window.rs

   1#[cfg(any(feature = "inspector", debug_assertions))]
   2use crate::Inspector;
   3use crate::{
   4    Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
   5    AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Capslock,
   6    Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
   7    DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
   8    FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
   9    KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
  10    LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
  11    MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
  12    PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, Priority, PromptButton,
  13    PromptLevel, Quad, Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams,
  14    Replay, ResizeEdge, SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS_X, SUBPIXEL_VARIANTS_Y,
  15    ScaledPixels, Scene, Shadow, SharedString, Size, StrikethroughStyle, Style, SubscriberSet,
  16    Subscription, SystemWindowTab, SystemWindowTabController, TabStopMap, TaffyLayoutEngine, Task,
  17    TextStyle, TextStyleRefinement, TransformationMatrix, Underline, UnderlineStyle,
  18    WindowAppearance, WindowBackgroundAppearance, WindowBounds, WindowControls, WindowDecorations,
  19    WindowOptions, WindowParams, WindowTextSystem, point, prelude::*, px, rems, size,
  20    transparent_black,
  21};
  22use anyhow::{Context as _, Result, anyhow};
  23use collections::{FxHashMap, FxHashSet};
  24#[cfg(target_os = "macos")]
  25use core_video::pixel_buffer::CVPixelBuffer;
  26use derive_more::{Deref, DerefMut};
  27use futures::FutureExt;
  28use futures::channel::oneshot;
  29use itertools::FoldWhile::{Continue, Done};
  30use itertools::Itertools;
  31use parking_lot::RwLock;
  32use raw_window_handle::{HandleError, HasDisplayHandle, HasWindowHandle};
  33use refineable::Refineable;
  34use slotmap::SlotMap;
  35use smallvec::SmallVec;
  36use std::{
  37    any::{Any, TypeId},
  38    borrow::Cow,
  39    cell::{Cell, RefCell},
  40    cmp,
  41    fmt::{Debug, Display},
  42    hash::{Hash, Hasher},
  43    marker::PhantomData,
  44    mem,
  45    ops::{DerefMut, Range},
  46    rc::Rc,
  47    sync::{
  48        Arc, Weak,
  49        atomic::{AtomicUsize, Ordering::SeqCst},
  50    },
  51    time::{Duration, Instant},
  52};
  53use util::post_inc;
  54use util::{ResultExt, measure};
  55use uuid::Uuid;
  56
  57mod prompts;
  58
  59use crate::util::atomic_incr_if_not_zero;
  60pub use prompts::*;
  61
  62pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1536.), px(864.));
  63
  64/// A 6:5 aspect ratio minimum window size to be used for functional,
  65/// additional-to-main-Zed windows, like the settings and rules library windows.
  66pub const DEFAULT_ADDITIONAL_WINDOW_SIZE: Size<Pixels> = Size {
  67    width: Pixels(900.),
  68    height: Pixels(750.),
  69};
  70
  71/// Represents the two different phases when dispatching events.
  72#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
  73pub enum DispatchPhase {
  74    /// After the capture phase comes the bubble phase, in which mouse event listeners are
  75    /// invoked front to back and keyboard event listeners are invoked from the focused element
  76    /// to the root of the element tree. This is the phase you'll most commonly want to use when
  77    /// registering event listeners.
  78    #[default]
  79    Bubble,
  80    /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
  81    /// listeners are invoked from the root of the tree downward toward the focused element. This phase
  82    /// is used for special purposes such as clearing the "pressed" state for click events. If
  83    /// you stop event propagation during this phase, you need to know what you're doing. Handlers
  84    /// outside of the immediate region may rely on detecting non-local events during this phase.
  85    Capture,
  86}
  87
  88impl DispatchPhase {
  89    /// Returns true if this represents the "bubble" phase.
  90    #[inline]
  91    pub fn bubble(self) -> bool {
  92        self == DispatchPhase::Bubble
  93    }
  94
  95    /// Returns true if this represents the "capture" phase.
  96    #[inline]
  97    pub fn capture(self) -> bool {
  98        self == DispatchPhase::Capture
  99    }
 100}
 101
 102struct WindowInvalidatorInner {
 103    pub dirty: bool,
 104    pub draw_phase: DrawPhase,
 105    pub dirty_views: FxHashSet<EntityId>,
 106}
 107
 108#[derive(Clone)]
 109pub(crate) struct WindowInvalidator {
 110    inner: Rc<RefCell<WindowInvalidatorInner>>,
 111}
 112
 113impl WindowInvalidator {
 114    pub fn new() -> Self {
 115        WindowInvalidator {
 116            inner: Rc::new(RefCell::new(WindowInvalidatorInner {
 117                dirty: true,
 118                draw_phase: DrawPhase::None,
 119                dirty_views: FxHashSet::default(),
 120            })),
 121        }
 122    }
 123
 124    pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
 125        let mut inner = self.inner.borrow_mut();
 126        inner.dirty_views.insert(entity);
 127        if inner.draw_phase == DrawPhase::None {
 128            inner.dirty = true;
 129            cx.push_effect(Effect::Notify { emitter: entity });
 130            true
 131        } else {
 132            false
 133        }
 134    }
 135
 136    pub fn is_dirty(&self) -> bool {
 137        self.inner.borrow().dirty
 138    }
 139
 140    pub fn set_dirty(&self, dirty: bool) {
 141        self.inner.borrow_mut().dirty = dirty
 142    }
 143
 144    pub fn set_phase(&self, phase: DrawPhase) {
 145        self.inner.borrow_mut().draw_phase = phase
 146    }
 147
 148    pub fn take_views(&self) -> FxHashSet<EntityId> {
 149        mem::take(&mut self.inner.borrow_mut().dirty_views)
 150    }
 151
 152    pub fn replace_views(&self, views: FxHashSet<EntityId>) {
 153        self.inner.borrow_mut().dirty_views = views;
 154    }
 155
 156    pub fn not_drawing(&self) -> bool {
 157        self.inner.borrow().draw_phase == DrawPhase::None
 158    }
 159
 160    #[track_caller]
 161    pub fn debug_assert_paint(&self) {
 162        debug_assert!(
 163            matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
 164            "this method can only be called during paint"
 165        );
 166    }
 167
 168    #[track_caller]
 169    pub fn debug_assert_prepaint(&self) {
 170        debug_assert!(
 171            matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
 172            "this method can only be called during request_layout, or prepaint"
 173        );
 174    }
 175
 176    #[track_caller]
 177    pub fn debug_assert_paint_or_prepaint(&self) {
 178        debug_assert!(
 179            matches!(
 180                self.inner.borrow().draw_phase,
 181                DrawPhase::Paint | DrawPhase::Prepaint
 182            ),
 183            "this method can only be called during request_layout, prepaint, or paint"
 184        );
 185    }
 186}
 187
 188type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
 189
 190pub(crate) type AnyWindowFocusListener =
 191    Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
 192
 193pub(crate) struct WindowFocusEvent {
 194    pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
 195    pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
 196}
 197
 198impl WindowFocusEvent {
 199    pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
 200        !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
 201    }
 202
 203    pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
 204        self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
 205    }
 206}
 207
 208/// This is provided when subscribing for `Context::on_focus_out` events.
 209pub struct FocusOutEvent {
 210    /// A weak focus handle representing what was blurred.
 211    pub blurred: WeakFocusHandle,
 212}
 213
 214slotmap::new_key_type! {
 215    /// A globally unique identifier for a focusable element.
 216    pub struct FocusId;
 217}
 218
 219thread_local! {
 220    pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(1024 * 1024));
 221}
 222
 223/// Returned when the element arena has been used and so must be cleared before the next draw.
 224#[must_use]
 225pub struct ArenaClearNeeded;
 226
 227impl ArenaClearNeeded {
 228    /// Clear the element arena.
 229    pub fn clear(self) {
 230        ELEMENT_ARENA.with_borrow_mut(|element_arena| {
 231            element_arena.clear();
 232        });
 233    }
 234}
 235
 236pub(crate) type FocusMap = RwLock<SlotMap<FocusId, FocusRef>>;
 237pub(crate) struct FocusRef {
 238    pub(crate) ref_count: AtomicUsize,
 239    pub(crate) tab_index: isize,
 240    pub(crate) tab_stop: bool,
 241}
 242
 243impl FocusId {
 244    /// Obtains whether the element associated with this handle is currently focused.
 245    pub fn is_focused(&self, window: &Window) -> bool {
 246        window.focus == Some(*self)
 247    }
 248
 249    /// Obtains whether the element associated with this handle contains the focused
 250    /// element or is itself focused.
 251    pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
 252        window
 253            .focused(cx)
 254            .is_some_and(|focused| self.contains(focused.id, window))
 255    }
 256
 257    /// Obtains whether the element associated with this handle is contained within the
 258    /// focused element or is itself focused.
 259    pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
 260        let focused = window.focused(cx);
 261        focused.is_some_and(|focused| focused.id.contains(*self, window))
 262    }
 263
 264    /// Obtains whether this handle contains the given handle in the most recently rendered frame.
 265    pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
 266        window
 267            .rendered_frame
 268            .dispatch_tree
 269            .focus_contains(*self, other)
 270    }
 271}
 272
 273/// A handle which can be used to track and manipulate the focused element in a window.
 274pub struct FocusHandle {
 275    pub(crate) id: FocusId,
 276    handles: Arc<FocusMap>,
 277    /// The index of this element in the tab order.
 278    pub tab_index: isize,
 279    /// Whether this element can be focused by tab navigation.
 280    pub tab_stop: bool,
 281}
 282
 283impl std::fmt::Debug for FocusHandle {
 284    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 285        f.write_fmt(format_args!("FocusHandle({:?})", self.id))
 286    }
 287}
 288
 289impl FocusHandle {
 290    pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
 291        let id = handles.write().insert(FocusRef {
 292            ref_count: AtomicUsize::new(1),
 293            tab_index: 0,
 294            tab_stop: false,
 295        });
 296
 297        Self {
 298            id,
 299            tab_index: 0,
 300            tab_stop: false,
 301            handles: handles.clone(),
 302        }
 303    }
 304
 305    pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
 306        let lock = handles.read();
 307        let focus = lock.get(id)?;
 308        if atomic_incr_if_not_zero(&focus.ref_count) == 0 {
 309            return None;
 310        }
 311        Some(Self {
 312            id,
 313            tab_index: focus.tab_index,
 314            tab_stop: focus.tab_stop,
 315            handles: handles.clone(),
 316        })
 317    }
 318
 319    /// Sets the tab index of the element associated with this handle.
 320    pub fn tab_index(mut self, index: isize) -> Self {
 321        self.tab_index = index;
 322        if let Some(focus) = self.handles.write().get_mut(self.id) {
 323            focus.tab_index = index;
 324        }
 325        self
 326    }
 327
 328    /// Sets whether the element associated with this handle is a tab stop.
 329    ///
 330    /// When `false`, the element will not be included in the tab order.
 331    pub fn tab_stop(mut self, tab_stop: bool) -> Self {
 332        self.tab_stop = tab_stop;
 333        if let Some(focus) = self.handles.write().get_mut(self.id) {
 334            focus.tab_stop = tab_stop;
 335        }
 336        self
 337    }
 338
 339    /// Converts this focus handle into a weak variant, which does not prevent it from being released.
 340    pub fn downgrade(&self) -> WeakFocusHandle {
 341        WeakFocusHandle {
 342            id: self.id,
 343            handles: Arc::downgrade(&self.handles),
 344        }
 345    }
 346
 347    /// Moves the focus to the element associated with this handle.
 348    pub fn focus(&self, window: &mut Window) {
 349        window.focus(self)
 350    }
 351
 352    /// Obtains whether the element associated with this handle is currently focused.
 353    pub fn is_focused(&self, window: &Window) -> bool {
 354        self.id.is_focused(window)
 355    }
 356
 357    /// Obtains whether the element associated with this handle contains the focused
 358    /// element or is itself focused.
 359    pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
 360        self.id.contains_focused(window, cx)
 361    }
 362
 363    /// Obtains whether the element associated with this handle is contained within the
 364    /// focused element or is itself focused.
 365    pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
 366        self.id.within_focused(window, cx)
 367    }
 368
 369    /// Obtains whether this handle contains the given handle in the most recently rendered frame.
 370    pub fn contains(&self, other: &Self, window: &Window) -> bool {
 371        self.id.contains(other.id, window)
 372    }
 373
 374    /// Dispatch an action on the element that rendered this focus handle
 375    pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
 376        if let Some(node_id) = window
 377            .rendered_frame
 378            .dispatch_tree
 379            .focusable_node_id(self.id)
 380        {
 381            window.dispatch_action_on_node(node_id, action, cx)
 382        }
 383    }
 384}
 385
 386impl Clone for FocusHandle {
 387    fn clone(&self) -> Self {
 388        Self::for_id(self.id, &self.handles).unwrap()
 389    }
 390}
 391
 392impl PartialEq for FocusHandle {
 393    fn eq(&self, other: &Self) -> bool {
 394        self.id == other.id
 395    }
 396}
 397
 398impl Eq for FocusHandle {}
 399
 400impl Drop for FocusHandle {
 401    fn drop(&mut self) {
 402        self.handles
 403            .read()
 404            .get(self.id)
 405            .unwrap()
 406            .ref_count
 407            .fetch_sub(1, SeqCst);
 408    }
 409}
 410
 411/// A weak reference to a focus handle.
 412#[derive(Clone, Debug)]
 413pub struct WeakFocusHandle {
 414    pub(crate) id: FocusId,
 415    pub(crate) handles: Weak<FocusMap>,
 416}
 417
 418impl WeakFocusHandle {
 419    /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
 420    pub fn upgrade(&self) -> Option<FocusHandle> {
 421        let handles = self.handles.upgrade()?;
 422        FocusHandle::for_id(self.id, &handles)
 423    }
 424}
 425
 426impl PartialEq for WeakFocusHandle {
 427    fn eq(&self, other: &WeakFocusHandle) -> bool {
 428        self.id == other.id
 429    }
 430}
 431
 432impl Eq for WeakFocusHandle {}
 433
 434impl PartialEq<FocusHandle> for WeakFocusHandle {
 435    fn eq(&self, other: &FocusHandle) -> bool {
 436        self.id == other.id
 437    }
 438}
 439
 440impl PartialEq<WeakFocusHandle> for FocusHandle {
 441    fn eq(&self, other: &WeakFocusHandle) -> bool {
 442        self.id == other.id
 443    }
 444}
 445
 446/// Focusable allows users of your view to easily
 447/// focus it (using window.focus_view(cx, view))
 448pub trait Focusable: 'static {
 449    /// Returns the focus handle associated with this view.
 450    fn focus_handle(&self, cx: &App) -> FocusHandle;
 451}
 452
 453impl<V: Focusable> Focusable for Entity<V> {
 454    fn focus_handle(&self, cx: &App) -> FocusHandle {
 455        self.read(cx).focus_handle(cx)
 456    }
 457}
 458
 459/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
 460/// where the lifecycle of the view is handled by another view.
 461pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
 462
 463impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
 464
 465/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
 466pub struct DismissEvent;
 467
 468type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
 469
 470pub(crate) type AnyMouseListener =
 471    Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
 472
 473#[derive(Clone)]
 474pub(crate) struct CursorStyleRequest {
 475    pub(crate) hitbox_id: Option<HitboxId>,
 476    pub(crate) style: CursorStyle,
 477}
 478
 479#[derive(Default, Eq, PartialEq)]
 480pub(crate) struct HitTest {
 481    pub(crate) ids: SmallVec<[HitboxId; 8]>,
 482    pub(crate) hover_hitbox_count: usize,
 483}
 484
 485/// A type of window control area that corresponds to the platform window.
 486#[derive(Clone, Copy, Debug, Eq, PartialEq)]
 487pub enum WindowControlArea {
 488    /// An area that allows dragging of the platform window.
 489    Drag,
 490    /// An area that allows closing of the platform window.
 491    Close,
 492    /// An area that allows maximizing of the platform window.
 493    Max,
 494    /// An area that allows minimizing of the platform window.
 495    Min,
 496}
 497
 498/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
 499#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
 500pub struct HitboxId(u64);
 501
 502impl HitboxId {
 503    /// Checks if the hitbox with this ID is currently hovered. Except when handling
 504    /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
 505    /// events or paint hover styles.
 506    ///
 507    /// See [`Hitbox::is_hovered`] for details.
 508    pub fn is_hovered(self, window: &Window) -> bool {
 509        let hit_test = &window.mouse_hit_test;
 510        for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
 511            if self == *id {
 512                return true;
 513            }
 514        }
 515        false
 516    }
 517
 518    /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
 519    /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
 520    /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
 521    /// this distinction.
 522    pub fn should_handle_scroll(self, window: &Window) -> bool {
 523        window.mouse_hit_test.ids.contains(&self)
 524    }
 525
 526    fn next(mut self) -> HitboxId {
 527        HitboxId(self.0.wrapping_add(1))
 528    }
 529}
 530
 531/// A rectangular region that potentially blocks hitboxes inserted prior.
 532/// See [Window::insert_hitbox] for more details.
 533#[derive(Clone, Debug, Deref)]
 534pub struct Hitbox {
 535    /// A unique identifier for the hitbox.
 536    pub id: HitboxId,
 537    /// The bounds of the hitbox.
 538    #[deref]
 539    pub bounds: Bounds<Pixels>,
 540    /// The content mask when the hitbox was inserted.
 541    pub content_mask: ContentMask<Pixels>,
 542    /// Flags that specify hitbox behavior.
 543    pub behavior: HitboxBehavior,
 544}
 545
 546impl Hitbox {
 547    /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
 548    /// typically what you want when determining whether to handle mouse events or paint hover
 549    /// styles.
 550    ///
 551    /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
 552    /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
 553    /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
 554    ///
 555    /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
 556    /// Concretely, this is due to use-cases like overlays that cause the elements under to be
 557    /// non-interactive while still allowing scrolling. More abstractly, this is because
 558    /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
 559    /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
 560    /// container.
 561    pub fn is_hovered(&self, window: &Window) -> bool {
 562        self.id.is_hovered(window)
 563    }
 564
 565    /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
 566    /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
 567    /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
 568    ///
 569    /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
 570    /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
 571    pub fn should_handle_scroll(&self, window: &Window) -> bool {
 572        self.id.should_handle_scroll(window)
 573    }
 574}
 575
 576/// How the hitbox affects mouse behavior.
 577#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
 578pub enum HitboxBehavior {
 579    /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
 580    #[default]
 581    Normal,
 582
 583    /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
 584    /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
 585    /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
 586    /// [`InteractiveElement::occlude`].
 587    ///
 588    /// For mouse handlers that check those hitboxes, this behaves the same as registering a
 589    /// bubble-phase handler for every mouse event type:
 590    ///
 591    /// ```ignore
 592    /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
 593    ///     if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
 594    ///         cx.stop_propagation();
 595    ///     }
 596    /// })
 597    /// ```
 598    ///
 599    /// This has effects beyond event handling - any use of hitbox checking, such as hover
 600    /// styles and tooltips. These other behaviors are the main point of this mechanism. An
 601    /// alternative might be to not affect mouse event handling - but this would allow
 602    /// inconsistent UI where clicks and moves interact with elements that are not considered to
 603    /// be hovered.
 604    BlockMouse,
 605
 606    /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
 607    /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
 608    /// interaction except scroll events to be ignored - see the documentation of
 609    /// [`Hitbox::is_hovered`] for details. This flag is set by
 610    /// [`InteractiveElement::block_mouse_except_scroll`].
 611    ///
 612    /// For mouse handlers that check those hitboxes, this behaves the same as registering a
 613    /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
 614    ///
 615    /// ```ignore
 616    /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, cx| {
 617    ///     if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
 618    ///         cx.stop_propagation();
 619    ///     }
 620    /// })
 621    /// ```
 622    ///
 623    /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
 624    /// handled differently than other mouse events. If also blocking these scroll events is
 625    /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
 626    ///
 627    /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
 628    /// hover styles and tooltips. These other behaviors are the main point of this mechanism.
 629    /// An alternative might be to not affect mouse event handling - but this would allow
 630    /// inconsistent UI where clicks and moves interact with elements that are not considered to
 631    /// be hovered.
 632    BlockMouseExceptScroll,
 633}
 634
 635/// An identifier for a tooltip.
 636#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
 637pub struct TooltipId(usize);
 638
 639impl TooltipId {
 640    /// Checks if the tooltip is currently hovered.
 641    pub fn is_hovered(&self, window: &Window) -> bool {
 642        window
 643            .tooltip_bounds
 644            .as_ref()
 645            .is_some_and(|tooltip_bounds| {
 646                tooltip_bounds.id == *self
 647                    && tooltip_bounds.bounds.contains(&window.mouse_position())
 648            })
 649    }
 650}
 651
 652pub(crate) struct TooltipBounds {
 653    id: TooltipId,
 654    bounds: Bounds<Pixels>,
 655}
 656
 657#[derive(Clone)]
 658pub(crate) struct TooltipRequest {
 659    id: TooltipId,
 660    tooltip: AnyTooltip,
 661}
 662
 663pub(crate) struct DeferredDraw {
 664    current_view: EntityId,
 665    priority: usize,
 666    parent_node: DispatchNodeId,
 667    element_id_stack: SmallVec<[ElementId; 32]>,
 668    text_style_stack: Vec<TextStyleRefinement>,
 669    element: Option<AnyElement>,
 670    absolute_offset: Point<Pixels>,
 671    prepaint_range: Range<PrepaintStateIndex>,
 672    paint_range: Range<PaintIndex>,
 673}
 674
 675pub(crate) struct Frame {
 676    pub(crate) focus: Option<FocusId>,
 677    pub(crate) window_active: bool,
 678    pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
 679    accessed_element_states: Vec<(GlobalElementId, TypeId)>,
 680    pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
 681    pub(crate) dispatch_tree: DispatchTree,
 682    pub(crate) scene: Scene,
 683    pub(crate) hitboxes: Vec<Hitbox>,
 684    pub(crate) window_control_hitboxes: Vec<(WindowControlArea, Hitbox)>,
 685    pub(crate) deferred_draws: Vec<DeferredDraw>,
 686    pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
 687    pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
 688    pub(crate) cursor_styles: Vec<CursorStyleRequest>,
 689    #[cfg(any(test, feature = "test-support"))]
 690    pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
 691    #[cfg(any(feature = "inspector", debug_assertions))]
 692    pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
 693    #[cfg(any(feature = "inspector", debug_assertions))]
 694    pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
 695    pub(crate) tab_stops: TabStopMap,
 696}
 697
 698#[derive(Clone, Default)]
 699pub(crate) struct PrepaintStateIndex {
 700    hitboxes_index: usize,
 701    tooltips_index: usize,
 702    deferred_draws_index: usize,
 703    dispatch_tree_index: usize,
 704    accessed_element_states_index: usize,
 705    line_layout_index: LineLayoutIndex,
 706}
 707
 708#[derive(Clone, Default)]
 709pub(crate) struct PaintIndex {
 710    scene_index: usize,
 711    mouse_listeners_index: usize,
 712    input_handlers_index: usize,
 713    cursor_styles_index: usize,
 714    accessed_element_states_index: usize,
 715    tab_handle_index: usize,
 716    line_layout_index: LineLayoutIndex,
 717}
 718
 719impl Frame {
 720    pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
 721        Frame {
 722            focus: None,
 723            window_active: false,
 724            element_states: FxHashMap::default(),
 725            accessed_element_states: Vec::new(),
 726            mouse_listeners: Vec::new(),
 727            dispatch_tree,
 728            scene: Scene::default(),
 729            hitboxes: Vec::new(),
 730            window_control_hitboxes: Vec::new(),
 731            deferred_draws: Vec::new(),
 732            input_handlers: Vec::new(),
 733            tooltip_requests: Vec::new(),
 734            cursor_styles: Vec::new(),
 735
 736            #[cfg(any(test, feature = "test-support"))]
 737            debug_bounds: FxHashMap::default(),
 738
 739            #[cfg(any(feature = "inspector", debug_assertions))]
 740            next_inspector_instance_ids: FxHashMap::default(),
 741
 742            #[cfg(any(feature = "inspector", debug_assertions))]
 743            inspector_hitboxes: FxHashMap::default(),
 744            tab_stops: TabStopMap::default(),
 745        }
 746    }
 747
 748    pub(crate) fn clear(&mut self) {
 749        self.element_states.clear();
 750        self.accessed_element_states.clear();
 751        self.mouse_listeners.clear();
 752        self.dispatch_tree.clear();
 753        self.scene.clear();
 754        self.input_handlers.clear();
 755        self.tooltip_requests.clear();
 756        self.cursor_styles.clear();
 757        self.hitboxes.clear();
 758        self.window_control_hitboxes.clear();
 759        self.deferred_draws.clear();
 760        self.tab_stops.clear();
 761        self.focus = None;
 762
 763        #[cfg(any(feature = "inspector", debug_assertions))]
 764        {
 765            self.next_inspector_instance_ids.clear();
 766            self.inspector_hitboxes.clear();
 767        }
 768    }
 769
 770    pub(crate) fn cursor_style(&self, window: &Window) -> Option<CursorStyle> {
 771        self.cursor_styles
 772            .iter()
 773            .rev()
 774            .fold_while(None, |style, request| match request.hitbox_id {
 775                None => Done(Some(request.style)),
 776                Some(hitbox_id) => Continue(
 777                    style.or_else(|| hitbox_id.is_hovered(window).then_some(request.style)),
 778                ),
 779            })
 780            .into_inner()
 781    }
 782
 783    pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
 784        let mut set_hover_hitbox_count = false;
 785        let mut hit_test = HitTest::default();
 786        for hitbox in self.hitboxes.iter().rev() {
 787            let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
 788            if bounds.contains(&position) {
 789                hit_test.ids.push(hitbox.id);
 790                if !set_hover_hitbox_count
 791                    && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
 792                {
 793                    hit_test.hover_hitbox_count = hit_test.ids.len();
 794                    set_hover_hitbox_count = true;
 795                }
 796                if hitbox.behavior == HitboxBehavior::BlockMouse {
 797                    break;
 798                }
 799            }
 800        }
 801        if !set_hover_hitbox_count {
 802            hit_test.hover_hitbox_count = hit_test.ids.len();
 803        }
 804        hit_test
 805    }
 806
 807    pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
 808        self.focus
 809            .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
 810            .unwrap_or_default()
 811    }
 812
 813    pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
 814        for element_state_key in &self.accessed_element_states {
 815            if let Some((element_state_key, element_state)) =
 816                prev_frame.element_states.remove_entry(element_state_key)
 817            {
 818                self.element_states.insert(element_state_key, element_state);
 819            }
 820        }
 821
 822        self.scene.finish();
 823    }
 824}
 825
 826#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Ord, PartialOrd)]
 827enum InputModality {
 828    Mouse,
 829    Keyboard,
 830}
 831
 832/// Holds the state for a specific window.
 833pub struct Window {
 834    pub(crate) handle: AnyWindowHandle,
 835    pub(crate) invalidator: WindowInvalidator,
 836    pub(crate) removed: bool,
 837    pub(crate) platform_window: Box<dyn PlatformWindow>,
 838    display_id: Option<DisplayId>,
 839    sprite_atlas: Arc<dyn PlatformAtlas>,
 840    text_system: Arc<WindowTextSystem>,
 841    rem_size: Pixels,
 842    /// The stack of override values for the window's rem size.
 843    ///
 844    /// This is used by `with_rem_size` to allow rendering an element tree with
 845    /// a given rem size.
 846    rem_size_override_stack: SmallVec<[Pixels; 8]>,
 847    pub(crate) viewport_size: Size<Pixels>,
 848    layout_engine: Option<TaffyLayoutEngine>,
 849    pub(crate) root: Option<AnyView>,
 850    pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
 851    pub(crate) text_style_stack: Vec<TextStyleRefinement>,
 852    pub(crate) rendered_entity_stack: Vec<EntityId>,
 853    pub(crate) element_offset_stack: Vec<Point<Pixels>>,
 854    pub(crate) element_opacity: f32,
 855    pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
 856    pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
 857    pub(crate) image_cache_stack: Vec<AnyImageCache>,
 858    pub(crate) rendered_frame: Frame,
 859    pub(crate) next_frame: Frame,
 860    next_hitbox_id: HitboxId,
 861    pub(crate) next_tooltip_id: TooltipId,
 862    pub(crate) tooltip_bounds: Option<TooltipBounds>,
 863    next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
 864    pub(crate) dirty_views: FxHashSet<EntityId>,
 865    focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
 866    pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
 867    default_prevented: bool,
 868    mouse_position: Point<Pixels>,
 869    mouse_hit_test: HitTest,
 870    modifiers: Modifiers,
 871    capslock: Capslock,
 872    scale_factor: f32,
 873    pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
 874    appearance: WindowAppearance,
 875    pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
 876    active: Rc<Cell<bool>>,
 877    hovered: Rc<Cell<bool>>,
 878    pub(crate) needs_present: Rc<Cell<bool>>,
 879    pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
 880    last_input_modality: InputModality,
 881    pub(crate) refreshing: bool,
 882    pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
 883    pub(crate) focus: Option<FocusId>,
 884    focus_enabled: bool,
 885    pending_input: Option<PendingInput>,
 886    pending_modifier: ModifierState,
 887    pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
 888    prompt: Option<RenderablePromptHandle>,
 889    pub(crate) client_inset: Option<Pixels>,
 890    #[cfg(any(feature = "inspector", debug_assertions))]
 891    inspector: Option<Entity<Inspector>>,
 892}
 893
 894#[derive(Clone, Debug, Default)]
 895struct ModifierState {
 896    modifiers: Modifiers,
 897    saw_keystroke: bool,
 898}
 899
 900#[derive(Clone, Copy, Debug, Eq, PartialEq)]
 901pub(crate) enum DrawPhase {
 902    None,
 903    Prepaint,
 904    Paint,
 905    Focus,
 906}
 907
 908#[derive(Default, Debug)]
 909struct PendingInput {
 910    keystrokes: SmallVec<[Keystroke; 1]>,
 911    focus: Option<FocusId>,
 912    timer: Option<Task<()>>,
 913    needs_timeout: bool,
 914}
 915
 916pub(crate) struct ElementStateBox {
 917    pub(crate) inner: Box<dyn Any>,
 918    #[cfg(debug_assertions)]
 919    pub(crate) type_name: &'static str,
 920}
 921
 922fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> WindowBounds {
 923    // TODO, BUG: if you open a window with the currently active window
 924    // on the stack, this will erroneously fallback to `None`
 925    //
 926    // TODO these should be the initial window bounds not considering maximized/fullscreen
 927    let active_window_bounds = cx
 928        .active_window()
 929        .and_then(|w| w.update(cx, |_, window, _| window.window_bounds()).ok());
 930
 931    const CASCADE_OFFSET: f32 = 25.0;
 932
 933    let display = display_id
 934        .map(|id| cx.find_display(id))
 935        .unwrap_or_else(|| cx.primary_display());
 936
 937    let default_placement = || Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE);
 938
 939    // Use visible_bounds to exclude taskbar/dock areas
 940    let display_bounds = display
 941        .as_ref()
 942        .map(|d| d.visible_bounds())
 943        .unwrap_or_else(default_placement);
 944
 945    let (
 946        Bounds {
 947            origin: base_origin,
 948            size: base_size,
 949        },
 950        window_bounds_ctor,
 951    ): (_, fn(Bounds<Pixels>) -> WindowBounds) = match active_window_bounds {
 952        Some(bounds) => match bounds {
 953            WindowBounds::Windowed(bounds) => (bounds, WindowBounds::Windowed),
 954            WindowBounds::Maximized(bounds) => (bounds, WindowBounds::Maximized),
 955            WindowBounds::Fullscreen(bounds) => (bounds, WindowBounds::Fullscreen),
 956        },
 957        None => (
 958            display
 959                .as_ref()
 960                .map(|d| d.default_bounds())
 961                .unwrap_or_else(default_placement),
 962            WindowBounds::Windowed,
 963        ),
 964    };
 965
 966    let cascade_offset = point(px(CASCADE_OFFSET), px(CASCADE_OFFSET));
 967    let proposed_origin = base_origin + cascade_offset;
 968    let proposed_bounds = Bounds::new(proposed_origin, base_size);
 969
 970    let display_right = display_bounds.origin.x + display_bounds.size.width;
 971    let display_bottom = display_bounds.origin.y + display_bounds.size.height;
 972    let window_right = proposed_bounds.origin.x + proposed_bounds.size.width;
 973    let window_bottom = proposed_bounds.origin.y + proposed_bounds.size.height;
 974
 975    let fits_horizontally = window_right <= display_right;
 976    let fits_vertically = window_bottom <= display_bottom;
 977
 978    let final_origin = match (fits_horizontally, fits_vertically) {
 979        (true, true) => proposed_origin,
 980        (false, true) => point(display_bounds.origin.x, base_origin.y),
 981        (true, false) => point(base_origin.x, display_bounds.origin.y),
 982        (false, false) => display_bounds.origin,
 983    };
 984    window_bounds_ctor(Bounds::new(final_origin, base_size))
 985}
 986
 987impl Window {
 988    pub(crate) fn new(
 989        handle: AnyWindowHandle,
 990        options: WindowOptions,
 991        cx: &mut App,
 992    ) -> Result<Self> {
 993        let WindowOptions {
 994            window_bounds,
 995            titlebar,
 996            focus,
 997            show,
 998            kind,
 999            is_movable,
1000            is_resizable,
1001            is_minimizable,
1002            display_id,
1003            window_background,
1004            app_id,
1005            window_min_size,
1006            window_decorations,
1007            #[cfg_attr(not(target_os = "macos"), allow(unused_variables))]
1008            tabbing_identifier,
1009        } = options;
1010
1011        let window_bounds = window_bounds.unwrap_or_else(|| default_bounds(display_id, cx));
1012        let mut platform_window = cx.platform.open_window(
1013            handle,
1014            WindowParams {
1015                bounds: window_bounds.get_bounds(),
1016                titlebar,
1017                kind,
1018                is_movable,
1019                is_resizable,
1020                is_minimizable,
1021                focus,
1022                show,
1023                display_id,
1024                window_min_size,
1025                #[cfg(target_os = "macos")]
1026                tabbing_identifier,
1027            },
1028        )?;
1029
1030        let tab_bar_visible = platform_window.tab_bar_visible();
1031        SystemWindowTabController::init_visible(cx, tab_bar_visible);
1032        if let Some(tabs) = platform_window.tabbed_windows() {
1033            SystemWindowTabController::add_tab(cx, handle.window_id(), tabs);
1034        }
1035
1036        let display_id = platform_window.display().map(|display| display.id());
1037        let sprite_atlas = platform_window.sprite_atlas();
1038        let mouse_position = platform_window.mouse_position();
1039        let modifiers = platform_window.modifiers();
1040        let capslock = platform_window.capslock();
1041        let content_size = platform_window.content_size();
1042        let scale_factor = platform_window.scale_factor();
1043        let appearance = platform_window.appearance();
1044        let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
1045        let invalidator = WindowInvalidator::new();
1046        let active = Rc::new(Cell::new(platform_window.is_active()));
1047        let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
1048        let needs_present = Rc::new(Cell::new(false));
1049        let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
1050        let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
1051
1052        platform_window
1053            .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
1054        platform_window.set_background_appearance(window_background);
1055
1056        match window_bounds {
1057            WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
1058            WindowBounds::Maximized(_) => platform_window.zoom(),
1059            WindowBounds::Windowed(_) => {}
1060        }
1061
1062        platform_window.on_close(Box::new({
1063            let window_id = handle.window_id();
1064            let mut cx = cx.to_async();
1065            move || {
1066                let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
1067                let _ = cx.update(|cx| {
1068                    SystemWindowTabController::remove_tab(cx, window_id);
1069                });
1070            }
1071        }));
1072        platform_window.on_request_frame(Box::new({
1073            let mut cx = cx.to_async();
1074            let invalidator = invalidator.clone();
1075            let active = active.clone();
1076            let needs_present = needs_present.clone();
1077            let next_frame_callbacks = next_frame_callbacks.clone();
1078            let last_input_timestamp = last_input_timestamp.clone();
1079            move |request_frame_options| {
1080                let next_frame_callbacks = next_frame_callbacks.take();
1081                if !next_frame_callbacks.is_empty() {
1082                    handle
1083                        .update(&mut cx, |_, window, cx| {
1084                            for callback in next_frame_callbacks {
1085                                callback(window, cx);
1086                            }
1087                        })
1088                        .log_err();
1089                }
1090
1091                // Keep presenting the current scene for 1 extra second since the
1092                // last input to prevent the display from underclocking the refresh rate.
1093                let needs_present = request_frame_options.require_presentation
1094                    || needs_present.get()
1095                    || (active.get()
1096                        && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
1097
1098                if invalidator.is_dirty() || request_frame_options.force_render {
1099                    measure("frame duration", || {
1100                        handle
1101                            .update(&mut cx, |_, window, cx| {
1102                                let arena_clear_needed = window.draw(cx);
1103                                window.present();
1104                                // drop the arena elements after present to reduce latency
1105                                arena_clear_needed.clear();
1106                            })
1107                            .log_err();
1108                    })
1109                } else if needs_present {
1110                    handle
1111                        .update(&mut cx, |_, window, _| window.present())
1112                        .log_err();
1113                }
1114
1115                handle
1116                    .update(&mut cx, |_, window, _| {
1117                        window.complete_frame();
1118                    })
1119                    .log_err();
1120            }
1121        }));
1122        platform_window.on_resize(Box::new({
1123            let mut cx = cx.to_async();
1124            move |_, _| {
1125                handle
1126                    .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1127                    .log_err();
1128            }
1129        }));
1130        platform_window.on_moved(Box::new({
1131            let mut cx = cx.to_async();
1132            move || {
1133                handle
1134                    .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1135                    .log_err();
1136            }
1137        }));
1138        platform_window.on_appearance_changed(Box::new({
1139            let mut cx = cx.to_async();
1140            move || {
1141                handle
1142                    .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
1143                    .log_err();
1144            }
1145        }));
1146        platform_window.on_active_status_change(Box::new({
1147            let mut cx = cx.to_async();
1148            move |active| {
1149                handle
1150                    .update(&mut cx, |_, window, cx| {
1151                        window.active.set(active);
1152                        window.modifiers = window.platform_window.modifiers();
1153                        window.capslock = window.platform_window.capslock();
1154                        window
1155                            .activation_observers
1156                            .clone()
1157                            .retain(&(), |callback| callback(window, cx));
1158
1159                        window.bounds_changed(cx);
1160                        window.refresh();
1161
1162                        SystemWindowTabController::update_last_active(cx, window.handle.id);
1163                    })
1164                    .log_err();
1165            }
1166        }));
1167        platform_window.on_hover_status_change(Box::new({
1168            let mut cx = cx.to_async();
1169            move |active| {
1170                handle
1171                    .update(&mut cx, |_, window, _| {
1172                        window.hovered.set(active);
1173                        window.refresh();
1174                    })
1175                    .log_err();
1176            }
1177        }));
1178        platform_window.on_input({
1179            let mut cx = cx.to_async();
1180            Box::new(move |event| {
1181                handle
1182                    .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1183                    .log_err()
1184                    .unwrap_or(DispatchEventResult::default())
1185            })
1186        });
1187        platform_window.on_hit_test_window_control({
1188            let mut cx = cx.to_async();
1189            Box::new(move || {
1190                handle
1191                    .update(&mut cx, |_, window, _cx| {
1192                        for (area, hitbox) in &window.rendered_frame.window_control_hitboxes {
1193                            if window.mouse_hit_test.ids.contains(&hitbox.id) {
1194                                return Some(*area);
1195                            }
1196                        }
1197                        None
1198                    })
1199                    .log_err()
1200                    .unwrap_or(None)
1201            })
1202        });
1203        platform_window.on_move_tab_to_new_window({
1204            let mut cx = cx.to_async();
1205            Box::new(move || {
1206                handle
1207                    .update(&mut cx, |_, _window, cx| {
1208                        SystemWindowTabController::move_tab_to_new_window(cx, handle.window_id());
1209                    })
1210                    .log_err();
1211            })
1212        });
1213        platform_window.on_merge_all_windows({
1214            let mut cx = cx.to_async();
1215            Box::new(move || {
1216                handle
1217                    .update(&mut cx, |_, _window, cx| {
1218                        SystemWindowTabController::merge_all_windows(cx, handle.window_id());
1219                    })
1220                    .log_err();
1221            })
1222        });
1223        platform_window.on_select_next_tab({
1224            let mut cx = cx.to_async();
1225            Box::new(move || {
1226                handle
1227                    .update(&mut cx, |_, _window, cx| {
1228                        SystemWindowTabController::select_next_tab(cx, handle.window_id());
1229                    })
1230                    .log_err();
1231            })
1232        });
1233        platform_window.on_select_previous_tab({
1234            let mut cx = cx.to_async();
1235            Box::new(move || {
1236                handle
1237                    .update(&mut cx, |_, _window, cx| {
1238                        SystemWindowTabController::select_previous_tab(cx, handle.window_id())
1239                    })
1240                    .log_err();
1241            })
1242        });
1243        platform_window.on_toggle_tab_bar({
1244            let mut cx = cx.to_async();
1245            Box::new(move || {
1246                handle
1247                    .update(&mut cx, |_, window, cx| {
1248                        let tab_bar_visible = window.platform_window.tab_bar_visible();
1249                        SystemWindowTabController::set_visible(cx, tab_bar_visible);
1250                    })
1251                    .log_err();
1252            })
1253        });
1254
1255        if let Some(app_id) = app_id {
1256            platform_window.set_app_id(&app_id);
1257        }
1258
1259        platform_window.map_window().unwrap();
1260
1261        Ok(Window {
1262            handle,
1263            invalidator,
1264            removed: false,
1265            platform_window,
1266            display_id,
1267            sprite_atlas,
1268            text_system,
1269            rem_size: px(16.),
1270            rem_size_override_stack: SmallVec::new(),
1271            viewport_size: content_size,
1272            layout_engine: Some(TaffyLayoutEngine::new()),
1273            root: None,
1274            element_id_stack: SmallVec::default(),
1275            text_style_stack: Vec::new(),
1276            rendered_entity_stack: Vec::new(),
1277            element_offset_stack: Vec::new(),
1278            content_mask_stack: Vec::new(),
1279            element_opacity: 1.0,
1280            requested_autoscroll: None,
1281            rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1282            next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1283            next_frame_callbacks,
1284            next_hitbox_id: HitboxId(0),
1285            next_tooltip_id: TooltipId::default(),
1286            tooltip_bounds: None,
1287            dirty_views: FxHashSet::default(),
1288            focus_listeners: SubscriberSet::new(),
1289            focus_lost_listeners: SubscriberSet::new(),
1290            default_prevented: true,
1291            mouse_position,
1292            mouse_hit_test: HitTest::default(),
1293            modifiers,
1294            capslock,
1295            scale_factor,
1296            bounds_observers: SubscriberSet::new(),
1297            appearance,
1298            appearance_observers: SubscriberSet::new(),
1299            active,
1300            hovered,
1301            needs_present,
1302            last_input_timestamp,
1303            last_input_modality: InputModality::Mouse,
1304            refreshing: false,
1305            activation_observers: SubscriberSet::new(),
1306            focus: None,
1307            focus_enabled: true,
1308            pending_input: None,
1309            pending_modifier: ModifierState::default(),
1310            pending_input_observers: SubscriberSet::new(),
1311            prompt: None,
1312            client_inset: None,
1313            image_cache_stack: Vec::new(),
1314            #[cfg(any(feature = "inspector", debug_assertions))]
1315            inspector: None,
1316        })
1317    }
1318
1319    pub(crate) fn new_focus_listener(
1320        &self,
1321        value: AnyWindowFocusListener,
1322    ) -> (Subscription, impl FnOnce() + use<>) {
1323        self.focus_listeners.insert((), value)
1324    }
1325}
1326
1327#[derive(Clone, Debug, Default, PartialEq, Eq)]
1328pub(crate) struct DispatchEventResult {
1329    pub propagate: bool,
1330    pub default_prevented: bool,
1331}
1332
1333/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1334/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1335/// to leave room to support more complex shapes in the future.
1336#[derive(Clone, Debug, Default, PartialEq, Eq)]
1337#[repr(C)]
1338pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1339    /// The bounds
1340    pub bounds: Bounds<P>,
1341}
1342
1343impl ContentMask<Pixels> {
1344    /// Scale the content mask's pixel units by the given scaling factor.
1345    pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1346        ContentMask {
1347            bounds: self.bounds.scale(factor),
1348        }
1349    }
1350
1351    /// Intersect the content mask with the given content mask.
1352    pub fn intersect(&self, other: &Self) -> Self {
1353        let bounds = self.bounds.intersect(&other.bounds);
1354        ContentMask { bounds }
1355    }
1356}
1357
1358impl Window {
1359    fn mark_view_dirty(&mut self, view_id: EntityId) {
1360        // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1361        // should already be dirty.
1362        for view_id in self
1363            .rendered_frame
1364            .dispatch_tree
1365            .view_path_reversed(view_id)
1366        {
1367            if !self.dirty_views.insert(view_id) {
1368                break;
1369            }
1370        }
1371    }
1372
1373    /// Registers a callback to be invoked when the window appearance changes.
1374    pub fn observe_window_appearance(
1375        &self,
1376        mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1377    ) -> Subscription {
1378        let (subscription, activate) = self.appearance_observers.insert(
1379            (),
1380            Box::new(move |window, cx| {
1381                callback(window, cx);
1382                true
1383            }),
1384        );
1385        activate();
1386        subscription
1387    }
1388
1389    /// Replaces the root entity of the window with a new one.
1390    pub fn replace_root<E>(
1391        &mut self,
1392        cx: &mut App,
1393        build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1394    ) -> Entity<E>
1395    where
1396        E: 'static + Render,
1397    {
1398        let view = cx.new(|cx| build_view(self, cx));
1399        self.root = Some(view.clone().into());
1400        self.refresh();
1401        view
1402    }
1403
1404    /// Returns the root entity of the window, if it has one.
1405    pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1406    where
1407        E: 'static + Render,
1408    {
1409        self.root
1410            .as_ref()
1411            .map(|view| view.clone().downcast::<E>().ok())
1412    }
1413
1414    /// Obtain a handle to the window that belongs to this context.
1415    pub fn window_handle(&self) -> AnyWindowHandle {
1416        self.handle
1417    }
1418
1419    /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1420    pub fn refresh(&mut self) {
1421        if self.invalidator.not_drawing() {
1422            self.refreshing = true;
1423            self.invalidator.set_dirty(true);
1424        }
1425    }
1426
1427    /// Close this window.
1428    pub fn remove_window(&mut self) {
1429        self.removed = true;
1430    }
1431
1432    /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1433    pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1434        self.focus
1435            .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1436    }
1437
1438    /// Move focus to the element associated with the given [`FocusHandle`].
1439    pub fn focus(&mut self, handle: &FocusHandle) {
1440        if !self.focus_enabled || self.focus == Some(handle.id) {
1441            return;
1442        }
1443
1444        self.focus = Some(handle.id);
1445        self.clear_pending_keystrokes();
1446        self.refresh();
1447    }
1448
1449    /// Remove focus from all elements within this context's window.
1450    pub fn blur(&mut self) {
1451        if !self.focus_enabled {
1452            return;
1453        }
1454
1455        self.focus = None;
1456        self.refresh();
1457    }
1458
1459    /// Blur the window and don't allow anything in it to be focused again.
1460    pub fn disable_focus(&mut self) {
1461        self.blur();
1462        self.focus_enabled = false;
1463    }
1464
1465    /// Move focus to next tab stop.
1466    pub fn focus_next(&mut self) {
1467        if !self.focus_enabled {
1468            return;
1469        }
1470
1471        if let Some(handle) = self.rendered_frame.tab_stops.next(self.focus.as_ref()) {
1472            self.focus(&handle)
1473        }
1474    }
1475
1476    /// Move focus to previous tab stop.
1477    pub fn focus_prev(&mut self) {
1478        if !self.focus_enabled {
1479            return;
1480        }
1481
1482        if let Some(handle) = self.rendered_frame.tab_stops.prev(self.focus.as_ref()) {
1483            self.focus(&handle)
1484        }
1485    }
1486
1487    /// Accessor for the text system.
1488    pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1489        &self.text_system
1490    }
1491
1492    /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1493    pub fn text_style(&self) -> TextStyle {
1494        let mut style = TextStyle::default();
1495        for refinement in &self.text_style_stack {
1496            style.refine(refinement);
1497        }
1498        style
1499    }
1500
1501    /// Check if the platform window is maximized.
1502    ///
1503    /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1504    pub fn is_maximized(&self) -> bool {
1505        self.platform_window.is_maximized()
1506    }
1507
1508    /// request a certain window decoration (Wayland)
1509    pub fn request_decorations(&self, decorations: WindowDecorations) {
1510        self.platform_window.request_decorations(decorations);
1511    }
1512
1513    /// Start a window resize operation (Wayland)
1514    pub fn start_window_resize(&self, edge: ResizeEdge) {
1515        self.platform_window.start_window_resize(edge);
1516    }
1517
1518    /// Return the `WindowBounds` to indicate that how a window should be opened
1519    /// after it has been closed
1520    pub fn window_bounds(&self) -> WindowBounds {
1521        self.platform_window.window_bounds()
1522    }
1523
1524    /// Return the `WindowBounds` excluding insets (Wayland and X11)
1525    pub fn inner_window_bounds(&self) -> WindowBounds {
1526        self.platform_window.inner_window_bounds()
1527    }
1528
1529    /// Dispatch the given action on the currently focused element.
1530    pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1531        let focus_id = self.focused(cx).map(|handle| handle.id);
1532
1533        let window = self.handle;
1534        cx.defer(move |cx| {
1535            window
1536                .update(cx, |_, window, cx| {
1537                    let node_id = window.focus_node_id_in_rendered_frame(focus_id);
1538                    window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1539                })
1540                .log_err();
1541        })
1542    }
1543
1544    pub(crate) fn dispatch_keystroke_observers(
1545        &mut self,
1546        event: &dyn Any,
1547        action: Option<Box<dyn Action>>,
1548        context_stack: Vec<KeyContext>,
1549        cx: &mut App,
1550    ) {
1551        let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1552            return;
1553        };
1554
1555        cx.keystroke_observers.clone().retain(&(), move |callback| {
1556            (callback)(
1557                &KeystrokeEvent {
1558                    keystroke: key_down_event.keystroke.clone(),
1559                    action: action.as_ref().map(|action| action.boxed_clone()),
1560                    context_stack: context_stack.clone(),
1561                },
1562                self,
1563                cx,
1564            )
1565        });
1566    }
1567
1568    pub(crate) fn dispatch_keystroke_interceptors(
1569        &mut self,
1570        event: &dyn Any,
1571        context_stack: Vec<KeyContext>,
1572        cx: &mut App,
1573    ) {
1574        let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1575            return;
1576        };
1577
1578        cx.keystroke_interceptors
1579            .clone()
1580            .retain(&(), move |callback| {
1581                (callback)(
1582                    &KeystrokeEvent {
1583                        keystroke: key_down_event.keystroke.clone(),
1584                        action: None,
1585                        context_stack: context_stack.clone(),
1586                    },
1587                    self,
1588                    cx,
1589                )
1590            });
1591    }
1592
1593    /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1594    /// that are currently on the stack to be returned to the app.
1595    pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1596        let handle = self.handle;
1597        cx.defer(move |cx| {
1598            handle.update(cx, |_, window, cx| f(window, cx)).ok();
1599        });
1600    }
1601
1602    /// Subscribe to events emitted by a entity.
1603    /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1604    /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1605    pub fn observe<T: 'static>(
1606        &mut self,
1607        observed: &Entity<T>,
1608        cx: &mut App,
1609        mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1610    ) -> Subscription {
1611        let entity_id = observed.entity_id();
1612        let observed = observed.downgrade();
1613        let window_handle = self.handle;
1614        cx.new_observer(
1615            entity_id,
1616            Box::new(move |cx| {
1617                window_handle
1618                    .update(cx, |_, window, cx| {
1619                        if let Some(handle) = observed.upgrade() {
1620                            on_notify(handle, window, cx);
1621                            true
1622                        } else {
1623                            false
1624                        }
1625                    })
1626                    .unwrap_or(false)
1627            }),
1628        )
1629    }
1630
1631    /// Subscribe to events emitted by a entity.
1632    /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1633    /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1634    pub fn subscribe<Emitter, Evt>(
1635        &mut self,
1636        entity: &Entity<Emitter>,
1637        cx: &mut App,
1638        mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1639    ) -> Subscription
1640    where
1641        Emitter: EventEmitter<Evt>,
1642        Evt: 'static,
1643    {
1644        let entity_id = entity.entity_id();
1645        let handle = entity.downgrade();
1646        let window_handle = self.handle;
1647        cx.new_subscription(
1648            entity_id,
1649            (
1650                TypeId::of::<Evt>(),
1651                Box::new(move |event, cx| {
1652                    window_handle
1653                        .update(cx, |_, window, cx| {
1654                            if let Some(entity) = handle.upgrade() {
1655                                let event = event.downcast_ref().expect("invalid event type");
1656                                on_event(entity, event, window, cx);
1657                                true
1658                            } else {
1659                                false
1660                            }
1661                        })
1662                        .unwrap_or(false)
1663                }),
1664            ),
1665        )
1666    }
1667
1668    /// Register a callback to be invoked when the given `Entity` is released.
1669    pub fn observe_release<T>(
1670        &self,
1671        entity: &Entity<T>,
1672        cx: &mut App,
1673        mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1674    ) -> Subscription
1675    where
1676        T: 'static,
1677    {
1678        let entity_id = entity.entity_id();
1679        let window_handle = self.handle;
1680        let (subscription, activate) = cx.release_listeners.insert(
1681            entity_id,
1682            Box::new(move |entity, cx| {
1683                let entity = entity.downcast_mut().expect("invalid entity type");
1684                let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1685            }),
1686        );
1687        activate();
1688        subscription
1689    }
1690
1691    /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1692    /// await points in async code.
1693    pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1694        AsyncWindowContext::new_context(cx.to_async(), self.handle)
1695    }
1696
1697    /// Schedule the given closure to be run directly after the current frame is rendered.
1698    pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1699        RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1700    }
1701
1702    /// Schedule a frame to be drawn on the next animation frame.
1703    ///
1704    /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1705    /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1706    ///
1707    /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1708    pub fn request_animation_frame(&self) {
1709        let entity = self.current_view();
1710        self.on_next_frame(move |_, cx| cx.notify(entity));
1711    }
1712
1713    /// Spawn the future returned by the given closure on the application thread pool.
1714    /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1715    /// use within your future.
1716    #[track_caller]
1717    pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1718    where
1719        R: 'static,
1720        AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1721    {
1722        let handle = self.handle;
1723        cx.spawn(async move |app| {
1724            let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1725            f(&mut async_window_cx).await
1726        })
1727    }
1728
1729    /// Spawn the future returned by the given closure on the application thread
1730    /// pool, with the given priority. The closure is provided a handle to the
1731    /// current window and an `AsyncWindowContext` for use within your future.
1732    #[track_caller]
1733    pub fn spawn_with_priority<AsyncFn, R>(
1734        &self,
1735        priority: Priority,
1736        cx: &App,
1737        f: AsyncFn,
1738    ) -> Task<R>
1739    where
1740        R: 'static,
1741        AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1742    {
1743        let handle = self.handle;
1744        cx.spawn_with_priority(priority, async move |app| {
1745            let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1746            f(&mut async_window_cx).await
1747        })
1748    }
1749
1750    fn bounds_changed(&mut self, cx: &mut App) {
1751        self.scale_factor = self.platform_window.scale_factor();
1752        self.viewport_size = self.platform_window.content_size();
1753        self.display_id = self.platform_window.display().map(|display| display.id());
1754
1755        self.refresh();
1756
1757        self.bounds_observers
1758            .clone()
1759            .retain(&(), |callback| callback(self, cx));
1760    }
1761
1762    /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1763    pub fn bounds(&self) -> Bounds<Pixels> {
1764        self.platform_window.bounds()
1765    }
1766
1767    /// Set the content size of the window.
1768    pub fn resize(&mut self, size: Size<Pixels>) {
1769        self.platform_window.resize(size);
1770    }
1771
1772    /// Returns whether or not the window is currently fullscreen
1773    pub fn is_fullscreen(&self) -> bool {
1774        self.platform_window.is_fullscreen()
1775    }
1776
1777    pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1778        self.appearance = self.platform_window.appearance();
1779
1780        self.appearance_observers
1781            .clone()
1782            .retain(&(), |callback| callback(self, cx));
1783    }
1784
1785    /// Returns the appearance of the current window.
1786    pub fn appearance(&self) -> WindowAppearance {
1787        self.appearance
1788    }
1789
1790    /// Returns the size of the drawable area within the window.
1791    pub fn viewport_size(&self) -> Size<Pixels> {
1792        self.viewport_size
1793    }
1794
1795    /// Returns whether this window is focused by the operating system (receiving key events).
1796    pub fn is_window_active(&self) -> bool {
1797        self.active.get()
1798    }
1799
1800    /// Returns whether this window is considered to be the window
1801    /// that currently owns the mouse cursor.
1802    /// On mac, this is equivalent to `is_window_active`.
1803    pub fn is_window_hovered(&self) -> bool {
1804        if cfg!(any(
1805            target_os = "windows",
1806            target_os = "linux",
1807            target_os = "freebsd"
1808        )) {
1809            self.hovered.get()
1810        } else {
1811            self.is_window_active()
1812        }
1813    }
1814
1815    /// Toggle zoom on the window.
1816    pub fn zoom_window(&self) {
1817        self.platform_window.zoom();
1818    }
1819
1820    /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1821    pub fn show_window_menu(&self, position: Point<Pixels>) {
1822        self.platform_window.show_window_menu(position)
1823    }
1824
1825    /// Handle window movement for Linux and macOS.
1826    /// Tells the compositor to take control of window movement (Wayland and X11)
1827    ///
1828    /// Events may not be received during a move operation.
1829    pub fn start_window_move(&self) {
1830        self.platform_window.start_window_move()
1831    }
1832
1833    /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1834    pub fn set_client_inset(&mut self, inset: Pixels) {
1835        self.client_inset = Some(inset);
1836        self.platform_window.set_client_inset(inset);
1837    }
1838
1839    /// Returns the client_inset value by [`Self::set_client_inset`].
1840    pub fn client_inset(&self) -> Option<Pixels> {
1841        self.client_inset
1842    }
1843
1844    /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1845    pub fn window_decorations(&self) -> Decorations {
1846        self.platform_window.window_decorations()
1847    }
1848
1849    /// Returns which window controls are currently visible (Wayland)
1850    pub fn window_controls(&self) -> WindowControls {
1851        self.platform_window.window_controls()
1852    }
1853
1854    /// Updates the window's title at the platform level.
1855    pub fn set_window_title(&mut self, title: &str) {
1856        self.platform_window.set_title(title);
1857    }
1858
1859    /// Sets the application identifier.
1860    pub fn set_app_id(&mut self, app_id: &str) {
1861        self.platform_window.set_app_id(app_id);
1862    }
1863
1864    /// Sets the window background appearance.
1865    pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1866        self.platform_window
1867            .set_background_appearance(background_appearance);
1868    }
1869
1870    /// Mark the window as dirty at the platform level.
1871    pub fn set_window_edited(&mut self, edited: bool) {
1872        self.platform_window.set_edited(edited);
1873    }
1874
1875    /// Determine the display on which the window is visible.
1876    pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1877        cx.platform
1878            .displays()
1879            .into_iter()
1880            .find(|display| Some(display.id()) == self.display_id)
1881    }
1882
1883    /// Show the platform character palette.
1884    pub fn show_character_palette(&self) {
1885        self.platform_window.show_character_palette();
1886    }
1887
1888    /// The scale factor of the display associated with the window. For example, it could
1889    /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1890    /// be rendered as two pixels on screen.
1891    pub fn scale_factor(&self) -> f32 {
1892        self.scale_factor
1893    }
1894
1895    /// The size of an em for the base font of the application. Adjusting this value allows the
1896    /// UI to scale, just like zooming a web page.
1897    pub fn rem_size(&self) -> Pixels {
1898        self.rem_size_override_stack
1899            .last()
1900            .copied()
1901            .unwrap_or(self.rem_size)
1902    }
1903
1904    /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1905    /// UI to scale, just like zooming a web page.
1906    pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1907        self.rem_size = rem_size.into();
1908    }
1909
1910    /// Acquire a globally unique identifier for the given ElementId.
1911    /// Only valid for the duration of the provided closure.
1912    pub fn with_global_id<R>(
1913        &mut self,
1914        element_id: ElementId,
1915        f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1916    ) -> R {
1917        self.element_id_stack.push(element_id);
1918        let global_id = GlobalElementId(Arc::from(&*self.element_id_stack));
1919
1920        let result = f(&global_id, self);
1921        self.element_id_stack.pop();
1922        result
1923    }
1924
1925    /// Executes the provided function with the specified rem size.
1926    ///
1927    /// This method must only be called as part of element drawing.
1928    // This function is called in a highly recursive manner in editor
1929    // prepainting, make sure its inlined to reduce the stack burden
1930    #[inline]
1931    pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1932    where
1933        F: FnOnce(&mut Self) -> R,
1934    {
1935        self.invalidator.debug_assert_paint_or_prepaint();
1936
1937        if let Some(rem_size) = rem_size {
1938            self.rem_size_override_stack.push(rem_size.into());
1939            let result = f(self);
1940            self.rem_size_override_stack.pop();
1941            result
1942        } else {
1943            f(self)
1944        }
1945    }
1946
1947    /// The line height associated with the current text style.
1948    pub fn line_height(&self) -> Pixels {
1949        self.text_style().line_height_in_pixels(self.rem_size())
1950    }
1951
1952    /// Call to prevent the default action of an event. Currently only used to prevent
1953    /// parent elements from becoming focused on mouse down.
1954    pub fn prevent_default(&mut self) {
1955        self.default_prevented = true;
1956    }
1957
1958    /// Obtain whether default has been prevented for the event currently being dispatched.
1959    pub fn default_prevented(&self) -> bool {
1960        self.default_prevented
1961    }
1962
1963    /// Determine whether the given action is available along the dispatch path to the currently focused element.
1964    pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1965        let node_id =
1966            self.focus_node_id_in_rendered_frame(self.focused(cx).map(|handle| handle.id));
1967        self.rendered_frame
1968            .dispatch_tree
1969            .is_action_available(action, node_id)
1970    }
1971
1972    /// The position of the mouse relative to the window.
1973    pub fn mouse_position(&self) -> Point<Pixels> {
1974        self.mouse_position
1975    }
1976
1977    /// The current state of the keyboard's modifiers
1978    pub fn modifiers(&self) -> Modifiers {
1979        self.modifiers
1980    }
1981
1982    /// Returns true if the last input event was keyboard-based (key press, tab navigation, etc.)
1983    /// This is used for focus-visible styling to show focus indicators only for keyboard navigation.
1984    pub fn last_input_was_keyboard(&self) -> bool {
1985        self.last_input_modality == InputModality::Keyboard
1986    }
1987
1988    /// The current state of the keyboard's capslock
1989    pub fn capslock(&self) -> Capslock {
1990        self.capslock
1991    }
1992
1993    fn complete_frame(&self) {
1994        self.platform_window.completed_frame();
1995    }
1996
1997    /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1998    /// the contents of the new [`Scene`], use [`Self::present`].
1999    #[profiling::function]
2000    pub fn draw(&mut self, cx: &mut App) -> ArenaClearNeeded {
2001        self.invalidate_entities();
2002        cx.entities.clear_accessed();
2003        debug_assert!(self.rendered_entity_stack.is_empty());
2004        self.invalidator.set_dirty(false);
2005        self.requested_autoscroll = None;
2006
2007        // Restore the previously-used input handler.
2008        if let Some(input_handler) = self.platform_window.take_input_handler() {
2009            self.rendered_frame.input_handlers.push(Some(input_handler));
2010        }
2011        if !cx.mode.skip_drawing() {
2012            self.draw_roots(cx);
2013        }
2014        self.dirty_views.clear();
2015        self.next_frame.window_active = self.active.get();
2016
2017        // Register requested input handler with the platform window.
2018        if let Some(input_handler) = self.next_frame.input_handlers.pop() {
2019            self.platform_window
2020                .set_input_handler(input_handler.unwrap());
2021        }
2022
2023        self.layout_engine.as_mut().unwrap().clear();
2024        self.text_system().finish_frame();
2025        self.next_frame.finish(&mut self.rendered_frame);
2026
2027        self.invalidator.set_phase(DrawPhase::Focus);
2028        let previous_focus_path = self.rendered_frame.focus_path();
2029        let previous_window_active = self.rendered_frame.window_active;
2030        mem::swap(&mut self.rendered_frame, &mut self.next_frame);
2031        self.next_frame.clear();
2032        let current_focus_path = self.rendered_frame.focus_path();
2033        let current_window_active = self.rendered_frame.window_active;
2034
2035        if previous_focus_path != current_focus_path
2036            || previous_window_active != current_window_active
2037        {
2038            if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
2039                self.focus_lost_listeners
2040                    .clone()
2041                    .retain(&(), |listener| listener(self, cx));
2042            }
2043
2044            let event = WindowFocusEvent {
2045                previous_focus_path: if previous_window_active {
2046                    previous_focus_path
2047                } else {
2048                    Default::default()
2049                },
2050                current_focus_path: if current_window_active {
2051                    current_focus_path
2052                } else {
2053                    Default::default()
2054                },
2055            };
2056            self.focus_listeners
2057                .clone()
2058                .retain(&(), |listener| listener(&event, self, cx));
2059        }
2060
2061        debug_assert!(self.rendered_entity_stack.is_empty());
2062        self.record_entities_accessed(cx);
2063        self.reset_cursor_style(cx);
2064        self.refreshing = false;
2065        self.invalidator.set_phase(DrawPhase::None);
2066        self.needs_present.set(true);
2067
2068        ArenaClearNeeded
2069    }
2070
2071    fn record_entities_accessed(&mut self, cx: &mut App) {
2072        let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2073        let mut entities = mem::take(entities_ref.deref_mut());
2074        drop(entities_ref);
2075        let handle = self.handle;
2076        cx.record_entities_accessed(
2077            handle,
2078            // Try moving window invalidator into the Window
2079            self.invalidator.clone(),
2080            &entities,
2081        );
2082        let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2083        mem::swap(&mut entities, entities_ref.deref_mut());
2084    }
2085
2086    fn invalidate_entities(&mut self) {
2087        let mut views = self.invalidator.take_views();
2088        for entity in views.drain() {
2089            self.mark_view_dirty(entity);
2090        }
2091        self.invalidator.replace_views(views);
2092    }
2093
2094    #[profiling::function]
2095    fn present(&self) {
2096        self.platform_window.draw(&self.rendered_frame.scene);
2097        self.needs_present.set(false);
2098        profiling::finish_frame!();
2099    }
2100
2101    fn draw_roots(&mut self, cx: &mut App) {
2102        self.invalidator.set_phase(DrawPhase::Prepaint);
2103        self.tooltip_bounds.take();
2104
2105        let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
2106        let root_size = {
2107            #[cfg(any(feature = "inspector", debug_assertions))]
2108            {
2109                if self.inspector.is_some() {
2110                    let mut size = self.viewport_size;
2111                    size.width = (size.width - _inspector_width).max(px(0.0));
2112                    size
2113                } else {
2114                    self.viewport_size
2115                }
2116            }
2117            #[cfg(not(any(feature = "inspector", debug_assertions)))]
2118            {
2119                self.viewport_size
2120            }
2121        };
2122
2123        // Layout all root elements.
2124        let mut root_element = self.root.as_ref().unwrap().clone().into_any();
2125        root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2126
2127        #[cfg(any(feature = "inspector", debug_assertions))]
2128        let inspector_element = self.prepaint_inspector(_inspector_width, cx);
2129
2130        let mut sorted_deferred_draws =
2131            (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
2132        sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
2133        self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
2134
2135        let mut prompt_element = None;
2136        let mut active_drag_element = None;
2137        let mut tooltip_element = None;
2138        if let Some(prompt) = self.prompt.take() {
2139            let mut element = prompt.view.any_view().into_any();
2140            element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2141            prompt_element = Some(element);
2142            self.prompt = Some(prompt);
2143        } else if let Some(active_drag) = cx.active_drag.take() {
2144            let mut element = active_drag.view.clone().into_any();
2145            let offset = self.mouse_position() - active_drag.cursor_offset;
2146            element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
2147            active_drag_element = Some(element);
2148            cx.active_drag = Some(active_drag);
2149        } else {
2150            tooltip_element = self.prepaint_tooltip(cx);
2151        }
2152
2153        self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
2154
2155        // Now actually paint the elements.
2156        self.invalidator.set_phase(DrawPhase::Paint);
2157        root_element.paint(self, cx);
2158
2159        #[cfg(any(feature = "inspector", debug_assertions))]
2160        self.paint_inspector(inspector_element, cx);
2161
2162        self.paint_deferred_draws(&sorted_deferred_draws, cx);
2163
2164        if let Some(mut prompt_element) = prompt_element {
2165            prompt_element.paint(self, cx);
2166        } else if let Some(mut drag_element) = active_drag_element {
2167            drag_element.paint(self, cx);
2168        } else if let Some(mut tooltip_element) = tooltip_element {
2169            tooltip_element.paint(self, cx);
2170        }
2171
2172        #[cfg(any(feature = "inspector", debug_assertions))]
2173        self.paint_inspector_hitbox(cx);
2174    }
2175
2176    fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
2177        // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
2178        for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
2179            let Some(Some(tooltip_request)) = self
2180                .next_frame
2181                .tooltip_requests
2182                .get(tooltip_request_index)
2183                .cloned()
2184            else {
2185                log::error!("Unexpectedly absent TooltipRequest");
2186                continue;
2187            };
2188            let mut element = tooltip_request.tooltip.view.clone().into_any();
2189            let mouse_position = tooltip_request.tooltip.mouse_position;
2190            let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
2191
2192            let mut tooltip_bounds =
2193                Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
2194            let window_bounds = Bounds {
2195                origin: Point::default(),
2196                size: self.viewport_size(),
2197            };
2198
2199            if tooltip_bounds.right() > window_bounds.right() {
2200                let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
2201                if new_x >= Pixels::ZERO {
2202                    tooltip_bounds.origin.x = new_x;
2203                } else {
2204                    tooltip_bounds.origin.x = cmp::max(
2205                        Pixels::ZERO,
2206                        tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
2207                    );
2208                }
2209            }
2210
2211            if tooltip_bounds.bottom() > window_bounds.bottom() {
2212                let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
2213                if new_y >= Pixels::ZERO {
2214                    tooltip_bounds.origin.y = new_y;
2215                } else {
2216                    tooltip_bounds.origin.y = cmp::max(
2217                        Pixels::ZERO,
2218                        tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
2219                    );
2220                }
2221            }
2222
2223            // It's possible for an element to have an active tooltip while not being painted (e.g.
2224            // via the `visible_on_hover` method). Since mouse listeners are not active in this
2225            // case, instead update the tooltip's visibility here.
2226            let is_visible =
2227                (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
2228            if !is_visible {
2229                continue;
2230            }
2231
2232            self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
2233                element.prepaint(window, cx)
2234            });
2235
2236            self.tooltip_bounds = Some(TooltipBounds {
2237                id: tooltip_request.id,
2238                bounds: tooltip_bounds,
2239            });
2240            return Some(element);
2241        }
2242        None
2243    }
2244
2245    fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2246        assert_eq!(self.element_id_stack.len(), 0);
2247
2248        let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2249        for deferred_draw_ix in deferred_draw_indices {
2250            let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2251            self.element_id_stack
2252                .clone_from(&deferred_draw.element_id_stack);
2253            self.text_style_stack
2254                .clone_from(&deferred_draw.text_style_stack);
2255            self.next_frame
2256                .dispatch_tree
2257                .set_active_node(deferred_draw.parent_node);
2258
2259            let prepaint_start = self.prepaint_index();
2260            if let Some(element) = deferred_draw.element.as_mut() {
2261                self.with_rendered_view(deferred_draw.current_view, |window| {
2262                    window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
2263                        element.prepaint(window, cx)
2264                    });
2265                })
2266            } else {
2267                self.reuse_prepaint(deferred_draw.prepaint_range.clone());
2268            }
2269            let prepaint_end = self.prepaint_index();
2270            deferred_draw.prepaint_range = prepaint_start..prepaint_end;
2271        }
2272        assert_eq!(
2273            self.next_frame.deferred_draws.len(),
2274            0,
2275            "cannot call defer_draw during deferred drawing"
2276        );
2277        self.next_frame.deferred_draws = deferred_draws;
2278        self.element_id_stack.clear();
2279        self.text_style_stack.clear();
2280    }
2281
2282    fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2283        assert_eq!(self.element_id_stack.len(), 0);
2284
2285        let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2286        for deferred_draw_ix in deferred_draw_indices {
2287            let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2288            self.element_id_stack
2289                .clone_from(&deferred_draw.element_id_stack);
2290            self.next_frame
2291                .dispatch_tree
2292                .set_active_node(deferred_draw.parent_node);
2293
2294            let paint_start = self.paint_index();
2295            if let Some(element) = deferred_draw.element.as_mut() {
2296                self.with_rendered_view(deferred_draw.current_view, |window| {
2297                    element.paint(window, cx);
2298                })
2299            } else {
2300                self.reuse_paint(deferred_draw.paint_range.clone());
2301            }
2302            let paint_end = self.paint_index();
2303            deferred_draw.paint_range = paint_start..paint_end;
2304        }
2305        self.next_frame.deferred_draws = deferred_draws;
2306        self.element_id_stack.clear();
2307    }
2308
2309    pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2310        PrepaintStateIndex {
2311            hitboxes_index: self.next_frame.hitboxes.len(),
2312            tooltips_index: self.next_frame.tooltip_requests.len(),
2313            deferred_draws_index: self.next_frame.deferred_draws.len(),
2314            dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2315            accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2316            line_layout_index: self.text_system.layout_index(),
2317        }
2318    }
2319
2320    pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2321        self.next_frame.hitboxes.extend(
2322            self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2323                .iter()
2324                .cloned(),
2325        );
2326        self.next_frame.tooltip_requests.extend(
2327            self.rendered_frame.tooltip_requests
2328                [range.start.tooltips_index..range.end.tooltips_index]
2329                .iter_mut()
2330                .map(|request| request.take()),
2331        );
2332        self.next_frame.accessed_element_states.extend(
2333            self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2334                ..range.end.accessed_element_states_index]
2335                .iter()
2336                .map(|(id, type_id)| (id.clone(), *type_id)),
2337        );
2338        self.text_system
2339            .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2340
2341        let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2342            range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2343            &mut self.rendered_frame.dispatch_tree,
2344            self.focus,
2345        );
2346
2347        if reused_subtree.contains_focus() {
2348            self.next_frame.focus = self.focus;
2349        }
2350
2351        self.next_frame.deferred_draws.extend(
2352            self.rendered_frame.deferred_draws
2353                [range.start.deferred_draws_index..range.end.deferred_draws_index]
2354                .iter()
2355                .map(|deferred_draw| DeferredDraw {
2356                    current_view: deferred_draw.current_view,
2357                    parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2358                    element_id_stack: deferred_draw.element_id_stack.clone(),
2359                    text_style_stack: deferred_draw.text_style_stack.clone(),
2360                    priority: deferred_draw.priority,
2361                    element: None,
2362                    absolute_offset: deferred_draw.absolute_offset,
2363                    prepaint_range: deferred_draw.prepaint_range.clone(),
2364                    paint_range: deferred_draw.paint_range.clone(),
2365                }),
2366        );
2367    }
2368
2369    pub(crate) fn paint_index(&self) -> PaintIndex {
2370        PaintIndex {
2371            scene_index: self.next_frame.scene.len(),
2372            mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2373            input_handlers_index: self.next_frame.input_handlers.len(),
2374            cursor_styles_index: self.next_frame.cursor_styles.len(),
2375            accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2376            tab_handle_index: self.next_frame.tab_stops.paint_index(),
2377            line_layout_index: self.text_system.layout_index(),
2378        }
2379    }
2380
2381    pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2382        self.next_frame.cursor_styles.extend(
2383            self.rendered_frame.cursor_styles
2384                [range.start.cursor_styles_index..range.end.cursor_styles_index]
2385                .iter()
2386                .cloned(),
2387        );
2388        self.next_frame.input_handlers.extend(
2389            self.rendered_frame.input_handlers
2390                [range.start.input_handlers_index..range.end.input_handlers_index]
2391                .iter_mut()
2392                .map(|handler| handler.take()),
2393        );
2394        self.next_frame.mouse_listeners.extend(
2395            self.rendered_frame.mouse_listeners
2396                [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2397                .iter_mut()
2398                .map(|listener| listener.take()),
2399        );
2400        self.next_frame.accessed_element_states.extend(
2401            self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2402                ..range.end.accessed_element_states_index]
2403                .iter()
2404                .map(|(id, type_id)| (id.clone(), *type_id)),
2405        );
2406        self.next_frame.tab_stops.replay(
2407            &self.rendered_frame.tab_stops.insertion_history
2408                [range.start.tab_handle_index..range.end.tab_handle_index],
2409        );
2410
2411        self.text_system
2412            .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2413        self.next_frame.scene.replay(
2414            range.start.scene_index..range.end.scene_index,
2415            &self.rendered_frame.scene,
2416        );
2417    }
2418
2419    /// Push a text style onto the stack, and call a function with that style active.
2420    /// Use [`Window::text_style`] to get the current, combined text style. This method
2421    /// should only be called as part of element drawing.
2422    // This function is called in a highly recursive manner in editor
2423    // prepainting, make sure its inlined to reduce the stack burden
2424    #[inline]
2425    pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2426    where
2427        F: FnOnce(&mut Self) -> R,
2428    {
2429        self.invalidator.debug_assert_paint_or_prepaint();
2430        if let Some(style) = style {
2431            self.text_style_stack.push(style);
2432            let result = f(self);
2433            self.text_style_stack.pop();
2434            result
2435        } else {
2436            f(self)
2437        }
2438    }
2439
2440    /// Updates the cursor style at the platform level. This method should only be called
2441    /// during the paint phase of element drawing.
2442    pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
2443        self.invalidator.debug_assert_paint();
2444        self.next_frame.cursor_styles.push(CursorStyleRequest {
2445            hitbox_id: Some(hitbox.id),
2446            style,
2447        });
2448    }
2449
2450    /// Updates the cursor style for the entire window at the platform level. A cursor
2451    /// style using this method will have precedence over any cursor style set using
2452    /// `set_cursor_style`. This method should only be called during the paint
2453    /// phase of element drawing.
2454    pub fn set_window_cursor_style(&mut self, style: CursorStyle) {
2455        self.invalidator.debug_assert_paint();
2456        self.next_frame.cursor_styles.push(CursorStyleRequest {
2457            hitbox_id: None,
2458            style,
2459        })
2460    }
2461
2462    /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2463    /// during the paint phase of element drawing.
2464    pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2465        self.invalidator.debug_assert_prepaint();
2466        let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2467        self.next_frame
2468            .tooltip_requests
2469            .push(Some(TooltipRequest { id, tooltip }));
2470        id
2471    }
2472
2473    /// Invoke the given function with the given content mask after intersecting it
2474    /// with the current mask. This method should only be called during element drawing.
2475    // This function is called in a highly recursive manner in editor
2476    // prepainting, make sure its inlined to reduce the stack burden
2477    #[inline]
2478    pub fn with_content_mask<R>(
2479        &mut self,
2480        mask: Option<ContentMask<Pixels>>,
2481        f: impl FnOnce(&mut Self) -> R,
2482    ) -> R {
2483        self.invalidator.debug_assert_paint_or_prepaint();
2484        if let Some(mask) = mask {
2485            let mask = mask.intersect(&self.content_mask());
2486            self.content_mask_stack.push(mask);
2487            let result = f(self);
2488            self.content_mask_stack.pop();
2489            result
2490        } else {
2491            f(self)
2492        }
2493    }
2494
2495    /// Updates the global element offset relative to the current offset. This is used to implement
2496    /// scrolling. This method should only be called during the prepaint phase of element drawing.
2497    pub fn with_element_offset<R>(
2498        &mut self,
2499        offset: Point<Pixels>,
2500        f: impl FnOnce(&mut Self) -> R,
2501    ) -> R {
2502        self.invalidator.debug_assert_prepaint();
2503
2504        if offset.is_zero() {
2505            return f(self);
2506        };
2507
2508        let abs_offset = self.element_offset() + offset;
2509        self.with_absolute_element_offset(abs_offset, f)
2510    }
2511
2512    /// Updates the global element offset based on the given offset. This is used to implement
2513    /// drag handles and other manual painting of elements. This method should only be called during
2514    /// the prepaint phase of element drawing.
2515    pub fn with_absolute_element_offset<R>(
2516        &mut self,
2517        offset: Point<Pixels>,
2518        f: impl FnOnce(&mut Self) -> R,
2519    ) -> R {
2520        self.invalidator.debug_assert_prepaint();
2521        self.element_offset_stack.push(offset);
2522        let result = f(self);
2523        self.element_offset_stack.pop();
2524        result
2525    }
2526
2527    pub(crate) fn with_element_opacity<R>(
2528        &mut self,
2529        opacity: Option<f32>,
2530        f: impl FnOnce(&mut Self) -> R,
2531    ) -> R {
2532        self.invalidator.debug_assert_paint_or_prepaint();
2533
2534        let Some(opacity) = opacity else {
2535            return f(self);
2536        };
2537
2538        let previous_opacity = self.element_opacity;
2539        self.element_opacity = previous_opacity * opacity;
2540        let result = f(self);
2541        self.element_opacity = previous_opacity;
2542        result
2543    }
2544
2545    /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2546    /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2547    /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2548    /// element offset and prepaint again. See [`crate::List`] for an example. This method should only be
2549    /// called during the prepaint phase of element drawing.
2550    pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2551        self.invalidator.debug_assert_prepaint();
2552        let index = self.prepaint_index();
2553        let result = f(self);
2554        if result.is_err() {
2555            self.next_frame.hitboxes.truncate(index.hitboxes_index);
2556            self.next_frame
2557                .tooltip_requests
2558                .truncate(index.tooltips_index);
2559            self.next_frame
2560                .deferred_draws
2561                .truncate(index.deferred_draws_index);
2562            self.next_frame
2563                .dispatch_tree
2564                .truncate(index.dispatch_tree_index);
2565            self.next_frame
2566                .accessed_element_states
2567                .truncate(index.accessed_element_states_index);
2568            self.text_system.truncate_layouts(index.line_layout_index);
2569        }
2570        result
2571    }
2572
2573    /// When you call this method during [`Element::prepaint`], containing elements will attempt to
2574    /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2575    /// [`Element::prepaint`] again with a new set of bounds. See [`crate::List`] for an example of an element
2576    /// that supports this method being called on the elements it contains. This method should only be
2577    /// called during the prepaint phase of element drawing.
2578    pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2579        self.invalidator.debug_assert_prepaint();
2580        self.requested_autoscroll = Some(bounds);
2581    }
2582
2583    /// This method can be called from a containing element such as [`crate::List`] to support the autoscroll behavior
2584    /// described in [`Self::request_autoscroll`].
2585    pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2586        self.invalidator.debug_assert_prepaint();
2587        self.requested_autoscroll.take()
2588    }
2589
2590    /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2591    /// Your view will be re-drawn once the asset has finished loading.
2592    ///
2593    /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2594    /// time.
2595    pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2596        let (task, is_first) = cx.fetch_asset::<A>(source);
2597        task.clone().now_or_never().or_else(|| {
2598            if is_first {
2599                let entity_id = self.current_view();
2600                self.spawn(cx, {
2601                    let task = task.clone();
2602                    async move |cx| {
2603                        task.await;
2604
2605                        cx.on_next_frame(move |_, cx| {
2606                            cx.notify(entity_id);
2607                        });
2608                    }
2609                })
2610                .detach();
2611            }
2612
2613            None
2614        })
2615    }
2616
2617    /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2618    /// Your view will not be re-drawn once the asset has finished loading.
2619    ///
2620    /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2621    /// time.
2622    pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2623        let (task, _) = cx.fetch_asset::<A>(source);
2624        task.now_or_never()
2625    }
2626    /// Obtain the current element offset. This method should only be called during the
2627    /// prepaint phase of element drawing.
2628    pub fn element_offset(&self) -> Point<Pixels> {
2629        self.invalidator.debug_assert_prepaint();
2630        self.element_offset_stack
2631            .last()
2632            .copied()
2633            .unwrap_or_default()
2634    }
2635
2636    /// Obtain the current element opacity. This method should only be called during the
2637    /// prepaint phase of element drawing.
2638    #[inline]
2639    pub(crate) fn element_opacity(&self) -> f32 {
2640        self.invalidator.debug_assert_paint_or_prepaint();
2641        self.element_opacity
2642    }
2643
2644    /// Obtain the current content mask. This method should only be called during element drawing.
2645    pub fn content_mask(&self) -> ContentMask<Pixels> {
2646        self.invalidator.debug_assert_paint_or_prepaint();
2647        self.content_mask_stack
2648            .last()
2649            .cloned()
2650            .unwrap_or_else(|| ContentMask {
2651                bounds: Bounds {
2652                    origin: Point::default(),
2653                    size: self.viewport_size,
2654                },
2655            })
2656    }
2657
2658    /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2659    /// This can be used within a custom element to distinguish multiple sets of child elements.
2660    pub fn with_element_namespace<R>(
2661        &mut self,
2662        element_id: impl Into<ElementId>,
2663        f: impl FnOnce(&mut Self) -> R,
2664    ) -> R {
2665        self.element_id_stack.push(element_id.into());
2666        let result = f(self);
2667        self.element_id_stack.pop();
2668        result
2669    }
2670
2671    /// Use a piece of state that exists as long this element is being rendered in consecutive frames.
2672    pub fn use_keyed_state<S: 'static>(
2673        &mut self,
2674        key: impl Into<ElementId>,
2675        cx: &mut App,
2676        init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2677    ) -> Entity<S> {
2678        let current_view = self.current_view();
2679        self.with_global_id(key.into(), |global_id, window| {
2680            window.with_element_state(global_id, |state: Option<Entity<S>>, window| {
2681                if let Some(state) = state {
2682                    (state.clone(), state)
2683                } else {
2684                    let new_state = cx.new(|cx| init(window, cx));
2685                    cx.observe(&new_state, move |_, cx| {
2686                        cx.notify(current_view);
2687                    })
2688                    .detach();
2689                    (new_state.clone(), new_state)
2690                }
2691            })
2692        })
2693    }
2694
2695    /// Immediately push an element ID onto the stack. Useful for simplifying IDs in lists
2696    pub fn with_id<R>(&mut self, id: impl Into<ElementId>, f: impl FnOnce(&mut Self) -> R) -> R {
2697        self.with_global_id(id.into(), |_, window| f(window))
2698    }
2699
2700    /// Use a piece of state that exists as long this element is being rendered in consecutive frames, without needing to specify a key
2701    ///
2702    /// NOTE: This method uses the location of the caller to generate an ID for this state.
2703    ///       If this is not sufficient to identify your state (e.g. you're rendering a list item),
2704    ///       you can provide a custom ElementID using the `use_keyed_state` method.
2705    #[track_caller]
2706    pub fn use_state<S: 'static>(
2707        &mut self,
2708        cx: &mut App,
2709        init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2710    ) -> Entity<S> {
2711        self.use_keyed_state(
2712            ElementId::CodeLocation(*core::panic::Location::caller()),
2713            cx,
2714            init,
2715        )
2716    }
2717
2718    /// Updates or initializes state for an element with the given id that lives across multiple
2719    /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2720    /// to the given closure. The state returned by the closure will be stored so it can be referenced
2721    /// when drawing the next frame. This method should only be called as part of element drawing.
2722    pub fn with_element_state<S, R>(
2723        &mut self,
2724        global_id: &GlobalElementId,
2725        f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2726    ) -> R
2727    where
2728        S: 'static,
2729    {
2730        self.invalidator.debug_assert_paint_or_prepaint();
2731
2732        let key = (global_id.clone(), TypeId::of::<S>());
2733        self.next_frame.accessed_element_states.push(key.clone());
2734
2735        if let Some(any) = self
2736            .next_frame
2737            .element_states
2738            .remove(&key)
2739            .or_else(|| self.rendered_frame.element_states.remove(&key))
2740        {
2741            let ElementStateBox {
2742                inner,
2743                #[cfg(debug_assertions)]
2744                type_name,
2745            } = any;
2746            // Using the extra inner option to avoid needing to reallocate a new box.
2747            let mut state_box = inner
2748                .downcast::<Option<S>>()
2749                .map_err(|_| {
2750                    #[cfg(debug_assertions)]
2751                    {
2752                        anyhow::anyhow!(
2753                            "invalid element state type for id, requested {:?}, actual: {:?}",
2754                            std::any::type_name::<S>(),
2755                            type_name
2756                        )
2757                    }
2758
2759                    #[cfg(not(debug_assertions))]
2760                    {
2761                        anyhow::anyhow!(
2762                            "invalid element state type for id, requested {:?}",
2763                            std::any::type_name::<S>(),
2764                        )
2765                    }
2766                })
2767                .unwrap();
2768
2769            let state = state_box.take().expect(
2770                "reentrant call to with_element_state for the same state type and element id",
2771            );
2772            let (result, state) = f(Some(state), self);
2773            state_box.replace(state);
2774            self.next_frame.element_states.insert(
2775                key,
2776                ElementStateBox {
2777                    inner: state_box,
2778                    #[cfg(debug_assertions)]
2779                    type_name,
2780                },
2781            );
2782            result
2783        } else {
2784            let (result, state) = f(None, self);
2785            self.next_frame.element_states.insert(
2786                key,
2787                ElementStateBox {
2788                    inner: Box::new(Some(state)),
2789                    #[cfg(debug_assertions)]
2790                    type_name: std::any::type_name::<S>(),
2791                },
2792            );
2793            result
2794        }
2795    }
2796
2797    /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2798    /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2799    /// when the element is guaranteed to have an id.
2800    ///
2801    /// The first option means 'no ID provided'
2802    /// The second option means 'not yet initialized'
2803    pub fn with_optional_element_state<S, R>(
2804        &mut self,
2805        global_id: Option<&GlobalElementId>,
2806        f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2807    ) -> R
2808    where
2809        S: 'static,
2810    {
2811        self.invalidator.debug_assert_paint_or_prepaint();
2812
2813        if let Some(global_id) = global_id {
2814            self.with_element_state(global_id, |state, cx| {
2815                let (result, state) = f(Some(state), cx);
2816                let state =
2817                    state.expect("you must return some state when you pass some element id");
2818                (result, state)
2819            })
2820        } else {
2821            let (result, state) = f(None, self);
2822            debug_assert!(
2823                state.is_none(),
2824                "you must not return an element state when passing None for the global id"
2825            );
2826            result
2827        }
2828    }
2829
2830    /// Executes the given closure within the context of a tab group.
2831    #[inline]
2832    pub fn with_tab_group<R>(&mut self, index: Option<isize>, f: impl FnOnce(&mut Self) -> R) -> R {
2833        if let Some(index) = index {
2834            self.next_frame.tab_stops.begin_group(index);
2835            let result = f(self);
2836            self.next_frame.tab_stops.end_group();
2837            result
2838        } else {
2839            f(self)
2840        }
2841    }
2842
2843    /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2844    /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2845    /// with higher values being drawn on top.
2846    ///
2847    /// This method should only be called as part of the prepaint phase of element drawing.
2848    pub fn defer_draw(
2849        &mut self,
2850        element: AnyElement,
2851        absolute_offset: Point<Pixels>,
2852        priority: usize,
2853    ) {
2854        self.invalidator.debug_assert_prepaint();
2855        let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2856        self.next_frame.deferred_draws.push(DeferredDraw {
2857            current_view: self.current_view(),
2858            parent_node,
2859            element_id_stack: self.element_id_stack.clone(),
2860            text_style_stack: self.text_style_stack.clone(),
2861            priority,
2862            element: Some(element),
2863            absolute_offset,
2864            prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2865            paint_range: PaintIndex::default()..PaintIndex::default(),
2866        });
2867    }
2868
2869    /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2870    /// of geometry that are non-overlapping and have the same draw order. This is typically used
2871    /// for performance reasons.
2872    ///
2873    /// This method should only be called as part of the paint phase of element drawing.
2874    pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2875        self.invalidator.debug_assert_paint();
2876
2877        let scale_factor = self.scale_factor();
2878        let content_mask = self.content_mask();
2879        let clipped_bounds = bounds.intersect(&content_mask.bounds);
2880        if !clipped_bounds.is_empty() {
2881            self.next_frame
2882                .scene
2883                .push_layer(clipped_bounds.scale(scale_factor));
2884        }
2885
2886        let result = f(self);
2887
2888        if !clipped_bounds.is_empty() {
2889            self.next_frame.scene.pop_layer();
2890        }
2891
2892        result
2893    }
2894
2895    /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2896    ///
2897    /// This method should only be called as part of the paint phase of element drawing.
2898    pub fn paint_shadows(
2899        &mut self,
2900        bounds: Bounds<Pixels>,
2901        corner_radii: Corners<Pixels>,
2902        shadows: &[BoxShadow],
2903    ) {
2904        self.invalidator.debug_assert_paint();
2905
2906        let scale_factor = self.scale_factor();
2907        let content_mask = self.content_mask();
2908        let opacity = self.element_opacity();
2909        for shadow in shadows {
2910            let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2911            self.next_frame.scene.insert_primitive(Shadow {
2912                order: 0,
2913                blur_radius: shadow.blur_radius.scale(scale_factor),
2914                bounds: shadow_bounds.scale(scale_factor),
2915                content_mask: content_mask.scale(scale_factor),
2916                corner_radii: corner_radii.scale(scale_factor),
2917                color: shadow.color.opacity(opacity),
2918            });
2919        }
2920    }
2921
2922    /// Paint one or more quads into the scene for the next frame at the current stacking context.
2923    /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2924    /// see [`fill`], [`outline`], and [`quad`] to construct this type.
2925    ///
2926    /// This method should only be called as part of the paint phase of element drawing.
2927    ///
2928    /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2929    /// where the circular arcs meet. This will not display well when combined with dashed borders.
2930    /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2931    pub fn paint_quad(&mut self, quad: PaintQuad) {
2932        self.invalidator.debug_assert_paint();
2933
2934        let scale_factor = self.scale_factor();
2935        let content_mask = self.content_mask();
2936        let opacity = self.element_opacity();
2937        self.next_frame.scene.insert_primitive(Quad {
2938            order: 0,
2939            bounds: quad.bounds.scale(scale_factor),
2940            content_mask: content_mask.scale(scale_factor),
2941            background: quad.background.opacity(opacity),
2942            border_color: quad.border_color.opacity(opacity),
2943            corner_radii: quad.corner_radii.scale(scale_factor),
2944            border_widths: quad.border_widths.scale(scale_factor),
2945            border_style: quad.border_style,
2946        });
2947    }
2948
2949    /// Paint the given `Path` into the scene for the next frame at the current z-index.
2950    ///
2951    /// This method should only be called as part of the paint phase of element drawing.
2952    pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2953        self.invalidator.debug_assert_paint();
2954
2955        let scale_factor = self.scale_factor();
2956        let content_mask = self.content_mask();
2957        let opacity = self.element_opacity();
2958        path.content_mask = content_mask;
2959        let color: Background = color.into();
2960        path.color = color.opacity(opacity);
2961        self.next_frame
2962            .scene
2963            .insert_primitive(path.scale(scale_factor));
2964    }
2965
2966    /// Paint an underline into the scene for the next frame at the current z-index.
2967    ///
2968    /// This method should only be called as part of the paint phase of element drawing.
2969    pub fn paint_underline(
2970        &mut self,
2971        origin: Point<Pixels>,
2972        width: Pixels,
2973        style: &UnderlineStyle,
2974    ) {
2975        self.invalidator.debug_assert_paint();
2976
2977        let scale_factor = self.scale_factor();
2978        let height = if style.wavy {
2979            style.thickness * 3.
2980        } else {
2981            style.thickness
2982        };
2983        let bounds = Bounds {
2984            origin,
2985            size: size(width, height),
2986        };
2987        let content_mask = self.content_mask();
2988        let element_opacity = self.element_opacity();
2989
2990        self.next_frame.scene.insert_primitive(Underline {
2991            order: 0,
2992            pad: 0,
2993            bounds: bounds.scale(scale_factor),
2994            content_mask: content_mask.scale(scale_factor),
2995            color: style.color.unwrap_or_default().opacity(element_opacity),
2996            thickness: style.thickness.scale(scale_factor),
2997            wavy: if style.wavy { 1 } else { 0 },
2998        });
2999    }
3000
3001    /// Paint a strikethrough into the scene for the next frame at the current z-index.
3002    ///
3003    /// This method should only be called as part of the paint phase of element drawing.
3004    pub fn paint_strikethrough(
3005        &mut self,
3006        origin: Point<Pixels>,
3007        width: Pixels,
3008        style: &StrikethroughStyle,
3009    ) {
3010        self.invalidator.debug_assert_paint();
3011
3012        let scale_factor = self.scale_factor();
3013        let height = style.thickness;
3014        let bounds = Bounds {
3015            origin,
3016            size: size(width, height),
3017        };
3018        let content_mask = self.content_mask();
3019        let opacity = self.element_opacity();
3020
3021        self.next_frame.scene.insert_primitive(Underline {
3022            order: 0,
3023            pad: 0,
3024            bounds: bounds.scale(scale_factor),
3025            content_mask: content_mask.scale(scale_factor),
3026            thickness: style.thickness.scale(scale_factor),
3027            color: style.color.unwrap_or_default().opacity(opacity),
3028            wavy: 0,
3029        });
3030    }
3031
3032    /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
3033    ///
3034    /// The y component of the origin is the baseline of the glyph.
3035    /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3036    /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3037    /// This method is only useful if you need to paint a single glyph that has already been shaped.
3038    ///
3039    /// This method should only be called as part of the paint phase of element drawing.
3040    pub fn paint_glyph(
3041        &mut self,
3042        origin: Point<Pixels>,
3043        font_id: FontId,
3044        glyph_id: GlyphId,
3045        font_size: Pixels,
3046        color: Hsla,
3047    ) -> Result<()> {
3048        self.invalidator.debug_assert_paint();
3049
3050        let element_opacity = self.element_opacity();
3051        let scale_factor = self.scale_factor();
3052        let glyph_origin = origin.scale(scale_factor);
3053
3054        let subpixel_variant = Point {
3055            x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS_X as f32).floor() as u8,
3056            y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS_Y as f32).floor() as u8,
3057        };
3058        let params = RenderGlyphParams {
3059            font_id,
3060            glyph_id,
3061            font_size,
3062            subpixel_variant,
3063            scale_factor,
3064            is_emoji: false,
3065        };
3066
3067        let raster_bounds = self.text_system().raster_bounds(&params)?;
3068        if !raster_bounds.is_zero() {
3069            let tile = self
3070                .sprite_atlas
3071                .get_or_insert_with(&params.clone().into(), &mut || {
3072                    let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
3073                    Ok(Some((size, Cow::Owned(bytes))))
3074                })?
3075                .expect("Callback above only errors or returns Some");
3076            let bounds = Bounds {
3077                origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3078                size: tile.bounds.size.map(Into::into),
3079            };
3080            let content_mask = self.content_mask().scale(scale_factor);
3081            self.next_frame.scene.insert_primitive(MonochromeSprite {
3082                order: 0,
3083                pad: 0,
3084                bounds,
3085                content_mask,
3086                color: color.opacity(element_opacity),
3087                tile,
3088                transformation: TransformationMatrix::unit(),
3089            });
3090        }
3091        Ok(())
3092    }
3093
3094    /// Paints an emoji glyph into the scene for the next frame at the current z-index.
3095    ///
3096    /// The y component of the origin is the baseline of the glyph.
3097    /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3098    /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3099    /// This method is only useful if you need to paint a single emoji that has already been shaped.
3100    ///
3101    /// This method should only be called as part of the paint phase of element drawing.
3102    pub fn paint_emoji(
3103        &mut self,
3104        origin: Point<Pixels>,
3105        font_id: FontId,
3106        glyph_id: GlyphId,
3107        font_size: Pixels,
3108    ) -> Result<()> {
3109        self.invalidator.debug_assert_paint();
3110
3111        let scale_factor = self.scale_factor();
3112        let glyph_origin = origin.scale(scale_factor);
3113        let params = RenderGlyphParams {
3114            font_id,
3115            glyph_id,
3116            font_size,
3117            // We don't render emojis with subpixel variants.
3118            subpixel_variant: Default::default(),
3119            scale_factor,
3120            is_emoji: true,
3121        };
3122
3123        let raster_bounds = self.text_system().raster_bounds(&params)?;
3124        if !raster_bounds.is_zero() {
3125            let tile = self
3126                .sprite_atlas
3127                .get_or_insert_with(&params.clone().into(), &mut || {
3128                    let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
3129                    Ok(Some((size, Cow::Owned(bytes))))
3130                })?
3131                .expect("Callback above only errors or returns Some");
3132
3133            let bounds = Bounds {
3134                origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3135                size: tile.bounds.size.map(Into::into),
3136            };
3137            let content_mask = self.content_mask().scale(scale_factor);
3138            let opacity = self.element_opacity();
3139
3140            self.next_frame.scene.insert_primitive(PolychromeSprite {
3141                order: 0,
3142                pad: 0,
3143                grayscale: false,
3144                bounds,
3145                corner_radii: Default::default(),
3146                content_mask,
3147                tile,
3148                opacity,
3149            });
3150        }
3151        Ok(())
3152    }
3153
3154    /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
3155    ///
3156    /// This method should only be called as part of the paint phase of element drawing.
3157    pub fn paint_svg(
3158        &mut self,
3159        bounds: Bounds<Pixels>,
3160        path: SharedString,
3161        mut data: Option<&[u8]>,
3162        transformation: TransformationMatrix,
3163        color: Hsla,
3164        cx: &App,
3165    ) -> Result<()> {
3166        self.invalidator.debug_assert_paint();
3167
3168        let element_opacity = self.element_opacity();
3169        let scale_factor = self.scale_factor();
3170
3171        let bounds = bounds.scale(scale_factor);
3172        let params = RenderSvgParams {
3173            path,
3174            size: bounds.size.map(|pixels| {
3175                DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
3176            }),
3177        };
3178
3179        let Some(tile) =
3180            self.sprite_atlas
3181                .get_or_insert_with(&params.clone().into(), &mut || {
3182                    let Some((size, bytes)) = cx.svg_renderer.render_alpha_mask(&params, data)?
3183                    else {
3184                        return Ok(None);
3185                    };
3186                    Ok(Some((size, Cow::Owned(bytes))))
3187                })?
3188        else {
3189            return Ok(());
3190        };
3191        let content_mask = self.content_mask().scale(scale_factor);
3192        let svg_bounds = Bounds {
3193            origin: bounds.center()
3194                - Point::new(
3195                    ScaledPixels(tile.bounds.size.width.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3196                    ScaledPixels(tile.bounds.size.height.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3197                ),
3198            size: tile
3199                .bounds
3200                .size
3201                .map(|value| ScaledPixels(value.0 as f32 / SMOOTH_SVG_SCALE_FACTOR)),
3202        };
3203
3204        self.next_frame.scene.insert_primitive(MonochromeSprite {
3205            order: 0,
3206            pad: 0,
3207            bounds: svg_bounds
3208                .map_origin(|origin| origin.round())
3209                .map_size(|size| size.ceil()),
3210            content_mask,
3211            color: color.opacity(element_opacity),
3212            tile,
3213            transformation,
3214        });
3215
3216        Ok(())
3217    }
3218
3219    /// Paint an image into the scene for the next frame at the current z-index.
3220    /// This method will panic if the frame_index is not valid
3221    ///
3222    /// This method should only be called as part of the paint phase of element drawing.
3223    pub fn paint_image(
3224        &mut self,
3225        bounds: Bounds<Pixels>,
3226        corner_radii: Corners<Pixels>,
3227        data: Arc<RenderImage>,
3228        frame_index: usize,
3229        grayscale: bool,
3230    ) -> Result<()> {
3231        self.invalidator.debug_assert_paint();
3232
3233        let scale_factor = self.scale_factor();
3234        let bounds = bounds.scale(scale_factor);
3235        let params = RenderImageParams {
3236            image_id: data.id,
3237            frame_index,
3238        };
3239
3240        let tile = self
3241            .sprite_atlas
3242            .get_or_insert_with(&params.into(), &mut || {
3243                Ok(Some((
3244                    data.size(frame_index),
3245                    Cow::Borrowed(
3246                        data.as_bytes(frame_index)
3247                            .expect("It's the caller's job to pass a valid frame index"),
3248                    ),
3249                )))
3250            })?
3251            .expect("Callback above only returns Some");
3252        let content_mask = self.content_mask().scale(scale_factor);
3253        let corner_radii = corner_radii.scale(scale_factor);
3254        let opacity = self.element_opacity();
3255
3256        self.next_frame.scene.insert_primitive(PolychromeSprite {
3257            order: 0,
3258            pad: 0,
3259            grayscale,
3260            bounds: bounds
3261                .map_origin(|origin| origin.floor())
3262                .map_size(|size| size.ceil()),
3263            content_mask,
3264            corner_radii,
3265            tile,
3266            opacity,
3267        });
3268        Ok(())
3269    }
3270
3271    /// Paint a surface into the scene for the next frame at the current z-index.
3272    ///
3273    /// This method should only be called as part of the paint phase of element drawing.
3274    #[cfg(target_os = "macos")]
3275    pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
3276        use crate::PaintSurface;
3277
3278        self.invalidator.debug_assert_paint();
3279
3280        let scale_factor = self.scale_factor();
3281        let bounds = bounds.scale(scale_factor);
3282        let content_mask = self.content_mask().scale(scale_factor);
3283        self.next_frame.scene.insert_primitive(PaintSurface {
3284            order: 0,
3285            bounds,
3286            content_mask,
3287            image_buffer,
3288        });
3289    }
3290
3291    /// Removes an image from the sprite atlas.
3292    pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
3293        for frame_index in 0..data.frame_count() {
3294            let params = RenderImageParams {
3295                image_id: data.id,
3296                frame_index,
3297            };
3298
3299            self.sprite_atlas.remove(&params.clone().into());
3300        }
3301
3302        Ok(())
3303    }
3304
3305    /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
3306    /// layout is being requested, along with the layout ids of any children. This method is called during
3307    /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
3308    ///
3309    /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3310    #[must_use]
3311    pub fn request_layout(
3312        &mut self,
3313        style: Style,
3314        children: impl IntoIterator<Item = LayoutId>,
3315        cx: &mut App,
3316    ) -> LayoutId {
3317        self.invalidator.debug_assert_prepaint();
3318
3319        cx.layout_id_buffer.clear();
3320        cx.layout_id_buffer.extend(children);
3321        let rem_size = self.rem_size();
3322        let scale_factor = self.scale_factor();
3323
3324        self.layout_engine.as_mut().unwrap().request_layout(
3325            style,
3326            rem_size,
3327            scale_factor,
3328            &cx.layout_id_buffer,
3329        )
3330    }
3331
3332    /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
3333    /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
3334    /// determine the element's size. One place this is used internally is when measuring text.
3335    ///
3336    /// The given closure is invoked at layout time with the known dimensions and available space and
3337    /// returns a `Size`.
3338    ///
3339    /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3340    pub fn request_measured_layout<F>(&mut self, style: Style, measure: F) -> LayoutId
3341    where
3342        F: Fn(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
3343            + 'static,
3344    {
3345        self.invalidator.debug_assert_prepaint();
3346
3347        let rem_size = self.rem_size();
3348        let scale_factor = self.scale_factor();
3349        self.layout_engine
3350            .as_mut()
3351            .unwrap()
3352            .request_measured_layout(style, rem_size, scale_factor, measure)
3353    }
3354
3355    /// Compute the layout for the given id within the given available space.
3356    /// This method is called for its side effect, typically by the framework prior to painting.
3357    /// After calling it, you can request the bounds of the given layout node id or any descendant.
3358    ///
3359    /// This method should only be called as part of the prepaint phase of element drawing.
3360    pub fn compute_layout(
3361        &mut self,
3362        layout_id: LayoutId,
3363        available_space: Size<AvailableSpace>,
3364        cx: &mut App,
3365    ) {
3366        self.invalidator.debug_assert_prepaint();
3367
3368        let mut layout_engine = self.layout_engine.take().unwrap();
3369        layout_engine.compute_layout(layout_id, available_space, self, cx);
3370        self.layout_engine = Some(layout_engine);
3371    }
3372
3373    /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
3374    /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
3375    ///
3376    /// This method should only be called as part of element drawing.
3377    pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
3378        self.invalidator.debug_assert_prepaint();
3379
3380        let scale_factor = self.scale_factor();
3381        let mut bounds = self
3382            .layout_engine
3383            .as_mut()
3384            .unwrap()
3385            .layout_bounds(layout_id, scale_factor)
3386            .map(Into::into);
3387        bounds.origin += self.element_offset();
3388        bounds
3389    }
3390
3391    /// This method should be called during `prepaint`. You can use
3392    /// the returned [Hitbox] during `paint` or in an event handler
3393    /// to determine whether the inserted hitbox was the topmost.
3394    ///
3395    /// This method should only be called as part of the prepaint phase of element drawing.
3396    pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
3397        self.invalidator.debug_assert_prepaint();
3398
3399        let content_mask = self.content_mask();
3400        let mut id = self.next_hitbox_id;
3401        self.next_hitbox_id = self.next_hitbox_id.next();
3402        let hitbox = Hitbox {
3403            id,
3404            bounds,
3405            content_mask,
3406            behavior,
3407        };
3408        self.next_frame.hitboxes.push(hitbox.clone());
3409        hitbox
3410    }
3411
3412    /// Set a hitbox which will act as a control area of the platform window.
3413    ///
3414    /// This method should only be called as part of the paint phase of element drawing.
3415    pub fn insert_window_control_hitbox(&mut self, area: WindowControlArea, hitbox: Hitbox) {
3416        self.invalidator.debug_assert_paint();
3417        self.next_frame.window_control_hitboxes.push((area, hitbox));
3418    }
3419
3420    /// Sets the key context for the current element. This context will be used to translate
3421    /// keybindings into actions.
3422    ///
3423    /// This method should only be called as part of the paint phase of element drawing.
3424    pub fn set_key_context(&mut self, context: KeyContext) {
3425        self.invalidator.debug_assert_paint();
3426        self.next_frame.dispatch_tree.set_key_context(context);
3427    }
3428
3429    /// Sets the focus handle for the current element. This handle will be used to manage focus state
3430    /// and keyboard event dispatch for the element.
3431    ///
3432    /// This method should only be called as part of the prepaint phase of element drawing.
3433    pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3434        self.invalidator.debug_assert_prepaint();
3435        if focus_handle.is_focused(self) {
3436            self.next_frame.focus = Some(focus_handle.id);
3437        }
3438        self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3439    }
3440
3441    /// Sets the view id for the current element, which will be used to manage view caching.
3442    ///
3443    /// This method should only be called as part of element prepaint. We plan on removing this
3444    /// method eventually when we solve some issues that require us to construct editor elements
3445    /// directly instead of always using editors via views.
3446    pub fn set_view_id(&mut self, view_id: EntityId) {
3447        self.invalidator.debug_assert_prepaint();
3448        self.next_frame.dispatch_tree.set_view_id(view_id);
3449    }
3450
3451    /// Get the entity ID for the currently rendering view
3452    pub fn current_view(&self) -> EntityId {
3453        self.invalidator.debug_assert_paint_or_prepaint();
3454        self.rendered_entity_stack.last().copied().unwrap()
3455    }
3456
3457    pub(crate) fn with_rendered_view<R>(
3458        &mut self,
3459        id: EntityId,
3460        f: impl FnOnce(&mut Self) -> R,
3461    ) -> R {
3462        self.rendered_entity_stack.push(id);
3463        let result = f(self);
3464        self.rendered_entity_stack.pop();
3465        result
3466    }
3467
3468    /// Executes the provided function with the specified image cache.
3469    pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3470    where
3471        F: FnOnce(&mut Self) -> R,
3472    {
3473        if let Some(image_cache) = image_cache {
3474            self.image_cache_stack.push(image_cache);
3475            let result = f(self);
3476            self.image_cache_stack.pop();
3477            result
3478        } else {
3479            f(self)
3480        }
3481    }
3482
3483    /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3484    /// platform to receive textual input with proper integration with concerns such
3485    /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3486    /// rendered.
3487    ///
3488    /// This method should only be called as part of the paint phase of element drawing.
3489    ///
3490    /// [element_input_handler]: crate::ElementInputHandler
3491    pub fn handle_input(
3492        &mut self,
3493        focus_handle: &FocusHandle,
3494        input_handler: impl InputHandler,
3495        cx: &App,
3496    ) {
3497        self.invalidator.debug_assert_paint();
3498
3499        if focus_handle.is_focused(self) {
3500            let cx = self.to_async(cx);
3501            self.next_frame
3502                .input_handlers
3503                .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3504        }
3505    }
3506
3507    /// Register a mouse event listener on the window for the next frame. The type of event
3508    /// is determined by the first parameter of the given listener. When the next frame is rendered
3509    /// the listener will be cleared.
3510    ///
3511    /// This method should only be called as part of the paint phase of element drawing.
3512    pub fn on_mouse_event<Event: MouseEvent>(
3513        &mut self,
3514        mut listener: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3515    ) {
3516        self.invalidator.debug_assert_paint();
3517
3518        self.next_frame.mouse_listeners.push(Some(Box::new(
3519            move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3520                if let Some(event) = event.downcast_ref() {
3521                    listener(event, phase, window, cx)
3522                }
3523            },
3524        )));
3525    }
3526
3527    /// Register a key event listener on this node for the next frame. The type of event
3528    /// is determined by the first parameter of the given listener. When the next frame is rendered
3529    /// the listener will be cleared.
3530    ///
3531    /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3532    /// a specific need to register a listener yourself.
3533    ///
3534    /// This method should only be called as part of the paint phase of element drawing.
3535    pub fn on_key_event<Event: KeyEvent>(
3536        &mut self,
3537        listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3538    ) {
3539        self.invalidator.debug_assert_paint();
3540
3541        self.next_frame.dispatch_tree.on_key_event(Rc::new(
3542            move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3543                if let Some(event) = event.downcast_ref::<Event>() {
3544                    listener(event, phase, window, cx)
3545                }
3546            },
3547        ));
3548    }
3549
3550    /// Register a modifiers changed event listener on the window for the next frame.
3551    ///
3552    /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3553    /// a specific need to register a global listener.
3554    ///
3555    /// This method should only be called as part of the paint phase of element drawing.
3556    pub fn on_modifiers_changed(
3557        &mut self,
3558        listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3559    ) {
3560        self.invalidator.debug_assert_paint();
3561
3562        self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3563            move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3564                listener(event, window, cx)
3565            },
3566        ));
3567    }
3568
3569    /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3570    /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3571    /// Returns a subscription and persists until the subscription is dropped.
3572    pub fn on_focus_in(
3573        &mut self,
3574        handle: &FocusHandle,
3575        cx: &mut App,
3576        mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3577    ) -> Subscription {
3578        let focus_id = handle.id;
3579        let (subscription, activate) =
3580            self.new_focus_listener(Box::new(move |event, window, cx| {
3581                if event.is_focus_in(focus_id) {
3582                    listener(window, cx);
3583                }
3584                true
3585            }));
3586        cx.defer(move |_| activate());
3587        subscription
3588    }
3589
3590    /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3591    /// Returns a subscription and persists until the subscription is dropped.
3592    pub fn on_focus_out(
3593        &mut self,
3594        handle: &FocusHandle,
3595        cx: &mut App,
3596        mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3597    ) -> Subscription {
3598        let focus_id = handle.id;
3599        let (subscription, activate) =
3600            self.new_focus_listener(Box::new(move |event, window, cx| {
3601                if let Some(blurred_id) = event.previous_focus_path.last().copied()
3602                    && event.is_focus_out(focus_id)
3603                {
3604                    let event = FocusOutEvent {
3605                        blurred: WeakFocusHandle {
3606                            id: blurred_id,
3607                            handles: Arc::downgrade(&cx.focus_handles),
3608                        },
3609                    };
3610                    listener(event, window, cx)
3611                }
3612                true
3613            }));
3614        cx.defer(move |_| activate());
3615        subscription
3616    }
3617
3618    fn reset_cursor_style(&self, cx: &mut App) {
3619        // Set the cursor only if we're the active window.
3620        if self.is_window_hovered() {
3621            let style = self
3622                .rendered_frame
3623                .cursor_style(self)
3624                .unwrap_or(CursorStyle::Arrow);
3625            cx.platform.set_cursor_style(style);
3626        }
3627    }
3628
3629    /// Dispatch a given keystroke as though the user had typed it.
3630    /// You can create a keystroke with Keystroke::parse("").
3631    pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3632        let keystroke = keystroke.with_simulated_ime();
3633        let result = self.dispatch_event(
3634            PlatformInput::KeyDown(KeyDownEvent {
3635                keystroke: keystroke.clone(),
3636                is_held: false,
3637                prefer_character_input: false,
3638            }),
3639            cx,
3640        );
3641        if !result.propagate {
3642            return true;
3643        }
3644
3645        if let Some(input) = keystroke.key_char
3646            && let Some(mut input_handler) = self.platform_window.take_input_handler()
3647        {
3648            input_handler.dispatch_input(&input, self, cx);
3649            self.platform_window.set_input_handler(input_handler);
3650            return true;
3651        }
3652
3653        false
3654    }
3655
3656    /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3657    /// binding for the action (last binding added to the keymap).
3658    pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3659        self.highest_precedence_binding_for_action(action)
3660            .map(|binding| {
3661                binding
3662                    .keystrokes()
3663                    .iter()
3664                    .map(ToString::to_string)
3665                    .collect::<Vec<_>>()
3666                    .join(" ")
3667            })
3668            .unwrap_or_else(|| action.name().to_string())
3669    }
3670
3671    /// Dispatch a mouse or keyboard event on the window.
3672    #[profiling::function]
3673    pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3674        self.last_input_timestamp.set(Instant::now());
3675
3676        // Track whether this input was keyboard-based for focus-visible styling
3677        self.last_input_modality = match &event {
3678            PlatformInput::KeyDown(_) | PlatformInput::ModifiersChanged(_) => {
3679                InputModality::Keyboard
3680            }
3681            PlatformInput::MouseDown(e) if e.is_focusing() => InputModality::Mouse,
3682            _ => self.last_input_modality,
3683        };
3684
3685        // Handlers may set this to false by calling `stop_propagation`.
3686        cx.propagate_event = true;
3687        // Handlers may set this to true by calling `prevent_default`.
3688        self.default_prevented = false;
3689
3690        let event = match event {
3691            // Track the mouse position with our own state, since accessing the platform
3692            // API for the mouse position can only occur on the main thread.
3693            PlatformInput::MouseMove(mouse_move) => {
3694                self.mouse_position = mouse_move.position;
3695                self.modifiers = mouse_move.modifiers;
3696                PlatformInput::MouseMove(mouse_move)
3697            }
3698            PlatformInput::MouseDown(mouse_down) => {
3699                self.mouse_position = mouse_down.position;
3700                self.modifiers = mouse_down.modifiers;
3701                PlatformInput::MouseDown(mouse_down)
3702            }
3703            PlatformInput::MouseUp(mouse_up) => {
3704                self.mouse_position = mouse_up.position;
3705                self.modifiers = mouse_up.modifiers;
3706                PlatformInput::MouseUp(mouse_up)
3707            }
3708            PlatformInput::MouseExited(mouse_exited) => {
3709                self.modifiers = mouse_exited.modifiers;
3710                PlatformInput::MouseExited(mouse_exited)
3711            }
3712            PlatformInput::ModifiersChanged(modifiers_changed) => {
3713                self.modifiers = modifiers_changed.modifiers;
3714                self.capslock = modifiers_changed.capslock;
3715                PlatformInput::ModifiersChanged(modifiers_changed)
3716            }
3717            PlatformInput::ScrollWheel(scroll_wheel) => {
3718                self.mouse_position = scroll_wheel.position;
3719                self.modifiers = scroll_wheel.modifiers;
3720                PlatformInput::ScrollWheel(scroll_wheel)
3721            }
3722            // Translate dragging and dropping of external files from the operating system
3723            // to internal drag and drop events.
3724            PlatformInput::FileDrop(file_drop) => match file_drop {
3725                FileDropEvent::Entered { position, paths } => {
3726                    self.mouse_position = position;
3727                    if cx.active_drag.is_none() {
3728                        cx.active_drag = Some(AnyDrag {
3729                            value: Arc::new(paths.clone()),
3730                            view: cx.new(|_| paths).into(),
3731                            cursor_offset: position,
3732                            cursor_style: None,
3733                        });
3734                    }
3735                    PlatformInput::MouseMove(MouseMoveEvent {
3736                        position,
3737                        pressed_button: Some(MouseButton::Left),
3738                        modifiers: Modifiers::default(),
3739                    })
3740                }
3741                FileDropEvent::Pending { position } => {
3742                    self.mouse_position = position;
3743                    PlatformInput::MouseMove(MouseMoveEvent {
3744                        position,
3745                        pressed_button: Some(MouseButton::Left),
3746                        modifiers: Modifiers::default(),
3747                    })
3748                }
3749                FileDropEvent::Submit { position } => {
3750                    cx.activate(true);
3751                    self.mouse_position = position;
3752                    PlatformInput::MouseUp(MouseUpEvent {
3753                        button: MouseButton::Left,
3754                        position,
3755                        modifiers: Modifiers::default(),
3756                        click_count: 1,
3757                    })
3758                }
3759                FileDropEvent::Exited => {
3760                    cx.active_drag.take();
3761                    PlatformInput::FileDrop(FileDropEvent::Exited)
3762                }
3763            },
3764            PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3765        };
3766
3767        if let Some(any_mouse_event) = event.mouse_event() {
3768            self.dispatch_mouse_event(any_mouse_event, cx);
3769        } else if let Some(any_key_event) = event.keyboard_event() {
3770            self.dispatch_key_event(any_key_event, cx);
3771        }
3772
3773        DispatchEventResult {
3774            propagate: cx.propagate_event,
3775            default_prevented: self.default_prevented,
3776        }
3777    }
3778
3779    fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3780        let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3781        if hit_test != self.mouse_hit_test {
3782            self.mouse_hit_test = hit_test;
3783            self.reset_cursor_style(cx);
3784        }
3785
3786        #[cfg(any(feature = "inspector", debug_assertions))]
3787        if self.is_inspector_picking(cx) {
3788            self.handle_inspector_mouse_event(event, cx);
3789            // When inspector is picking, all other mouse handling is skipped.
3790            return;
3791        }
3792
3793        let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3794
3795        // Capture phase, events bubble from back to front. Handlers for this phase are used for
3796        // special purposes, such as detecting events outside of a given Bounds.
3797        for listener in &mut mouse_listeners {
3798            let listener = listener.as_mut().unwrap();
3799            listener(event, DispatchPhase::Capture, self, cx);
3800            if !cx.propagate_event {
3801                break;
3802            }
3803        }
3804
3805        // Bubble phase, where most normal handlers do their work.
3806        if cx.propagate_event {
3807            for listener in mouse_listeners.iter_mut().rev() {
3808                let listener = listener.as_mut().unwrap();
3809                listener(event, DispatchPhase::Bubble, self, cx);
3810                if !cx.propagate_event {
3811                    break;
3812                }
3813            }
3814        }
3815
3816        self.rendered_frame.mouse_listeners = mouse_listeners;
3817
3818        if cx.has_active_drag() {
3819            if event.is::<MouseMoveEvent>() {
3820                // If this was a mouse move event, redraw the window so that the
3821                // active drag can follow the mouse cursor.
3822                self.refresh();
3823            } else if event.is::<MouseUpEvent>() {
3824                // If this was a mouse up event, cancel the active drag and redraw
3825                // the window.
3826                cx.active_drag = None;
3827                self.refresh();
3828            }
3829        }
3830    }
3831
3832    fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3833        if self.invalidator.is_dirty() {
3834            self.draw(cx).clear();
3835        }
3836
3837        let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3838        let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3839
3840        let mut keystroke: Option<Keystroke> = None;
3841
3842        if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3843            if event.modifiers.number_of_modifiers() == 0
3844                && self.pending_modifier.modifiers.number_of_modifiers() == 1
3845                && !self.pending_modifier.saw_keystroke
3846            {
3847                let key = match self.pending_modifier.modifiers {
3848                    modifiers if modifiers.shift => Some("shift"),
3849                    modifiers if modifiers.control => Some("control"),
3850                    modifiers if modifiers.alt => Some("alt"),
3851                    modifiers if modifiers.platform => Some("platform"),
3852                    modifiers if modifiers.function => Some("function"),
3853                    _ => None,
3854                };
3855                if let Some(key) = key {
3856                    keystroke = Some(Keystroke {
3857                        key: key.to_string(),
3858                        key_char: None,
3859                        modifiers: Modifiers::default(),
3860                    });
3861                }
3862            }
3863
3864            if self.pending_modifier.modifiers.number_of_modifiers() == 0
3865                && event.modifiers.number_of_modifiers() == 1
3866            {
3867                self.pending_modifier.saw_keystroke = false
3868            }
3869            self.pending_modifier.modifiers = event.modifiers
3870        } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3871            self.pending_modifier.saw_keystroke = true;
3872            keystroke = Some(key_down_event.keystroke.clone());
3873        }
3874
3875        let Some(keystroke) = keystroke else {
3876            self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3877            return;
3878        };
3879
3880        cx.propagate_event = true;
3881        self.dispatch_keystroke_interceptors(event, self.context_stack(), cx);
3882        if !cx.propagate_event {
3883            self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3884            return;
3885        }
3886
3887        let mut currently_pending = self.pending_input.take().unwrap_or_default();
3888        if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3889            currently_pending = PendingInput::default();
3890        }
3891
3892        let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3893            currently_pending.keystrokes,
3894            keystroke,
3895            &dispatch_path,
3896        );
3897
3898        if !match_result.to_replay.is_empty() {
3899            self.replay_pending_input(match_result.to_replay, cx);
3900            cx.propagate_event = true;
3901        }
3902
3903        if !match_result.pending.is_empty() {
3904            currently_pending.timer.take();
3905            currently_pending.keystrokes = match_result.pending;
3906            currently_pending.focus = self.focus;
3907
3908            let text_input_requires_timeout = event
3909                .downcast_ref::<KeyDownEvent>()
3910                .filter(|key_down| key_down.keystroke.key_char.is_some())
3911                .and_then(|_| self.platform_window.take_input_handler())
3912                .map_or(false, |mut input_handler| {
3913                    let accepts = input_handler.accepts_text_input(self, cx);
3914                    self.platform_window.set_input_handler(input_handler);
3915                    accepts
3916                });
3917
3918            currently_pending.needs_timeout |=
3919                match_result.pending_has_binding || text_input_requires_timeout;
3920
3921            if currently_pending.needs_timeout {
3922                currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3923                    cx.background_executor.timer(Duration::from_secs(1)).await;
3924                    cx.update(move |window, cx| {
3925                        let Some(currently_pending) = window
3926                            .pending_input
3927                            .take()
3928                            .filter(|pending| pending.focus == window.focus)
3929                        else {
3930                            return;
3931                        };
3932
3933                        let node_id = window.focus_node_id_in_rendered_frame(window.focus);
3934                        let dispatch_path =
3935                            window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3936
3937                        let to_replay = window
3938                            .rendered_frame
3939                            .dispatch_tree
3940                            .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3941
3942                        window.pending_input_changed(cx);
3943                        window.replay_pending_input(to_replay, cx)
3944                    })
3945                    .log_err();
3946                }));
3947            } else {
3948                currently_pending.timer = None;
3949            }
3950            self.pending_input = Some(currently_pending);
3951            self.pending_input_changed(cx);
3952            cx.propagate_event = false;
3953            return;
3954        }
3955
3956        let skip_bindings = event
3957            .downcast_ref::<KeyDownEvent>()
3958            .filter(|key_down_event| key_down_event.prefer_character_input)
3959            .map(|_| {
3960                self.platform_window
3961                    .take_input_handler()
3962                    .map_or(false, |mut input_handler| {
3963                        let accepts = input_handler.accepts_text_input(self, cx);
3964                        self.platform_window.set_input_handler(input_handler);
3965                        // If modifiers are not excessive (e.g. AltGr), and the input handler is accepting text input,
3966                        // we prefer the text input over bindings.
3967                        accepts
3968                    })
3969            })
3970            .unwrap_or(false);
3971
3972        if !skip_bindings {
3973            for binding in match_result.bindings {
3974                self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3975                if !cx.propagate_event {
3976                    self.dispatch_keystroke_observers(
3977                        event,
3978                        Some(binding.action),
3979                        match_result.context_stack,
3980                        cx,
3981                    );
3982                    self.pending_input_changed(cx);
3983                    return;
3984                }
3985            }
3986        }
3987
3988        self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
3989        self.pending_input_changed(cx);
3990    }
3991
3992    fn finish_dispatch_key_event(
3993        &mut self,
3994        event: &dyn Any,
3995        dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3996        context_stack: Vec<KeyContext>,
3997        cx: &mut App,
3998    ) {
3999        self.dispatch_key_down_up_event(event, &dispatch_path, cx);
4000        if !cx.propagate_event {
4001            return;
4002        }
4003
4004        self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
4005        if !cx.propagate_event {
4006            return;
4007        }
4008
4009        self.dispatch_keystroke_observers(event, None, context_stack, cx);
4010    }
4011
4012    fn pending_input_changed(&mut self, cx: &mut App) {
4013        self.pending_input_observers
4014            .clone()
4015            .retain(&(), |callback| callback(self, cx));
4016    }
4017
4018    fn dispatch_key_down_up_event(
4019        &mut self,
4020        event: &dyn Any,
4021        dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
4022        cx: &mut App,
4023    ) {
4024        // Capture phase
4025        for node_id in dispatch_path {
4026            let node = self.rendered_frame.dispatch_tree.node(*node_id);
4027
4028            for key_listener in node.key_listeners.clone() {
4029                key_listener(event, DispatchPhase::Capture, self, cx);
4030                if !cx.propagate_event {
4031                    return;
4032                }
4033            }
4034        }
4035
4036        // Bubble phase
4037        for node_id in dispatch_path.iter().rev() {
4038            // Handle low level key events
4039            let node = self.rendered_frame.dispatch_tree.node(*node_id);
4040            for key_listener in node.key_listeners.clone() {
4041                key_listener(event, DispatchPhase::Bubble, self, cx);
4042                if !cx.propagate_event {
4043                    return;
4044                }
4045            }
4046        }
4047    }
4048
4049    fn dispatch_modifiers_changed_event(
4050        &mut self,
4051        event: &dyn Any,
4052        dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
4053        cx: &mut App,
4054    ) {
4055        let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
4056            return;
4057        };
4058        for node_id in dispatch_path.iter().rev() {
4059            let node = self.rendered_frame.dispatch_tree.node(*node_id);
4060            for listener in node.modifiers_changed_listeners.clone() {
4061                listener(event, self, cx);
4062                if !cx.propagate_event {
4063                    return;
4064                }
4065            }
4066        }
4067    }
4068
4069    /// Determine whether a potential multi-stroke key binding is in progress on this window.
4070    pub fn has_pending_keystrokes(&self) -> bool {
4071        self.pending_input.is_some()
4072    }
4073
4074    pub(crate) fn clear_pending_keystrokes(&mut self) {
4075        self.pending_input.take();
4076    }
4077
4078    /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
4079    pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
4080        self.pending_input
4081            .as_ref()
4082            .map(|pending_input| pending_input.keystrokes.as_slice())
4083    }
4084
4085    fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
4086        let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4087        let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
4088
4089        'replay: for replay in replays {
4090            let event = KeyDownEvent {
4091                keystroke: replay.keystroke.clone(),
4092                is_held: false,
4093                prefer_character_input: true,
4094            };
4095
4096            cx.propagate_event = true;
4097            for binding in replay.bindings {
4098                self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
4099                if !cx.propagate_event {
4100                    self.dispatch_keystroke_observers(
4101                        &event,
4102                        Some(binding.action),
4103                        Vec::default(),
4104                        cx,
4105                    );
4106                    continue 'replay;
4107                }
4108            }
4109
4110            self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
4111            if !cx.propagate_event {
4112                continue 'replay;
4113            }
4114            if let Some(input) = replay.keystroke.key_char.as_ref().cloned()
4115                && let Some(mut input_handler) = self.platform_window.take_input_handler()
4116            {
4117                input_handler.dispatch_input(&input, self, cx);
4118                self.platform_window.set_input_handler(input_handler)
4119            }
4120        }
4121    }
4122
4123    fn focus_node_id_in_rendered_frame(&self, focus_id: Option<FocusId>) -> DispatchNodeId {
4124        focus_id
4125            .and_then(|focus_id| {
4126                self.rendered_frame
4127                    .dispatch_tree
4128                    .focusable_node_id(focus_id)
4129            })
4130            .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id())
4131    }
4132
4133    fn dispatch_action_on_node(
4134        &mut self,
4135        node_id: DispatchNodeId,
4136        action: &dyn Action,
4137        cx: &mut App,
4138    ) {
4139        let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
4140
4141        // Capture phase for global actions.
4142        cx.propagate_event = true;
4143        if let Some(mut global_listeners) = cx
4144            .global_action_listeners
4145            .remove(&action.as_any().type_id())
4146        {
4147            for listener in &global_listeners {
4148                listener(action.as_any(), DispatchPhase::Capture, cx);
4149                if !cx.propagate_event {
4150                    break;
4151                }
4152            }
4153
4154            global_listeners.extend(
4155                cx.global_action_listeners
4156                    .remove(&action.as_any().type_id())
4157                    .unwrap_or_default(),
4158            );
4159
4160            cx.global_action_listeners
4161                .insert(action.as_any().type_id(), global_listeners);
4162        }
4163
4164        if !cx.propagate_event {
4165            return;
4166        }
4167
4168        // Capture phase for window actions.
4169        for node_id in &dispatch_path {
4170            let node = self.rendered_frame.dispatch_tree.node(*node_id);
4171            for DispatchActionListener {
4172                action_type,
4173                listener,
4174            } in node.action_listeners.clone()
4175            {
4176                let any_action = action.as_any();
4177                if action_type == any_action.type_id() {
4178                    listener(any_action, DispatchPhase::Capture, self, cx);
4179
4180                    if !cx.propagate_event {
4181                        return;
4182                    }
4183                }
4184            }
4185        }
4186
4187        // Bubble phase for window actions.
4188        for node_id in dispatch_path.iter().rev() {
4189            let node = self.rendered_frame.dispatch_tree.node(*node_id);
4190            for DispatchActionListener {
4191                action_type,
4192                listener,
4193            } in node.action_listeners.clone()
4194            {
4195                let any_action = action.as_any();
4196                if action_type == any_action.type_id() {
4197                    cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4198                    listener(any_action, DispatchPhase::Bubble, self, cx);
4199
4200                    if !cx.propagate_event {
4201                        return;
4202                    }
4203                }
4204            }
4205        }
4206
4207        // Bubble phase for global actions.
4208        if let Some(mut global_listeners) = cx
4209            .global_action_listeners
4210            .remove(&action.as_any().type_id())
4211        {
4212            for listener in global_listeners.iter().rev() {
4213                cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4214
4215                listener(action.as_any(), DispatchPhase::Bubble, cx);
4216                if !cx.propagate_event {
4217                    break;
4218                }
4219            }
4220
4221            global_listeners.extend(
4222                cx.global_action_listeners
4223                    .remove(&action.as_any().type_id())
4224                    .unwrap_or_default(),
4225            );
4226
4227            cx.global_action_listeners
4228                .insert(action.as_any().type_id(), global_listeners);
4229        }
4230    }
4231
4232    /// Register the given handler to be invoked whenever the global of the given type
4233    /// is updated.
4234    pub fn observe_global<G: Global>(
4235        &mut self,
4236        cx: &mut App,
4237        f: impl Fn(&mut Window, &mut App) + 'static,
4238    ) -> Subscription {
4239        let window_handle = self.handle;
4240        let (subscription, activate) = cx.global_observers.insert(
4241            TypeId::of::<G>(),
4242            Box::new(move |cx| {
4243                window_handle
4244                    .update(cx, |_, window, cx| f(window, cx))
4245                    .is_ok()
4246            }),
4247        );
4248        cx.defer(move |_| activate());
4249        subscription
4250    }
4251
4252    /// Focus the current window and bring it to the foreground at the platform level.
4253    pub fn activate_window(&self) {
4254        self.platform_window.activate();
4255    }
4256
4257    /// Minimize the current window at the platform level.
4258    pub fn minimize_window(&self) {
4259        self.platform_window.minimize();
4260    }
4261
4262    /// Toggle full screen status on the current window at the platform level.
4263    pub fn toggle_fullscreen(&self) {
4264        self.platform_window.toggle_fullscreen();
4265    }
4266
4267    /// Updates the IME panel position suggestions for languages like japanese, chinese.
4268    pub fn invalidate_character_coordinates(&self) {
4269        self.on_next_frame(|window, cx| {
4270            if let Some(mut input_handler) = window.platform_window.take_input_handler() {
4271                if let Some(bounds) = input_handler.selected_bounds(window, cx) {
4272                    window.platform_window.update_ime_position(bounds);
4273                }
4274                window.platform_window.set_input_handler(input_handler);
4275            }
4276        });
4277    }
4278
4279    /// Present a platform dialog.
4280    /// The provided message will be presented, along with buttons for each answer.
4281    /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
4282    pub fn prompt<T>(
4283        &mut self,
4284        level: PromptLevel,
4285        message: &str,
4286        detail: Option<&str>,
4287        answers: &[T],
4288        cx: &mut App,
4289    ) -> oneshot::Receiver<usize>
4290    where
4291        T: Clone + Into<PromptButton>,
4292    {
4293        let prompt_builder = cx.prompt_builder.take();
4294        let Some(prompt_builder) = prompt_builder else {
4295            unreachable!("Re-entrant window prompting is not supported by GPUI");
4296        };
4297
4298        let answers = answers
4299            .iter()
4300            .map(|answer| answer.clone().into())
4301            .collect::<Vec<_>>();
4302
4303        let receiver = match &prompt_builder {
4304            PromptBuilder::Default => self
4305                .platform_window
4306                .prompt(level, message, detail, &answers)
4307                .unwrap_or_else(|| {
4308                    self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4309                }),
4310            PromptBuilder::Custom(_) => {
4311                self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4312            }
4313        };
4314
4315        cx.prompt_builder = Some(prompt_builder);
4316
4317        receiver
4318    }
4319
4320    fn build_custom_prompt(
4321        &mut self,
4322        prompt_builder: &PromptBuilder,
4323        level: PromptLevel,
4324        message: &str,
4325        detail: Option<&str>,
4326        answers: &[PromptButton],
4327        cx: &mut App,
4328    ) -> oneshot::Receiver<usize> {
4329        let (sender, receiver) = oneshot::channel();
4330        let handle = PromptHandle::new(sender);
4331        let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
4332        self.prompt = Some(handle);
4333        receiver
4334    }
4335
4336    /// Returns the current context stack.
4337    pub fn context_stack(&self) -> Vec<KeyContext> {
4338        let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4339        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4340        dispatch_tree
4341            .dispatch_path(node_id)
4342            .iter()
4343            .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
4344            .collect()
4345    }
4346
4347    /// Returns all available actions for the focused element.
4348    pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
4349        let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4350        let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
4351        for action_type in cx.global_action_listeners.keys() {
4352            if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
4353                let action = cx.actions.build_action_type(action_type).ok();
4354                if let Some(action) = action {
4355                    actions.insert(ix, action);
4356                }
4357            }
4358        }
4359        actions
4360    }
4361
4362    /// Returns key bindings that invoke an action on the currently focused element. Bindings are
4363    /// returned in the order they were added. For display, the last binding should take precedence.
4364    pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
4365        self.rendered_frame
4366            .dispatch_tree
4367            .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
4368    }
4369
4370    /// Returns the highest precedence key binding that invokes an action on the currently focused
4371    /// element. This is more efficient than getting the last result of `bindings_for_action`.
4372    pub fn highest_precedence_binding_for_action(&self, action: &dyn Action) -> Option<KeyBinding> {
4373        self.rendered_frame
4374            .dispatch_tree
4375            .highest_precedence_binding_for_action(
4376                action,
4377                &self.rendered_frame.dispatch_tree.context_stack,
4378            )
4379    }
4380
4381    /// Returns the key bindings for an action in a context.
4382    pub fn bindings_for_action_in_context(
4383        &self,
4384        action: &dyn Action,
4385        context: KeyContext,
4386    ) -> Vec<KeyBinding> {
4387        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4388        dispatch_tree.bindings_for_action(action, &[context])
4389    }
4390
4391    /// Returns the highest precedence key binding for an action in a context. This is more
4392    /// efficient than getting the last result of `bindings_for_action_in_context`.
4393    pub fn highest_precedence_binding_for_action_in_context(
4394        &self,
4395        action: &dyn Action,
4396        context: KeyContext,
4397    ) -> Option<KeyBinding> {
4398        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4399        dispatch_tree.highest_precedence_binding_for_action(action, &[context])
4400    }
4401
4402    /// Returns any bindings that would invoke an action on the given focus handle if it were
4403    /// focused. Bindings are returned in the order they were added. For display, the last binding
4404    /// should take precedence.
4405    pub fn bindings_for_action_in(
4406        &self,
4407        action: &dyn Action,
4408        focus_handle: &FocusHandle,
4409    ) -> Vec<KeyBinding> {
4410        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4411        let Some(context_stack) = self.context_stack_for_focus_handle(focus_handle) else {
4412            return vec![];
4413        };
4414        dispatch_tree.bindings_for_action(action, &context_stack)
4415    }
4416
4417    /// Returns the highest precedence key binding that would invoke an action on the given focus
4418    /// handle if it were focused. This is more efficient than getting the last result of
4419    /// `bindings_for_action_in`.
4420    pub fn highest_precedence_binding_for_action_in(
4421        &self,
4422        action: &dyn Action,
4423        focus_handle: &FocusHandle,
4424    ) -> Option<KeyBinding> {
4425        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4426        let context_stack = self.context_stack_for_focus_handle(focus_handle)?;
4427        dispatch_tree.highest_precedence_binding_for_action(action, &context_stack)
4428    }
4429
4430    fn context_stack_for_focus_handle(
4431        &self,
4432        focus_handle: &FocusHandle,
4433    ) -> Option<Vec<KeyContext>> {
4434        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4435        let node_id = dispatch_tree.focusable_node_id(focus_handle.id)?;
4436        let context_stack: Vec<_> = dispatch_tree
4437            .dispatch_path(node_id)
4438            .into_iter()
4439            .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
4440            .collect();
4441        Some(context_stack)
4442    }
4443
4444    /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
4445    pub fn listener_for<T: 'static, E>(
4446        &self,
4447        view: &Entity<T>,
4448        f: impl Fn(&mut T, &E, &mut Window, &mut Context<T>) + 'static,
4449    ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
4450        let view = view.downgrade();
4451        move |e: &E, window: &mut Window, cx: &mut App| {
4452            view.update(cx, |view, cx| f(view, e, window, cx)).ok();
4453        }
4454    }
4455
4456    /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
4457    pub fn handler_for<E: 'static, Callback: Fn(&mut E, &mut Window, &mut Context<E>) + 'static>(
4458        &self,
4459        entity: &Entity<E>,
4460        f: Callback,
4461    ) -> impl Fn(&mut Window, &mut App) + 'static {
4462        let entity = entity.downgrade();
4463        move |window: &mut Window, cx: &mut App| {
4464            entity.update(cx, |entity, cx| f(entity, window, cx)).ok();
4465        }
4466    }
4467
4468    /// Register a callback that can interrupt the closing of the current window based the returned boolean.
4469    /// If the callback returns false, the window won't be closed.
4470    pub fn on_window_should_close(
4471        &self,
4472        cx: &App,
4473        f: impl Fn(&mut Window, &mut App) -> bool + 'static,
4474    ) {
4475        let mut cx = self.to_async(cx);
4476        self.platform_window.on_should_close(Box::new(move || {
4477            cx.update(|window, cx| f(window, cx)).unwrap_or(true)
4478        }))
4479    }
4480
4481    /// Register an action listener on this node for the next frame. The type of action
4482    /// is determined by the first parameter of the given listener. When the next frame is rendered
4483    /// the listener will be cleared.
4484    ///
4485    /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4486    /// a specific need to register a listener yourself.
4487    ///
4488    /// This method should only be called as part of the paint phase of element drawing.
4489    pub fn on_action(
4490        &mut self,
4491        action_type: TypeId,
4492        listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4493    ) {
4494        self.invalidator.debug_assert_paint();
4495
4496        self.next_frame
4497            .dispatch_tree
4498            .on_action(action_type, Rc::new(listener));
4499    }
4500
4501    /// Register a capturing action listener on this node for the next frame if the condition is true.
4502    /// The type of action is determined by the first parameter of the given listener. When the next
4503    /// frame is rendered the listener will be cleared.
4504    ///
4505    /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4506    /// a specific need to register a listener yourself.
4507    ///
4508    /// This method should only be called as part of the paint phase of element drawing.
4509    pub fn on_action_when(
4510        &mut self,
4511        condition: bool,
4512        action_type: TypeId,
4513        listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4514    ) {
4515        self.invalidator.debug_assert_paint();
4516
4517        if condition {
4518            self.next_frame
4519                .dispatch_tree
4520                .on_action(action_type, Rc::new(listener));
4521        }
4522    }
4523
4524    /// Read information about the GPU backing this window.
4525    /// Currently returns None on Mac and Windows.
4526    pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4527        self.platform_window.gpu_specs()
4528    }
4529
4530    /// Perform titlebar double-click action.
4531    /// This is macOS specific.
4532    pub fn titlebar_double_click(&self) {
4533        self.platform_window.titlebar_double_click();
4534    }
4535
4536    /// Gets the window's title at the platform level.
4537    /// This is macOS specific.
4538    pub fn window_title(&self) -> String {
4539        self.platform_window.get_title()
4540    }
4541
4542    /// Returns a list of all tabbed windows and their titles.
4543    /// This is macOS specific.
4544    pub fn tabbed_windows(&self) -> Option<Vec<SystemWindowTab>> {
4545        self.platform_window.tabbed_windows()
4546    }
4547
4548    /// Returns the tab bar visibility.
4549    /// This is macOS specific.
4550    pub fn tab_bar_visible(&self) -> bool {
4551        self.platform_window.tab_bar_visible()
4552    }
4553
4554    /// Merges all open windows into a single tabbed window.
4555    /// This is macOS specific.
4556    pub fn merge_all_windows(&self) {
4557        self.platform_window.merge_all_windows()
4558    }
4559
4560    /// Moves the tab to a new containing window.
4561    /// This is macOS specific.
4562    pub fn move_tab_to_new_window(&self) {
4563        self.platform_window.move_tab_to_new_window()
4564    }
4565
4566    /// Shows or hides the window tab overview.
4567    /// This is macOS specific.
4568    pub fn toggle_window_tab_overview(&self) {
4569        self.platform_window.toggle_window_tab_overview()
4570    }
4571
4572    /// Sets the tabbing identifier for the window.
4573    /// This is macOS specific.
4574    pub fn set_tabbing_identifier(&self, tabbing_identifier: Option<String>) {
4575        self.platform_window
4576            .set_tabbing_identifier(tabbing_identifier)
4577    }
4578
4579    /// Toggles the inspector mode on this window.
4580    #[cfg(any(feature = "inspector", debug_assertions))]
4581    pub fn toggle_inspector(&mut self, cx: &mut App) {
4582        self.inspector = match self.inspector {
4583            None => Some(cx.new(|_| Inspector::new())),
4584            Some(_) => None,
4585        };
4586        self.refresh();
4587    }
4588
4589    /// Returns true if the window is in inspector mode.
4590    pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4591        #[cfg(any(feature = "inspector", debug_assertions))]
4592        {
4593            if let Some(inspector) = &self.inspector {
4594                return inspector.read(_cx).is_picking();
4595            }
4596        }
4597        false
4598    }
4599
4600    /// Executes the provided function with mutable access to an inspector state.
4601    #[cfg(any(feature = "inspector", debug_assertions))]
4602    pub fn with_inspector_state<T: 'static, R>(
4603        &mut self,
4604        _inspector_id: Option<&crate::InspectorElementId>,
4605        cx: &mut App,
4606        f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4607    ) -> R {
4608        if let Some(inspector_id) = _inspector_id
4609            && let Some(inspector) = &self.inspector
4610        {
4611            let inspector = inspector.clone();
4612            let active_element_id = inspector.read(cx).active_element_id();
4613            if Some(inspector_id) == active_element_id {
4614                return inspector.update(cx, |inspector, _cx| {
4615                    inspector.with_active_element_state(self, f)
4616                });
4617            }
4618        }
4619        f(&mut None, self)
4620    }
4621
4622    #[cfg(any(feature = "inspector", debug_assertions))]
4623    pub(crate) fn build_inspector_element_id(
4624        &mut self,
4625        path: crate::InspectorElementPath,
4626    ) -> crate::InspectorElementId {
4627        self.invalidator.debug_assert_paint_or_prepaint();
4628        let path = Rc::new(path);
4629        let next_instance_id = self
4630            .next_frame
4631            .next_inspector_instance_ids
4632            .entry(path.clone())
4633            .or_insert(0);
4634        let instance_id = *next_instance_id;
4635        *next_instance_id += 1;
4636        crate::InspectorElementId { path, instance_id }
4637    }
4638
4639    #[cfg(any(feature = "inspector", debug_assertions))]
4640    fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4641        if let Some(inspector) = self.inspector.take() {
4642            let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4643            inspector_element.prepaint_as_root(
4644                point(self.viewport_size.width - inspector_width, px(0.0)),
4645                size(inspector_width, self.viewport_size.height).into(),
4646                self,
4647                cx,
4648            );
4649            self.inspector = Some(inspector);
4650            Some(inspector_element)
4651        } else {
4652            None
4653        }
4654    }
4655
4656    #[cfg(any(feature = "inspector", debug_assertions))]
4657    fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4658        if let Some(mut inspector_element) = inspector_element {
4659            inspector_element.paint(self, cx);
4660        };
4661    }
4662
4663    /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4664    /// inspect UI elements by clicking on them.
4665    #[cfg(any(feature = "inspector", debug_assertions))]
4666    pub fn insert_inspector_hitbox(
4667        &mut self,
4668        hitbox_id: HitboxId,
4669        inspector_id: Option<&crate::InspectorElementId>,
4670        cx: &App,
4671    ) {
4672        self.invalidator.debug_assert_paint_or_prepaint();
4673        if !self.is_inspector_picking(cx) {
4674            return;
4675        }
4676        if let Some(inspector_id) = inspector_id {
4677            self.next_frame
4678                .inspector_hitboxes
4679                .insert(hitbox_id, inspector_id.clone());
4680        }
4681    }
4682
4683    #[cfg(any(feature = "inspector", debug_assertions))]
4684    fn paint_inspector_hitbox(&mut self, cx: &App) {
4685        if let Some(inspector) = self.inspector.as_ref() {
4686            let inspector = inspector.read(cx);
4687            if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
4688                && let Some(hitbox) = self
4689                    .next_frame
4690                    .hitboxes
4691                    .iter()
4692                    .find(|hitbox| hitbox.id == hitbox_id)
4693            {
4694                self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4695            }
4696        }
4697    }
4698
4699    #[cfg(any(feature = "inspector", debug_assertions))]
4700    fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4701        let Some(inspector) = self.inspector.clone() else {
4702            return;
4703        };
4704        if event.downcast_ref::<MouseMoveEvent>().is_some() {
4705            inspector.update(cx, |inspector, _cx| {
4706                if let Some((_, inspector_id)) =
4707                    self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4708                {
4709                    inspector.hover(inspector_id, self);
4710                }
4711            });
4712        } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4713            inspector.update(cx, |inspector, _cx| {
4714                if let Some((_, inspector_id)) =
4715                    self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4716                {
4717                    inspector.select(inspector_id, self);
4718                }
4719            });
4720        } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4721            // This should be kept in sync with SCROLL_LINES in x11 platform.
4722            const SCROLL_LINES: f32 = 3.0;
4723            const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4724            let delta_y = event
4725                .delta
4726                .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4727                .y;
4728            if let Some(inspector) = self.inspector.clone() {
4729                inspector.update(cx, |inspector, _cx| {
4730                    if let Some(depth) = inspector.pick_depth.as_mut() {
4731                        *depth += f32::from(delta_y) / SCROLL_PIXELS_PER_LAYER;
4732                        let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4733                        if *depth < 0.0 {
4734                            *depth = 0.0;
4735                        } else if *depth > max_depth {
4736                            *depth = max_depth;
4737                        }
4738                        if let Some((_, inspector_id)) =
4739                            self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4740                        {
4741                            inspector.set_active_element_id(inspector_id, self);
4742                        }
4743                    }
4744                });
4745            }
4746        }
4747    }
4748
4749    #[cfg(any(feature = "inspector", debug_assertions))]
4750    fn hovered_inspector_hitbox(
4751        &self,
4752        inspector: &Inspector,
4753        frame: &Frame,
4754    ) -> Option<(HitboxId, crate::InspectorElementId)> {
4755        if let Some(pick_depth) = inspector.pick_depth {
4756            let depth = (pick_depth as i64).try_into().unwrap_or(0);
4757            let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4758            let skip_count = (depth as usize).min(max_skipped);
4759            for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4760                if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4761                    return Some((*hitbox_id, inspector_id.clone()));
4762                }
4763            }
4764        }
4765        None
4766    }
4767
4768    /// For testing: set the current modifier keys state.
4769    /// This does not generate any events.
4770    #[cfg(any(test, feature = "test-support"))]
4771    pub fn set_modifiers(&mut self, modifiers: Modifiers) {
4772        self.modifiers = modifiers;
4773    }
4774}
4775
4776// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4777slotmap::new_key_type! {
4778    /// A unique identifier for a window.
4779    pub struct WindowId;
4780}
4781
4782impl WindowId {
4783    /// Converts this window ID to a `u64`.
4784    pub fn as_u64(&self) -> u64 {
4785        self.0.as_ffi()
4786    }
4787}
4788
4789impl From<u64> for WindowId {
4790    fn from(value: u64) -> Self {
4791        WindowId(slotmap::KeyData::from_ffi(value))
4792    }
4793}
4794
4795/// A handle to a window with a specific root view type.
4796/// Note that this does not keep the window alive on its own.
4797#[derive(Deref, DerefMut)]
4798pub struct WindowHandle<V> {
4799    #[deref]
4800    #[deref_mut]
4801    pub(crate) any_handle: AnyWindowHandle,
4802    state_type: PhantomData<fn(V) -> V>,
4803}
4804
4805impl<V> Debug for WindowHandle<V> {
4806    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4807        f.debug_struct("WindowHandle")
4808            .field("any_handle", &self.any_handle.id.as_u64())
4809            .finish()
4810    }
4811}
4812
4813impl<V: 'static + Render> WindowHandle<V> {
4814    /// Creates a new handle from a window ID.
4815    /// This does not check if the root type of the window is `V`.
4816    pub fn new(id: WindowId) -> Self {
4817        WindowHandle {
4818            any_handle: AnyWindowHandle {
4819                id,
4820                state_type: TypeId::of::<V>(),
4821            },
4822            state_type: PhantomData,
4823        }
4824    }
4825
4826    /// Get the root view out of this window.
4827    ///
4828    /// This will fail if the window is closed or if the root view's type does not match `V`.
4829    #[cfg(any(test, feature = "test-support"))]
4830    pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4831    where
4832        C: AppContext,
4833    {
4834        crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4835            root_view
4836                .downcast::<V>()
4837                .map_err(|_| anyhow!("the type of the window's root view has changed"))
4838        }))
4839    }
4840
4841    /// Updates the root view of this window.
4842    ///
4843    /// This will fail if the window has been closed or if the root view's type does not match
4844    pub fn update<C, R>(
4845        &self,
4846        cx: &mut C,
4847        update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4848    ) -> Result<R>
4849    where
4850        C: AppContext,
4851    {
4852        cx.update_window(self.any_handle, |root_view, window, cx| {
4853            let view = root_view
4854                .downcast::<V>()
4855                .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4856
4857            Ok(view.update(cx, |view, cx| update(view, window, cx)))
4858        })?
4859    }
4860
4861    /// Read the root view out of this window.
4862    ///
4863    /// This will fail if the window is closed or if the root view's type does not match `V`.
4864    pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
4865        let x = cx
4866            .windows
4867            .get(self.id)
4868            .and_then(|window| {
4869                window
4870                    .as_deref()
4871                    .and_then(|window| window.root.clone())
4872                    .map(|root_view| root_view.downcast::<V>())
4873            })
4874            .context("window not found")?
4875            .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4876
4877        Ok(x.read(cx))
4878    }
4879
4880    /// Read the root view out of this window, with a callback
4881    ///
4882    /// This will fail if the window is closed or if the root view's type does not match `V`.
4883    pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4884    where
4885        C: AppContext,
4886    {
4887        cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
4888    }
4889
4890    /// Read the root view pointer off of this window.
4891    ///
4892    /// This will fail if the window is closed or if the root view's type does not match `V`.
4893    pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4894    where
4895        C: AppContext,
4896    {
4897        cx.read_window(self, |root_view, _cx| root_view)
4898    }
4899
4900    /// Check if this window is 'active'.
4901    ///
4902    /// Will return `None` if the window is closed or currently
4903    /// borrowed.
4904    pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4905        cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4906            .ok()
4907    }
4908}
4909
4910impl<V> Copy for WindowHandle<V> {}
4911
4912impl<V> Clone for WindowHandle<V> {
4913    fn clone(&self) -> Self {
4914        *self
4915    }
4916}
4917
4918impl<V> PartialEq for WindowHandle<V> {
4919    fn eq(&self, other: &Self) -> bool {
4920        self.any_handle == other.any_handle
4921    }
4922}
4923
4924impl<V> Eq for WindowHandle<V> {}
4925
4926impl<V> Hash for WindowHandle<V> {
4927    fn hash<H: Hasher>(&self, state: &mut H) {
4928        self.any_handle.hash(state);
4929    }
4930}
4931
4932impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
4933    fn from(val: WindowHandle<V>) -> Self {
4934        val.any_handle
4935    }
4936}
4937
4938/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
4939#[derive(Copy, Clone, PartialEq, Eq, Hash)]
4940pub struct AnyWindowHandle {
4941    pub(crate) id: WindowId,
4942    state_type: TypeId,
4943}
4944
4945impl AnyWindowHandle {
4946    /// Get the ID of this window.
4947    pub fn window_id(&self) -> WindowId {
4948        self.id
4949    }
4950
4951    /// Attempt to convert this handle to a window handle with a specific root view type.
4952    /// If the types do not match, this will return `None`.
4953    pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
4954        if TypeId::of::<T>() == self.state_type {
4955            Some(WindowHandle {
4956                any_handle: *self,
4957                state_type: PhantomData,
4958            })
4959        } else {
4960            None
4961        }
4962    }
4963
4964    /// Updates the state of the root view of this window.
4965    ///
4966    /// This will fail if the window has been closed.
4967    pub fn update<C, R>(
4968        self,
4969        cx: &mut C,
4970        update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
4971    ) -> Result<R>
4972    where
4973        C: AppContext,
4974    {
4975        cx.update_window(self, update)
4976    }
4977
4978    /// Read the state of the root view of this window.
4979    ///
4980    /// This will fail if the window has been closed.
4981    pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
4982    where
4983        C: AppContext,
4984        T: 'static,
4985    {
4986        let view = self
4987            .downcast::<T>()
4988            .context("the type of the window's root view has changed")?;
4989
4990        cx.read_window(&view, read)
4991    }
4992}
4993
4994impl HasWindowHandle for Window {
4995    fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
4996        self.platform_window.window_handle()
4997    }
4998}
4999
5000impl HasDisplayHandle for Window {
5001    fn display_handle(
5002        &self,
5003    ) -> std::result::Result<raw_window_handle::DisplayHandle<'_>, HandleError> {
5004        self.platform_window.display_handle()
5005    }
5006}
5007
5008/// An identifier for an [`Element`].
5009///
5010/// Can be constructed with a string, a number, or both, as well
5011/// as other internal representations.
5012#[derive(Clone, Debug, Eq, PartialEq, Hash)]
5013pub enum ElementId {
5014    /// The ID of a View element
5015    View(EntityId),
5016    /// An integer ID.
5017    Integer(u64),
5018    /// A string based ID.
5019    Name(SharedString),
5020    /// A UUID.
5021    Uuid(Uuid),
5022    /// An ID that's equated with a focus handle.
5023    FocusHandle(FocusId),
5024    /// A combination of a name and an integer.
5025    NamedInteger(SharedString, u64),
5026    /// A path.
5027    Path(Arc<std::path::Path>),
5028    /// A code location.
5029    CodeLocation(core::panic::Location<'static>),
5030    /// A labeled child of an element.
5031    NamedChild(Arc<ElementId>, SharedString),
5032}
5033
5034impl ElementId {
5035    /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
5036    pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
5037        Self::NamedInteger(name.into(), integer as u64)
5038    }
5039}
5040
5041impl Display for ElementId {
5042    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
5043        match self {
5044            ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
5045            ElementId::Integer(ix) => write!(f, "{}", ix)?,
5046            ElementId::Name(name) => write!(f, "{}", name)?,
5047            ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
5048            ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
5049            ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
5050            ElementId::Path(path) => write!(f, "{}", path.display())?,
5051            ElementId::CodeLocation(location) => write!(f, "{}", location)?,
5052            ElementId::NamedChild(id, name) => write!(f, "{}-{}", id, name)?,
5053        }
5054
5055        Ok(())
5056    }
5057}
5058
5059impl TryInto<SharedString> for ElementId {
5060    type Error = anyhow::Error;
5061
5062    fn try_into(self) -> anyhow::Result<SharedString> {
5063        if let ElementId::Name(name) = self {
5064            Ok(name)
5065        } else {
5066            anyhow::bail!("element id is not string")
5067        }
5068    }
5069}
5070
5071impl From<usize> for ElementId {
5072    fn from(id: usize) -> Self {
5073        ElementId::Integer(id as u64)
5074    }
5075}
5076
5077impl From<i32> for ElementId {
5078    fn from(id: i32) -> Self {
5079        Self::Integer(id as u64)
5080    }
5081}
5082
5083impl From<SharedString> for ElementId {
5084    fn from(name: SharedString) -> Self {
5085        ElementId::Name(name)
5086    }
5087}
5088
5089impl From<String> for ElementId {
5090    fn from(name: String) -> Self {
5091        ElementId::Name(name.into())
5092    }
5093}
5094
5095impl From<Arc<str>> for ElementId {
5096    fn from(name: Arc<str>) -> Self {
5097        ElementId::Name(name.into())
5098    }
5099}
5100
5101impl From<Arc<std::path::Path>> for ElementId {
5102    fn from(path: Arc<std::path::Path>) -> Self {
5103        ElementId::Path(path)
5104    }
5105}
5106
5107impl From<&'static str> for ElementId {
5108    fn from(name: &'static str) -> Self {
5109        ElementId::Name(name.into())
5110    }
5111}
5112
5113impl<'a> From<&'a FocusHandle> for ElementId {
5114    fn from(handle: &'a FocusHandle) -> Self {
5115        ElementId::FocusHandle(handle.id)
5116    }
5117}
5118
5119impl From<(&'static str, EntityId)> for ElementId {
5120    fn from((name, id): (&'static str, EntityId)) -> Self {
5121        ElementId::NamedInteger(name.into(), id.as_u64())
5122    }
5123}
5124
5125impl From<(&'static str, usize)> for ElementId {
5126    fn from((name, id): (&'static str, usize)) -> Self {
5127        ElementId::NamedInteger(name.into(), id as u64)
5128    }
5129}
5130
5131impl From<(SharedString, usize)> for ElementId {
5132    fn from((name, id): (SharedString, usize)) -> Self {
5133        ElementId::NamedInteger(name, id as u64)
5134    }
5135}
5136
5137impl From<(&'static str, u64)> for ElementId {
5138    fn from((name, id): (&'static str, u64)) -> Self {
5139        ElementId::NamedInteger(name.into(), id)
5140    }
5141}
5142
5143impl From<Uuid> for ElementId {
5144    fn from(value: Uuid) -> Self {
5145        Self::Uuid(value)
5146    }
5147}
5148
5149impl From<(&'static str, u32)> for ElementId {
5150    fn from((name, id): (&'static str, u32)) -> Self {
5151        ElementId::NamedInteger(name.into(), id.into())
5152    }
5153}
5154
5155impl<T: Into<SharedString>> From<(ElementId, T)> for ElementId {
5156    fn from((id, name): (ElementId, T)) -> Self {
5157        ElementId::NamedChild(Arc::new(id), name.into())
5158    }
5159}
5160
5161impl From<&'static core::panic::Location<'static>> for ElementId {
5162    fn from(location: &'static core::panic::Location<'static>) -> Self {
5163        ElementId::CodeLocation(*location)
5164    }
5165}
5166
5167/// A rectangle to be rendered in the window at the given position and size.
5168/// Passed as an argument [`Window::paint_quad`].
5169#[derive(Clone)]
5170pub struct PaintQuad {
5171    /// The bounds of the quad within the window.
5172    pub bounds: Bounds<Pixels>,
5173    /// The radii of the quad's corners.
5174    pub corner_radii: Corners<Pixels>,
5175    /// The background color of the quad.
5176    pub background: Background,
5177    /// The widths of the quad's borders.
5178    pub border_widths: Edges<Pixels>,
5179    /// The color of the quad's borders.
5180    pub border_color: Hsla,
5181    /// The style of the quad's borders.
5182    pub border_style: BorderStyle,
5183}
5184
5185impl PaintQuad {
5186    /// Sets the corner radii of the quad.
5187    pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
5188        PaintQuad {
5189            corner_radii: corner_radii.into(),
5190            ..self
5191        }
5192    }
5193
5194    /// Sets the border widths of the quad.
5195    pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
5196        PaintQuad {
5197            border_widths: border_widths.into(),
5198            ..self
5199        }
5200    }
5201
5202    /// Sets the border color of the quad.
5203    pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
5204        PaintQuad {
5205            border_color: border_color.into(),
5206            ..self
5207        }
5208    }
5209
5210    /// Sets the background color of the quad.
5211    pub fn background(self, background: impl Into<Background>) -> Self {
5212        PaintQuad {
5213            background: background.into(),
5214            ..self
5215        }
5216    }
5217}
5218
5219/// Creates a quad with the given parameters.
5220pub fn quad(
5221    bounds: Bounds<Pixels>,
5222    corner_radii: impl Into<Corners<Pixels>>,
5223    background: impl Into<Background>,
5224    border_widths: impl Into<Edges<Pixels>>,
5225    border_color: impl Into<Hsla>,
5226    border_style: BorderStyle,
5227) -> PaintQuad {
5228    PaintQuad {
5229        bounds,
5230        corner_radii: corner_radii.into(),
5231        background: background.into(),
5232        border_widths: border_widths.into(),
5233        border_color: border_color.into(),
5234        border_style,
5235    }
5236}
5237
5238/// Creates a filled quad with the given bounds and background color.
5239pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
5240    PaintQuad {
5241        bounds: bounds.into(),
5242        corner_radii: (0.).into(),
5243        background: background.into(),
5244        border_widths: (0.).into(),
5245        border_color: transparent_black(),
5246        border_style: BorderStyle::default(),
5247    }
5248}
5249
5250/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
5251pub fn outline(
5252    bounds: impl Into<Bounds<Pixels>>,
5253    border_color: impl Into<Hsla>,
5254    border_style: BorderStyle,
5255) -> PaintQuad {
5256    PaintQuad {
5257        bounds: bounds.into(),
5258        corner_radii: (0.).into(),
5259        background: transparent_black().into(),
5260        border_widths: (1.).into(),
5261        border_color: border_color.into(),
5262        border_style,
5263    }
5264}