1use super::{
2 auth,
3 db::{ChannelId, MessageId, UserId},
4 AppState,
5};
6use anyhow::anyhow;
7use async_std::{sync::RwLock, task};
8use async_tungstenite::{tungstenite::protocol::Role, WebSocketStream};
9use futures::{future::BoxFuture, FutureExt};
10use postage::{mpsc, prelude::Sink as _, prelude::Stream as _};
11use sha1::{Digest as _, Sha1};
12use std::{
13 any::TypeId,
14 collections::{hash_map, HashMap, HashSet},
15 future::Future,
16 mem,
17 sync::Arc,
18 time::Instant,
19};
20use surf::StatusCode;
21use tide::log;
22use tide::{
23 http::headers::{HeaderName, CONNECTION, UPGRADE},
24 Request, Response,
25};
26use time::OffsetDateTime;
27use zrpc::{
28 auth::random_token,
29 proto::{self, AnyTypedEnvelope, EnvelopedMessage},
30 Conn, ConnectionId, Peer, TypedEnvelope,
31};
32
33type ReplicaId = u16;
34
35type MessageHandler = Box<
36 dyn Send
37 + Sync
38 + Fn(Arc<Server>, Box<dyn AnyTypedEnvelope>) -> BoxFuture<'static, tide::Result<()>>,
39>;
40
41pub struct Server {
42 peer: Arc<Peer>,
43 state: RwLock<ServerState>,
44 app_state: Arc<AppState>,
45 handlers: HashMap<TypeId, MessageHandler>,
46 notifications: Option<mpsc::Sender<()>>,
47}
48
49#[derive(Default)]
50struct ServerState {
51 connections: HashMap<ConnectionId, Connection>,
52 pub worktrees: HashMap<u64, Worktree>,
53 channels: HashMap<ChannelId, Channel>,
54 next_worktree_id: u64,
55}
56
57struct Connection {
58 user_id: UserId,
59 worktrees: HashSet<u64>,
60 channels: HashSet<ChannelId>,
61}
62
63struct Worktree {
64 host_connection_id: Option<ConnectionId>,
65 guest_connection_ids: HashMap<ConnectionId, ReplicaId>,
66 active_replica_ids: HashSet<ReplicaId>,
67 access_token: String,
68 root_name: String,
69 entries: HashMap<u64, proto::Entry>,
70}
71
72#[derive(Default)]
73struct Channel {
74 connection_ids: HashSet<ConnectionId>,
75}
76
77const MESSAGE_COUNT_PER_PAGE: usize = 100;
78const MAX_MESSAGE_LEN: usize = 1024;
79
80impl Server {
81 pub fn new(
82 app_state: Arc<AppState>,
83 peer: Arc<Peer>,
84 notifications: Option<mpsc::Sender<()>>,
85 ) -> Arc<Self> {
86 let mut server = Self {
87 peer,
88 app_state,
89 state: Default::default(),
90 handlers: Default::default(),
91 notifications,
92 };
93
94 server
95 .add_handler(Server::ping)
96 .add_handler(Server::share_worktree)
97 .add_handler(Server::join_worktree)
98 .add_handler(Server::update_worktree)
99 .add_handler(Server::close_worktree)
100 .add_handler(Server::open_buffer)
101 .add_handler(Server::close_buffer)
102 .add_handler(Server::update_buffer)
103 .add_handler(Server::buffer_saved)
104 .add_handler(Server::save_buffer)
105 .add_handler(Server::get_channels)
106 .add_handler(Server::get_users)
107 .add_handler(Server::join_channel)
108 .add_handler(Server::leave_channel)
109 .add_handler(Server::send_channel_message)
110 .add_handler(Server::get_channel_messages);
111
112 Arc::new(server)
113 }
114
115 fn add_handler<F, Fut, M>(&mut self, handler: F) -> &mut Self
116 where
117 F: 'static + Send + Sync + Fn(Arc<Self>, TypedEnvelope<M>) -> Fut,
118 Fut: 'static + Send + Future<Output = tide::Result<()>>,
119 M: EnvelopedMessage,
120 {
121 let prev_handler = self.handlers.insert(
122 TypeId::of::<M>(),
123 Box::new(move |server, envelope| {
124 let envelope = envelope.into_any().downcast::<TypedEnvelope<M>>().unwrap();
125 (handler)(server, *envelope).boxed()
126 }),
127 );
128 if prev_handler.is_some() {
129 panic!("registered a handler for the same message twice");
130 }
131 self
132 }
133
134 pub fn handle_connection(
135 self: &Arc<Self>,
136 connection: Conn,
137 addr: String,
138 user_id: UserId,
139 ) -> impl Future<Output = ()> {
140 let this = self.clone();
141 async move {
142 let (connection_id, handle_io, mut incoming_rx) =
143 this.peer.add_connection(connection).await;
144 this.add_connection(connection_id, user_id).await;
145
146 let handle_io = handle_io.fuse();
147 futures::pin_mut!(handle_io);
148 loop {
149 let next_message = incoming_rx.recv().fuse();
150 futures::pin_mut!(next_message);
151 futures::select_biased! {
152 message = next_message => {
153 if let Some(message) = message {
154 let start_time = Instant::now();
155 log::info!("RPC message received: {}", message.payload_type_name());
156 if let Some(handler) = this.handlers.get(&message.payload_type_id()) {
157 if let Err(err) = (handler)(this.clone(), message).await {
158 log::error!("error handling message: {:?}", err);
159 } else {
160 log::info!("RPC message handled. duration:{:?}", start_time.elapsed());
161 }
162
163 if let Some(mut notifications) = this.notifications.clone() {
164 let _ = notifications.send(()).await;
165 }
166 } else {
167 log::warn!("unhandled message: {}", message.payload_type_name());
168 }
169 } else {
170 log::info!("rpc connection closed {:?}", addr);
171 break;
172 }
173 }
174 handle_io = handle_io => {
175 if let Err(err) = handle_io {
176 log::error!("error handling rpc connection {:?} - {:?}", addr, err);
177 }
178 break;
179 }
180 }
181 }
182
183 if let Err(err) = this.sign_out(connection_id).await {
184 log::error!("error signing out connection {:?} - {:?}", addr, err);
185 }
186 }
187 }
188
189 async fn sign_out(self: &Arc<Self>, connection_id: zrpc::ConnectionId) -> tide::Result<()> {
190 self.peer.disconnect(connection_id).await;
191 let worktree_ids = self.remove_connection(connection_id).await;
192 for worktree_id in worktree_ids {
193 let state = self.state.read().await;
194 if let Some(worktree) = state.worktrees.get(&worktree_id) {
195 broadcast(connection_id, worktree.connection_ids(), |conn_id| {
196 self.peer.send(
197 conn_id,
198 proto::RemovePeer {
199 worktree_id,
200 peer_id: connection_id.0,
201 },
202 )
203 })
204 .await?;
205 }
206 }
207 Ok(())
208 }
209
210 // Add a new connection associated with a given user.
211 async fn add_connection(&self, connection_id: ConnectionId, user_id: UserId) {
212 self.state.write().await.connections.insert(
213 connection_id,
214 Connection {
215 user_id,
216 worktrees: Default::default(),
217 channels: Default::default(),
218 },
219 );
220 }
221
222 // Remove the given connection and its association with any worktrees.
223 async fn remove_connection(&self, connection_id: ConnectionId) -> Vec<u64> {
224 let mut worktree_ids = Vec::new();
225 let mut state = self.state.write().await;
226 if let Some(connection) = state.connections.remove(&connection_id) {
227 for channel_id in connection.channels {
228 if let Some(channel) = state.channels.get_mut(&channel_id) {
229 channel.connection_ids.remove(&connection_id);
230 }
231 }
232 for worktree_id in connection.worktrees {
233 if let Some(worktree) = state.worktrees.get_mut(&worktree_id) {
234 if worktree.host_connection_id == Some(connection_id) {
235 worktree_ids.push(worktree_id);
236 } else if let Some(replica_id) =
237 worktree.guest_connection_ids.remove(&connection_id)
238 {
239 worktree.active_replica_ids.remove(&replica_id);
240 worktree_ids.push(worktree_id);
241 }
242 }
243 }
244 }
245 worktree_ids
246 }
247
248 async fn ping(self: Arc<Server>, request: TypedEnvelope<proto::Ping>) -> tide::Result<()> {
249 self.peer.respond(request.receipt(), proto::Ack {}).await?;
250 Ok(())
251 }
252
253 async fn share_worktree(
254 self: Arc<Server>,
255 mut request: TypedEnvelope<proto::ShareWorktree>,
256 ) -> tide::Result<()> {
257 let mut state = self.state.write().await;
258 let worktree_id = state.next_worktree_id;
259 state.next_worktree_id += 1;
260 let access_token = random_token();
261 let worktree = request
262 .payload
263 .worktree
264 .as_mut()
265 .ok_or_else(|| anyhow!("missing worktree"))?;
266 let entries = mem::take(&mut worktree.entries)
267 .into_iter()
268 .map(|entry| (entry.id, entry))
269 .collect();
270 state.worktrees.insert(
271 worktree_id,
272 Worktree {
273 host_connection_id: Some(request.sender_id),
274 guest_connection_ids: Default::default(),
275 active_replica_ids: Default::default(),
276 access_token: access_token.clone(),
277 root_name: mem::take(&mut worktree.root_name),
278 entries,
279 },
280 );
281
282 self.peer
283 .respond(
284 request.receipt(),
285 proto::ShareWorktreeResponse {
286 worktree_id,
287 access_token,
288 },
289 )
290 .await?;
291 Ok(())
292 }
293
294 async fn join_worktree(
295 self: Arc<Server>,
296 request: TypedEnvelope<proto::OpenWorktree>,
297 ) -> tide::Result<()> {
298 let worktree_id = request.payload.worktree_id;
299 let access_token = &request.payload.access_token;
300
301 let mut state = self.state.write().await;
302 if let Some((peer_replica_id, worktree)) =
303 state.join_worktree(request.sender_id, worktree_id, access_token)
304 {
305 let mut peers = Vec::new();
306 if let Some(host_connection_id) = worktree.host_connection_id {
307 peers.push(proto::Peer {
308 peer_id: host_connection_id.0,
309 replica_id: 0,
310 });
311 }
312 for (peer_conn_id, peer_replica_id) in &worktree.guest_connection_ids {
313 if *peer_conn_id != request.sender_id {
314 peers.push(proto::Peer {
315 peer_id: peer_conn_id.0,
316 replica_id: *peer_replica_id as u32,
317 });
318 }
319 }
320
321 broadcast(request.sender_id, worktree.connection_ids(), |conn_id| {
322 self.peer.send(
323 conn_id,
324 proto::AddPeer {
325 worktree_id,
326 peer: Some(proto::Peer {
327 peer_id: request.sender_id.0,
328 replica_id: peer_replica_id as u32,
329 }),
330 },
331 )
332 })
333 .await?;
334 self.peer
335 .respond(
336 request.receipt(),
337 proto::OpenWorktreeResponse {
338 worktree_id,
339 worktree: Some(proto::Worktree {
340 root_name: worktree.root_name.clone(),
341 entries: worktree.entries.values().cloned().collect(),
342 }),
343 replica_id: peer_replica_id as u32,
344 peers,
345 },
346 )
347 .await?;
348 } else {
349 self.peer
350 .respond(
351 request.receipt(),
352 proto::OpenWorktreeResponse {
353 worktree_id,
354 worktree: None,
355 replica_id: 0,
356 peers: Vec::new(),
357 },
358 )
359 .await?;
360 }
361
362 Ok(())
363 }
364
365 async fn update_worktree(
366 self: Arc<Server>,
367 request: TypedEnvelope<proto::UpdateWorktree>,
368 ) -> tide::Result<()> {
369 {
370 let mut state = self.state.write().await;
371 let worktree = state.write_worktree(request.payload.worktree_id, request.sender_id)?;
372 for entry_id in &request.payload.removed_entries {
373 worktree.entries.remove(&entry_id);
374 }
375
376 for entry in &request.payload.updated_entries {
377 worktree.entries.insert(entry.id, entry.clone());
378 }
379 }
380
381 self.broadcast_in_worktree(request.payload.worktree_id, &request)
382 .await?;
383 Ok(())
384 }
385
386 async fn close_worktree(
387 self: Arc<Server>,
388 request: TypedEnvelope<proto::CloseWorktree>,
389 ) -> tide::Result<()> {
390 let connection_ids;
391 {
392 let mut state = self.state.write().await;
393 let worktree = state.write_worktree(request.payload.worktree_id, request.sender_id)?;
394 connection_ids = worktree.connection_ids();
395 if worktree.host_connection_id == Some(request.sender_id) {
396 worktree.host_connection_id = None;
397 } else if let Some(replica_id) =
398 worktree.guest_connection_ids.remove(&request.sender_id)
399 {
400 worktree.active_replica_ids.remove(&replica_id);
401 }
402 }
403
404 broadcast(request.sender_id, connection_ids, |conn_id| {
405 self.peer.send(
406 conn_id,
407 proto::RemovePeer {
408 worktree_id: request.payload.worktree_id,
409 peer_id: request.sender_id.0,
410 },
411 )
412 })
413 .await?;
414
415 Ok(())
416 }
417
418 async fn open_buffer(
419 self: Arc<Server>,
420 request: TypedEnvelope<proto::OpenBuffer>,
421 ) -> tide::Result<()> {
422 let receipt = request.receipt();
423 let worktree_id = request.payload.worktree_id;
424 let host_connection_id = self
425 .state
426 .read()
427 .await
428 .read_worktree(worktree_id, request.sender_id)?
429 .host_connection_id()?;
430
431 let response = self
432 .peer
433 .forward_request(request.sender_id, host_connection_id, request.payload)
434 .await?;
435 self.peer.respond(receipt, response).await?;
436 Ok(())
437 }
438
439 async fn close_buffer(
440 self: Arc<Server>,
441 request: TypedEnvelope<proto::CloseBuffer>,
442 ) -> tide::Result<()> {
443 let host_connection_id = self
444 .state
445 .read()
446 .await
447 .read_worktree(request.payload.worktree_id, request.sender_id)?
448 .host_connection_id()?;
449
450 self.peer
451 .forward_send(request.sender_id, host_connection_id, request.payload)
452 .await?;
453
454 Ok(())
455 }
456
457 async fn save_buffer(
458 self: Arc<Server>,
459 request: TypedEnvelope<proto::SaveBuffer>,
460 ) -> tide::Result<()> {
461 let host;
462 let guests;
463 {
464 let state = self.state.read().await;
465 let worktree = state.read_worktree(request.payload.worktree_id, request.sender_id)?;
466 host = worktree.host_connection_id()?;
467 guests = worktree
468 .guest_connection_ids
469 .keys()
470 .copied()
471 .collect::<Vec<_>>();
472 }
473
474 let sender = request.sender_id;
475 let receipt = request.receipt();
476 let response = self
477 .peer
478 .forward_request(sender, host, request.payload.clone())
479 .await?;
480
481 broadcast(host, guests, |conn_id| {
482 let response = response.clone();
483 let peer = &self.peer;
484 async move {
485 if conn_id == sender {
486 peer.respond(receipt, response).await
487 } else {
488 peer.forward_send(host, conn_id, response).await
489 }
490 }
491 })
492 .await?;
493
494 Ok(())
495 }
496
497 async fn update_buffer(
498 self: Arc<Server>,
499 request: TypedEnvelope<proto::UpdateBuffer>,
500 ) -> tide::Result<()> {
501 self.broadcast_in_worktree(request.payload.worktree_id, &request)
502 .await
503 }
504
505 async fn buffer_saved(
506 self: Arc<Server>,
507 request: TypedEnvelope<proto::BufferSaved>,
508 ) -> tide::Result<()> {
509 self.broadcast_in_worktree(request.payload.worktree_id, &request)
510 .await
511 }
512
513 async fn get_channels(
514 self: Arc<Server>,
515 request: TypedEnvelope<proto::GetChannels>,
516 ) -> tide::Result<()> {
517 let user_id = self
518 .state
519 .read()
520 .await
521 .user_id_for_connection(request.sender_id)?;
522 let channels = self.app_state.db.get_accessible_channels(user_id).await?;
523 self.peer
524 .respond(
525 request.receipt(),
526 proto::GetChannelsResponse {
527 channels: channels
528 .into_iter()
529 .map(|chan| proto::Channel {
530 id: chan.id.to_proto(),
531 name: chan.name,
532 })
533 .collect(),
534 },
535 )
536 .await?;
537 Ok(())
538 }
539
540 async fn get_users(
541 self: Arc<Server>,
542 request: TypedEnvelope<proto::GetUsers>,
543 ) -> tide::Result<()> {
544 let user_id = self
545 .state
546 .read()
547 .await
548 .user_id_for_connection(request.sender_id)?;
549 let receipt = request.receipt();
550 let user_ids = request.payload.user_ids.into_iter().map(UserId::from_proto);
551 let users = self
552 .app_state
553 .db
554 .get_users_by_ids(user_id, user_ids)
555 .await?
556 .into_iter()
557 .map(|user| proto::User {
558 id: user.id.to_proto(),
559 github_login: user.github_login,
560 avatar_url: String::new(),
561 })
562 .collect();
563 self.peer
564 .respond(receipt, proto::GetUsersResponse { users })
565 .await?;
566 Ok(())
567 }
568
569 async fn join_channel(
570 self: Arc<Self>,
571 request: TypedEnvelope<proto::JoinChannel>,
572 ) -> tide::Result<()> {
573 let user_id = self
574 .state
575 .read()
576 .await
577 .user_id_for_connection(request.sender_id)?;
578 let channel_id = ChannelId::from_proto(request.payload.channel_id);
579 if !self
580 .app_state
581 .db
582 .can_user_access_channel(user_id, channel_id)
583 .await?
584 {
585 Err(anyhow!("access denied"))?;
586 }
587
588 self.state
589 .write()
590 .await
591 .join_channel(request.sender_id, channel_id);
592 let messages = self
593 .app_state
594 .db
595 .get_channel_messages(channel_id, MESSAGE_COUNT_PER_PAGE, None)
596 .await?
597 .into_iter()
598 .map(|msg| proto::ChannelMessage {
599 id: msg.id.to_proto(),
600 body: msg.body,
601 timestamp: msg.sent_at.unix_timestamp() as u64,
602 sender_id: msg.sender_id.to_proto(),
603 })
604 .collect::<Vec<_>>();
605 self.peer
606 .respond(
607 request.receipt(),
608 proto::JoinChannelResponse {
609 done: messages.len() < MESSAGE_COUNT_PER_PAGE,
610 messages,
611 },
612 )
613 .await?;
614 Ok(())
615 }
616
617 async fn leave_channel(
618 self: Arc<Self>,
619 request: TypedEnvelope<proto::LeaveChannel>,
620 ) -> tide::Result<()> {
621 let user_id = self
622 .state
623 .read()
624 .await
625 .user_id_for_connection(request.sender_id)?;
626 let channel_id = ChannelId::from_proto(request.payload.channel_id);
627 if !self
628 .app_state
629 .db
630 .can_user_access_channel(user_id, channel_id)
631 .await?
632 {
633 Err(anyhow!("access denied"))?;
634 }
635
636 self.state
637 .write()
638 .await
639 .leave_channel(request.sender_id, channel_id);
640
641 Ok(())
642 }
643
644 async fn send_channel_message(
645 self: Arc<Self>,
646 request: TypedEnvelope<proto::SendChannelMessage>,
647 ) -> tide::Result<()> {
648 let receipt = request.receipt();
649 let channel_id = ChannelId::from_proto(request.payload.channel_id);
650 let user_id;
651 let connection_ids;
652 {
653 let state = self.state.read().await;
654 user_id = state.user_id_for_connection(request.sender_id)?;
655 if let Some(channel) = state.channels.get(&channel_id) {
656 connection_ids = channel.connection_ids();
657 } else {
658 return Ok(());
659 }
660 }
661
662 // Validate the message body.
663 let body = request.payload.body.trim().to_string();
664 if body.len() > MAX_MESSAGE_LEN {
665 self.peer
666 .respond_with_error(
667 receipt,
668 proto::Error {
669 message: "message is too long".to_string(),
670 },
671 )
672 .await?;
673 return Ok(());
674 }
675 if body.is_empty() {
676 self.peer
677 .respond_with_error(
678 receipt,
679 proto::Error {
680 message: "message can't be blank".to_string(),
681 },
682 )
683 .await?;
684 return Ok(());
685 }
686
687 let timestamp = OffsetDateTime::now_utc();
688 let message_id = self
689 .app_state
690 .db
691 .create_channel_message(channel_id, user_id, &body, timestamp)
692 .await?
693 .to_proto();
694 let message = proto::ChannelMessage {
695 sender_id: user_id.to_proto(),
696 id: message_id,
697 body,
698 timestamp: timestamp.unix_timestamp() as u64,
699 };
700 broadcast(request.sender_id, connection_ids, |conn_id| {
701 self.peer.send(
702 conn_id,
703 proto::ChannelMessageSent {
704 channel_id: channel_id.to_proto(),
705 message: Some(message.clone()),
706 },
707 )
708 })
709 .await?;
710 self.peer
711 .respond(
712 receipt,
713 proto::SendChannelMessageResponse {
714 message: Some(message),
715 },
716 )
717 .await?;
718 Ok(())
719 }
720
721 async fn get_channel_messages(
722 self: Arc<Self>,
723 request: TypedEnvelope<proto::GetChannelMessages>,
724 ) -> tide::Result<()> {
725 let user_id = self
726 .state
727 .read()
728 .await
729 .user_id_for_connection(request.sender_id)?;
730 let channel_id = ChannelId::from_proto(request.payload.channel_id);
731 if !self
732 .app_state
733 .db
734 .can_user_access_channel(user_id, channel_id)
735 .await?
736 {
737 Err(anyhow!("access denied"))?;
738 }
739
740 let messages = self
741 .app_state
742 .db
743 .get_channel_messages(
744 channel_id,
745 MESSAGE_COUNT_PER_PAGE,
746 Some(MessageId::from_proto(request.payload.before_message_id)),
747 )
748 .await?
749 .into_iter()
750 .map(|msg| proto::ChannelMessage {
751 id: msg.id.to_proto(),
752 body: msg.body,
753 timestamp: msg.sent_at.unix_timestamp() as u64,
754 sender_id: msg.sender_id.to_proto(),
755 })
756 .collect::<Vec<_>>();
757 self.peer
758 .respond(
759 request.receipt(),
760 proto::GetChannelMessagesResponse {
761 done: messages.len() < MESSAGE_COUNT_PER_PAGE,
762 messages,
763 },
764 )
765 .await?;
766 Ok(())
767 }
768
769 async fn broadcast_in_worktree<T: proto::EnvelopedMessage>(
770 &self,
771 worktree_id: u64,
772 message: &TypedEnvelope<T>,
773 ) -> tide::Result<()> {
774 let connection_ids = self
775 .state
776 .read()
777 .await
778 .read_worktree(worktree_id, message.sender_id)?
779 .connection_ids();
780
781 broadcast(message.sender_id, connection_ids, |conn_id| {
782 self.peer
783 .forward_send(message.sender_id, conn_id, message.payload.clone())
784 })
785 .await?;
786
787 Ok(())
788 }
789}
790
791pub async fn broadcast<F, T>(
792 sender_id: ConnectionId,
793 receiver_ids: Vec<ConnectionId>,
794 mut f: F,
795) -> anyhow::Result<()>
796where
797 F: FnMut(ConnectionId) -> T,
798 T: Future<Output = anyhow::Result<()>>,
799{
800 let futures = receiver_ids
801 .into_iter()
802 .filter(|id| *id != sender_id)
803 .map(|id| f(id));
804 futures::future::try_join_all(futures).await?;
805 Ok(())
806}
807
808impl ServerState {
809 fn join_channel(&mut self, connection_id: ConnectionId, channel_id: ChannelId) {
810 if let Some(connection) = self.connections.get_mut(&connection_id) {
811 connection.channels.insert(channel_id);
812 self.channels
813 .entry(channel_id)
814 .or_default()
815 .connection_ids
816 .insert(connection_id);
817 }
818 }
819
820 fn leave_channel(&mut self, connection_id: ConnectionId, channel_id: ChannelId) {
821 if let Some(connection) = self.connections.get_mut(&connection_id) {
822 connection.channels.remove(&channel_id);
823 if let hash_map::Entry::Occupied(mut entry) = self.channels.entry(channel_id) {
824 entry.get_mut().connection_ids.remove(&connection_id);
825 if entry.get_mut().connection_ids.is_empty() {
826 entry.remove();
827 }
828 }
829 }
830 }
831
832 fn user_id_for_connection(&self, connection_id: ConnectionId) -> tide::Result<UserId> {
833 Ok(self
834 .connections
835 .get(&connection_id)
836 .ok_or_else(|| anyhow!("unknown connection"))?
837 .user_id)
838 }
839
840 // Add the given connection as a guest of the given worktree
841 fn join_worktree(
842 &mut self,
843 connection_id: ConnectionId,
844 worktree_id: u64,
845 access_token: &str,
846 ) -> Option<(ReplicaId, &Worktree)> {
847 if let Some(worktree) = self.worktrees.get_mut(&worktree_id) {
848 if access_token == worktree.access_token {
849 if let Some(connection) = self.connections.get_mut(&connection_id) {
850 connection.worktrees.insert(worktree_id);
851 }
852
853 let mut replica_id = 1;
854 while worktree.active_replica_ids.contains(&replica_id) {
855 replica_id += 1;
856 }
857 worktree.active_replica_ids.insert(replica_id);
858 worktree
859 .guest_connection_ids
860 .insert(connection_id, replica_id);
861 Some((replica_id, worktree))
862 } else {
863 None
864 }
865 } else {
866 None
867 }
868 }
869
870 fn read_worktree(
871 &self,
872 worktree_id: u64,
873 connection_id: ConnectionId,
874 ) -> tide::Result<&Worktree> {
875 let worktree = self
876 .worktrees
877 .get(&worktree_id)
878 .ok_or_else(|| anyhow!("worktree not found"))?;
879
880 if worktree.host_connection_id == Some(connection_id)
881 || worktree.guest_connection_ids.contains_key(&connection_id)
882 {
883 Ok(worktree)
884 } else {
885 Err(anyhow!(
886 "{} is not a member of worktree {}",
887 connection_id,
888 worktree_id
889 ))?
890 }
891 }
892
893 fn write_worktree(
894 &mut self,
895 worktree_id: u64,
896 connection_id: ConnectionId,
897 ) -> tide::Result<&mut Worktree> {
898 let worktree = self
899 .worktrees
900 .get_mut(&worktree_id)
901 .ok_or_else(|| anyhow!("worktree not found"))?;
902
903 if worktree.host_connection_id == Some(connection_id)
904 || worktree.guest_connection_ids.contains_key(&connection_id)
905 {
906 Ok(worktree)
907 } else {
908 Err(anyhow!(
909 "{} is not a member of worktree {}",
910 connection_id,
911 worktree_id
912 ))?
913 }
914 }
915}
916
917impl Worktree {
918 pub fn connection_ids(&self) -> Vec<ConnectionId> {
919 self.guest_connection_ids
920 .keys()
921 .copied()
922 .chain(self.host_connection_id)
923 .collect()
924 }
925
926 fn host_connection_id(&self) -> tide::Result<ConnectionId> {
927 Ok(self
928 .host_connection_id
929 .ok_or_else(|| anyhow!("host disconnected from worktree"))?)
930 }
931}
932
933impl Channel {
934 fn connection_ids(&self) -> Vec<ConnectionId> {
935 self.connection_ids.iter().copied().collect()
936 }
937}
938
939pub fn add_routes(app: &mut tide::Server<Arc<AppState>>, rpc: &Arc<Peer>) {
940 let server = Server::new(app.state().clone(), rpc.clone(), None);
941 app.at("/rpc").with(auth::VerifyToken).get(move |request: Request<Arc<AppState>>| {
942 let user_id = request.ext::<UserId>().copied();
943 let server = server.clone();
944 async move {
945 const WEBSOCKET_GUID: &str = "258EAFA5-E914-47DA-95CA-C5AB0DC85B11";
946
947 let connection_upgrade = header_contains_ignore_case(&request, CONNECTION, "upgrade");
948 let upgrade_to_websocket = header_contains_ignore_case(&request, UPGRADE, "websocket");
949 let upgrade_requested = connection_upgrade && upgrade_to_websocket;
950
951 if !upgrade_requested {
952 return Ok(Response::new(StatusCode::UpgradeRequired));
953 }
954
955 let header = match request.header("Sec-Websocket-Key") {
956 Some(h) => h.as_str(),
957 None => return Err(anyhow!("expected sec-websocket-key"))?,
958 };
959
960 let mut response = Response::new(StatusCode::SwitchingProtocols);
961 response.insert_header(UPGRADE, "websocket");
962 response.insert_header(CONNECTION, "Upgrade");
963 let hash = Sha1::new().chain(header).chain(WEBSOCKET_GUID).finalize();
964 response.insert_header("Sec-Websocket-Accept", base64::encode(&hash[..]));
965 response.insert_header("Sec-Websocket-Version", "13");
966
967 let http_res: &mut tide::http::Response = response.as_mut();
968 let upgrade_receiver = http_res.recv_upgrade().await;
969 let addr = request.remote().unwrap_or("unknown").to_string();
970 let user_id = user_id.ok_or_else(|| anyhow!("user_id is not present on request. ensure auth::VerifyToken middleware is present"))?;
971 task::spawn(async move {
972 if let Some(stream) = upgrade_receiver.await {
973 server.handle_connection(Conn::new(WebSocketStream::from_raw_socket(stream, Role::Server, None).await), addr, user_id).await;
974 }
975 });
976
977 Ok(response)
978 }
979 });
980}
981
982fn header_contains_ignore_case<T>(
983 request: &tide::Request<T>,
984 header_name: HeaderName,
985 value: &str,
986) -> bool {
987 request
988 .header(header_name)
989 .map(|h| {
990 h.as_str()
991 .split(',')
992 .any(|s| s.trim().eq_ignore_ascii_case(value.trim()))
993 })
994 .unwrap_or(false)
995}
996
997#[cfg(test)]
998mod tests {
999 use super::*;
1000 use crate::{
1001 auth,
1002 db::{tests::TestDb, UserId},
1003 github, AppState, Config,
1004 };
1005 use async_std::{sync::RwLockReadGuard, task};
1006 use gpui::TestAppContext;
1007 use parking_lot::Mutex;
1008 use postage::{mpsc, watch};
1009 use serde_json::json;
1010 use sqlx::types::time::OffsetDateTime;
1011 use std::{
1012 path::Path,
1013 sync::{
1014 atomic::{AtomicBool, Ordering::SeqCst},
1015 Arc,
1016 },
1017 time::Duration,
1018 };
1019 use zed::{
1020 channel::{Channel, ChannelDetails, ChannelList},
1021 editor::{Editor, Insert},
1022 fs::{FakeFs, Fs as _},
1023 language::LanguageRegistry,
1024 rpc::{self, Client},
1025 settings,
1026 user::UserStore,
1027 worktree::Worktree,
1028 };
1029 use zrpc::Peer;
1030
1031 #[gpui::test]
1032 async fn test_share_worktree(mut cx_a: TestAppContext, mut cx_b: TestAppContext) {
1033 let (window_b, _) = cx_b.add_window(|_| EmptyView);
1034 let settings = cx_b.read(settings::test).1;
1035 let lang_registry = Arc::new(LanguageRegistry::new());
1036
1037 // Connect to a server as 2 clients.
1038 let mut server = TestServer::start().await;
1039 let (_, client_a) = server.create_client(&mut cx_a, "user_a").await;
1040 let (_, client_b) = server.create_client(&mut cx_b, "user_b").await;
1041
1042 cx_a.foreground().forbid_parking();
1043
1044 // Share a local worktree as client A
1045 let fs = Arc::new(FakeFs::new());
1046 fs.insert_tree(
1047 "/a",
1048 json!({
1049 "a.txt": "a-contents",
1050 "b.txt": "b-contents",
1051 }),
1052 )
1053 .await;
1054 let worktree_a = Worktree::open_local(
1055 "/a".as_ref(),
1056 lang_registry.clone(),
1057 fs,
1058 &mut cx_a.to_async(),
1059 )
1060 .await
1061 .unwrap();
1062 worktree_a
1063 .read_with(&cx_a, |tree, _| tree.as_local().unwrap().scan_complete())
1064 .await;
1065 let (worktree_id, worktree_token) = worktree_a
1066 .update(&mut cx_a, |tree, cx| {
1067 tree.as_local_mut().unwrap().share(client_a.clone(), cx)
1068 })
1069 .await
1070 .unwrap();
1071
1072 // Join that worktree as client B, and see that a guest has joined as client A.
1073 let worktree_b = Worktree::open_remote(
1074 client_b.clone(),
1075 worktree_id,
1076 worktree_token,
1077 lang_registry.clone(),
1078 &mut cx_b.to_async(),
1079 )
1080 .await
1081 .unwrap();
1082 let replica_id_b = worktree_b.read_with(&cx_b, |tree, _| tree.replica_id());
1083 worktree_a
1084 .condition(&cx_a, |tree, _| {
1085 tree.peers()
1086 .values()
1087 .any(|replica_id| *replica_id == replica_id_b)
1088 })
1089 .await;
1090
1091 // Open the same file as client B and client A.
1092 let buffer_b = worktree_b
1093 .update(&mut cx_b, |worktree, cx| worktree.open_buffer("b.txt", cx))
1094 .await
1095 .unwrap();
1096 buffer_b.read_with(&cx_b, |buf, _| assert_eq!(buf.text(), "b-contents"));
1097 worktree_a.read_with(&cx_a, |tree, cx| assert!(tree.has_open_buffer("b.txt", cx)));
1098 let buffer_a = worktree_a
1099 .update(&mut cx_a, |tree, cx| tree.open_buffer("b.txt", cx))
1100 .await
1101 .unwrap();
1102
1103 // Create a selection set as client B and see that selection set as client A.
1104 let editor_b = cx_b.add_view(window_b, |cx| Editor::for_buffer(buffer_b, settings, cx));
1105 buffer_a
1106 .condition(&cx_a, |buffer, _| buffer.selection_sets().count() == 1)
1107 .await;
1108
1109 // Edit the buffer as client B and see that edit as client A.
1110 editor_b.update(&mut cx_b, |editor, cx| {
1111 editor.insert(&Insert("ok, ".into()), cx)
1112 });
1113 buffer_a
1114 .condition(&cx_a, |buffer, _| buffer.text() == "ok, b-contents")
1115 .await;
1116
1117 // Remove the selection set as client B, see those selections disappear as client A.
1118 cx_b.update(move |_| drop(editor_b));
1119 buffer_a
1120 .condition(&cx_a, |buffer, _| buffer.selection_sets().count() == 0)
1121 .await;
1122
1123 // Close the buffer as client A, see that the buffer is closed.
1124 drop(buffer_a);
1125 worktree_a
1126 .condition(&cx_a, |tree, cx| !tree.has_open_buffer("b.txt", cx))
1127 .await;
1128
1129 // Dropping the worktree removes client B from client A's peers.
1130 cx_b.update(move |_| drop(worktree_b));
1131 worktree_a
1132 .condition(&cx_a, |tree, _| tree.peers().is_empty())
1133 .await;
1134 }
1135
1136 #[gpui::test]
1137 async fn test_propagate_saves_and_fs_changes_in_shared_worktree(
1138 mut cx_a: TestAppContext,
1139 mut cx_b: TestAppContext,
1140 mut cx_c: TestAppContext,
1141 ) {
1142 cx_a.foreground().forbid_parking();
1143 let lang_registry = Arc::new(LanguageRegistry::new());
1144
1145 // Connect to a server as 3 clients.
1146 let mut server = TestServer::start().await;
1147 let (_, client_a) = server.create_client(&mut cx_a, "user_a").await;
1148 let (_, client_b) = server.create_client(&mut cx_b, "user_b").await;
1149 let (_, client_c) = server.create_client(&mut cx_c, "user_c").await;
1150
1151 let fs = Arc::new(FakeFs::new());
1152
1153 // Share a worktree as client A.
1154 fs.insert_tree(
1155 "/a",
1156 json!({
1157 "file1": "",
1158 "file2": ""
1159 }),
1160 )
1161 .await;
1162
1163 let worktree_a = Worktree::open_local(
1164 "/a".as_ref(),
1165 lang_registry.clone(),
1166 fs.clone(),
1167 &mut cx_a.to_async(),
1168 )
1169 .await
1170 .unwrap();
1171 worktree_a
1172 .read_with(&cx_a, |tree, _| tree.as_local().unwrap().scan_complete())
1173 .await;
1174 let (worktree_id, worktree_token) = worktree_a
1175 .update(&mut cx_a, |tree, cx| {
1176 tree.as_local_mut().unwrap().share(client_a.clone(), cx)
1177 })
1178 .await
1179 .unwrap();
1180
1181 // Join that worktree as clients B and C.
1182 let worktree_b = Worktree::open_remote(
1183 client_b.clone(),
1184 worktree_id,
1185 worktree_token.clone(),
1186 lang_registry.clone(),
1187 &mut cx_b.to_async(),
1188 )
1189 .await
1190 .unwrap();
1191 let worktree_c = Worktree::open_remote(
1192 client_c.clone(),
1193 worktree_id,
1194 worktree_token,
1195 lang_registry.clone(),
1196 &mut cx_c.to_async(),
1197 )
1198 .await
1199 .unwrap();
1200
1201 // Open and edit a buffer as both guests B and C.
1202 let buffer_b = worktree_b
1203 .update(&mut cx_b, |tree, cx| tree.open_buffer("file1", cx))
1204 .await
1205 .unwrap();
1206 let buffer_c = worktree_c
1207 .update(&mut cx_c, |tree, cx| tree.open_buffer("file1", cx))
1208 .await
1209 .unwrap();
1210 buffer_b.update(&mut cx_b, |buf, cx| buf.edit([0..0], "i-am-b, ", cx));
1211 buffer_c.update(&mut cx_c, |buf, cx| buf.edit([0..0], "i-am-c, ", cx));
1212
1213 // Open and edit that buffer as the host.
1214 let buffer_a = worktree_a
1215 .update(&mut cx_a, |tree, cx| tree.open_buffer("file1", cx))
1216 .await
1217 .unwrap();
1218
1219 buffer_a
1220 .condition(&mut cx_a, |buf, _| buf.text() == "i-am-c, i-am-b, ")
1221 .await;
1222 buffer_a.update(&mut cx_a, |buf, cx| {
1223 buf.edit([buf.len()..buf.len()], "i-am-a", cx)
1224 });
1225
1226 // Wait for edits to propagate
1227 buffer_a
1228 .condition(&mut cx_a, |buf, _| buf.text() == "i-am-c, i-am-b, i-am-a")
1229 .await;
1230 buffer_b
1231 .condition(&mut cx_b, |buf, _| buf.text() == "i-am-c, i-am-b, i-am-a")
1232 .await;
1233 buffer_c
1234 .condition(&mut cx_c, |buf, _| buf.text() == "i-am-c, i-am-b, i-am-a")
1235 .await;
1236
1237 // Edit the buffer as the host and concurrently save as guest B.
1238 let save_b = buffer_b.update(&mut cx_b, |buf, cx| buf.save(cx).unwrap());
1239 buffer_a.update(&mut cx_a, |buf, cx| buf.edit([0..0], "hi-a, ", cx));
1240 save_b.await.unwrap();
1241 assert_eq!(
1242 fs.load("/a/file1".as_ref()).await.unwrap(),
1243 "hi-a, i-am-c, i-am-b, i-am-a"
1244 );
1245 buffer_a.read_with(&cx_a, |buf, _| assert!(!buf.is_dirty()));
1246 buffer_b.read_with(&cx_b, |buf, _| assert!(!buf.is_dirty()));
1247 buffer_c.condition(&cx_c, |buf, _| !buf.is_dirty()).await;
1248
1249 // Make changes on host's file system, see those changes on the guests.
1250 fs.rename("/a/file2".as_ref(), "/a/file3".as_ref())
1251 .await
1252 .unwrap();
1253 fs.insert_file(Path::new("/a/file4"), "4".into())
1254 .await
1255 .unwrap();
1256
1257 worktree_b
1258 .condition(&cx_b, |tree, _| tree.file_count() == 3)
1259 .await;
1260 worktree_c
1261 .condition(&cx_c, |tree, _| tree.file_count() == 3)
1262 .await;
1263 worktree_b.read_with(&cx_b, |tree, _| {
1264 assert_eq!(
1265 tree.paths()
1266 .map(|p| p.to_string_lossy())
1267 .collect::<Vec<_>>(),
1268 &["file1", "file3", "file4"]
1269 )
1270 });
1271 worktree_c.read_with(&cx_c, |tree, _| {
1272 assert_eq!(
1273 tree.paths()
1274 .map(|p| p.to_string_lossy())
1275 .collect::<Vec<_>>(),
1276 &["file1", "file3", "file4"]
1277 )
1278 });
1279 }
1280
1281 #[gpui::test]
1282 async fn test_buffer_conflict_after_save(mut cx_a: TestAppContext, mut cx_b: TestAppContext) {
1283 cx_a.foreground().forbid_parking();
1284 let lang_registry = Arc::new(LanguageRegistry::new());
1285
1286 // Connect to a server as 2 clients.
1287 let mut server = TestServer::start().await;
1288 let (_, client_a) = server.create_client(&mut cx_a, "user_a").await;
1289 let (_, client_b) = server.create_client(&mut cx_b, "user_b").await;
1290
1291 // Share a local worktree as client A
1292 let fs = Arc::new(FakeFs::new());
1293 fs.save(Path::new("/a.txt"), &"a-contents".into())
1294 .await
1295 .unwrap();
1296 let worktree_a = Worktree::open_local(
1297 "/".as_ref(),
1298 lang_registry.clone(),
1299 fs,
1300 &mut cx_a.to_async(),
1301 )
1302 .await
1303 .unwrap();
1304 worktree_a
1305 .read_with(&cx_a, |tree, _| tree.as_local().unwrap().scan_complete())
1306 .await;
1307 let (worktree_id, worktree_token) = worktree_a
1308 .update(&mut cx_a, |tree, cx| {
1309 tree.as_local_mut().unwrap().share(client_a.clone(), cx)
1310 })
1311 .await
1312 .unwrap();
1313
1314 // Join that worktree as client B, and see that a guest has joined as client A.
1315 let worktree_b = Worktree::open_remote(
1316 client_b.clone(),
1317 worktree_id,
1318 worktree_token,
1319 lang_registry.clone(),
1320 &mut cx_b.to_async(),
1321 )
1322 .await
1323 .unwrap();
1324
1325 let buffer_b = worktree_b
1326 .update(&mut cx_b, |worktree, cx| worktree.open_buffer("a.txt", cx))
1327 .await
1328 .unwrap();
1329 let mtime = buffer_b.read_with(&cx_b, |buf, _| buf.file().unwrap().mtime);
1330
1331 buffer_b.update(&mut cx_b, |buf, cx| buf.edit([0..0], "world ", cx));
1332 buffer_b.read_with(&cx_b, |buf, _| {
1333 assert!(buf.is_dirty());
1334 assert!(!buf.has_conflict());
1335 });
1336
1337 buffer_b
1338 .update(&mut cx_b, |buf, cx| buf.save(cx))
1339 .unwrap()
1340 .await
1341 .unwrap();
1342 worktree_b
1343 .condition(&cx_b, |_, cx| {
1344 buffer_b.read(cx).file().unwrap().mtime != mtime
1345 })
1346 .await;
1347 buffer_b.read_with(&cx_b, |buf, _| {
1348 assert!(!buf.is_dirty());
1349 assert!(!buf.has_conflict());
1350 });
1351
1352 buffer_b.update(&mut cx_b, |buf, cx| buf.edit([0..0], "hello ", cx));
1353 buffer_b.read_with(&cx_b, |buf, _| {
1354 assert!(buf.is_dirty());
1355 assert!(!buf.has_conflict());
1356 });
1357 }
1358
1359 #[gpui::test]
1360 async fn test_editing_while_guest_opens_buffer(
1361 mut cx_a: TestAppContext,
1362 mut cx_b: TestAppContext,
1363 ) {
1364 cx_a.foreground().forbid_parking();
1365 let lang_registry = Arc::new(LanguageRegistry::new());
1366
1367 // Connect to a server as 2 clients.
1368 let mut server = TestServer::start().await;
1369 let (_, client_a) = server.create_client(&mut cx_a, "user_a").await;
1370 let (_, client_b) = server.create_client(&mut cx_b, "user_b").await;
1371
1372 // Share a local worktree as client A
1373 let fs = Arc::new(FakeFs::new());
1374 fs.save(Path::new("/a.txt"), &"a-contents".into())
1375 .await
1376 .unwrap();
1377 let worktree_a = Worktree::open_local(
1378 "/".as_ref(),
1379 lang_registry.clone(),
1380 fs,
1381 &mut cx_a.to_async(),
1382 )
1383 .await
1384 .unwrap();
1385 worktree_a
1386 .read_with(&cx_a, |tree, _| tree.as_local().unwrap().scan_complete())
1387 .await;
1388 let (worktree_id, worktree_token) = worktree_a
1389 .update(&mut cx_a, |tree, cx| {
1390 tree.as_local_mut().unwrap().share(client_a.clone(), cx)
1391 })
1392 .await
1393 .unwrap();
1394
1395 // Join that worktree as client B, and see that a guest has joined as client A.
1396 let worktree_b = Worktree::open_remote(
1397 client_b.clone(),
1398 worktree_id,
1399 worktree_token,
1400 lang_registry.clone(),
1401 &mut cx_b.to_async(),
1402 )
1403 .await
1404 .unwrap();
1405
1406 let buffer_a = worktree_a
1407 .update(&mut cx_a, |tree, cx| tree.open_buffer("a.txt", cx))
1408 .await
1409 .unwrap();
1410 let buffer_b = cx_b
1411 .background()
1412 .spawn(worktree_b.update(&mut cx_b, |worktree, cx| worktree.open_buffer("a.txt", cx)));
1413
1414 task::yield_now().await;
1415 buffer_a.update(&mut cx_a, |buf, cx| buf.edit([0..0], "z", cx));
1416
1417 let text = buffer_a.read_with(&cx_a, |buf, _| buf.text());
1418 let buffer_b = buffer_b.await.unwrap();
1419 buffer_b.condition(&cx_b, |buf, _| buf.text() == text).await;
1420 }
1421
1422 #[gpui::test]
1423 async fn test_peer_disconnection(mut cx_a: TestAppContext, cx_b: TestAppContext) {
1424 cx_a.foreground().forbid_parking();
1425 let lang_registry = Arc::new(LanguageRegistry::new());
1426
1427 // Connect to a server as 2 clients.
1428 let mut server = TestServer::start().await;
1429 let (_, client_a) = server.create_client(&mut cx_a, "user_a").await;
1430 let (_, client_b) = server.create_client(&mut cx_a, "user_b").await;
1431
1432 // Share a local worktree as client A
1433 let fs = Arc::new(FakeFs::new());
1434 fs.insert_tree(
1435 "/a",
1436 json!({
1437 "a.txt": "a-contents",
1438 "b.txt": "b-contents",
1439 }),
1440 )
1441 .await;
1442 let worktree_a = Worktree::open_local(
1443 "/a".as_ref(),
1444 lang_registry.clone(),
1445 fs,
1446 &mut cx_a.to_async(),
1447 )
1448 .await
1449 .unwrap();
1450 worktree_a
1451 .read_with(&cx_a, |tree, _| tree.as_local().unwrap().scan_complete())
1452 .await;
1453 let (worktree_id, worktree_token) = worktree_a
1454 .update(&mut cx_a, |tree, cx| {
1455 tree.as_local_mut().unwrap().share(client_a.clone(), cx)
1456 })
1457 .await
1458 .unwrap();
1459
1460 // Join that worktree as client B, and see that a guest has joined as client A.
1461 let _worktree_b = Worktree::open_remote(
1462 client_b.clone(),
1463 worktree_id,
1464 worktree_token,
1465 lang_registry.clone(),
1466 &mut cx_b.to_async(),
1467 )
1468 .await
1469 .unwrap();
1470 worktree_a
1471 .condition(&cx_a, |tree, _| tree.peers().len() == 1)
1472 .await;
1473
1474 // Drop client B's connection and ensure client A observes client B leaving the worktree.
1475 client_b.disconnect(&cx_b.to_async()).await.unwrap();
1476 worktree_a
1477 .condition(&cx_a, |tree, _| tree.peers().len() == 0)
1478 .await;
1479 }
1480
1481 #[gpui::test]
1482 async fn test_basic_chat(mut cx_a: TestAppContext, mut cx_b: TestAppContext) {
1483 cx_a.foreground().forbid_parking();
1484
1485 // Connect to a server as 2 clients.
1486 let mut server = TestServer::start().await;
1487 let (user_id_a, client_a) = server.create_client(&mut cx_a, "user_a").await;
1488 let (user_id_b, client_b) = server.create_client(&mut cx_b, "user_b").await;
1489
1490 // Create an org that includes these 2 users.
1491 let db = &server.app_state.db;
1492 let org_id = db.create_org("Test Org", "test-org").await.unwrap();
1493 db.add_org_member(org_id, user_id_a, false).await.unwrap();
1494 db.add_org_member(org_id, user_id_b, false).await.unwrap();
1495
1496 // Create a channel that includes all the users.
1497 let channel_id = db.create_org_channel(org_id, "test-channel").await.unwrap();
1498 db.add_channel_member(channel_id, user_id_a, false)
1499 .await
1500 .unwrap();
1501 db.add_channel_member(channel_id, user_id_b, false)
1502 .await
1503 .unwrap();
1504 db.create_channel_message(
1505 channel_id,
1506 user_id_b,
1507 "hello A, it's B.",
1508 OffsetDateTime::now_utc(),
1509 )
1510 .await
1511 .unwrap();
1512
1513 let user_store_a = Arc::new(UserStore::new(client_a.clone()));
1514 let channels_a = cx_a.add_model(|cx| ChannelList::new(user_store_a, client_a, cx));
1515 channels_a
1516 .condition(&mut cx_a, |list, _| list.available_channels().is_some())
1517 .await;
1518 channels_a.read_with(&cx_a, |list, _| {
1519 assert_eq!(
1520 list.available_channels().unwrap(),
1521 &[ChannelDetails {
1522 id: channel_id.to_proto(),
1523 name: "test-channel".to_string()
1524 }]
1525 )
1526 });
1527 let channel_a = channels_a.update(&mut cx_a, |this, cx| {
1528 this.get_channel(channel_id.to_proto(), cx).unwrap()
1529 });
1530 channel_a.read_with(&cx_a, |channel, _| assert!(channel.messages().is_empty()));
1531 channel_a
1532 .condition(&cx_a, |channel, _| {
1533 channel_messages(channel)
1534 == [("user_b".to_string(), "hello A, it's B.".to_string())]
1535 })
1536 .await;
1537
1538 let user_store_b = Arc::new(UserStore::new(client_b.clone()));
1539 let channels_b = cx_b.add_model(|cx| ChannelList::new(user_store_b, client_b, cx));
1540 channels_b
1541 .condition(&mut cx_b, |list, _| list.available_channels().is_some())
1542 .await;
1543 channels_b.read_with(&cx_b, |list, _| {
1544 assert_eq!(
1545 list.available_channels().unwrap(),
1546 &[ChannelDetails {
1547 id: channel_id.to_proto(),
1548 name: "test-channel".to_string()
1549 }]
1550 )
1551 });
1552
1553 let channel_b = channels_b.update(&mut cx_b, |this, cx| {
1554 this.get_channel(channel_id.to_proto(), cx).unwrap()
1555 });
1556 channel_b.read_with(&cx_b, |channel, _| assert!(channel.messages().is_empty()));
1557 channel_b
1558 .condition(&cx_b, |channel, _| {
1559 channel_messages(channel)
1560 == [("user_b".to_string(), "hello A, it's B.".to_string())]
1561 })
1562 .await;
1563
1564 channel_a
1565 .update(&mut cx_a, |channel, cx| {
1566 channel
1567 .send_message("oh, hi B.".to_string(), cx)
1568 .unwrap()
1569 .detach();
1570 let task = channel.send_message("sup".to_string(), cx).unwrap();
1571 assert_eq!(
1572 channel
1573 .pending_messages()
1574 .iter()
1575 .map(|m| &m.body)
1576 .collect::<Vec<_>>(),
1577 &["oh, hi B.", "sup"]
1578 );
1579 task
1580 })
1581 .await
1582 .unwrap();
1583
1584 channel_a
1585 .condition(&cx_a, |channel, _| channel.pending_messages().is_empty())
1586 .await;
1587 channel_b
1588 .condition(&cx_b, |channel, _| {
1589 channel_messages(channel)
1590 == [
1591 ("user_b".to_string(), "hello A, it's B.".to_string()),
1592 ("user_a".to_string(), "oh, hi B.".to_string()),
1593 ("user_a".to_string(), "sup".to_string()),
1594 ]
1595 })
1596 .await;
1597
1598 assert_eq!(
1599 server.state().await.channels[&channel_id]
1600 .connection_ids
1601 .len(),
1602 2
1603 );
1604 cx_b.update(|_| drop(channel_b));
1605 server
1606 .condition(|state| state.channels[&channel_id].connection_ids.len() == 1)
1607 .await;
1608
1609 cx_a.update(|_| drop(channel_a));
1610 server
1611 .condition(|state| !state.channels.contains_key(&channel_id))
1612 .await;
1613
1614 fn channel_messages(channel: &Channel) -> Vec<(String, String)> {
1615 channel
1616 .messages()
1617 .cursor::<(), ()>()
1618 .map(|m| (m.sender.github_login.clone(), m.body.clone()))
1619 .collect()
1620 }
1621 }
1622
1623 #[gpui::test]
1624 async fn test_chat_message_validation(mut cx_a: TestAppContext) {
1625 cx_a.foreground().forbid_parking();
1626
1627 let mut server = TestServer::start().await;
1628 let (user_id_a, client_a) = server.create_client(&mut cx_a, "user_a").await;
1629
1630 let db = &server.app_state.db;
1631 let org_id = db.create_org("Test Org", "test-org").await.unwrap();
1632 let channel_id = db.create_org_channel(org_id, "test-channel").await.unwrap();
1633 db.add_org_member(org_id, user_id_a, false).await.unwrap();
1634 db.add_channel_member(channel_id, user_id_a, false)
1635 .await
1636 .unwrap();
1637
1638 let user_store_a = Arc::new(UserStore::new(client_a.clone()));
1639 let channels_a = cx_a.add_model(|cx| ChannelList::new(user_store_a, client_a, cx));
1640 channels_a
1641 .condition(&mut cx_a, |list, _| list.available_channels().is_some())
1642 .await;
1643 let channel_a = channels_a.update(&mut cx_a, |this, cx| {
1644 this.get_channel(channel_id.to_proto(), cx).unwrap()
1645 });
1646
1647 // Messages aren't allowed to be too long.
1648 channel_a
1649 .update(&mut cx_a, |channel, cx| {
1650 let long_body = "this is long.\n".repeat(1024);
1651 channel.send_message(long_body, cx).unwrap()
1652 })
1653 .await
1654 .unwrap_err();
1655
1656 // Messages aren't allowed to be blank.
1657 channel_a.update(&mut cx_a, |channel, cx| {
1658 channel.send_message(String::new(), cx).unwrap_err()
1659 });
1660
1661 // Leading and trailing whitespace are trimmed.
1662 channel_a
1663 .update(&mut cx_a, |channel, cx| {
1664 channel
1665 .send_message("\n surrounded by whitespace \n".to_string(), cx)
1666 .unwrap()
1667 })
1668 .await
1669 .unwrap();
1670 assert_eq!(
1671 db.get_channel_messages(channel_id, 10, None)
1672 .await
1673 .unwrap()
1674 .iter()
1675 .map(|m| &m.body)
1676 .collect::<Vec<_>>(),
1677 &["surrounded by whitespace"]
1678 );
1679 }
1680
1681 #[gpui::test]
1682 async fn test_chat_reconnection(mut cx_a: TestAppContext, mut cx_b: TestAppContext) {
1683 cx_a.foreground().forbid_parking();
1684
1685 // Connect to a server as 2 clients.
1686 let mut server = TestServer::start().await;
1687 let (user_id_a, client_a) = server.create_client(&mut cx_a, "user_a").await;
1688 let (user_id_b, client_b) = server.create_client(&mut cx_b, "user_b").await;
1689 let mut status_b = client_b.status();
1690
1691 // Create an org that includes these 2 users.
1692 let db = &server.app_state.db;
1693 let org_id = db.create_org("Test Org", "test-org").await.unwrap();
1694 db.add_org_member(org_id, user_id_a, false).await.unwrap();
1695 db.add_org_member(org_id, user_id_b, false).await.unwrap();
1696
1697 // Create a channel that includes all the users.
1698 let channel_id = db.create_org_channel(org_id, "test-channel").await.unwrap();
1699 db.add_channel_member(channel_id, user_id_a, false)
1700 .await
1701 .unwrap();
1702 db.add_channel_member(channel_id, user_id_b, false)
1703 .await
1704 .unwrap();
1705 db.create_channel_message(
1706 channel_id,
1707 user_id_b,
1708 "hello A, it's B.",
1709 OffsetDateTime::now_utc(),
1710 )
1711 .await
1712 .unwrap();
1713
1714 let user_store_a = Arc::new(UserStore::new(client_a.clone()));
1715 let channels_a = cx_a.add_model(|cx| ChannelList::new(user_store_a, client_a, cx));
1716 channels_a
1717 .condition(&mut cx_a, |list, _| list.available_channels().is_some())
1718 .await;
1719
1720 channels_a.read_with(&cx_a, |list, _| {
1721 assert_eq!(
1722 list.available_channels().unwrap(),
1723 &[ChannelDetails {
1724 id: channel_id.to_proto(),
1725 name: "test-channel".to_string()
1726 }]
1727 )
1728 });
1729 let channel_a = channels_a.update(&mut cx_a, |this, cx| {
1730 this.get_channel(channel_id.to_proto(), cx).unwrap()
1731 });
1732 channel_a.read_with(&cx_a, |channel, _| assert!(channel.messages().is_empty()));
1733 channel_a
1734 .condition(&cx_a, |channel, _| {
1735 channel_messages(channel)
1736 == [("user_b".to_string(), "hello A, it's B.".to_string())]
1737 })
1738 .await;
1739
1740 let user_store_b = Arc::new(UserStore::new(client_b.clone()));
1741 let channels_b = cx_b.add_model(|cx| ChannelList::new(user_store_b, client_b, cx));
1742 channels_b
1743 .condition(&mut cx_b, |list, _| list.available_channels().is_some())
1744 .await;
1745 channels_b.read_with(&cx_b, |list, _| {
1746 assert_eq!(
1747 list.available_channels().unwrap(),
1748 &[ChannelDetails {
1749 id: channel_id.to_proto(),
1750 name: "test-channel".to_string()
1751 }]
1752 )
1753 });
1754
1755 let channel_b = channels_b.update(&mut cx_b, |this, cx| {
1756 this.get_channel(channel_id.to_proto(), cx).unwrap()
1757 });
1758 channel_b.read_with(&cx_b, |channel, _| assert!(channel.messages().is_empty()));
1759 channel_b
1760 .condition(&cx_b, |channel, _| {
1761 channel_messages(channel)
1762 == [("user_b".to_string(), "hello A, it's B.".to_string())]
1763 })
1764 .await;
1765
1766 // Disconnect client B, ensuring we can still access its cached channel data.
1767 server.forbid_connections();
1768 server.disconnect_client(user_id_b);
1769 while !matches!(
1770 status_b.recv().await,
1771 Some(rpc::Status::ReconnectionError { .. })
1772 ) {}
1773
1774 channels_b.read_with(&cx_b, |channels, _| {
1775 assert_eq!(
1776 channels.available_channels().unwrap(),
1777 [ChannelDetails {
1778 id: channel_id.to_proto(),
1779 name: "test-channel".to_string()
1780 }]
1781 )
1782 });
1783 channel_b.read_with(&cx_b, |channel, _| {
1784 assert_eq!(
1785 channel_messages(channel),
1786 [("user_b".to_string(), "hello A, it's B.".to_string())]
1787 )
1788 });
1789
1790 // Send a message from client A while B is disconnected.
1791 channel_a
1792 .update(&mut cx_a, |channel, cx| {
1793 channel
1794 .send_message("oh, hi B.".to_string(), cx)
1795 .unwrap()
1796 .detach();
1797 let task = channel.send_message("sup".to_string(), cx).unwrap();
1798 assert_eq!(
1799 channel
1800 .pending_messages()
1801 .iter()
1802 .map(|m| &m.body)
1803 .collect::<Vec<_>>(),
1804 &["oh, hi B.", "sup"]
1805 );
1806 task
1807 })
1808 .await
1809 .unwrap();
1810
1811 // Give client B a chance to reconnect.
1812 server.allow_connections();
1813 cx_b.foreground().advance_clock(Duration::from_secs(10));
1814
1815 // Verify that B sees the new messages upon reconnection.
1816 channel_b
1817 .condition(&cx_b, |channel, _| {
1818 channel_messages(channel)
1819 == [
1820 ("user_b".to_string(), "hello A, it's B.".to_string()),
1821 ("user_a".to_string(), "oh, hi B.".to_string()),
1822 ("user_a".to_string(), "sup".to_string()),
1823 ]
1824 })
1825 .await;
1826
1827 // Ensure client A and B can communicate normally after reconnection.
1828 channel_a
1829 .update(&mut cx_a, |channel, cx| {
1830 channel.send_message("you online?".to_string(), cx).unwrap()
1831 })
1832 .await
1833 .unwrap();
1834 channel_b
1835 .condition(&cx_b, |channel, _| {
1836 channel_messages(channel)
1837 == [
1838 ("user_b".to_string(), "hello A, it's B.".to_string()),
1839 ("user_a".to_string(), "oh, hi B.".to_string()),
1840 ("user_a".to_string(), "sup".to_string()),
1841 ("user_a".to_string(), "you online?".to_string()),
1842 ]
1843 })
1844 .await;
1845
1846 channel_b
1847 .update(&mut cx_b, |channel, cx| {
1848 channel.send_message("yep".to_string(), cx).unwrap()
1849 })
1850 .await
1851 .unwrap();
1852 channel_a
1853 .condition(&cx_a, |channel, _| {
1854 channel_messages(channel)
1855 == [
1856 ("user_b".to_string(), "hello A, it's B.".to_string()),
1857 ("user_a".to_string(), "oh, hi B.".to_string()),
1858 ("user_a".to_string(), "sup".to_string()),
1859 ("user_a".to_string(), "you online?".to_string()),
1860 ("user_b".to_string(), "yep".to_string()),
1861 ]
1862 })
1863 .await;
1864
1865 fn channel_messages(channel: &Channel) -> Vec<(String, String)> {
1866 channel
1867 .messages()
1868 .cursor::<(), ()>()
1869 .map(|m| (m.sender.github_login.clone(), m.body.clone()))
1870 .collect()
1871 }
1872 }
1873
1874 struct TestServer {
1875 peer: Arc<Peer>,
1876 app_state: Arc<AppState>,
1877 server: Arc<Server>,
1878 notifications: mpsc::Receiver<()>,
1879 connection_killers: Arc<Mutex<HashMap<UserId, watch::Sender<Option<()>>>>>,
1880 forbid_connections: Arc<AtomicBool>,
1881 _test_db: TestDb,
1882 }
1883
1884 impl TestServer {
1885 async fn start() -> Self {
1886 let test_db = TestDb::new();
1887 let app_state = Self::build_app_state(&test_db).await;
1888 let peer = Peer::new();
1889 let notifications = mpsc::channel(128);
1890 let server = Server::new(app_state.clone(), peer.clone(), Some(notifications.0));
1891 Self {
1892 peer,
1893 app_state,
1894 server,
1895 notifications: notifications.1,
1896 connection_killers: Default::default(),
1897 forbid_connections: Default::default(),
1898 _test_db: test_db,
1899 }
1900 }
1901
1902 async fn create_client(
1903 &mut self,
1904 cx: &mut TestAppContext,
1905 name: &str,
1906 ) -> (UserId, Arc<Client>) {
1907 let client_user_id = self.app_state.db.create_user(name, false).await.unwrap();
1908 let client_name = name.to_string();
1909 let mut client = Client::new();
1910 let server = self.server.clone();
1911 let connection_killers = self.connection_killers.clone();
1912 let forbid_connections = self.forbid_connections.clone();
1913 Arc::get_mut(&mut client)
1914 .unwrap()
1915 .set_login_and_connect_callbacks(
1916 move |cx| {
1917 cx.spawn(|_| async move {
1918 let access_token = "the-token".to_string();
1919 Ok((client_user_id.0 as u64, access_token))
1920 })
1921 },
1922 move |user_id, access_token, cx| {
1923 assert_eq!(user_id, client_user_id.0 as u64);
1924 assert_eq!(access_token, "the-token");
1925
1926 let server = server.clone();
1927 let connection_killers = connection_killers.clone();
1928 let forbid_connections = forbid_connections.clone();
1929 let client_name = client_name.clone();
1930 cx.spawn(move |cx| async move {
1931 if forbid_connections.load(SeqCst) {
1932 Err(anyhow!("server is forbidding connections"))
1933 } else {
1934 let (client_conn, server_conn, kill_conn) = Conn::in_memory();
1935 connection_killers.lock().insert(client_user_id, kill_conn);
1936 cx.background()
1937 .spawn(server.handle_connection(
1938 server_conn,
1939 client_name,
1940 client_user_id,
1941 ))
1942 .detach();
1943 Ok(client_conn)
1944 }
1945 })
1946 },
1947 );
1948
1949 client
1950 .authenticate_and_connect(&cx.to_async())
1951 .await
1952 .unwrap();
1953 (client_user_id, client)
1954 }
1955
1956 fn disconnect_client(&self, user_id: UserId) {
1957 if let Some(mut kill_conn) = self.connection_killers.lock().remove(&user_id) {
1958 let _ = kill_conn.try_send(Some(()));
1959 }
1960 }
1961
1962 fn forbid_connections(&self) {
1963 self.forbid_connections.store(true, SeqCst);
1964 }
1965
1966 fn allow_connections(&self) {
1967 self.forbid_connections.store(false, SeqCst);
1968 }
1969
1970 async fn build_app_state(test_db: &TestDb) -> Arc<AppState> {
1971 let mut config = Config::default();
1972 config.session_secret = "a".repeat(32);
1973 config.database_url = test_db.url.clone();
1974 let github_client = github::AppClient::test();
1975 Arc::new(AppState {
1976 db: test_db.db().clone(),
1977 handlebars: Default::default(),
1978 auth_client: auth::build_client("", ""),
1979 repo_client: github::RepoClient::test(&github_client),
1980 github_client,
1981 config,
1982 })
1983 }
1984
1985 async fn state<'a>(&'a self) -> RwLockReadGuard<'a, ServerState> {
1986 self.server.state.read().await
1987 }
1988
1989 async fn condition<F>(&mut self, mut predicate: F)
1990 where
1991 F: FnMut(&ServerState) -> bool,
1992 {
1993 async_std::future::timeout(Duration::from_millis(500), async {
1994 while !(predicate)(&*self.server.state.read().await) {
1995 self.notifications.recv().await;
1996 }
1997 })
1998 .await
1999 .expect("condition timed out");
2000 }
2001 }
2002
2003 impl Drop for TestServer {
2004 fn drop(&mut self) {
2005 task::block_on(self.peer.reset());
2006 }
2007 }
2008
2009 struct EmptyView;
2010
2011 impl gpui::Entity for EmptyView {
2012 type Event = ();
2013 }
2014
2015 impl gpui::View for EmptyView {
2016 fn ui_name() -> &'static str {
2017 "empty view"
2018 }
2019
2020 fn render(&mut self, _: &mut gpui::RenderContext<Self>) -> gpui::ElementBox {
2021 gpui::Element::boxed(gpui::elements::Empty)
2022 }
2023 }
2024}