusHandle>, &mut Self) -> R,
1758    ) -> R {
1759        let window = &mut self.window;
1760        window.next_frame.dispatch_tree.push_node(context.clone());
1761        if let Some(focus_handle) = focus_handle.as_ref() {
1762            window
1763                .next_frame
1764                .dispatch_tree
1765                .make_focusable(focus_handle.id);
1766        }
1767        let result = f(focus_handle, self);
1768
1769        self.window.next_frame.dispatch_tree.pop_node();
1770
1771        result
1772    }
1773
1774    /// Set an input handler, such as [ElementInputHandler], which interfaces with the
1775    /// platform to receive textual input with proper integration with concerns such
1776    /// as IME interactions.
1777    pub fn handle_input(
1778        &mut self,
1779        focus_handle: &FocusHandle,
1780        input_handler: impl PlatformInputHandler,
1781    ) {
1782        if focus_handle.is_focused(self) {
1783            self.window
1784                .platform_window
1785                .set_input_handler(Box::new(input_handler));
1786        }
1787    }
1788
1789    pub fn on_window_should_close(&mut self, f: impl Fn(&mut WindowContext) -> bool + 'static) {
1790        let mut this = self.to_async();
1791        self.window
1792            .platform_window
1793            .on_should_close(Box::new(move || this.update(|_, cx| f(cx)).unwrap_or(true)))
1794    }
1795}
1796
1797impl Context for WindowContext<'_> {
1798    type Result<T> = T;
1799
1800    fn build_model<T>(
1801        &mut self,
1802        build_model: impl FnOnce(&mut ModelContext<'_, T>) -> T,
1803    ) -> Model<T>
1804    where
1805        T: 'static,
1806    {
1807        let slot = self.app.entities.reserve();
1808        let model = build_model(&mut ModelContext::new(&mut *self.app, slot.downgrade()));
1809        self.entities.insert(slot, model)
1810    }
1811
1812    fn update_model<T: 'static, R>(
1813        &mut self,
1814        model: &Model<T>,
1815        update: impl FnOnce(&mut T, &mut ModelContext<'_, T>) -> R,
1816    ) -> R {
1817        let mut entity = self.entities.lease(model);
1818        let result = update(
1819            &mut *entity,
1820            &mut ModelContext::new(&mut *self.app, model.downgrade()),
1821        );
1822        self.entities.end_lease(entity);
1823        result
1824    }
1825
1826    fn update_window<T, F>(&mut self, window: AnyWindowHandle, update: F) -> Result<T>
1827    where
1828        F: FnOnce(AnyView, &mut WindowContext<'_>) -> T,
1829    {
1830        if window == self.window.handle {
1831            let root_view = self.window.root_view.clone().unwrap();
1832            Ok(update(root_view, self))
1833        } else {
1834            window.update(self.app, update)
1835        }
1836    }
1837
1838    fn read_model<T, R>(
1839        &self,
1840        handle: &Model<T>,
1841        read: impl FnOnce(&T, &AppContext) -> R,
1842    ) -> Self::Result<R>
1843    where
1844        T: 'static,
1845    {
1846        let entity = self.entities.read(handle);
1847        read(&*entity, &*self.app)
1848    }
1849
1850    fn read_window<T, R>(
1851        &self,
1852        window: &WindowHandle<T>,
1853        read: impl FnOnce(View<T>, &AppContext) -> R,
1854    ) -> Result<R>
1855    where
1856        T: 'static,
1857    {
1858        if window.any_handle == self.window.handle {
1859            let root_view = self
1860                .window
1861                .root_view
1862                .clone()
1863                .unwrap()
1864                .downcast::<T>()
1865                .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
1866            Ok(read(root_view, self))
1867        } else {
1868            self.app.read_window(window, read)
1869        }
1870    }
1871}
1872
1873impl VisualContext for WindowContext<'_> {
1874    fn build_view<V>(
1875        &mut self,
1876        build_view_state: impl FnOnce(&mut ViewContext<'_, V>) -> V,
1877    ) -> Self::Result<View<V>>
1878    where
1879        V: 'static + Render,
1880    {
1881        let slot = self.app.entities.reserve();
1882        let view = View {
1883            model: slot.clone(),
1884        };
1885        let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view);
1886        let entity = build_view_state(&mut cx);
1887        cx.entities.insert(slot, entity);
1888
1889        cx.new_view_observers
1890            .clone()
1891            .retain(&TypeId::of::<V>(), |observer| {
1892                let any_view = AnyView::from(view.clone());
1893                (observer)(any_view, self);
1894                true
1895            });
1896
1897        view
1898    }
1899
1900    /// Update the given view. Prefer calling `View::update` instead, which calls this method.
1901    fn update_view<T: 'static, R>(
1902        &mut self,
1903        view: &View<T>,
1904        update: impl FnOnce(&mut T, &mut ViewContext<'_, T>) -> R,
1905    ) -> Self::Result<R> {
1906        let mut lease = self.app.entities.lease(&view.model);
1907        let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view);
1908        let result = update(&mut *lease, &mut cx);
1909        cx.app.entities.end_lease(lease);
1910        result
1911    }
1912
1913    fn replace_root_view<V>(
1914        &mut self,
1915        build_view: impl FnOnce(&mut ViewContext<'_, V>) -> V,
1916    ) -> Self::Result<View<V>>
1917    where
1918        V: 'static + Render,
1919    {
1920        let slot = self.app.entities.reserve();
1921        let view = View {
1922            model: slot.clone(),
1923        };
1924        let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view);
1925        let entity = build_view(&mut cx);
1926        self.entities.insert(slot, entity);
1927        self.window.root_view = Some(view.clone().into());
1928        view
1929    }
1930
1931    fn focus_view<V: crate::FocusableView>(&mut self, view: &View<V>) -> Self::Result<()> {
1932        self.update_view(view, |view, cx| {
1933            view.focus_handle(cx).clone().focus(cx);
1934        })
1935    }
1936
1937    fn dismiss_view<V>(&mut self, view: &View<V>) -> Self::Result<()>
1938    where
1939        V: ManagedView,
1940    {
1941        self.update_view(view, |_, cx| cx.emit(DismissEvent))
1942    }
1943}
1944
1945impl<'a> std::ops::Deref for WindowContext<'a> {
1946    type Target = AppContext;
1947
1948    fn deref(&self) -> &Self::Target {
1949        &self.app
1950    }
1951}
1952
1953impl<'a> std::ops::DerefMut for WindowContext<'a> {
1954    fn deref_mut(&mut self) -> &mut Self::Target {
1955        &mut self.app
1956    }
1957}
1958
1959impl<'a> Borrow<AppContext> for WindowContext<'a> {
1960    fn borrow(&self) -> &AppContext {
1961        &self.app
1962    }
1963}
1964
1965impl<'a> BorrowMut<AppContext> for WindowContext<'a> {
1966    fn borrow_mut(&mut self) -> &mut AppContext {
1967        &mut self.app
1968    }
1969}
1970
1971pub trait BorrowWindow: BorrowMut<Window> + BorrowMut<AppContext> {
1972    fn app_mut(&mut self) -> &mut AppContext {
1973        self.borrow_mut()
1974    }
1975
1976    fn app(&self) -> &AppContext {
1977        self.borrow()
1978    }
1979
1980    fn window(&self) -> &Window {
1981        self.borrow()
1982    }
1983
1984    fn window_mut(&mut self) -> &mut Window {
1985        self.borrow_mut()
1986    }
1987
1988    /// Pushes the given element id onto the global stack and invokes the given closure
1989    /// with a `GlobalElementId`, which disambiguates the given id in the context of its ancestor
1990    /// ids. Because elements are discarded and recreated on each frame, the `GlobalElementId` is
1991    /// used to associate state with identified elements across separate frames.
1992    fn with_element_id<R>(
1993        &mut self,
1994        id: Option<impl Into<ElementId>>,
1995        f: impl FnOnce(&mut Self) -> R,
1996    ) -> R {
1997        if let Some(id) = id.map(Into::into) {
1998            let window = self.window_mut();
1999            window.element_id_stack.push(id.into());
2000            let result = f(self);
2001            let window: &mut Window = self.borrow_mut();
2002            window.element_id_stack.pop();
2003            result
2004        } else {
2005            f(self)
2006        }
2007    }
2008
2009    /// Invoke the given function with the given content mask after intersecting it
2010    /// with the current mask.
2011    fn with_content_mask<R>(
2012        &mut self,
2013        mask: Option<ContentMask<Pixels>>,
2014        f: impl FnOnce(&mut Self) -> R,
2015    ) -> R {
2016        if let Some(mask) = mask {
2017            let mask = mask.intersect(&self.content_mask());
2018            self.window_mut().next_frame.content_mask_stack.push(mask);
2019            let result = f(self);
2020            self.window_mut().next_frame.content_mask_stack.pop();
2021            result
2022        } else {
2023            f(self)
2024        }
2025    }
2026
2027    /// Invoke the given function with the content mask reset to that
2028    /// of the window.
2029    fn break_content_mask<R>(&mut self, f: impl FnOnce(&mut Self) -> R) -> R {
2030        let mask = ContentMask {
2031            bounds: Bounds {
2032                origin: Point::default(),
2033                size: self.window().viewport_size,
2034            },
2035        };
2036        self.window_mut().next_frame.content_mask_stack.push(mask);
2037        let result = f(self);
2038        self.window_mut().next_frame.content_mask_stack.pop();
2039        result
2040    }
2041
2042    /// Update the global element offset relative to the current offset. This is used to implement
2043    /// scrolling.
2044    fn with_element_offset<R>(
2045        &mut self,
2046        offset: Point<Pixels>,
2047        f: impl FnOnce(&mut Self) -> R,
2048    ) -> R {
2049        if offset.is_zero() {
2050            return f(self);
2051        };
2052
2053        let abs_offset = self.element_offset() + offset;
2054        self.with_absolute_element_offset(abs_offset, f)
2055    }
2056
2057    /// Update the global element offset based on the given offset. This is used to implement
2058    /// drag handles and other manual painting of elements.
2059    fn with_absolute_element_offset<R>(
2060        &mut self,
2061        offset: Point<Pixels>,
2062        f: impl FnOnce(&mut Self) -> R,
2063    ) -> R {
2064        self.window_mut()
2065            .next_frame
2066            .element_offset_stack
2067            .push(offset);
2068        let result = f(self);
2069        self.window_mut().next_frame.element_offset_stack.pop();
2070        result
2071    }
2072
2073    /// Obtain the current element offset.
2074    fn element_offset(&self) -> Point<Pixels> {
2075        self.window()
2076            .next_frame
2077            .element_offset_stack
2078            .last()
2079            .copied()
2080            .unwrap_or_default()
2081    }
2082
2083    /// Update or initialize state for an element with the given id that lives across multiple
2084    /// frames. If an element with this id existed in the rendered frame, its state will be passed
2085    /// to the given closure. The state returned by the closure will be stored so it can be referenced
2086    /// when drawing the next frame.
2087    fn with_element_state<S, R>(
2088        &mut self,
2089        id: ElementId,
2090        f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2091    ) -> R
2092    where
2093        S: 'static,
2094    {
2095        self.with_element_id(Some(id), |cx| {
2096            let global_id = cx.window().element_id_stack.clone();
2097
2098            if let Some(any) = cx
2099                .window_mut()
2100                .next_frame
2101                .element_states
2102                .remove(&global_id)
2103                .or_else(|| {
2104                    cx.window_mut()
2105                        .rendered_frame
2106                        .element_states
2107                        .remove(&global_id)
2108                })
2109            {
2110                let ElementStateBox {
2111                    inner,
2112
2113                    #[cfg(debug_assertions)]
2114                    type_name
2115                } = any;
2116                // Using the extra inner option to avoid needing to reallocate a new box.
2117                let mut state_box = inner
2118                    .downcast::<Option<S>>()
2119                    .map_err(|_| {
2120                        #[cfg(debug_assertions)]
2121                        {
2122                            anyhow!(
2123                                "invalid element state type for id, requested_type {:?}, actual type: {:?}",
2124                                std::any::type_name::<S>(),
2125                                type_name
2126                            )
2127                        }
2128
2129                        #[cfg(not(debug_assertions))]
2130                        {
2131                            anyhow!(
2132                                "invalid element state type for id, requested_type {:?}",
2133                                std::any::type_name::<S>(),
2134                            )
2135                        }
2136                    })
2137                    .unwrap();
2138
2139                // Actual: Option<AnyElement> <- View
2140                // Requested: () <- AnyElemet
2141                let state = state_box
2142                    .take()
2143                    .expect("element state is already on the stack");
2144                let (result, state) = f(Some(state), cx);
2145                state_box.replace(state);
2146                cx.window_mut()
2147                    .next_frame
2148                    .element_states
2149                    .insert(global_id, ElementStateBox {
2150                        inner: state_box,
2151
2152                        #[cfg(debug_assertions)]
2153                        type_name
2154                    });
2155                result
2156            } else {
2157                let (result, state) = f(None, cx);
2158                cx.window_mut()
2159                    .next_frame
2160                    .element_states
2161                    .insert(global_id,
2162                        ElementStateBox {
2163                            inner: Box::new(Some(state)),
2164
2165                            #[cfg(debug_assertions)]
2166                            type_name: std::any::type_name::<S>()
2167                        }
2168
2169                    );
2170                result
2171            }
2172        })
2173    }
2174
2175    /// Obtain the current content mask.
2176    fn content_mask(&self) -> ContentMask<Pixels> {
2177        self.window()
2178            .next_frame
2179            .content_mask_stack
2180            .last()
2181            .cloned()
2182            .unwrap_or_else(|| ContentMask {
2183                bounds: Bounds {
2184                    origin: Point::default(),
2185                    size: self.window().viewport_size,
2186                },
2187            })
2188    }
2189
2190    /// The size of an em for the base font of the application. Adjusting this value allows the
2191    /// UI to scale, just like zooming a web page.
2192    fn rem_size(&self) -> Pixels {
2193        self.window().rem_size
2194    }
2195}
2196
2197impl Borrow<Window> for WindowContext<'_> {
2198    fn borrow(&self) -> &Window {
2199        &self.window
2200    }
2201}
2202
2203impl BorrowMut<Window> for WindowContext<'_> {
2204    fn borrow_mut(&mut self) -> &mut Window {
2205        &mut self.window
2206    }
2207}
2208
2209impl<T> BorrowWindow for T where T: BorrowMut<AppContext> + BorrowMut<Window> {}
2210
2211pub struct ViewContext<'a, V> {
2212    window_cx: WindowContext<'a>,
2213    view: &'a View<V>,
2214}
2215
2216impl<V> Borrow<AppContext> for ViewContext<'_, V> {
2217    fn borrow(&self) -> &AppContext {
2218        &*self.window_cx.app
2219    }
2220}
2221
2222impl<V> BorrowMut<AppContext> for ViewContext<'_, V> {
2223    fn borrow_mut(&mut self) -> &mut AppContext {
2224        &mut *self.window_cx.app
2225    }
2226}
2227
2228impl<V> Borrow<Window> for ViewContext<'_, V> {
2229    fn borrow(&self) -> &Window {
2230        &*self.window_cx.window
2231    }
2232}
2233
2234impl<V> BorrowMut<Window> for ViewContext<'_, V> {
2235    fn borrow_mut(&mut self) -> &mut Window {
2236        &mut *self.window_cx.window
2237    }
2238}
2239
2240impl<'a, V: 'static> ViewContext<'a, V> {
2241    pub(crate) fn new(app: &'a mut AppContext, window: &'a mut Window, view: &'a View<V>) -> Self {
2242        Self {
2243            window_cx: WindowContext::new(app, window),
2244            view,
2245        }
2246    }
2247
2248    pub fn entity_id(&self) -> EntityId {
2249        self.view.entity_id()
2250    }
2251
2252    pub fn view(&self) -> &View<V> {
2253        self.view
2254    }
2255
2256    pub fn model(&self) -> &Model<V> {
2257        &self.view.model
2258    }
2259
2260    /// Access the underlying window context.
2261    pub fn window_context(&mut self) -> &mut WindowContext<'a> {
2262        &mut self.window_cx
2263    }
2264
2265    pub fn with_z_index<R>(&mut self, z_index: u8, f: impl FnOnce(&mut Self) -> R) -> R {
2266        self.window.next_frame.z_index_stack.push(z_index);
2267        let result = f(self);
2268        self.window.next_frame.z_index_stack.pop();
2269        result
2270    }
2271
2272    pub fn on_next_frame(&mut self, f: impl FnOnce(&mut V, &mut ViewContext<V>) + 'static)
2273    where
2274        V: 'static,
2275    {
2276        let view = self.view().clone();
2277        self.window_cx.on_next_frame(move |cx| view.update(cx, f));
2278    }
2279
2280    /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
2281    /// that are currently on the stack to be returned to the app.
2282    pub fn defer(&mut self, f: impl FnOnce(&mut V, &mut ViewContext<V>) + 'static) {
2283        let view = self.view().downgrade();
2284        self.window_cx.defer(move |cx| {
2285            view.update(cx, f).ok();
2286        });
2287    }
2288
2289    pub fn observe<V2, E>(
2290        &mut self,
2291        entity: &E,
2292        mut on_notify: impl FnMut(&mut V, E, &mut ViewContext<'_, V>) + 'static,
2293    ) -> Subscription
2294    where
2295        V2: 'static,
2296        V: 'static,
2297        E: Entity<V2>,
2298    {
2299        let view = self.view().downgrade();
2300        let entity_id = entity.entity_id();
2301        let entity = entity.downgrade();
2302        let window_handle = self.window.handle;
2303        let (subscription, activate) = self.app.observers.insert(
2304            entity_id,
2305            Box::new(move |cx| {
2306                window_handle
2307                    .update(cx, |_, cx| {
2308                        if let Some(handle) = E::upgrade_from(&entity) {
2309                            view.update(cx, |this, cx| on_notify(this, handle, cx))
2310                                .is_ok()
2311                        } else {
2312                            false
2313                        }
2314                    })
2315                    .unwrap_or(false)
2316            }),
2317        );
2318        self.app.defer(move |_| activate());
2319        subscription
2320    }
2321
2322    pub fn subscribe<V2, E, Evt>(
2323        &mut self,
2324        entity: &E,
2325        mut on_event: impl FnMut(&mut V, E, &Evt, &mut ViewContext<'_, V>) + 'static,
2326    ) -> Subscription
2327    where
2328        V2: EventEmitter<Evt>,
2329        E: Entity<V2>,
2330        Evt: 'static,
2331    {
2332        let view = self.view().downgrade();
2333        let entity_id = entity.entity_id();
2334        let handle = entity.downgrade();
2335        let window_handle = self.window.handle;
2336        let (subscription, activate) = self.app.event_listeners.insert(
2337            entity_id,
2338            (
2339                TypeId::of::<Evt>(),
2340                Box::new(move |event, cx| {
2341                    window_handle
2342                        .update(cx, |_, cx| {
2343                            if let Some(handle) = E::upgrade_from(&handle) {
2344                                let event = event.downcast_ref().expect("invalid event type");
2345                                view.update(cx, |this, cx| on_event(this, handle, event, cx))
2346                                    .is_ok()
2347                            } else {
2348                                false
2349                            }
2350                        })
2351                        .unwrap_or(false)
2352                }),
2353            ),
2354        );
2355        self.app.defer(move |_| activate());
2356        subscription
2357    }
2358
2359    pub fn on_release(
2360        &mut self,
2361        on_release: impl FnOnce(&mut V, &mut WindowContext) + 'static,
2362    ) -> Subscription {
2363        let window_handle = self.window.handle;
2364        let (subscription, activate) = self.app.release_listeners.insert(
2365            self.view.model.entity_id,
2366            Box::new(move |this, cx| {
2367                let this = this.downcast_mut().expect("invalid entity type");
2368                let _ = window_handle.update(cx, |_, cx| on_release(this, cx));
2369            }),
2370        );
2371        activate();
2372        subscription
2373    }
2374
2375    pub fn observe_release<V2, E>(
2376        &mut self,
2377        entity: &E,
2378        mut on_release: impl FnMut(&mut V, &mut V2, &mut ViewContext<'_, V>) + 'static,
2379    ) -> Subscription
2380    where
2381        V: 'static,
2382        V2: 'static,
2383        E: Entity<V2>,
2384    {
2385        let view = self.view().downgrade();
2386        let entity_id = entity.entity_id();
2387        let window_handle = self.window.handle;
2388        let (subscription, activate) = self.app.release_listeners.insert(
2389            entity_id,
2390            Box::new(move |entity, cx| {
2391                let entity = entity.downcast_mut().expect("invalid entity type");
2392                let _ = window_handle.update(cx, |_, cx| {
2393                    view.update(cx, |this, cx| on_release(this, entity, cx))
2394                });
2395            }),
2396        );
2397        activate();
2398        subscription
2399    }
2400
2401    pub fn notify(&mut self) {
2402        if !self.window.drawing {
2403            self.window_cx.notify();
2404            self.window_cx.app.push_effect(Effect::Notify {
2405                emitter: self.view.model.entity_id,
2406            });
2407        }
2408    }
2409
2410    pub fn observe_window_bounds(
2411        &mut self,
2412        mut callback: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2413    ) -> Subscription {
2414        let view = self.view.downgrade();
2415        let (subscription, activate) = self.window.bounds_observers.insert(
2416            (),
2417            Box::new(move |cx| view.update(cx, |view, cx| callback(view, cx)).is_ok()),
2418        );
2419        activate();
2420        subscription
2421    }
2422
2423    pub fn observe_window_activation(
2424        &mut self,
2425        mut callback: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2426    ) -> Subscription {
2427        let view = self.view.downgrade();
2428        let (subscription, activate) = self.window.activation_observers.insert(
2429            (),
2430            Box::new(move |cx| view.update(cx, |view, cx| callback(view, cx)).is_ok()),
2431        );
2432        activate();
2433        subscription
2434    }
2435
2436    /// Register a listener to be called when the given focus handle receives focus.
2437    /// Unlike [on_focus_changed], returns a subscription and persists until the subscription
2438    /// is dropped.
2439    pub fn on_focus(
2440        &mut self,
2441        handle: &FocusHandle,
2442        mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2443    ) -> Subscription {
2444        let view = self.view.downgrade();
2445        let focus_id = handle.id;
2446        let (subscription, activate) = self.window.focus_listeners.insert(
2447            (),
2448            Box::new(move |event, cx| {
2449                view.update(cx, |view, cx| {
2450                    if event.previous_focus_path.last() != Some(&focus_id)
2451                        && event.current_focus_path.last() == Some(&focus_id)
2452                    {
2453                        listener(view, cx)
2454                    }
2455                })
2456                .is_ok()
2457            }),
2458        );
2459        self.app.defer(move |_| activate());
2460        subscription
2461    }
2462
2463    /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
2464    /// Unlike [on_focus_changed], returns a subscription and persists until the subscription
2465    /// is dropped.
2466    pub fn on_focus_in(
2467        &mut self,
2468        handle: &FocusHandle,
2469        mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2470    ) -> Subscription {
2471        let view = self.view.downgrade();
2472        let focus_id = handle.id;
2473        let (subscription, activate) = self.window.focus_listeners.insert(
2474            (),
2475            Box::new(move |event, cx| {
2476                view.update(cx, |view, cx| {
2477                    if !event.previous_focus_path.contains(&focus_id)
2478                        && event.current_focus_path.contains(&focus_id)
2479                    {
2480                        listener(view, cx)
2481                    }
2482                })
2483                .is_ok()
2484            }),
2485        );
2486        self.app.defer(move |_| activate());
2487        subscription
2488    }
2489
2490    /// Register a listener to be called when the given focus handle loses focus.
2491    /// Unlike [on_focus_changed], returns a subscription and persists until the subscription
2492    /// is dropped.
2493    pub fn on_blur(
2494        &mut self,
2495        handle: &FocusHandle,
2496        mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2497    ) -> Subscription {
2498        let view = self.view.downgrade();
2499        let focus_id = handle.id;
2500        let (subscription, activate) = self.window.focus_listeners.insert(
2501            (),
2502            Box::new(move |event, cx| {
2503                view.update(cx, |view, cx| {
2504                    if event.previous_focus_path.last() == Some(&focus_id)
2505                        && event.current_focus_path.last() != Some(&focus_id)
2506                    {
2507                        listener(view, cx)
2508                    }
2509                })
2510                .is_ok()
2511            }),
2512        );
2513        self.app.defer(move |_| activate());
2514        subscription
2515    }
2516
2517    /// Register a listener to be called when the window loses focus.
2518    /// Unlike [on_focus_changed], returns a subscription and persists until the subscription
2519    /// is dropped.
2520    pub fn on_blur_window(
2521        &mut self,
2522        mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2523    ) -> Subscription {
2524        let view = self.view.downgrade();
2525        let (subscription, activate) = self.window.blur_listeners.insert(
2526            (),
2527            Box::new(move |cx| view.update(cx, |view, cx| listener(view, cx)).is_ok()),
2528        );
2529        activate();
2530        subscription
2531    }
2532
2533    /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
2534    /// Unlike [on_focus_changed], returns a subscription and persists until the subscription
2535    /// is dropped.
2536    pub fn on_focus_out(
2537        &mut self,
2538        handle: &FocusHandle,
2539        mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2540    ) -> Subscription {
2541        let view = self.view.downgrade();
2542        let focus_id = handle.id;
2543        let (subscription, activate) = self.window.focus_listeners.insert(
2544            (),
2545            Box::new(move |event, cx| {
2546                view.update(cx, |view, cx| {
2547                    if event.previous_focus_path.contains(&focus_id)
2548                        && !event.current_focus_path.contains(&focus_id)
2549                    {
2550                        listener(view, cx)
2551                    }
2552                })
2553                .is_ok()
2554            }),
2555        );
2556        self.app.defer(move |_| activate());
2557        subscription
2558    }
2559
2560    pub fn spawn<Fut, R>(
2561        &mut self,
2562        f: impl FnOnce(WeakView<V>, AsyncWindowContext) -> Fut,
2563    ) -> Task<R>
2564    where
2565        R: 'static,
2566        Fut: Future<Output = R> + 'static,
2567    {
2568        let view = self.view().downgrade();
2569        self.window_cx.spawn(|cx| f(view, cx))
2570    }
2571
2572    pub fn update_global<G, R>(&mut self, f: impl FnOnce(&mut G, &mut Self) -> R) -> R
2573    where
2574        G: 'static,
2575    {
2576        let mut global = self.app.lease_global::<G>();
2577        let result = f(&mut global, self);
2578        self.app.end_global_lease(global);
2579        result
2580    }
2581
2582    pub fn observe_global<G: 'static>(
2583        &mut self,
2584        mut f: impl FnMut(&mut V, &mut ViewContext<'_, V>) + 'static,
2585    ) -> Subscription {
2586        let window_handle = self.window.handle;
2587        let view = self.view().downgrade();
2588        let (subscription, activate) = self.global_observers.insert(
2589            TypeId::of::<G>(),
2590            Box::new(move |cx| {
2591                window_handle
2592                    .update(cx, |_, cx| view.update(cx, |view, cx| f(view, cx)).is_ok())
2593                    .unwrap_or(false)
2594            }),
2595        );
2596        self.app.defer(move |_| activate());
2597        subscription
2598    }
2599
2600    pub fn on_mouse_event<Event: 'static>(
2601        &mut self,
2602        handler: impl Fn(&mut V, &Event, DispatchPhase, &mut ViewContext<V>) + 'static,
2603    ) {
2604        let handle = self.view().clone();
2605        self.window_cx.on_mouse_event(move |event, phase, cx| {
2606            handle.update(cx, |view, cx| {
2607                handler(view, event, phase, cx);
2608            })
2609        });
2610    }
2611
2612    pub fn on_key_event<Event: 'static>(
2613        &mut self,
2614        handler: impl Fn(&mut V, &Event, DispatchPhase, &mut ViewContext<V>) + 'static,
2615    ) {
2616        let handle = self.view().clone();
2617        self.window_cx.on_key_event(move |event, phase, cx| {
2618            handle.update(cx, |view, cx| {
2619                handler(view, event, phase, cx);
2620            })
2621        });
2622    }
2623
2624    pub fn on_action(
2625        &mut self,
2626        action_type: TypeId,
2627        listener: impl Fn(&mut V, &dyn Any, DispatchPhase, &mut ViewContext<V>) + 'static,
2628    ) {
2629        let handle = self.view().clone();
2630        self.window_cx
2631            .on_action(action_type, move |action, phase, cx| {
2632                handle.update(cx, |view, cx| {
2633                    listener(view, action, phase, cx);
2634                })
2635            });
2636    }
2637
2638    pub fn emit<Evt>(&mut self, event: Evt)
2639    where
2640        Evt: 'static,
2641        V: EventEmitter<Evt>,
2642    {
2643        let emitter = self.view.model.entity_id;
2644        self.app.push_effect(Effect::Emit {
2645            emitter,
2646            event_type: TypeId::of::<Evt>(),
2647            event: Box::new(event),
2648        });
2649    }
2650
2651    pub fn focus_self(&mut self)
2652    where
2653        V: FocusableView,
2654    {
2655        self.defer(|view, cx| view.focus_handle(cx).focus(cx))
2656    }
2657
2658    pub fn dismiss_self(&mut self)
2659    where
2660        V: ManagedView,
2661    {
2662        self.defer(|_, cx| cx.emit(DismissEvent))
2663    }
2664
2665    pub fn listener<E>(
2666        &self,
2667        f: impl Fn(&mut V, &E, &mut ViewContext<V>) + 'static,
2668    ) -> impl Fn(&E, &mut WindowContext) + 'static {
2669        let view = self.view().downgrade();
2670        move |e: &E, cx: &mut WindowContext| {
2671            view.update(cx, |view, cx| f(view, e, cx)).ok();
2672        }
2673    }
2674}
2675
2676impl<V> Context for ViewContext<'_, V> {
2677    type Result<U> = U;
2678
2679    fn build_model<T: 'static>(
2680        &mut self,
2681        build_model: impl FnOnce(&mut ModelContext<'_, T>) -> T,
2682    ) -> Model<T> {
2683        self.window_cx.build_model(build_model)
2684    }
2685
2686    fn update_model<T: 'static, R>(
2687        &mut self,
2688        model: &Model<T>,
2689        update: impl FnOnce(&mut T, &mut ModelContext<'_, T>) -> R,
2690    ) -> R {
2691        self.window_cx.update_model(model, update)
2692    }
2693
2694    fn update_window<T, F>(&mut self, window: AnyWindowHandle, update: F) -> Result<T>
2695    where
2696        F: FnOnce(AnyView, &mut WindowContext<'_>) -> T,
2697    {
2698        self.window_cx.update_window(window, update)
2699    }
2700
2701    fn read_model<T, R>(
2702        &self,
2703        handle: &Model<T>,
2704        read: impl FnOnce(&T, &AppContext) -> R,
2705    ) -> Self::Result<R>
2706    where
2707        T: 'static,
2708    {
2709        self.window_cx.read_model(handle, read)
2710    }
2711
2712    fn read_window<T, R>(
2713        &self,
2714        window: &WindowHandle<T>,
2715        read: impl FnOnce(View<T>, &AppContext) -> R,
2716    ) -> Result<R>
2717    where
2718        T: 'static,
2719    {
2720        self.window_cx.read_window(window, read)
2721    }
2722}
2723
2724impl<V: 'static> VisualContext for ViewContext<'_, V> {
2725    fn build_view<W: Render + 'static>(
2726        &mut self,
2727        build_view_state: impl FnOnce(&mut ViewContext<'_, W>) -> W,
2728    ) -> Self::Result<View<W>> {
2729        self.window_cx.build_view(build_view_state)
2730    }
2731
2732    fn update_view<V2: 'static, R>(
2733        &mut self,
2734        view: &View<V2>,
2735        update: impl FnOnce(&mut V2, &mut ViewContext<'_, V2>) -> R,
2736    ) -> Self::Result<R> {
2737        self.window_cx.update_view(view, update)
2738    }
2739
2740    fn replace_root_view<W>(
2741        &mut self,
2742        build_view: impl FnOnce(&mut ViewContext<'_, W>) -> W,
2743    ) -> Self::Result<View<W>>
2744    where
2745        W: 'static + Render,
2746    {
2747        self.window_cx.replace_root_view(build_view)
2748    }
2749
2750    fn focus_view<W: FocusableView>(&mut self, view: &View<W>) -> Self::Result<()> {
2751        self.window_cx.focus_view(view)
2752    }
2753
2754    fn dismiss_view<W: ManagedView>(&mut self, view: &View<W>) -> Self::Result<()> {
2755        self.window_cx.dismiss_view(view)
2756    }
2757}
2758
2759impl<'a, V> std::ops::Deref for ViewContext<'a, V> {
2760    type Target = WindowContext<'a>;
2761
2762    fn deref(&self) -> &Self::Target {
2763        &self.window_cx
2764    }
2765}
2766
2767impl<'a, V> std::ops::DerefMut for ViewContext<'a, V> {
2768    fn deref_mut(&mut self) -> &mut Self::Target {
2769        &mut self.window_cx
2770    }
2771}
2772
2773// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
2774slotmap::new_key_type! { pub struct WindowId; }
2775
2776impl WindowId {
2777    pub fn as_u64(&self) -> u64 {
2778        self.0.as_ffi()
2779    }
2780}
2781
2782#[derive(Deref, DerefMut)]
2783pub struct WindowHandle<V> {
2784    #[deref]
2785    #[deref_mut]
2786    pub(crate) any_handle: AnyWindowHandle,
2787    state_type: PhantomData<V>,
2788}
2789
2790impl<V: 'static + Render> WindowHandle<V> {
2791    pub fn new(id: WindowId) -> Self {
2792        WindowHandle {
2793            any_handle: AnyWindowHandle {
2794                id,
2795                state_type: TypeId::of::<V>(),
2796            },
2797            state_type: PhantomData,
2798        }
2799    }
2800
2801    pub fn root<C>(&self, cx: &mut C) -> Result<View<V>>
2802    where
2803        C: Context,
2804    {
2805        Flatten::flatten(cx.update_window(self.any_handle, |root_view, _| {
2806            root_view
2807                .downcast::<V>()
2808                .map_err(|_| anyhow!("the type of the window's root view has changed"))
2809        }))
2810    }
2811
2812    pub fn update<C, R>(
2813        &self,
2814        cx: &mut C,
2815        update: impl FnOnce(&mut V, &mut ViewContext<'_, V>) -> R,
2816    ) -> Result<R>
2817    where
2818        C: Context,
2819    {
2820        cx.update_window(self.any_handle, |root_view, cx| {
2821            let view = root_view
2822                .downcast::<V>()
2823                .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
2824            Ok(cx.update_view(&view, update))
2825        })?
2826    }
2827
2828    pub fn read<'a>(&self, cx: &'a AppContext) -> Result<&'a V> {
2829        let x = cx
2830            .windows
2831            .get(self.id)
2832            .and_then(|window| {
2833                window
2834                    .as_ref()
2835                    .and_then(|window| window.root_view.clone())
2836                    .map(|root_view| root_view.downcast::<V>())
2837            })
2838            .ok_or_else(|| anyhow!("window not found"))?
2839            .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
2840
2841        Ok(x.read(cx))
2842    }
2843
2844    pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &AppContext) -> R) -> Result<R>
2845    where
2846        C: Context,
2847    {
2848        cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
2849    }
2850
2851    pub fn root_view<C>(&self, cx: &C) -> Result<View<V>>
2852    where
2853        C: Context,
2854    {
2855        cx.read_window(self, |root_view, _cx| root_view.clone())
2856    }
2857
2858    pub fn is_active(&self, cx: &AppContext) -> Option<bool> {
2859        cx.windows
2860            .get(self.id)
2861            .and_then(|window| window.as_ref().map(|window| window.active))
2862    }
2863}
2864
2865impl<V> Copy for WindowHandle<V> {}
2866
2867impl<V> Clone for WindowHandle<V> {
2868    fn clone(&self) -> Self {
2869        WindowHandle {
2870            any_handle: self.any_handle,
2871            state_type: PhantomData,
2872        }
2873    }
2874}
2875
2876impl<V> PartialEq for WindowHandle<V> {
2877    fn eq(&self, other: &Self) -> bool {
2878        self.any_handle == other.any_handle
2879    }
2880}
2881
2882impl<V> Eq for WindowHandle<V> {}
2883
2884impl<V> Hash for WindowHandle<V> {
2885    fn hash<H: Hasher>(&self, state: &mut H) {
2886        self.any_handle.hash(state);
2887    }
2888}
2889
2890impl<V: 'static> Into<AnyWindowHandle> for WindowHandle<V> {
2891    fn into(self) -> AnyWindowHandle {
2892        self.any_handle
2893    }
2894}
2895
2896#[derive(Copy, Clone, PartialEq, Eq, Hash)]
2897pub struct AnyWindowHandle {
2898    pub(crate) id: WindowId,
2899    state_type: TypeId,
2900}
2901
2902impl AnyWindowHandle {
2903    pub fn window_id(&self) -> WindowId {
2904        self.id
2905    }
2906
2907    pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
2908        if TypeId::of::<T>() == self.state_type {
2909            Some(WindowHandle {
2910                any_handle: *self,
2911                state_type: PhantomData,
2912            })
2913        } else {
2914            None
2915        }
2916    }
2917
2918    pub fn update<C, R>(
2919        self,
2920        cx: &mut C,
2921        update: impl FnOnce(AnyView, &mut WindowContext<'_>) -> R,
2922    ) -> Result<R>
2923    where
2924        C: Context,
2925    {
2926        cx.update_window(self, update)
2927    }
2928
2929    pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(View<T>, &AppContext) -> R) -> Result<R>
2930    where
2931        C: Context,
2932        T: 'static,
2933    {
2934        let view = self
2935            .downcast::<T>()
2936            .context("the type of the window's root view has changed")?;
2937
2938        cx.read_window(&view, read)
2939    }
2940}
2941
2942// #[cfg(any(test, feature = "test-support"))]
2943// impl From<SmallVec<[u32; 16]>> for StackingOrder {
2944//     fn from(small_vec: SmallVec<[u32; 16]>) -> Self {
2945//         StackingOrder(small_vec)
2946//     }
2947// }
2948
2949#[derive(Clone, Debug, Eq, PartialEq, Hash)]
2950pub enum ElementId {
2951    View(EntityId),
2952    Integer(usize),
2953    Name(SharedString),
2954    FocusHandle(FocusId),
2955    NamedInteger(SharedString, usize),
2956}
2957
2958impl ElementId {
2959    pub(crate) fn from_entity_id(entity_id: EntityId) -> Self {
2960        ElementId::View(entity_id)
2961    }
2962}
2963
2964impl TryInto<SharedString> for ElementId {
2965    type Error = anyhow::Error;
2966
2967    fn try_into(self) -> anyhow::Result<SharedString> {
2968        if let ElementId::Name(name) = self {
2969            Ok(name)
2970        } else {
2971            Err(anyhow!("element id is not string"))
2972        }
2973    }
2974}
2975
2976impl From<usize> for ElementId {
2977    fn from(id: usize) -> Self {
2978        ElementId::Integer(id)
2979    }
2980}
2981
2982impl From<i32> for ElementId {
2983    fn from(id: i32) -> Self {
2984        Self::Integer(id as usize)
2985    }
2986}
2987
2988impl From<SharedString> for ElementId {
2989    fn from(name: SharedString) -> Self {
2990        ElementId::Name(name)
2991    }
2992}
2993
2994impl From<&'static str> for ElementId {
2995    fn from(name: &'static str) -> Self {
2996        ElementId::Name(name.into())
2997    }
2998}
2999
3000impl<'a> From<&'a FocusHandle> for ElementId {
3001    fn from(handle: &'a FocusHandle) -> Self {
3002        ElementId::FocusHandle(handle.id)
3003    }
3004}
3005
3006impl From<(&'static str, EntityId)> for ElementId {
3007    fn from((name, id): (&'static str, EntityId)) -> Self {
3008        ElementId::NamedInteger(name.into(), id.as_u64() as usize)
3009    }
3010}
3011
3012impl From<(&'static str, usize)> for ElementId {
3013    fn from((name, id): (&'static str, usize)) -> Self {
3014        ElementId::NamedInteger(name.into(), id)
3015    }
3016}
3017
3018impl From<(&'static str, u64)> for ElementId {
3019    fn from((name, id): (&'static str, u64)) -> Self {
3020        ElementId::NamedInteger(name.into(), id as usize)
3021    }
3022}
3023
3024/// A rectangle, to be rendered on the screen by GPUI at the given position and size.
3025pub struct PaintQuad {
3026    bounds: Bounds<Pixels>,
3027    corner_radii: Corners<Pixels>,
3028    background: Hsla,
3029    border_widths: Edges<Pixels>,
3030    border_color: Hsla,
3031}
3032
3033impl PaintQuad {
3034    /// Set the corner radii of the quad.
3035    pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
3036        PaintQuad {
3037            corner_radii: corner_radii.into(),
3038            ..self
3039        }
3040    }
3041
3042    /// Set the border widths of the quad.
3043    pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
3044        PaintQuad {
3045            border_widths: border_widths.into(),
3046            ..self
3047        }
3048    }
3049
3050    /// Set the border color of the quad.
3051    pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
3052        PaintQuad {
3053            border_color: border_color.into(),
3054            ..self
3055        }
3056    }
3057
3058    /// Set the background color of the quad.
3059    pub fn background(self, background: impl Into<Hsla>) -> Self {
3060        PaintQuad {
3061            background: background.into(),
3062            ..self
3063        }
3064    }
3065}
3066
3067/// Create a quad with the given parameters.
3068pub fn quad(
3069    bounds: Bounds<Pixels>,
3070    corner_radii: impl Into<Corners<Pixels>>,
3071    background: impl Into<Hsla>,
3072    border_widths: impl Into<Edges<Pixels>>,
3073    border_color: impl Into<Hsla>,
3074) -> PaintQuad {
3075    PaintQuad {
3076        bounds,
3077        corner_radii: corner_radii.into(),
3078        background: background.into(),
3079        border_widths: border_widths.into(),
3080        border_color: border_color.into(),
3081    }
3082}
3083
3084/// Create a filled quad with the given bounds and background color.
3085pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Hsla>) -> PaintQuad {
3086    PaintQuad {
3087        bounds: bounds.into(),
3088        corner_radii: (0.).into(),
3089        background: background.into(),
3090        border_widths: (0.).into(),
3091        border_color: transparent_black(),
3092    }
3093}
3094
3095/// Create a rectangle outline with the given bounds, border color, and a 1px border width
3096pub fn outline(bounds: impl Into<Bounds<Pixels>>, border_color: impl Into<Hsla>) -> PaintQuad {
3097    PaintQuad {
3098        bounds: bounds.into(),
3099        corner_radii: (0.).into(),
3100        background: transparent_black(),
3101        border_widths: (1.).into(),
3102        border_color: border_color.into(),
3103    }
3104}