1#[cfg(any(feature = "inspector", debug_assertions))]
2use crate::Inspector;
3use crate::{
4 Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
5 AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Capslock,
6 Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
7 DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
8 FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
9 KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
10 LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
11 MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
12 PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptButton, PromptLevel, Quad,
13 Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge,
14 SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS, ScaledPixels, Scene, Shadow, SharedString, Size,
15 StrikethroughStyle, Style, SubscriberSet, Subscription, SystemWindowTab,
16 SystemWindowTabController, TabHandles, TaffyLayoutEngine, Task, TextStyle, TextStyleRefinement,
17 TransformationMatrix, Underline, UnderlineStyle, WindowAppearance, WindowBackgroundAppearance,
18 WindowBounds, WindowControls, WindowDecorations, WindowOptions, WindowParams, WindowTextSystem,
19 point, prelude::*, px, rems, size, transparent_black,
20};
21use anyhow::{Context as _, Result, anyhow};
22use collections::{FxHashMap, FxHashSet};
23#[cfg(target_os = "macos")]
24use core_video::pixel_buffer::CVPixelBuffer;
25use derive_more::{Deref, DerefMut};
26use futures::FutureExt;
27use futures::channel::oneshot;
28use itertools::FoldWhile::{Continue, Done};
29use itertools::Itertools;
30use parking_lot::RwLock;
31use raw_window_handle::{HandleError, HasDisplayHandle, HasWindowHandle};
32use refineable::Refineable;
33use slotmap::SlotMap;
34use smallvec::SmallVec;
35use std::{
36 any::{Any, TypeId},
37 borrow::Cow,
38 cell::{Cell, RefCell},
39 cmp,
40 fmt::{Debug, Display},
41 hash::{Hash, Hasher},
42 marker::PhantomData,
43 mem,
44 ops::{DerefMut, Range},
45 rc::Rc,
46 sync::{
47 Arc, Weak,
48 atomic::{AtomicUsize, Ordering::SeqCst},
49 },
50 time::{Duration, Instant},
51};
52use util::post_inc;
53use util::{ResultExt, measure};
54use uuid::Uuid;
55
56mod prompts;
57
58use crate::util::atomic_incr_if_not_zero;
59pub use prompts::*;
60
61pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1024.), px(700.));
62
63/// Represents the two different phases when dispatching events.
64#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
65pub enum DispatchPhase {
66 /// After the capture phase comes the bubble phase, in which mouse event listeners are
67 /// invoked front to back and keyboard event listeners are invoked from the focused element
68 /// to the root of the element tree. This is the phase you'll most commonly want to use when
69 /// registering event listeners.
70 #[default]
71 Bubble,
72 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
73 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
74 /// is used for special purposes such as clearing the "pressed" state for click events. If
75 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
76 /// outside of the immediate region may rely on detecting non-local events during this phase.
77 Capture,
78}
79
80impl DispatchPhase {
81 /// Returns true if this represents the "bubble" phase.
82 #[inline]
83 pub fn bubble(self) -> bool {
84 self == DispatchPhase::Bubble
85 }
86
87 /// Returns true if this represents the "capture" phase.
88 #[inline]
89 pub fn capture(self) -> bool {
90 self == DispatchPhase::Capture
91 }
92}
93
94struct WindowInvalidatorInner {
95 pub dirty: bool,
96 pub draw_phase: DrawPhase,
97 pub dirty_views: FxHashSet<EntityId>,
98}
99
100#[derive(Clone)]
101pub(crate) struct WindowInvalidator {
102 inner: Rc<RefCell<WindowInvalidatorInner>>,
103}
104
105impl WindowInvalidator {
106 pub fn new() -> Self {
107 WindowInvalidator {
108 inner: Rc::new(RefCell::new(WindowInvalidatorInner {
109 dirty: true,
110 draw_phase: DrawPhase::None,
111 dirty_views: FxHashSet::default(),
112 })),
113 }
114 }
115
116 pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
117 let mut inner = self.inner.borrow_mut();
118 inner.dirty_views.insert(entity);
119 if inner.draw_phase == DrawPhase::None {
120 inner.dirty = true;
121 cx.push_effect(Effect::Notify { emitter: entity });
122 true
123 } else {
124 false
125 }
126 }
127
128 pub fn is_dirty(&self) -> bool {
129 self.inner.borrow().dirty
130 }
131
132 pub fn set_dirty(&self, dirty: bool) {
133 self.inner.borrow_mut().dirty = dirty
134 }
135
136 pub fn set_phase(&self, phase: DrawPhase) {
137 self.inner.borrow_mut().draw_phase = phase
138 }
139
140 pub fn take_views(&self) -> FxHashSet<EntityId> {
141 mem::take(&mut self.inner.borrow_mut().dirty_views)
142 }
143
144 pub fn replace_views(&self, views: FxHashSet<EntityId>) {
145 self.inner.borrow_mut().dirty_views = views;
146 }
147
148 pub fn not_drawing(&self) -> bool {
149 self.inner.borrow().draw_phase == DrawPhase::None
150 }
151
152 #[track_caller]
153 pub fn debug_assert_paint(&self) {
154 debug_assert!(
155 matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
156 "this method can only be called during paint"
157 );
158 }
159
160 #[track_caller]
161 pub fn debug_assert_prepaint(&self) {
162 debug_assert!(
163 matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
164 "this method can only be called during request_layout, or prepaint"
165 );
166 }
167
168 #[track_caller]
169 pub fn debug_assert_paint_or_prepaint(&self) {
170 debug_assert!(
171 matches!(
172 self.inner.borrow().draw_phase,
173 DrawPhase::Paint | DrawPhase::Prepaint
174 ),
175 "this method can only be called during request_layout, prepaint, or paint"
176 );
177 }
178}
179
180type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
181
182pub(crate) type AnyWindowFocusListener =
183 Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
184
185pub(crate) struct WindowFocusEvent {
186 pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
187 pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
188}
189
190impl WindowFocusEvent {
191 pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
192 !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
193 }
194
195 pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
196 self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
197 }
198}
199
200/// This is provided when subscribing for `Context::on_focus_out` events.
201pub struct FocusOutEvent {
202 /// A weak focus handle representing what was blurred.
203 pub blurred: WeakFocusHandle,
204}
205
206slotmap::new_key_type! {
207 /// A globally unique identifier for a focusable element.
208 pub struct FocusId;
209}
210
211thread_local! {
212 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(1024 * 1024));
213}
214
215/// Returned when the element arena has been used and so must be cleared before the next draw.
216#[must_use]
217pub struct ArenaClearNeeded;
218
219impl ArenaClearNeeded {
220 /// Clear the element arena.
221 pub fn clear(self) {
222 ELEMENT_ARENA.with_borrow_mut(|element_arena| {
223 element_arena.clear();
224 });
225 }
226}
227
228pub(crate) type FocusMap = RwLock<SlotMap<FocusId, FocusRef>>;
229pub(crate) struct FocusRef {
230 pub(crate) ref_count: AtomicUsize,
231 pub(crate) tab_index: isize,
232 pub(crate) tab_stop: bool,
233}
234
235impl FocusId {
236 /// Obtains whether the element associated with this handle is currently focused.
237 pub fn is_focused(&self, window: &Window) -> bool {
238 window.focus == Some(*self)
239 }
240
241 /// Obtains whether the element associated with this handle contains the focused
242 /// element or is itself focused.
243 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
244 window
245 .focused(cx)
246 .is_some_and(|focused| self.contains(focused.id, window))
247 }
248
249 /// Obtains whether the element associated with this handle is contained within the
250 /// focused element or is itself focused.
251 pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
252 let focused = window.focused(cx);
253 focused.is_some_and(|focused| focused.id.contains(*self, window))
254 }
255
256 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
257 pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
258 window
259 .rendered_frame
260 .dispatch_tree
261 .focus_contains(*self, other)
262 }
263}
264
265/// A handle which can be used to track and manipulate the focused element in a window.
266pub struct FocusHandle {
267 pub(crate) id: FocusId,
268 handles: Arc<FocusMap>,
269 /// The index of this element in the tab order.
270 pub tab_index: isize,
271 /// Whether this element can be focused by tab navigation.
272 pub tab_stop: bool,
273}
274
275impl std::fmt::Debug for FocusHandle {
276 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
277 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
278 }
279}
280
281impl FocusHandle {
282 pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
283 let id = handles.write().insert(FocusRef {
284 ref_count: AtomicUsize::new(1),
285 tab_index: 0,
286 tab_stop: false,
287 });
288
289 Self {
290 id,
291 tab_index: 0,
292 tab_stop: false,
293 handles: handles.clone(),
294 }
295 }
296
297 pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
298 let lock = handles.read();
299 let focus = lock.get(id)?;
300 if atomic_incr_if_not_zero(&focus.ref_count) == 0 {
301 return None;
302 }
303 Some(Self {
304 id,
305 tab_index: focus.tab_index,
306 tab_stop: focus.tab_stop,
307 handles: handles.clone(),
308 })
309 }
310
311 /// Sets the tab index of the element associated with this handle.
312 pub fn tab_index(mut self, index: isize) -> Self {
313 self.tab_index = index;
314 if let Some(focus) = self.handles.write().get_mut(self.id) {
315 focus.tab_index = index;
316 }
317 self
318 }
319
320 /// Sets whether the element associated with this handle is a tab stop.
321 ///
322 /// When `false`, the element will not be included in the tab order.
323 pub fn tab_stop(mut self, tab_stop: bool) -> Self {
324 self.tab_stop = tab_stop;
325 if let Some(focus) = self.handles.write().get_mut(self.id) {
326 focus.tab_stop = tab_stop;
327 }
328 self
329 }
330
331 /// Converts this focus handle into a weak variant, which does not prevent it from being released.
332 pub fn downgrade(&self) -> WeakFocusHandle {
333 WeakFocusHandle {
334 id: self.id,
335 handles: Arc::downgrade(&self.handles),
336 }
337 }
338
339 /// Moves the focus to the element associated with this handle.
340 pub fn focus(&self, window: &mut Window) {
341 window.focus(self)
342 }
343
344 /// Obtains whether the element associated with this handle is currently focused.
345 pub fn is_focused(&self, window: &Window) -> bool {
346 self.id.is_focused(window)
347 }
348
349 /// Obtains whether the element associated with this handle contains the focused
350 /// element or is itself focused.
351 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
352 self.id.contains_focused(window, cx)
353 }
354
355 /// Obtains whether the element associated with this handle is contained within the
356 /// focused element or is itself focused.
357 pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
358 self.id.within_focused(window, cx)
359 }
360
361 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
362 pub fn contains(&self, other: &Self, window: &Window) -> bool {
363 self.id.contains(other.id, window)
364 }
365
366 /// Dispatch an action on the element that rendered this focus handle
367 pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
368 if let Some(node_id) = window
369 .rendered_frame
370 .dispatch_tree
371 .focusable_node_id(self.id)
372 {
373 window.dispatch_action_on_node(node_id, action, cx)
374 }
375 }
376}
377
378impl Clone for FocusHandle {
379 fn clone(&self) -> Self {
380 Self::for_id(self.id, &self.handles).unwrap()
381 }
382}
383
384impl PartialEq for FocusHandle {
385 fn eq(&self, other: &Self) -> bool {
386 self.id == other.id
387 }
388}
389
390impl Eq for FocusHandle {}
391
392impl Drop for FocusHandle {
393 fn drop(&mut self) {
394 self.handles
395 .read()
396 .get(self.id)
397 .unwrap()
398 .ref_count
399 .fetch_sub(1, SeqCst);
400 }
401}
402
403/// A weak reference to a focus handle.
404#[derive(Clone, Debug)]
405pub struct WeakFocusHandle {
406 pub(crate) id: FocusId,
407 pub(crate) handles: Weak<FocusMap>,
408}
409
410impl WeakFocusHandle {
411 /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
412 pub fn upgrade(&self) -> Option<FocusHandle> {
413 let handles = self.handles.upgrade()?;
414 FocusHandle::for_id(self.id, &handles)
415 }
416}
417
418impl PartialEq for WeakFocusHandle {
419 fn eq(&self, other: &WeakFocusHandle) -> bool {
420 self.id == other.id
421 }
422}
423
424impl Eq for WeakFocusHandle {}
425
426impl PartialEq<FocusHandle> for WeakFocusHandle {
427 fn eq(&self, other: &FocusHandle) -> bool {
428 self.id == other.id
429 }
430}
431
432impl PartialEq<WeakFocusHandle> for FocusHandle {
433 fn eq(&self, other: &WeakFocusHandle) -> bool {
434 self.id == other.id
435 }
436}
437
438/// Focusable allows users of your view to easily
439/// focus it (using window.focus_view(cx, view))
440pub trait Focusable: 'static {
441 /// Returns the focus handle associated with this view.
442 fn focus_handle(&self, cx: &App) -> FocusHandle;
443}
444
445impl<V: Focusable> Focusable for Entity<V> {
446 fn focus_handle(&self, cx: &App) -> FocusHandle {
447 self.read(cx).focus_handle(cx)
448 }
449}
450
451/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
452/// where the lifecycle of the view is handled by another view.
453pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
454
455impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
456
457/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
458pub struct DismissEvent;
459
460type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
461
462pub(crate) type AnyMouseListener =
463 Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
464
465#[derive(Clone)]
466pub(crate) struct CursorStyleRequest {
467 pub(crate) hitbox_id: Option<HitboxId>,
468 pub(crate) style: CursorStyle,
469}
470
471#[derive(Default, Eq, PartialEq)]
472pub(crate) struct HitTest {
473 pub(crate) ids: SmallVec<[HitboxId; 8]>,
474 pub(crate) hover_hitbox_count: usize,
475}
476
477/// A type of window control area that corresponds to the platform window.
478#[derive(Clone, Copy, Debug, Eq, PartialEq)]
479pub enum WindowControlArea {
480 /// An area that allows dragging of the platform window.
481 Drag,
482 /// An area that allows closing of the platform window.
483 Close,
484 /// An area that allows maximizing of the platform window.
485 Max,
486 /// An area that allows minimizing of the platform window.
487 Min,
488}
489
490/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
491#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
492pub struct HitboxId(u64);
493
494impl HitboxId {
495 /// Checks if the hitbox with this ID is currently hovered. Except when handling
496 /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
497 /// events or paint hover styles.
498 ///
499 /// See [`Hitbox::is_hovered`] for details.
500 pub fn is_hovered(self, window: &Window) -> bool {
501 let hit_test = &window.mouse_hit_test;
502 for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
503 if self == *id {
504 return true;
505 }
506 }
507 false
508 }
509
510 /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
511 /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
512 /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
513 /// this distinction.
514 pub fn should_handle_scroll(self, window: &Window) -> bool {
515 window.mouse_hit_test.ids.contains(&self)
516 }
517
518 fn next(mut self) -> HitboxId {
519 HitboxId(self.0.wrapping_add(1))
520 }
521}
522
523/// A rectangular region that potentially blocks hitboxes inserted prior.
524/// See [Window::insert_hitbox] for more details.
525#[derive(Clone, Debug, Deref)]
526pub struct Hitbox {
527 /// A unique identifier for the hitbox.
528 pub id: HitboxId,
529 /// The bounds of the hitbox.
530 #[deref]
531 pub bounds: Bounds<Pixels>,
532 /// The content mask when the hitbox was inserted.
533 pub content_mask: ContentMask<Pixels>,
534 /// Flags that specify hitbox behavior.
535 pub behavior: HitboxBehavior,
536}
537
538impl Hitbox {
539 /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
540 /// typically what you want when determining whether to handle mouse events or paint hover
541 /// styles.
542 ///
543 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
544 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
545 /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
546 ///
547 /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
548 /// Concretely, this is due to use-cases like overlays that cause the elements under to be
549 /// non-interactive while still allowing scrolling. More abstractly, this is because
550 /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
551 /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
552 /// container.
553 pub fn is_hovered(&self, window: &Window) -> bool {
554 self.id.is_hovered(window)
555 }
556
557 /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
558 /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
559 /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
560 ///
561 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
562 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
563 pub fn should_handle_scroll(&self, window: &Window) -> bool {
564 self.id.should_handle_scroll(window)
565 }
566}
567
568/// How the hitbox affects mouse behavior.
569#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
570pub enum HitboxBehavior {
571 /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
572 #[default]
573 Normal,
574
575 /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
576 /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
577 /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
578 /// [`InteractiveElement::occlude`].
579 ///
580 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
581 /// bubble-phase handler for every mouse event type:
582 ///
583 /// ```
584 /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
585 /// if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
586 /// cx.stop_propagation();
587 /// }
588 /// })
589 /// ```
590 ///
591 /// This has effects beyond event handling - any use of hitbox checking, such as hover
592 /// styles and tooltops. These other behaviors are the main point of this mechanism. An
593 /// alternative might be to not affect mouse event handling - but this would allow
594 /// inconsistent UI where clicks and moves interact with elements that are not considered to
595 /// be hovered.
596 BlockMouse,
597
598 /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
599 /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
600 /// interaction except scroll events to be ignored - see the documentation of
601 /// [`Hitbox::is_hovered`] for details. This flag is set by
602 /// [`InteractiveElement::block_mouse_except_scroll`].
603 ///
604 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
605 /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
606 ///
607 /// ```
608 /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, cx| {
609 /// if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
610 /// cx.stop_propagation();
611 /// }
612 /// })
613 /// ```
614 ///
615 /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
616 /// handled differently than other mouse events. If also blocking these scroll events is
617 /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
618 ///
619 /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
620 /// hover styles and tooltops. These other behaviors are the main point of this mechanism.
621 /// An alternative might be to not affect mouse event handling - but this would allow
622 /// inconsistent UI where clicks and moves interact with elements that are not considered to
623 /// be hovered.
624 BlockMouseExceptScroll,
625}
626
627/// An identifier for a tooltip.
628#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
629pub struct TooltipId(usize);
630
631impl TooltipId {
632 /// Checks if the tooltip is currently hovered.
633 pub fn is_hovered(&self, window: &Window) -> bool {
634 window
635 .tooltip_bounds
636 .as_ref()
637 .is_some_and(|tooltip_bounds| {
638 tooltip_bounds.id == *self
639 && tooltip_bounds.bounds.contains(&window.mouse_position())
640 })
641 }
642}
643
644pub(crate) struct TooltipBounds {
645 id: TooltipId,
646 bounds: Bounds<Pixels>,
647}
648
649#[derive(Clone)]
650pub(crate) struct TooltipRequest {
651 id: TooltipId,
652 tooltip: AnyTooltip,
653}
654
655pub(crate) struct DeferredDraw {
656 current_view: EntityId,
657 priority: usize,
658 parent_node: DispatchNodeId,
659 element_id_stack: SmallVec<[ElementId; 32]>,
660 text_style_stack: Vec<TextStyleRefinement>,
661 element: Option<AnyElement>,
662 absolute_offset: Point<Pixels>,
663 prepaint_range: Range<PrepaintStateIndex>,
664 paint_range: Range<PaintIndex>,
665}
666
667pub(crate) struct Frame {
668 pub(crate) focus: Option<FocusId>,
669 pub(crate) window_active: bool,
670 pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
671 accessed_element_states: Vec<(GlobalElementId, TypeId)>,
672 pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
673 pub(crate) dispatch_tree: DispatchTree,
674 pub(crate) scene: Scene,
675 pub(crate) hitboxes: Vec<Hitbox>,
676 pub(crate) window_control_hitboxes: Vec<(WindowControlArea, Hitbox)>,
677 pub(crate) deferred_draws: Vec<DeferredDraw>,
678 pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
679 pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
680 pub(crate) cursor_styles: Vec<CursorStyleRequest>,
681 #[cfg(any(test, feature = "test-support"))]
682 pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
683 #[cfg(any(feature = "inspector", debug_assertions))]
684 pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
685 #[cfg(any(feature = "inspector", debug_assertions))]
686 pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
687 pub(crate) tab_handles: TabHandles,
688}
689
690#[derive(Clone, Default)]
691pub(crate) struct PrepaintStateIndex {
692 hitboxes_index: usize,
693 tooltips_index: usize,
694 deferred_draws_index: usize,
695 dispatch_tree_index: usize,
696 accessed_element_states_index: usize,
697 line_layout_index: LineLayoutIndex,
698}
699
700#[derive(Clone, Default)]
701pub(crate) struct PaintIndex {
702 scene_index: usize,
703 mouse_listeners_index: usize,
704 input_handlers_index: usize,
705 cursor_styles_index: usize,
706 accessed_element_states_index: usize,
707 tab_handle_index: usize,
708 line_layout_index: LineLayoutIndex,
709}
710
711impl Frame {
712 pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
713 Frame {
714 focus: None,
715 window_active: false,
716 element_states: FxHashMap::default(),
717 accessed_element_states: Vec::new(),
718 mouse_listeners: Vec::new(),
719 dispatch_tree,
720 scene: Scene::default(),
721 hitboxes: Vec::new(),
722 window_control_hitboxes: Vec::new(),
723 deferred_draws: Vec::new(),
724 input_handlers: Vec::new(),
725 tooltip_requests: Vec::new(),
726 cursor_styles: Vec::new(),
727
728 #[cfg(any(test, feature = "test-support"))]
729 debug_bounds: FxHashMap::default(),
730
731 #[cfg(any(feature = "inspector", debug_assertions))]
732 next_inspector_instance_ids: FxHashMap::default(),
733
734 #[cfg(any(feature = "inspector", debug_assertions))]
735 inspector_hitboxes: FxHashMap::default(),
736 tab_handles: TabHandles::default(),
737 }
738 }
739
740 pub(crate) fn clear(&mut self) {
741 self.element_states.clear();
742 self.accessed_element_states.clear();
743 self.mouse_listeners.clear();
744 self.dispatch_tree.clear();
745 self.scene.clear();
746 self.input_handlers.clear();
747 self.tooltip_requests.clear();
748 self.cursor_styles.clear();
749 self.hitboxes.clear();
750 self.window_control_hitboxes.clear();
751 self.deferred_draws.clear();
752 self.tab_handles.clear();
753 self.focus = None;
754
755 #[cfg(any(feature = "inspector", debug_assertions))]
756 {
757 self.next_inspector_instance_ids.clear();
758 self.inspector_hitboxes.clear();
759 }
760 }
761
762 pub(crate) fn cursor_style(&self, window: &Window) -> Option<CursorStyle> {
763 self.cursor_styles
764 .iter()
765 .rev()
766 .fold_while(None, |style, request| match request.hitbox_id {
767 None => Done(Some(request.style)),
768 Some(hitbox_id) => Continue(
769 style.or_else(|| hitbox_id.is_hovered(window).then_some(request.style)),
770 ),
771 })
772 .into_inner()
773 }
774
775 pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
776 let mut set_hover_hitbox_count = false;
777 let mut hit_test = HitTest::default();
778 for hitbox in self.hitboxes.iter().rev() {
779 let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
780 if bounds.contains(&position) {
781 hit_test.ids.push(hitbox.id);
782 if !set_hover_hitbox_count
783 && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
784 {
785 hit_test.hover_hitbox_count = hit_test.ids.len();
786 set_hover_hitbox_count = true;
787 }
788 if hitbox.behavior == HitboxBehavior::BlockMouse {
789 break;
790 }
791 }
792 }
793 if !set_hover_hitbox_count {
794 hit_test.hover_hitbox_count = hit_test.ids.len();
795 }
796 hit_test
797 }
798
799 pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
800 self.focus
801 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
802 .unwrap_or_default()
803 }
804
805 pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
806 for element_state_key in &self.accessed_element_states {
807 if let Some((element_state_key, element_state)) =
808 prev_frame.element_states.remove_entry(element_state_key)
809 {
810 self.element_states.insert(element_state_key, element_state);
811 }
812 }
813
814 self.scene.finish();
815 }
816}
817
818/// Holds the state for a specific window.
819pub struct Window {
820 pub(crate) handle: AnyWindowHandle,
821 pub(crate) invalidator: WindowInvalidator,
822 pub(crate) removed: bool,
823 pub(crate) platform_window: Box<dyn PlatformWindow>,
824 display_id: Option<DisplayId>,
825 sprite_atlas: Arc<dyn PlatformAtlas>,
826 text_system: Arc<WindowTextSystem>,
827 rem_size: Pixels,
828 /// The stack of override values for the window's rem size.
829 ///
830 /// This is used by `with_rem_size` to allow rendering an element tree with
831 /// a given rem size.
832 rem_size_override_stack: SmallVec<[Pixels; 8]>,
833 pub(crate) viewport_size: Size<Pixels>,
834 layout_engine: Option<TaffyLayoutEngine>,
835 pub(crate) root: Option<AnyView>,
836 pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
837 pub(crate) text_style_stack: Vec<TextStyleRefinement>,
838 pub(crate) rendered_entity_stack: Vec<EntityId>,
839 pub(crate) element_offset_stack: Vec<Point<Pixels>>,
840 pub(crate) element_opacity: Option<f32>,
841 pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
842 pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
843 pub(crate) image_cache_stack: Vec<AnyImageCache>,
844 pub(crate) rendered_frame: Frame,
845 pub(crate) next_frame: Frame,
846 next_hitbox_id: HitboxId,
847 pub(crate) next_tooltip_id: TooltipId,
848 pub(crate) tooltip_bounds: Option<TooltipBounds>,
849 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
850 pub(crate) dirty_views: FxHashSet<EntityId>,
851 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
852 pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
853 default_prevented: bool,
854 mouse_position: Point<Pixels>,
855 mouse_hit_test: HitTest,
856 modifiers: Modifiers,
857 capslock: Capslock,
858 scale_factor: f32,
859 pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
860 appearance: WindowAppearance,
861 pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
862 active: Rc<Cell<bool>>,
863 hovered: Rc<Cell<bool>>,
864 pub(crate) needs_present: Rc<Cell<bool>>,
865 pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
866 pub(crate) refreshing: bool,
867 pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
868 pub(crate) focus: Option<FocusId>,
869 focus_enabled: bool,
870 pending_input: Option<PendingInput>,
871 pending_modifier: ModifierState,
872 pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
873 prompt: Option<RenderablePromptHandle>,
874 pub(crate) client_inset: Option<Pixels>,
875 #[cfg(any(feature = "inspector", debug_assertions))]
876 inspector: Option<Entity<Inspector>>,
877}
878
879#[derive(Clone, Debug, Default)]
880struct ModifierState {
881 modifiers: Modifiers,
882 saw_keystroke: bool,
883}
884
885#[derive(Clone, Copy, Debug, Eq, PartialEq)]
886pub(crate) enum DrawPhase {
887 None,
888 Prepaint,
889 Paint,
890 Focus,
891}
892
893#[derive(Default, Debug)]
894struct PendingInput {
895 keystrokes: SmallVec<[Keystroke; 1]>,
896 focus: Option<FocusId>,
897 timer: Option<Task<()>>,
898}
899
900pub(crate) struct ElementStateBox {
901 pub(crate) inner: Box<dyn Any>,
902 #[cfg(debug_assertions)]
903 pub(crate) type_name: &'static str,
904}
905
906fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> Bounds<Pixels> {
907 const DEFAULT_WINDOW_OFFSET: Point<Pixels> = point(px(0.), px(35.));
908
909 // TODO, BUG: if you open a window with the currently active window
910 // on the stack, this will erroneously select the 'unwrap_or_else'
911 // code path
912 cx.active_window()
913 .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok())
914 .map(|mut bounds| {
915 bounds.origin += DEFAULT_WINDOW_OFFSET;
916 bounds
917 })
918 .unwrap_or_else(|| {
919 let display = display_id
920 .map(|id| cx.find_display(id))
921 .unwrap_or_else(|| cx.primary_display());
922
923 display
924 .map(|display| display.default_bounds())
925 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE))
926 })
927}
928
929impl Window {
930 pub(crate) fn new(
931 handle: AnyWindowHandle,
932 options: WindowOptions,
933 cx: &mut App,
934 ) -> Result<Self> {
935 let WindowOptions {
936 window_bounds,
937 titlebar,
938 focus,
939 show,
940 kind,
941 is_movable,
942 is_resizable,
943 is_minimizable,
944 display_id,
945 window_background,
946 app_id,
947 window_min_size,
948 window_decorations,
949 #[cfg_attr(not(target_os = "macos"), allow(unused_variables))]
950 tabbing_identifier,
951 } = options;
952
953 let bounds = window_bounds
954 .map(|bounds| bounds.get_bounds())
955 .unwrap_or_else(|| default_bounds(display_id, cx));
956 let mut platform_window = cx.platform.open_window(
957 handle,
958 WindowParams {
959 bounds,
960 titlebar,
961 kind,
962 is_movable,
963 is_resizable,
964 is_minimizable,
965 focus,
966 show,
967 display_id,
968 window_min_size,
969 #[cfg(target_os = "macos")]
970 tabbing_identifier,
971 },
972 )?;
973
974 let tab_bar_visible = platform_window.tab_bar_visible();
975 SystemWindowTabController::init_visible(cx, tab_bar_visible);
976 if let Some(tabs) = platform_window.tabbed_windows() {
977 SystemWindowTabController::add_tab(cx, handle.window_id(), tabs);
978 }
979
980 let display_id = platform_window.display().map(|display| display.id());
981 let sprite_atlas = platform_window.sprite_atlas();
982 let mouse_position = platform_window.mouse_position();
983 let modifiers = platform_window.modifiers();
984 let capslock = platform_window.capslock();
985 let content_size = platform_window.content_size();
986 let scale_factor = platform_window.scale_factor();
987 let appearance = platform_window.appearance();
988 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
989 let invalidator = WindowInvalidator::new();
990 let active = Rc::new(Cell::new(platform_window.is_active()));
991 let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
992 let needs_present = Rc::new(Cell::new(false));
993 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
994 let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
995
996 platform_window
997 .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
998 platform_window.set_background_appearance(window_background);
999
1000 if let Some(ref window_open_state) = window_bounds {
1001 match window_open_state {
1002 WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
1003 WindowBounds::Maximized(_) => platform_window.zoom(),
1004 WindowBounds::Windowed(_) => {}
1005 }
1006 }
1007
1008 platform_window.on_close(Box::new({
1009 let window_id = handle.window_id();
1010 let mut cx = cx.to_async();
1011 move || {
1012 let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
1013 let _ = cx.update(|cx| {
1014 SystemWindowTabController::remove_tab(cx, window_id);
1015 });
1016 }
1017 }));
1018 platform_window.on_request_frame(Box::new({
1019 let mut cx = cx.to_async();
1020 let invalidator = invalidator.clone();
1021 let active = active.clone();
1022 let needs_present = needs_present.clone();
1023 let next_frame_callbacks = next_frame_callbacks.clone();
1024 let last_input_timestamp = last_input_timestamp.clone();
1025 move |request_frame_options| {
1026 let next_frame_callbacks = next_frame_callbacks.take();
1027 if !next_frame_callbacks.is_empty() {
1028 handle
1029 .update(&mut cx, |_, window, cx| {
1030 for callback in next_frame_callbacks {
1031 callback(window, cx);
1032 }
1033 })
1034 .log_err();
1035 }
1036
1037 // Keep presenting the current scene for 1 extra second since the
1038 // last input to prevent the display from underclocking the refresh rate.
1039 let needs_present = request_frame_options.require_presentation
1040 || needs_present.get()
1041 || (active.get()
1042 && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
1043
1044 if invalidator.is_dirty() || request_frame_options.force_render {
1045 measure("frame duration", || {
1046 handle
1047 .update(&mut cx, |_, window, cx| {
1048 let arena_clear_needed = window.draw(cx);
1049 window.present();
1050 // drop the arena elements after present to reduce latency
1051 arena_clear_needed.clear();
1052 })
1053 .log_err();
1054 })
1055 } else if needs_present {
1056 handle
1057 .update(&mut cx, |_, window, _| window.present())
1058 .log_err();
1059 }
1060
1061 handle
1062 .update(&mut cx, |_, window, _| {
1063 window.complete_frame();
1064 })
1065 .log_err();
1066 }
1067 }));
1068 platform_window.on_resize(Box::new({
1069 let mut cx = cx.to_async();
1070 move |_, _| {
1071 handle
1072 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1073 .log_err();
1074 }
1075 }));
1076 platform_window.on_moved(Box::new({
1077 let mut cx = cx.to_async();
1078 move || {
1079 handle
1080 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1081 .log_err();
1082 }
1083 }));
1084 platform_window.on_appearance_changed(Box::new({
1085 let mut cx = cx.to_async();
1086 move || {
1087 handle
1088 .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
1089 .log_err();
1090 }
1091 }));
1092 platform_window.on_active_status_change(Box::new({
1093 let mut cx = cx.to_async();
1094 move |active| {
1095 handle
1096 .update(&mut cx, |_, window, cx| {
1097 window.active.set(active);
1098 window.modifiers = window.platform_window.modifiers();
1099 window.capslock = window.platform_window.capslock();
1100 window
1101 .activation_observers
1102 .clone()
1103 .retain(&(), |callback| callback(window, cx));
1104
1105 window.bounds_changed(cx);
1106 window.refresh();
1107
1108 SystemWindowTabController::update_last_active(cx, window.handle.id);
1109 })
1110 .log_err();
1111 }
1112 }));
1113 platform_window.on_hover_status_change(Box::new({
1114 let mut cx = cx.to_async();
1115 move |active| {
1116 handle
1117 .update(&mut cx, |_, window, _| {
1118 window.hovered.set(active);
1119 window.refresh();
1120 })
1121 .log_err();
1122 }
1123 }));
1124 platform_window.on_input({
1125 let mut cx = cx.to_async();
1126 Box::new(move |event| {
1127 handle
1128 .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1129 .log_err()
1130 .unwrap_or(DispatchEventResult::default())
1131 })
1132 });
1133 platform_window.on_hit_test_window_control({
1134 let mut cx = cx.to_async();
1135 Box::new(move || {
1136 handle
1137 .update(&mut cx, |_, window, _cx| {
1138 for (area, hitbox) in &window.rendered_frame.window_control_hitboxes {
1139 if window.mouse_hit_test.ids.contains(&hitbox.id) {
1140 return Some(*area);
1141 }
1142 }
1143 None
1144 })
1145 .log_err()
1146 .unwrap_or(None)
1147 })
1148 });
1149 platform_window.on_move_tab_to_new_window({
1150 let mut cx = cx.to_async();
1151 Box::new(move || {
1152 handle
1153 .update(&mut cx, |_, _window, cx| {
1154 SystemWindowTabController::move_tab_to_new_window(cx, handle.window_id());
1155 })
1156 .log_err();
1157 })
1158 });
1159 platform_window.on_merge_all_windows({
1160 let mut cx = cx.to_async();
1161 Box::new(move || {
1162 handle
1163 .update(&mut cx, |_, _window, cx| {
1164 SystemWindowTabController::merge_all_windows(cx, handle.window_id());
1165 })
1166 .log_err();
1167 })
1168 });
1169 platform_window.on_select_next_tab({
1170 let mut cx = cx.to_async();
1171 Box::new(move || {
1172 handle
1173 .update(&mut cx, |_, _window, cx| {
1174 SystemWindowTabController::select_next_tab(cx, handle.window_id());
1175 })
1176 .log_err();
1177 })
1178 });
1179 platform_window.on_select_previous_tab({
1180 let mut cx = cx.to_async();
1181 Box::new(move || {
1182 handle
1183 .update(&mut cx, |_, _window, cx| {
1184 SystemWindowTabController::select_previous_tab(cx, handle.window_id())
1185 })
1186 .log_err();
1187 })
1188 });
1189 platform_window.on_toggle_tab_bar({
1190 let mut cx = cx.to_async();
1191 Box::new(move || {
1192 handle
1193 .update(&mut cx, |_, window, cx| {
1194 let tab_bar_visible = window.platform_window.tab_bar_visible();
1195 SystemWindowTabController::set_visible(cx, tab_bar_visible);
1196 })
1197 .log_err();
1198 })
1199 });
1200
1201 if let Some(app_id) = app_id {
1202 platform_window.set_app_id(&app_id);
1203 }
1204
1205 platform_window.map_window().unwrap();
1206
1207 Ok(Window {
1208 handle,
1209 invalidator,
1210 removed: false,
1211 platform_window,
1212 display_id,
1213 sprite_atlas,
1214 text_system,
1215 rem_size: px(16.),
1216 rem_size_override_stack: SmallVec::new(),
1217 viewport_size: content_size,
1218 layout_engine: Some(TaffyLayoutEngine::new()),
1219 root: None,
1220 element_id_stack: SmallVec::default(),
1221 text_style_stack: Vec::new(),
1222 rendered_entity_stack: Vec::new(),
1223 element_offset_stack: Vec::new(),
1224 content_mask_stack: Vec::new(),
1225 element_opacity: None,
1226 requested_autoscroll: None,
1227 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1228 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1229 next_frame_callbacks,
1230 next_hitbox_id: HitboxId(0),
1231 next_tooltip_id: TooltipId::default(),
1232 tooltip_bounds: None,
1233 dirty_views: FxHashSet::default(),
1234 focus_listeners: SubscriberSet::new(),
1235 focus_lost_listeners: SubscriberSet::new(),
1236 default_prevented: true,
1237 mouse_position,
1238 mouse_hit_test: HitTest::default(),
1239 modifiers,
1240 capslock,
1241 scale_factor,
1242 bounds_observers: SubscriberSet::new(),
1243 appearance,
1244 appearance_observers: SubscriberSet::new(),
1245 active,
1246 hovered,
1247 needs_present,
1248 last_input_timestamp,
1249 refreshing: false,
1250 activation_observers: SubscriberSet::new(),
1251 focus: None,
1252 focus_enabled: true,
1253 pending_input: None,
1254 pending_modifier: ModifierState::default(),
1255 pending_input_observers: SubscriberSet::new(),
1256 prompt: None,
1257 client_inset: None,
1258 image_cache_stack: Vec::new(),
1259 #[cfg(any(feature = "inspector", debug_assertions))]
1260 inspector: None,
1261 })
1262 }
1263
1264 pub(crate) fn new_focus_listener(
1265 &self,
1266 value: AnyWindowFocusListener,
1267 ) -> (Subscription, impl FnOnce() + use<>) {
1268 self.focus_listeners.insert((), value)
1269 }
1270}
1271
1272#[derive(Clone, Debug, Default, PartialEq, Eq)]
1273pub(crate) struct DispatchEventResult {
1274 pub propagate: bool,
1275 pub default_prevented: bool,
1276}
1277
1278/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1279/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1280/// to leave room to support more complex shapes in the future.
1281#[derive(Clone, Debug, Default, PartialEq, Eq)]
1282#[repr(C)]
1283pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1284 /// The bounds
1285 pub bounds: Bounds<P>,
1286 /// The corner radii of the content mask.
1287 pub corner_radii: Corners<P>,
1288}
1289
1290impl ContentMask<Pixels> {
1291 /// Scale the content mask's pixel units by the given scaling factor.
1292 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1293 ContentMask {
1294 bounds: self.bounds.scale(factor),
1295 corner_radii: self.corner_radii.scale(factor),
1296 }
1297 }
1298
1299 /// Intersect the content mask with the given content mask.
1300 pub fn intersect(&self, other: &Self) -> Self {
1301 let bounds = self.bounds.intersect(&other.bounds);
1302 ContentMask {
1303 bounds,
1304 corner_radii: Corners {
1305 top_left: self.corner_radii.top_left.max(other.corner_radii.top_left),
1306 top_right: self
1307 .corner_radii
1308 .top_right
1309 .max(other.corner_radii.top_right),
1310 bottom_right: self
1311 .corner_radii
1312 .bottom_right
1313 .max(other.corner_radii.bottom_right),
1314 bottom_left: self
1315 .corner_radii
1316 .bottom_left
1317 .max(other.corner_radii.bottom_left),
1318 },
1319 }
1320 }
1321}
1322
1323impl Window {
1324 fn mark_view_dirty(&mut self, view_id: EntityId) {
1325 // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1326 // should already be dirty.
1327 for view_id in self
1328 .rendered_frame
1329 .dispatch_tree
1330 .view_path(view_id)
1331 .into_iter()
1332 .rev()
1333 {
1334 if !self.dirty_views.insert(view_id) {
1335 break;
1336 }
1337 }
1338 }
1339
1340 /// Registers a callback to be invoked when the window appearance changes.
1341 pub fn observe_window_appearance(
1342 &self,
1343 mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1344 ) -> Subscription {
1345 let (subscription, activate) = self.appearance_observers.insert(
1346 (),
1347 Box::new(move |window, cx| {
1348 callback(window, cx);
1349 true
1350 }),
1351 );
1352 activate();
1353 subscription
1354 }
1355
1356 /// Replaces the root entity of the window with a new one.
1357 pub fn replace_root<E>(
1358 &mut self,
1359 cx: &mut App,
1360 build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1361 ) -> Entity<E>
1362 where
1363 E: 'static + Render,
1364 {
1365 let view = cx.new(|cx| build_view(self, cx));
1366 self.root = Some(view.clone().into());
1367 self.refresh();
1368 view
1369 }
1370
1371 /// Returns the root entity of the window, if it has one.
1372 pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1373 where
1374 E: 'static + Render,
1375 {
1376 self.root
1377 .as_ref()
1378 .map(|view| view.clone().downcast::<E>().ok())
1379 }
1380
1381 /// Obtain a handle to the window that belongs to this context.
1382 pub fn window_handle(&self) -> AnyWindowHandle {
1383 self.handle
1384 }
1385
1386 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1387 pub fn refresh(&mut self) {
1388 if self.invalidator.not_drawing() {
1389 self.refreshing = true;
1390 self.invalidator.set_dirty(true);
1391 }
1392 }
1393
1394 /// Close this window.
1395 pub fn remove_window(&mut self) {
1396 self.removed = true;
1397 }
1398
1399 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1400 pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1401 self.focus
1402 .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1403 }
1404
1405 /// Move focus to the element associated with the given [`FocusHandle`].
1406 pub fn focus(&mut self, handle: &FocusHandle) {
1407 if !self.focus_enabled || self.focus == Some(handle.id) {
1408 return;
1409 }
1410
1411 self.focus = Some(handle.id);
1412 self.clear_pending_keystrokes();
1413 self.refresh();
1414 }
1415
1416 /// Remove focus from all elements within this context's window.
1417 pub fn blur(&mut self) {
1418 if !self.focus_enabled {
1419 return;
1420 }
1421
1422 self.focus = None;
1423 self.refresh();
1424 }
1425
1426 /// Blur the window and don't allow anything in it to be focused again.
1427 pub fn disable_focus(&mut self) {
1428 self.blur();
1429 self.focus_enabled = false;
1430 }
1431
1432 /// Move focus to next tab stop.
1433 pub fn focus_next(&mut self) {
1434 if !self.focus_enabled {
1435 return;
1436 }
1437
1438 if let Some(handle) = self.rendered_frame.tab_handles.next(self.focus.as_ref()) {
1439 self.focus(&handle)
1440 }
1441 }
1442
1443 /// Move focus to previous tab stop.
1444 pub fn focus_prev(&mut self) {
1445 if !self.focus_enabled {
1446 return;
1447 }
1448
1449 if let Some(handle) = self.rendered_frame.tab_handles.prev(self.focus.as_ref()) {
1450 self.focus(&handle)
1451 }
1452 }
1453
1454 /// Accessor for the text system.
1455 pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1456 &self.text_system
1457 }
1458
1459 /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1460 pub fn text_style(&self) -> TextStyle {
1461 let mut style = TextStyle::default();
1462 for refinement in &self.text_style_stack {
1463 style.refine(refinement);
1464 }
1465 style
1466 }
1467
1468 /// Check if the platform window is maximized
1469 /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1470 pub fn is_maximized(&self) -> bool {
1471 self.platform_window.is_maximized()
1472 }
1473
1474 /// request a certain window decoration (Wayland)
1475 pub fn request_decorations(&self, decorations: WindowDecorations) {
1476 self.platform_window.request_decorations(decorations);
1477 }
1478
1479 /// Start a window resize operation (Wayland)
1480 pub fn start_window_resize(&self, edge: ResizeEdge) {
1481 self.platform_window.start_window_resize(edge);
1482 }
1483
1484 /// Return the `WindowBounds` to indicate that how a window should be opened
1485 /// after it has been closed
1486 pub fn window_bounds(&self) -> WindowBounds {
1487 self.platform_window.window_bounds()
1488 }
1489
1490 /// Return the `WindowBounds` excluding insets (Wayland and X11)
1491 pub fn inner_window_bounds(&self) -> WindowBounds {
1492 self.platform_window.inner_window_bounds()
1493 }
1494
1495 /// Dispatch the given action on the currently focused element.
1496 pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1497 let focus_id = self.focused(cx).map(|handle| handle.id);
1498
1499 let window = self.handle;
1500 cx.defer(move |cx| {
1501 window
1502 .update(cx, |_, window, cx| {
1503 let node_id = window.focus_node_id_in_rendered_frame(focus_id);
1504 window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1505 })
1506 .log_err();
1507 })
1508 }
1509
1510 pub(crate) fn dispatch_keystroke_observers(
1511 &mut self,
1512 event: &dyn Any,
1513 action: Option<Box<dyn Action>>,
1514 context_stack: Vec<KeyContext>,
1515 cx: &mut App,
1516 ) {
1517 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1518 return;
1519 };
1520
1521 cx.keystroke_observers.clone().retain(&(), move |callback| {
1522 (callback)(
1523 &KeystrokeEvent {
1524 keystroke: key_down_event.keystroke.clone(),
1525 action: action.as_ref().map(|action| action.boxed_clone()),
1526 context_stack: context_stack.clone(),
1527 },
1528 self,
1529 cx,
1530 )
1531 });
1532 }
1533
1534 pub(crate) fn dispatch_keystroke_interceptors(
1535 &mut self,
1536 event: &dyn Any,
1537 context_stack: Vec<KeyContext>,
1538 cx: &mut App,
1539 ) {
1540 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1541 return;
1542 };
1543
1544 cx.keystroke_interceptors
1545 .clone()
1546 .retain(&(), move |callback| {
1547 (callback)(
1548 &KeystrokeEvent {
1549 keystroke: key_down_event.keystroke.clone(),
1550 action: None,
1551 context_stack: context_stack.clone(),
1552 },
1553 self,
1554 cx,
1555 )
1556 });
1557 }
1558
1559 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1560 /// that are currently on the stack to be returned to the app.
1561 pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1562 let handle = self.handle;
1563 cx.defer(move |cx| {
1564 handle.update(cx, |_, window, cx| f(window, cx)).ok();
1565 });
1566 }
1567
1568 /// Subscribe to events emitted by a entity.
1569 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1570 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1571 pub fn observe<T: 'static>(
1572 &mut self,
1573 observed: &Entity<T>,
1574 cx: &mut App,
1575 mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1576 ) -> Subscription {
1577 let entity_id = observed.entity_id();
1578 let observed = observed.downgrade();
1579 let window_handle = self.handle;
1580 cx.new_observer(
1581 entity_id,
1582 Box::new(move |cx| {
1583 window_handle
1584 .update(cx, |_, window, cx| {
1585 if let Some(handle) = observed.upgrade() {
1586 on_notify(handle, window, cx);
1587 true
1588 } else {
1589 false
1590 }
1591 })
1592 .unwrap_or(false)
1593 }),
1594 )
1595 }
1596
1597 /// Subscribe to events emitted by a entity.
1598 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1599 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1600 pub fn subscribe<Emitter, Evt>(
1601 &mut self,
1602 entity: &Entity<Emitter>,
1603 cx: &mut App,
1604 mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1605 ) -> Subscription
1606 where
1607 Emitter: EventEmitter<Evt>,
1608 Evt: 'static,
1609 {
1610 let entity_id = entity.entity_id();
1611 let handle = entity.downgrade();
1612 let window_handle = self.handle;
1613 cx.new_subscription(
1614 entity_id,
1615 (
1616 TypeId::of::<Evt>(),
1617 Box::new(move |event, cx| {
1618 window_handle
1619 .update(cx, |_, window, cx| {
1620 if let Some(entity) = handle.upgrade() {
1621 let event = event.downcast_ref().expect("invalid event type");
1622 on_event(entity, event, window, cx);
1623 true
1624 } else {
1625 false
1626 }
1627 })
1628 .unwrap_or(false)
1629 }),
1630 ),
1631 )
1632 }
1633
1634 /// Register a callback to be invoked when the given `Entity` is released.
1635 pub fn observe_release<T>(
1636 &self,
1637 entity: &Entity<T>,
1638 cx: &mut App,
1639 mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1640 ) -> Subscription
1641 where
1642 T: 'static,
1643 {
1644 let entity_id = entity.entity_id();
1645 let window_handle = self.handle;
1646 let (subscription, activate) = cx.release_listeners.insert(
1647 entity_id,
1648 Box::new(move |entity, cx| {
1649 let entity = entity.downcast_mut().expect("invalid entity type");
1650 let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1651 }),
1652 );
1653 activate();
1654 subscription
1655 }
1656
1657 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1658 /// await points in async code.
1659 pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1660 AsyncWindowContext::new_context(cx.to_async(), self.handle)
1661 }
1662
1663 /// Schedule the given closure to be run directly after the current frame is rendered.
1664 pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1665 RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1666 }
1667
1668 /// Schedule a frame to be drawn on the next animation frame.
1669 ///
1670 /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1671 /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1672 ///
1673 /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1674 pub fn request_animation_frame(&self) {
1675 let entity = self.current_view();
1676 self.on_next_frame(move |_, cx| cx.notify(entity));
1677 }
1678
1679 /// Spawn the future returned by the given closure on the application thread pool.
1680 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1681 /// use within your future.
1682 #[track_caller]
1683 pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1684 where
1685 R: 'static,
1686 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1687 {
1688 let handle = self.handle;
1689 cx.spawn(async move |app| {
1690 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1691 f(&mut async_window_cx).await
1692 })
1693 }
1694
1695 fn bounds_changed(&mut self, cx: &mut App) {
1696 self.scale_factor = self.platform_window.scale_factor();
1697 self.viewport_size = self.platform_window.content_size();
1698 self.display_id = self.platform_window.display().map(|display| display.id());
1699
1700 self.refresh();
1701
1702 self.bounds_observers
1703 .clone()
1704 .retain(&(), |callback| callback(self, cx));
1705 }
1706
1707 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1708 pub fn bounds(&self) -> Bounds<Pixels> {
1709 self.platform_window.bounds()
1710 }
1711
1712 /// Set the content size of the window.
1713 pub fn resize(&mut self, size: Size<Pixels>) {
1714 self.platform_window.resize(size);
1715 }
1716
1717 /// Returns whether or not the window is currently fullscreen
1718 pub fn is_fullscreen(&self) -> bool {
1719 self.platform_window.is_fullscreen()
1720 }
1721
1722 pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1723 self.appearance = self.platform_window.appearance();
1724
1725 self.appearance_observers
1726 .clone()
1727 .retain(&(), |callback| callback(self, cx));
1728 }
1729
1730 /// Returns the appearance of the current window.
1731 pub fn appearance(&self) -> WindowAppearance {
1732 self.appearance
1733 }
1734
1735 /// Returns the size of the drawable area within the window.
1736 pub fn viewport_size(&self) -> Size<Pixels> {
1737 self.viewport_size
1738 }
1739
1740 /// Returns whether this window is focused by the operating system (receiving key events).
1741 pub fn is_window_active(&self) -> bool {
1742 self.active.get()
1743 }
1744
1745 /// Returns whether this window is considered to be the window
1746 /// that currently owns the mouse cursor.
1747 /// On mac, this is equivalent to `is_window_active`.
1748 pub fn is_window_hovered(&self) -> bool {
1749 if cfg!(any(
1750 target_os = "windows",
1751 target_os = "linux",
1752 target_os = "freebsd"
1753 )) {
1754 self.hovered.get()
1755 } else {
1756 self.is_window_active()
1757 }
1758 }
1759
1760 /// Toggle zoom on the window.
1761 pub fn zoom_window(&self) {
1762 self.platform_window.zoom();
1763 }
1764
1765 /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1766 pub fn show_window_menu(&self, position: Point<Pixels>) {
1767 self.platform_window.show_window_menu(position)
1768 }
1769
1770 /// Tells the compositor to take control of window movement (Wayland and X11)
1771 ///
1772 /// Events may not be received during a move operation.
1773 pub fn start_window_move(&self) {
1774 self.platform_window.start_window_move()
1775 }
1776
1777 /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1778 pub fn set_client_inset(&mut self, inset: Pixels) {
1779 self.client_inset = Some(inset);
1780 self.platform_window.set_client_inset(inset);
1781 }
1782
1783 /// Returns the client_inset value by [`Self::set_client_inset`].
1784 pub fn client_inset(&self) -> Option<Pixels> {
1785 self.client_inset
1786 }
1787
1788 /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1789 pub fn window_decorations(&self) -> Decorations {
1790 self.platform_window.window_decorations()
1791 }
1792
1793 /// Returns which window controls are currently visible (Wayland)
1794 pub fn window_controls(&self) -> WindowControls {
1795 self.platform_window.window_controls()
1796 }
1797
1798 /// Updates the window's title at the platform level.
1799 pub fn set_window_title(&mut self, title: &str) {
1800 self.platform_window.set_title(title);
1801 }
1802
1803 /// Sets the application identifier.
1804 pub fn set_app_id(&mut self, app_id: &str) {
1805 self.platform_window.set_app_id(app_id);
1806 }
1807
1808 /// Sets the window background appearance.
1809 pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1810 self.platform_window
1811 .set_background_appearance(background_appearance);
1812 }
1813
1814 /// Mark the window as dirty at the platform level.
1815 pub fn set_window_edited(&mut self, edited: bool) {
1816 self.platform_window.set_edited(edited);
1817 }
1818
1819 /// Determine the display on which the window is visible.
1820 pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1821 cx.platform
1822 .displays()
1823 .into_iter()
1824 .find(|display| Some(display.id()) == self.display_id)
1825 }
1826
1827 /// Show the platform character palette.
1828 pub fn show_character_palette(&self) {
1829 self.platform_window.show_character_palette();
1830 }
1831
1832 /// The scale factor of the display associated with the window. For example, it could
1833 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1834 /// be rendered as two pixels on screen.
1835 pub fn scale_factor(&self) -> f32 {
1836 self.scale_factor
1837 }
1838
1839 /// The size of an em for the base font of the application. Adjusting this value allows the
1840 /// UI to scale, just like zooming a web page.
1841 pub fn rem_size(&self) -> Pixels {
1842 self.rem_size_override_stack
1843 .last()
1844 .copied()
1845 .unwrap_or(self.rem_size)
1846 }
1847
1848 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1849 /// UI to scale, just like zooming a web page.
1850 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1851 self.rem_size = rem_size.into();
1852 }
1853
1854 /// Acquire a globally unique identifier for the given ElementId.
1855 /// Only valid for the duration of the provided closure.
1856 pub fn with_global_id<R>(
1857 &mut self,
1858 element_id: ElementId,
1859 f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1860 ) -> R {
1861 self.element_id_stack.push(element_id);
1862 let global_id = GlobalElementId(self.element_id_stack.clone());
1863 let result = f(&global_id, self);
1864 self.element_id_stack.pop();
1865 result
1866 }
1867
1868 /// Executes the provided function with the specified rem size.
1869 ///
1870 /// This method must only be called as part of element drawing.
1871 pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1872 where
1873 F: FnOnce(&mut Self) -> R,
1874 {
1875 self.invalidator.debug_assert_paint_or_prepaint();
1876
1877 if let Some(rem_size) = rem_size {
1878 self.rem_size_override_stack.push(rem_size.into());
1879 let result = f(self);
1880 self.rem_size_override_stack.pop();
1881 result
1882 } else {
1883 f(self)
1884 }
1885 }
1886
1887 /// The line height associated with the current text style.
1888 pub fn line_height(&self) -> Pixels {
1889 self.text_style().line_height_in_pixels(self.rem_size())
1890 }
1891
1892 /// Call to prevent the default action of an event. Currently only used to prevent
1893 /// parent elements from becoming focused on mouse down.
1894 pub fn prevent_default(&mut self) {
1895 self.default_prevented = true;
1896 }
1897
1898 /// Obtain whether default has been prevented for the event currently being dispatched.
1899 pub fn default_prevented(&self) -> bool {
1900 self.default_prevented
1901 }
1902
1903 /// Determine whether the given action is available along the dispatch path to the currently focused element.
1904 pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1905 let node_id =
1906 self.focus_node_id_in_rendered_frame(self.focused(cx).map(|handle| handle.id));
1907 self.rendered_frame
1908 .dispatch_tree
1909 .is_action_available(action, node_id)
1910 }
1911
1912 /// The position of the mouse relative to the window.
1913 pub fn mouse_position(&self) -> Point<Pixels> {
1914 self.mouse_position
1915 }
1916
1917 /// The current state of the keyboard's modifiers
1918 pub fn modifiers(&self) -> Modifiers {
1919 self.modifiers
1920 }
1921
1922 /// The current state of the keyboard's capslock
1923 pub fn capslock(&self) -> Capslock {
1924 self.capslock
1925 }
1926
1927 fn complete_frame(&self) {
1928 self.platform_window.completed_frame();
1929 }
1930
1931 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1932 /// the contents of the new [`Scene`], use [`Self::present`].
1933 #[profiling::function]
1934 pub fn draw(&mut self, cx: &mut App) -> ArenaClearNeeded {
1935 self.invalidate_entities();
1936 cx.entities.clear_accessed();
1937 debug_assert!(self.rendered_entity_stack.is_empty());
1938 self.invalidator.set_dirty(false);
1939 self.requested_autoscroll = None;
1940
1941 // Restore the previously-used input handler.
1942 if let Some(input_handler) = self.platform_window.take_input_handler() {
1943 self.rendered_frame.input_handlers.push(Some(input_handler));
1944 }
1945 self.draw_roots(cx);
1946 self.dirty_views.clear();
1947 self.next_frame.window_active = self.active.get();
1948
1949 // Register requested input handler with the platform window.
1950 if let Some(input_handler) = self.next_frame.input_handlers.pop() {
1951 self.platform_window
1952 .set_input_handler(input_handler.unwrap());
1953 }
1954
1955 self.layout_engine.as_mut().unwrap().clear();
1956 self.text_system().finish_frame();
1957 self.next_frame.finish(&mut self.rendered_frame);
1958
1959 self.invalidator.set_phase(DrawPhase::Focus);
1960 let previous_focus_path = self.rendered_frame.focus_path();
1961 let previous_window_active = self.rendered_frame.window_active;
1962 mem::swap(&mut self.rendered_frame, &mut self.next_frame);
1963 self.next_frame.clear();
1964 let current_focus_path = self.rendered_frame.focus_path();
1965 let current_window_active = self.rendered_frame.window_active;
1966
1967 if previous_focus_path != current_focus_path
1968 || previous_window_active != current_window_active
1969 {
1970 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
1971 self.focus_lost_listeners
1972 .clone()
1973 .retain(&(), |listener| listener(self, cx));
1974 }
1975
1976 let event = WindowFocusEvent {
1977 previous_focus_path: if previous_window_active {
1978 previous_focus_path
1979 } else {
1980 Default::default()
1981 },
1982 current_focus_path: if current_window_active {
1983 current_focus_path
1984 } else {
1985 Default::default()
1986 },
1987 };
1988 self.focus_listeners
1989 .clone()
1990 .retain(&(), |listener| listener(&event, self, cx));
1991 }
1992
1993 debug_assert!(self.rendered_entity_stack.is_empty());
1994 self.record_entities_accessed(cx);
1995 self.reset_cursor_style(cx);
1996 self.refreshing = false;
1997 self.invalidator.set_phase(DrawPhase::None);
1998 self.needs_present.set(true);
1999
2000 ArenaClearNeeded
2001 }
2002
2003 fn record_entities_accessed(&mut self, cx: &mut App) {
2004 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2005 let mut entities = mem::take(entities_ref.deref_mut());
2006 drop(entities_ref);
2007 let handle = self.handle;
2008 cx.record_entities_accessed(
2009 handle,
2010 // Try moving window invalidator into the Window
2011 self.invalidator.clone(),
2012 &entities,
2013 );
2014 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2015 mem::swap(&mut entities, entities_ref.deref_mut());
2016 }
2017
2018 fn invalidate_entities(&mut self) {
2019 let mut views = self.invalidator.take_views();
2020 for entity in views.drain() {
2021 self.mark_view_dirty(entity);
2022 }
2023 self.invalidator.replace_views(views);
2024 }
2025
2026 #[profiling::function]
2027 fn present(&self) {
2028 self.platform_window.draw(&self.rendered_frame.scene);
2029 self.needs_present.set(false);
2030 profiling::finish_frame!();
2031 }
2032
2033 fn draw_roots(&mut self, cx: &mut App) {
2034 self.invalidator.set_phase(DrawPhase::Prepaint);
2035 self.tooltip_bounds.take();
2036
2037 let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
2038 let root_size = {
2039 #[cfg(any(feature = "inspector", debug_assertions))]
2040 {
2041 if self.inspector.is_some() {
2042 let mut size = self.viewport_size;
2043 size.width = (size.width - _inspector_width).max(px(0.0));
2044 size
2045 } else {
2046 self.viewport_size
2047 }
2048 }
2049 #[cfg(not(any(feature = "inspector", debug_assertions)))]
2050 {
2051 self.viewport_size
2052 }
2053 };
2054
2055 // Layout all root elements.
2056 let mut root_element = self.root.as_ref().unwrap().clone().into_any();
2057 root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2058
2059 #[cfg(any(feature = "inspector", debug_assertions))]
2060 let inspector_element = self.prepaint_inspector(_inspector_width, cx);
2061
2062 let mut sorted_deferred_draws =
2063 (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
2064 sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
2065 self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
2066
2067 let mut prompt_element = None;
2068 let mut active_drag_element = None;
2069 let mut tooltip_element = None;
2070 if let Some(prompt) = self.prompt.take() {
2071 let mut element = prompt.view.any_view().into_any();
2072 element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2073 prompt_element = Some(element);
2074 self.prompt = Some(prompt);
2075 } else if let Some(active_drag) = cx.active_drag.take() {
2076 let mut element = active_drag.view.clone().into_any();
2077 let offset = self.mouse_position() - active_drag.cursor_offset;
2078 element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
2079 active_drag_element = Some(element);
2080 cx.active_drag = Some(active_drag);
2081 } else {
2082 tooltip_element = self.prepaint_tooltip(cx);
2083 }
2084
2085 self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
2086
2087 // Now actually paint the elements.
2088 self.invalidator.set_phase(DrawPhase::Paint);
2089 root_element.paint(self, cx);
2090
2091 #[cfg(any(feature = "inspector", debug_assertions))]
2092 self.paint_inspector(inspector_element, cx);
2093
2094 self.paint_deferred_draws(&sorted_deferred_draws, cx);
2095
2096 if let Some(mut prompt_element) = prompt_element {
2097 prompt_element.paint(self, cx);
2098 } else if let Some(mut drag_element) = active_drag_element {
2099 drag_element.paint(self, cx);
2100 } else if let Some(mut tooltip_element) = tooltip_element {
2101 tooltip_element.paint(self, cx);
2102 }
2103
2104 #[cfg(any(feature = "inspector", debug_assertions))]
2105 self.paint_inspector_hitbox(cx);
2106 }
2107
2108 fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
2109 // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
2110 for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
2111 let Some(Some(tooltip_request)) = self
2112 .next_frame
2113 .tooltip_requests
2114 .get(tooltip_request_index)
2115 .cloned()
2116 else {
2117 log::error!("Unexpectedly absent TooltipRequest");
2118 continue;
2119 };
2120 let mut element = tooltip_request.tooltip.view.clone().into_any();
2121 let mouse_position = tooltip_request.tooltip.mouse_position;
2122 let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
2123
2124 let mut tooltip_bounds =
2125 Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
2126 let window_bounds = Bounds {
2127 origin: Point::default(),
2128 size: self.viewport_size(),
2129 };
2130
2131 if tooltip_bounds.right() > window_bounds.right() {
2132 let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
2133 if new_x >= Pixels::ZERO {
2134 tooltip_bounds.origin.x = new_x;
2135 } else {
2136 tooltip_bounds.origin.x = cmp::max(
2137 Pixels::ZERO,
2138 tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
2139 );
2140 }
2141 }
2142
2143 if tooltip_bounds.bottom() > window_bounds.bottom() {
2144 let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
2145 if new_y >= Pixels::ZERO {
2146 tooltip_bounds.origin.y = new_y;
2147 } else {
2148 tooltip_bounds.origin.y = cmp::max(
2149 Pixels::ZERO,
2150 tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
2151 );
2152 }
2153 }
2154
2155 // It's possible for an element to have an active tooltip while not being painted (e.g.
2156 // via the `visible_on_hover` method). Since mouse listeners are not active in this
2157 // case, instead update the tooltip's visibility here.
2158 let is_visible =
2159 (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
2160 if !is_visible {
2161 continue;
2162 }
2163
2164 self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
2165 element.prepaint(window, cx)
2166 });
2167
2168 self.tooltip_bounds = Some(TooltipBounds {
2169 id: tooltip_request.id,
2170 bounds: tooltip_bounds,
2171 });
2172 return Some(element);
2173 }
2174 None
2175 }
2176
2177 fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2178 assert_eq!(self.element_id_stack.len(), 0);
2179
2180 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2181 for deferred_draw_ix in deferred_draw_indices {
2182 let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2183 self.element_id_stack
2184 .clone_from(&deferred_draw.element_id_stack);
2185 self.text_style_stack
2186 .clone_from(&deferred_draw.text_style_stack);
2187 self.next_frame
2188 .dispatch_tree
2189 .set_active_node(deferred_draw.parent_node);
2190
2191 let prepaint_start = self.prepaint_index();
2192 if let Some(element) = deferred_draw.element.as_mut() {
2193 self.with_rendered_view(deferred_draw.current_view, |window| {
2194 window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
2195 element.prepaint(window, cx)
2196 });
2197 })
2198 } else {
2199 self.reuse_prepaint(deferred_draw.prepaint_range.clone());
2200 }
2201 let prepaint_end = self.prepaint_index();
2202 deferred_draw.prepaint_range = prepaint_start..prepaint_end;
2203 }
2204 assert_eq!(
2205 self.next_frame.deferred_draws.len(),
2206 0,
2207 "cannot call defer_draw during deferred drawing"
2208 );
2209 self.next_frame.deferred_draws = deferred_draws;
2210 self.element_id_stack.clear();
2211 self.text_style_stack.clear();
2212 }
2213
2214 fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2215 assert_eq!(self.element_id_stack.len(), 0);
2216
2217 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2218 for deferred_draw_ix in deferred_draw_indices {
2219 let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2220 self.element_id_stack
2221 .clone_from(&deferred_draw.element_id_stack);
2222 self.next_frame
2223 .dispatch_tree
2224 .set_active_node(deferred_draw.parent_node);
2225
2226 let paint_start = self.paint_index();
2227 if let Some(element) = deferred_draw.element.as_mut() {
2228 self.with_rendered_view(deferred_draw.current_view, |window| {
2229 element.paint(window, cx);
2230 })
2231 } else {
2232 self.reuse_paint(deferred_draw.paint_range.clone());
2233 }
2234 let paint_end = self.paint_index();
2235 deferred_draw.paint_range = paint_start..paint_end;
2236 }
2237 self.next_frame.deferred_draws = deferred_draws;
2238 self.element_id_stack.clear();
2239 }
2240
2241 pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2242 PrepaintStateIndex {
2243 hitboxes_index: self.next_frame.hitboxes.len(),
2244 tooltips_index: self.next_frame.tooltip_requests.len(),
2245 deferred_draws_index: self.next_frame.deferred_draws.len(),
2246 dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2247 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2248 line_layout_index: self.text_system.layout_index(),
2249 }
2250 }
2251
2252 pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2253 self.next_frame.hitboxes.extend(
2254 self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2255 .iter()
2256 .cloned(),
2257 );
2258 self.next_frame.tooltip_requests.extend(
2259 self.rendered_frame.tooltip_requests
2260 [range.start.tooltips_index..range.end.tooltips_index]
2261 .iter_mut()
2262 .map(|request| request.take()),
2263 );
2264 self.next_frame.accessed_element_states.extend(
2265 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2266 ..range.end.accessed_element_states_index]
2267 .iter()
2268 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2269 );
2270 self.text_system
2271 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2272
2273 let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2274 range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2275 &mut self.rendered_frame.dispatch_tree,
2276 self.focus,
2277 );
2278
2279 if reused_subtree.contains_focus() {
2280 self.next_frame.focus = self.focus;
2281 }
2282
2283 self.next_frame.deferred_draws.extend(
2284 self.rendered_frame.deferred_draws
2285 [range.start.deferred_draws_index..range.end.deferred_draws_index]
2286 .iter()
2287 .map(|deferred_draw| DeferredDraw {
2288 current_view: deferred_draw.current_view,
2289 parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2290 element_id_stack: deferred_draw.element_id_stack.clone(),
2291 text_style_stack: deferred_draw.text_style_stack.clone(),
2292 priority: deferred_draw.priority,
2293 element: None,
2294 absolute_offset: deferred_draw.absolute_offset,
2295 prepaint_range: deferred_draw.prepaint_range.clone(),
2296 paint_range: deferred_draw.paint_range.clone(),
2297 }),
2298 );
2299 }
2300
2301 pub(crate) fn paint_index(&self) -> PaintIndex {
2302 PaintIndex {
2303 scene_index: self.next_frame.scene.len(),
2304 mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2305 input_handlers_index: self.next_frame.input_handlers.len(),
2306 cursor_styles_index: self.next_frame.cursor_styles.len(),
2307 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2308 tab_handle_index: self.next_frame.tab_handles.handles.len(),
2309 line_layout_index: self.text_system.layout_index(),
2310 }
2311 }
2312
2313 pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2314 self.next_frame.cursor_styles.extend(
2315 self.rendered_frame.cursor_styles
2316 [range.start.cursor_styles_index..range.end.cursor_styles_index]
2317 .iter()
2318 .cloned(),
2319 );
2320 self.next_frame.input_handlers.extend(
2321 self.rendered_frame.input_handlers
2322 [range.start.input_handlers_index..range.end.input_handlers_index]
2323 .iter_mut()
2324 .map(|handler| handler.take()),
2325 );
2326 self.next_frame.mouse_listeners.extend(
2327 self.rendered_frame.mouse_listeners
2328 [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2329 .iter_mut()
2330 .map(|listener| listener.take()),
2331 );
2332 self.next_frame.accessed_element_states.extend(
2333 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2334 ..range.end.accessed_element_states_index]
2335 .iter()
2336 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2337 );
2338 self.next_frame.tab_handles.handles.extend(
2339 self.rendered_frame.tab_handles.handles
2340 [range.start.tab_handle_index..range.end.tab_handle_index]
2341 .iter()
2342 .cloned(),
2343 );
2344
2345 self.text_system
2346 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2347 self.next_frame.scene.replay(
2348 range.start.scene_index..range.end.scene_index,
2349 &self.rendered_frame.scene,
2350 );
2351 }
2352
2353 /// Push a text style onto the stack, and call a function with that style active.
2354 /// Use [`Window::text_style`] to get the current, combined text style. This method
2355 /// should only be called as part of element drawing.
2356 pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2357 where
2358 F: FnOnce(&mut Self) -> R,
2359 {
2360 self.invalidator.debug_assert_paint_or_prepaint();
2361 if let Some(style) = style {
2362 self.text_style_stack.push(style);
2363 let result = f(self);
2364 self.text_style_stack.pop();
2365 result
2366 } else {
2367 f(self)
2368 }
2369 }
2370
2371 /// Updates the cursor style at the platform level. This method should only be called
2372 /// during the prepaint phase of element drawing.
2373 pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
2374 self.invalidator.debug_assert_paint();
2375 self.next_frame.cursor_styles.push(CursorStyleRequest {
2376 hitbox_id: Some(hitbox.id),
2377 style,
2378 });
2379 }
2380
2381 /// Updates the cursor style for the entire window at the platform level. A cursor
2382 /// style using this method will have precedence over any cursor style set using
2383 /// `set_cursor_style`. This method should only be called during the prepaint
2384 /// phase of element drawing.
2385 pub fn set_window_cursor_style(&mut self, style: CursorStyle) {
2386 self.invalidator.debug_assert_paint();
2387 self.next_frame.cursor_styles.push(CursorStyleRequest {
2388 hitbox_id: None,
2389 style,
2390 })
2391 }
2392
2393 /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2394 /// during the paint phase of element drawing.
2395 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2396 self.invalidator.debug_assert_prepaint();
2397 let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2398 self.next_frame
2399 .tooltip_requests
2400 .push(Some(TooltipRequest { id, tooltip }));
2401 id
2402 }
2403
2404 /// Invoke the given function with the given content mask after intersecting it
2405 /// with the current mask. This method should only be called during element drawing.
2406 pub fn with_content_mask<R>(
2407 &mut self,
2408 mask: Option<ContentMask<Pixels>>,
2409 f: impl FnOnce(&mut Self) -> R,
2410 ) -> R {
2411 self.invalidator.debug_assert_paint_or_prepaint();
2412 if let Some(mask) = mask {
2413 let mask = mask.intersect(&self.content_mask());
2414 self.content_mask_stack.push(mask);
2415 let result = f(self);
2416 self.content_mask_stack.pop();
2417 result
2418 } else {
2419 f(self)
2420 }
2421 }
2422
2423 /// Updates the global element offset relative to the current offset. This is used to implement
2424 /// scrolling. This method should only be called during the prepaint phase of element drawing.
2425 pub fn with_element_offset<R>(
2426 &mut self,
2427 offset: Point<Pixels>,
2428 f: impl FnOnce(&mut Self) -> R,
2429 ) -> R {
2430 self.invalidator.debug_assert_prepaint();
2431
2432 if offset.is_zero() {
2433 return f(self);
2434 };
2435
2436 let abs_offset = self.element_offset() + offset;
2437 self.with_absolute_element_offset(abs_offset, f)
2438 }
2439
2440 /// Updates the global element offset based on the given offset. This is used to implement
2441 /// drag handles and other manual painting of elements. This method should only be called during
2442 /// the prepaint phase of element drawing.
2443 pub fn with_absolute_element_offset<R>(
2444 &mut self,
2445 offset: Point<Pixels>,
2446 f: impl FnOnce(&mut Self) -> R,
2447 ) -> R {
2448 self.invalidator.debug_assert_prepaint();
2449 self.element_offset_stack.push(offset);
2450 let result = f(self);
2451 self.element_offset_stack.pop();
2452 result
2453 }
2454
2455 pub(crate) fn with_element_opacity<R>(
2456 &mut self,
2457 opacity: Option<f32>,
2458 f: impl FnOnce(&mut Self) -> R,
2459 ) -> R {
2460 if opacity.is_none() {
2461 return f(self);
2462 }
2463
2464 self.invalidator.debug_assert_paint_or_prepaint();
2465 self.element_opacity = opacity;
2466 let result = f(self);
2467 self.element_opacity = None;
2468 result
2469 }
2470
2471 /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2472 /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2473 /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2474 /// element offset and prepaint again. See [`crate::List`] for an example. This method should only be
2475 /// called during the prepaint phase of element drawing.
2476 pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2477 self.invalidator.debug_assert_prepaint();
2478 let index = self.prepaint_index();
2479 let result = f(self);
2480 if result.is_err() {
2481 self.next_frame.hitboxes.truncate(index.hitboxes_index);
2482 self.next_frame
2483 .tooltip_requests
2484 .truncate(index.tooltips_index);
2485 self.next_frame
2486 .deferred_draws
2487 .truncate(index.deferred_draws_index);
2488 self.next_frame
2489 .dispatch_tree
2490 .truncate(index.dispatch_tree_index);
2491 self.next_frame
2492 .accessed_element_states
2493 .truncate(index.accessed_element_states_index);
2494 self.text_system.truncate_layouts(index.line_layout_index);
2495 }
2496 result
2497 }
2498
2499 /// When you call this method during [`Element::prepaint`], containing elements will attempt to
2500 /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2501 /// [`Element::prepaint`] again with a new set of bounds. See [`crate::List`] for an example of an element
2502 /// that supports this method being called on the elements it contains. This method should only be
2503 /// called during the prepaint phase of element drawing.
2504 pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2505 self.invalidator.debug_assert_prepaint();
2506 self.requested_autoscroll = Some(bounds);
2507 }
2508
2509 /// This method can be called from a containing element such as [`crate::List`] to support the autoscroll behavior
2510 /// described in [`Self::request_autoscroll`].
2511 pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2512 self.invalidator.debug_assert_prepaint();
2513 self.requested_autoscroll.take()
2514 }
2515
2516 /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2517 /// Your view will be re-drawn once the asset has finished loading.
2518 ///
2519 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2520 /// time.
2521 pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2522 let (task, is_first) = cx.fetch_asset::<A>(source);
2523 task.clone().now_or_never().or_else(|| {
2524 if is_first {
2525 let entity_id = self.current_view();
2526 self.spawn(cx, {
2527 let task = task.clone();
2528 async move |cx| {
2529 task.await;
2530
2531 cx.on_next_frame(move |_, cx| {
2532 cx.notify(entity_id);
2533 });
2534 }
2535 })
2536 .detach();
2537 }
2538
2539 None
2540 })
2541 }
2542
2543 /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2544 /// Your view will not be re-drawn once the asset has finished loading.
2545 ///
2546 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2547 /// time.
2548 pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2549 let (task, _) = cx.fetch_asset::<A>(source);
2550 task.now_or_never()
2551 }
2552 /// Obtain the current element offset. This method should only be called during the
2553 /// prepaint phase of element drawing.
2554 pub fn element_offset(&self) -> Point<Pixels> {
2555 self.invalidator.debug_assert_prepaint();
2556 self.element_offset_stack
2557 .last()
2558 .copied()
2559 .unwrap_or_default()
2560 }
2561
2562 /// Obtain the current element opacity. This method should only be called during the
2563 /// prepaint phase of element drawing.
2564 pub(crate) fn element_opacity(&self) -> f32 {
2565 self.invalidator.debug_assert_paint_or_prepaint();
2566 self.element_opacity.unwrap_or(1.0)
2567 }
2568
2569 /// Obtain the current content mask. This method should only be called during element drawing.
2570 pub fn content_mask(&self) -> ContentMask<Pixels> {
2571 self.invalidator.debug_assert_paint_or_prepaint();
2572 self.content_mask_stack
2573 .last()
2574 .cloned()
2575 .unwrap_or_else(|| ContentMask {
2576 bounds: Bounds {
2577 origin: Point::default(),
2578 size: self.viewport_size,
2579 },
2580 ..Default::default()
2581 })
2582 }
2583
2584 /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2585 /// This can be used within a custom element to distinguish multiple sets of child elements.
2586 pub fn with_element_namespace<R>(
2587 &mut self,
2588 element_id: impl Into<ElementId>,
2589 f: impl FnOnce(&mut Self) -> R,
2590 ) -> R {
2591 self.element_id_stack.push(element_id.into());
2592 let result = f(self);
2593 self.element_id_stack.pop();
2594 result
2595 }
2596
2597 /// Use a piece of state that exists as long this element is being rendered in consecutive frames.
2598 pub fn use_keyed_state<S: 'static>(
2599 &mut self,
2600 key: impl Into<ElementId>,
2601 cx: &mut App,
2602 init: impl FnOnce(&mut Self, &mut App) -> S,
2603 ) -> Entity<S> {
2604 let current_view = self.current_view();
2605 self.with_global_id(key.into(), |global_id, window| {
2606 window.with_element_state(global_id, |state: Option<Entity<S>>, window| {
2607 if let Some(state) = state {
2608 (state.clone(), state)
2609 } else {
2610 let new_state = cx.new(|cx| init(window, cx));
2611 cx.observe(&new_state, move |_, cx| {
2612 cx.notify(current_view);
2613 })
2614 .detach();
2615 (new_state.clone(), new_state)
2616 }
2617 })
2618 })
2619 }
2620
2621 /// Immediately push an element ID onto the stack. Useful for simplifying IDs in lists
2622 pub fn with_id<R>(&mut self, id: impl Into<ElementId>, f: impl FnOnce(&mut Self) -> R) -> R {
2623 self.with_global_id(id.into(), |_, window| f(window))
2624 }
2625
2626 /// Use a piece of state that exists as long this element is being rendered in consecutive frames, without needing to specify a key
2627 ///
2628 /// NOTE: This method uses the location of the caller to generate an ID for this state.
2629 /// If this is not sufficient to identify your state (e.g. you're rendering a list item),
2630 /// you can provide a custom ElementID using the `use_keyed_state` method.
2631 #[track_caller]
2632 pub fn use_state<S: 'static>(
2633 &mut self,
2634 cx: &mut App,
2635 init: impl FnOnce(&mut Self, &mut App) -> S,
2636 ) -> Entity<S> {
2637 self.use_keyed_state(
2638 ElementId::CodeLocation(*core::panic::Location::caller()),
2639 cx,
2640 init,
2641 )
2642 }
2643
2644 /// Updates or initializes state for an element with the given id that lives across multiple
2645 /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2646 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2647 /// when drawing the next frame. This method should only be called as part of element drawing.
2648 pub fn with_element_state<S, R>(
2649 &mut self,
2650 global_id: &GlobalElementId,
2651 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2652 ) -> R
2653 where
2654 S: 'static,
2655 {
2656 self.invalidator.debug_assert_paint_or_prepaint();
2657
2658 let key = (GlobalElementId(global_id.0.clone()), TypeId::of::<S>());
2659 self.next_frame
2660 .accessed_element_states
2661 .push((GlobalElementId(key.0.clone()), TypeId::of::<S>()));
2662
2663 if let Some(any) = self
2664 .next_frame
2665 .element_states
2666 .remove(&key)
2667 .or_else(|| self.rendered_frame.element_states.remove(&key))
2668 {
2669 let ElementStateBox {
2670 inner,
2671 #[cfg(debug_assertions)]
2672 type_name,
2673 } = any;
2674 // Using the extra inner option to avoid needing to reallocate a new box.
2675 let mut state_box = inner
2676 .downcast::<Option<S>>()
2677 .map_err(|_| {
2678 #[cfg(debug_assertions)]
2679 {
2680 anyhow::anyhow!(
2681 "invalid element state type for id, requested {:?}, actual: {:?}",
2682 std::any::type_name::<S>(),
2683 type_name
2684 )
2685 }
2686
2687 #[cfg(not(debug_assertions))]
2688 {
2689 anyhow::anyhow!(
2690 "invalid element state type for id, requested {:?}",
2691 std::any::type_name::<S>(),
2692 )
2693 }
2694 })
2695 .unwrap();
2696
2697 let state = state_box.take().expect(
2698 "reentrant call to with_element_state for the same state type and element id",
2699 );
2700 let (result, state) = f(Some(state), self);
2701 state_box.replace(state);
2702 self.next_frame.element_states.insert(
2703 key,
2704 ElementStateBox {
2705 inner: state_box,
2706 #[cfg(debug_assertions)]
2707 type_name,
2708 },
2709 );
2710 result
2711 } else {
2712 let (result, state) = f(None, self);
2713 self.next_frame.element_states.insert(
2714 key,
2715 ElementStateBox {
2716 inner: Box::new(Some(state)),
2717 #[cfg(debug_assertions)]
2718 type_name: std::any::type_name::<S>(),
2719 },
2720 );
2721 result
2722 }
2723 }
2724
2725 /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2726 /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2727 /// when the element is guaranteed to have an id.
2728 ///
2729 /// The first option means 'no ID provided'
2730 /// The second option means 'not yet initialized'
2731 pub fn with_optional_element_state<S, R>(
2732 &mut self,
2733 global_id: Option<&GlobalElementId>,
2734 f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2735 ) -> R
2736 where
2737 S: 'static,
2738 {
2739 self.invalidator.debug_assert_paint_or_prepaint();
2740
2741 if let Some(global_id) = global_id {
2742 self.with_element_state(global_id, |state, cx| {
2743 let (result, state) = f(Some(state), cx);
2744 let state =
2745 state.expect("you must return some state when you pass some element id");
2746 (result, state)
2747 })
2748 } else {
2749 let (result, state) = f(None, self);
2750 debug_assert!(
2751 state.is_none(),
2752 "you must not return an element state when passing None for the global id"
2753 );
2754 result
2755 }
2756 }
2757
2758 /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2759 /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2760 /// with higher values being drawn on top.
2761 ///
2762 /// This method should only be called as part of the prepaint phase of element drawing.
2763 pub fn defer_draw(
2764 &mut self,
2765 element: AnyElement,
2766 absolute_offset: Point<Pixels>,
2767 priority: usize,
2768 ) {
2769 self.invalidator.debug_assert_prepaint();
2770 let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2771 self.next_frame.deferred_draws.push(DeferredDraw {
2772 current_view: self.current_view(),
2773 parent_node,
2774 element_id_stack: self.element_id_stack.clone(),
2775 text_style_stack: self.text_style_stack.clone(),
2776 priority,
2777 element: Some(element),
2778 absolute_offset,
2779 prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2780 paint_range: PaintIndex::default()..PaintIndex::default(),
2781 });
2782 }
2783
2784 /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2785 /// of geometry that are non-overlapping and have the same draw order. This is typically used
2786 /// for performance reasons.
2787 ///
2788 /// This method should only be called as part of the paint phase of element drawing.
2789 pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2790 self.invalidator.debug_assert_paint();
2791
2792 let scale_factor = self.scale_factor();
2793 let content_mask = self.content_mask();
2794 let clipped_bounds = bounds.intersect(&content_mask.bounds);
2795 if !clipped_bounds.is_empty() {
2796 self.next_frame
2797 .scene
2798 .push_layer(clipped_bounds.scale(scale_factor));
2799 }
2800
2801 let result = f(self);
2802
2803 if !clipped_bounds.is_empty() {
2804 self.next_frame.scene.pop_layer();
2805 }
2806
2807 result
2808 }
2809
2810 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2811 ///
2812 /// This method should only be called as part of the paint phase of element drawing.
2813 pub fn paint_shadows(
2814 &mut self,
2815 bounds: Bounds<Pixels>,
2816 corner_radii: Corners<Pixels>,
2817 shadows: &[BoxShadow],
2818 ) {
2819 self.invalidator.debug_assert_paint();
2820
2821 let scale_factor = self.scale_factor();
2822 let content_mask = self.content_mask();
2823 let opacity = self.element_opacity();
2824 for shadow in shadows {
2825 let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2826 self.next_frame.scene.insert_primitive(Shadow {
2827 order: 0,
2828 blur_radius: shadow.blur_radius.scale(scale_factor),
2829 bounds: shadow_bounds.scale(scale_factor),
2830 content_mask: content_mask.scale(scale_factor),
2831 corner_radii: corner_radii.scale(scale_factor),
2832 color: shadow.color.opacity(opacity),
2833 });
2834 }
2835 }
2836
2837 /// Paint one or more quads into the scene for the next frame at the current stacking context.
2838 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2839 /// see [`fill`], [`outline`], and [`quad`] to construct this type.
2840 ///
2841 /// This method should only be called as part of the paint phase of element drawing.
2842 ///
2843 /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2844 /// where the circular arcs meet. This will not display well when combined with dashed borders.
2845 /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2846 pub fn paint_quad(&mut self, quad: PaintQuad) {
2847 self.invalidator.debug_assert_paint();
2848
2849 let scale_factor = self.scale_factor();
2850 let content_mask = self.content_mask();
2851 let opacity = self.element_opacity();
2852 self.next_frame.scene.insert_primitive(Quad {
2853 order: 0,
2854 bounds: quad.bounds.scale(scale_factor),
2855 content_mask: content_mask.scale(scale_factor),
2856 background: quad.background.opacity(opacity),
2857 border_color: quad.border_color.opacity(opacity),
2858 corner_radii: quad.corner_radii.scale(scale_factor),
2859 border_widths: quad.border_widths.scale(scale_factor),
2860 border_style: quad.border_style,
2861 });
2862 }
2863
2864 /// Paint the given `Path` into the scene for the next frame at the current z-index.
2865 ///
2866 /// This method should only be called as part of the paint phase of element drawing.
2867 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2868 self.invalidator.debug_assert_paint();
2869
2870 let scale_factor = self.scale_factor();
2871 let content_mask = self.content_mask();
2872 let opacity = self.element_opacity();
2873 path.content_mask = content_mask;
2874 let color: Background = color.into();
2875 path.color = color.opacity(opacity);
2876 self.next_frame
2877 .scene
2878 .insert_primitive(path.scale(scale_factor));
2879 }
2880
2881 /// Paint an underline into the scene for the next frame at the current z-index.
2882 ///
2883 /// This method should only be called as part of the paint phase of element drawing.
2884 pub fn paint_underline(
2885 &mut self,
2886 origin: Point<Pixels>,
2887 width: Pixels,
2888 style: &UnderlineStyle,
2889 ) {
2890 self.invalidator.debug_assert_paint();
2891
2892 let scale_factor = self.scale_factor();
2893 let height = if style.wavy {
2894 style.thickness * 3.
2895 } else {
2896 style.thickness
2897 };
2898 let bounds = Bounds {
2899 origin,
2900 size: size(width, height),
2901 };
2902 let content_mask = self.content_mask();
2903 let element_opacity = self.element_opacity();
2904
2905 self.next_frame.scene.insert_primitive(Underline {
2906 order: 0,
2907 pad: 0,
2908 bounds: bounds.scale(scale_factor),
2909 content_mask: content_mask.scale(scale_factor),
2910 color: style.color.unwrap_or_default().opacity(element_opacity),
2911 thickness: style.thickness.scale(scale_factor),
2912 wavy: if style.wavy { 1 } else { 0 },
2913 });
2914 }
2915
2916 /// Paint a strikethrough into the scene for the next frame at the current z-index.
2917 ///
2918 /// This method should only be called as part of the paint phase of element drawing.
2919 pub fn paint_strikethrough(
2920 &mut self,
2921 origin: Point<Pixels>,
2922 width: Pixels,
2923 style: &StrikethroughStyle,
2924 ) {
2925 self.invalidator.debug_assert_paint();
2926
2927 let scale_factor = self.scale_factor();
2928 let height = style.thickness;
2929 let bounds = Bounds {
2930 origin,
2931 size: size(width, height),
2932 };
2933 let content_mask = self.content_mask();
2934 let opacity = self.element_opacity();
2935
2936 self.next_frame.scene.insert_primitive(Underline {
2937 order: 0,
2938 pad: 0,
2939 bounds: bounds.scale(scale_factor),
2940 content_mask: content_mask.scale(scale_factor),
2941 thickness: style.thickness.scale(scale_factor),
2942 color: style.color.unwrap_or_default().opacity(opacity),
2943 wavy: 0,
2944 });
2945 }
2946
2947 /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
2948 ///
2949 /// The y component of the origin is the baseline of the glyph.
2950 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2951 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2952 /// This method is only useful if you need to paint a single glyph that has already been shaped.
2953 ///
2954 /// This method should only be called as part of the paint phase of element drawing.
2955 pub fn paint_glyph(
2956 &mut self,
2957 origin: Point<Pixels>,
2958 font_id: FontId,
2959 glyph_id: GlyphId,
2960 font_size: Pixels,
2961 color: Hsla,
2962 ) -> Result<()> {
2963 self.invalidator.debug_assert_paint();
2964
2965 let element_opacity = self.element_opacity();
2966 let scale_factor = self.scale_factor();
2967 let glyph_origin = origin.scale(scale_factor);
2968 let subpixel_variant = Point {
2969 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2970 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2971 };
2972 let params = RenderGlyphParams {
2973 font_id,
2974 glyph_id,
2975 font_size,
2976 subpixel_variant,
2977 scale_factor,
2978 is_emoji: false,
2979 };
2980
2981 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2982 if !raster_bounds.is_zero() {
2983 let tile = self
2984 .sprite_atlas
2985 .get_or_insert_with(¶ms.clone().into(), &mut || {
2986 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2987 Ok(Some((size, Cow::Owned(bytes))))
2988 })?
2989 .expect("Callback above only errors or returns Some");
2990 let bounds = Bounds {
2991 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2992 size: tile.bounds.size.map(Into::into),
2993 };
2994 let content_mask = self.content_mask().scale(scale_factor);
2995 self.next_frame.scene.insert_primitive(MonochromeSprite {
2996 order: 0,
2997 pad: 0,
2998 bounds,
2999 content_mask,
3000 color: color.opacity(element_opacity),
3001 tile,
3002 transformation: TransformationMatrix::unit(),
3003 });
3004 }
3005 Ok(())
3006 }
3007
3008 /// Paints an emoji glyph into the scene for the next frame at the current z-index.
3009 ///
3010 /// The y component of the origin is the baseline of the glyph.
3011 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3012 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3013 /// This method is only useful if you need to paint a single emoji that has already been shaped.
3014 ///
3015 /// This method should only be called as part of the paint phase of element drawing.
3016 pub fn paint_emoji(
3017 &mut self,
3018 origin: Point<Pixels>,
3019 font_id: FontId,
3020 glyph_id: GlyphId,
3021 font_size: Pixels,
3022 ) -> Result<()> {
3023 self.invalidator.debug_assert_paint();
3024
3025 let scale_factor = self.scale_factor();
3026 let glyph_origin = origin.scale(scale_factor);
3027 let params = RenderGlyphParams {
3028 font_id,
3029 glyph_id,
3030 font_size,
3031 // We don't render emojis with subpixel variants.
3032 subpixel_variant: Default::default(),
3033 scale_factor,
3034 is_emoji: true,
3035 };
3036
3037 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
3038 if !raster_bounds.is_zero() {
3039 let tile = self
3040 .sprite_atlas
3041 .get_or_insert_with(¶ms.clone().into(), &mut || {
3042 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
3043 Ok(Some((size, Cow::Owned(bytes))))
3044 })?
3045 .expect("Callback above only errors or returns Some");
3046
3047 let bounds = Bounds {
3048 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3049 size: tile.bounds.size.map(Into::into),
3050 };
3051 let content_mask = self.content_mask().scale(scale_factor);
3052 let opacity = self.element_opacity();
3053
3054 self.next_frame.scene.insert_primitive(PolychromeSprite {
3055 order: 0,
3056 pad: 0,
3057 grayscale: false,
3058 bounds,
3059 corner_radii: Default::default(),
3060 content_mask,
3061 tile,
3062 opacity,
3063 });
3064 }
3065 Ok(())
3066 }
3067
3068 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
3069 ///
3070 /// This method should only be called as part of the paint phase of element drawing.
3071 pub fn paint_svg(
3072 &mut self,
3073 bounds: Bounds<Pixels>,
3074 path: SharedString,
3075 transformation: TransformationMatrix,
3076 color: Hsla,
3077 cx: &App,
3078 ) -> Result<()> {
3079 self.invalidator.debug_assert_paint();
3080
3081 let element_opacity = self.element_opacity();
3082 let scale_factor = self.scale_factor();
3083 let bounds = bounds.scale(scale_factor);
3084 let params = RenderSvgParams {
3085 path,
3086 size: bounds.size.map(|pixels| {
3087 DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
3088 }),
3089 };
3090
3091 let Some(tile) =
3092 self.sprite_atlas
3093 .get_or_insert_with(¶ms.clone().into(), &mut || {
3094 let Some(bytes) = cx.svg_renderer.render(¶ms)? else {
3095 return Ok(None);
3096 };
3097 Ok(Some((params.size, Cow::Owned(bytes))))
3098 })?
3099 else {
3100 return Ok(());
3101 };
3102 let content_mask = self.content_mask().scale(scale_factor);
3103
3104 self.next_frame.scene.insert_primitive(MonochromeSprite {
3105 order: 0,
3106 pad: 0,
3107 bounds: bounds
3108 .map_origin(|origin| origin.floor())
3109 .map_size(|size| size.ceil()),
3110 content_mask,
3111 color: color.opacity(element_opacity),
3112 tile,
3113 transformation,
3114 });
3115
3116 Ok(())
3117 }
3118
3119 /// Paint an image into the scene for the next frame at the current z-index.
3120 /// This method will panic if the frame_index is not valid
3121 ///
3122 /// This method should only be called as part of the paint phase of element drawing.
3123 pub fn paint_image(
3124 &mut self,
3125 bounds: Bounds<Pixels>,
3126 corner_radii: Corners<Pixels>,
3127 data: Arc<RenderImage>,
3128 frame_index: usize,
3129 grayscale: bool,
3130 ) -> Result<()> {
3131 self.invalidator.debug_assert_paint();
3132
3133 let scale_factor = self.scale_factor();
3134 let bounds = bounds.scale(scale_factor);
3135 let params = RenderImageParams {
3136 image_id: data.id,
3137 frame_index,
3138 };
3139
3140 let tile = self
3141 .sprite_atlas
3142 .get_or_insert_with(¶ms.into(), &mut || {
3143 Ok(Some((
3144 data.size(frame_index),
3145 Cow::Borrowed(
3146 data.as_bytes(frame_index)
3147 .expect("It's the caller's job to pass a valid frame index"),
3148 ),
3149 )))
3150 })?
3151 .expect("Callback above only returns Some");
3152 let content_mask = self.content_mask().scale(scale_factor);
3153 let corner_radii = corner_radii.scale(scale_factor);
3154 let opacity = self.element_opacity();
3155
3156 self.next_frame.scene.insert_primitive(PolychromeSprite {
3157 order: 0,
3158 pad: 0,
3159 grayscale,
3160 bounds: bounds
3161 .map_origin(|origin| origin.floor())
3162 .map_size(|size| size.ceil()),
3163 content_mask,
3164 corner_radii,
3165 tile,
3166 opacity,
3167 });
3168 Ok(())
3169 }
3170
3171 /// Paint a surface into the scene for the next frame at the current z-index.
3172 ///
3173 /// This method should only be called as part of the paint phase of element drawing.
3174 #[cfg(target_os = "macos")]
3175 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
3176 use crate::PaintSurface;
3177
3178 self.invalidator.debug_assert_paint();
3179
3180 let scale_factor = self.scale_factor();
3181 let bounds = bounds.scale(scale_factor);
3182 let content_mask = self.content_mask().scale(scale_factor);
3183 self.next_frame.scene.insert_primitive(PaintSurface {
3184 order: 0,
3185 bounds,
3186 content_mask,
3187 image_buffer,
3188 });
3189 }
3190
3191 /// Removes an image from the sprite atlas.
3192 pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
3193 for frame_index in 0..data.frame_count() {
3194 let params = RenderImageParams {
3195 image_id: data.id,
3196 frame_index,
3197 };
3198
3199 self.sprite_atlas.remove(¶ms.clone().into());
3200 }
3201
3202 Ok(())
3203 }
3204
3205 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
3206 /// layout is being requested, along with the layout ids of any children. This method is called during
3207 /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
3208 ///
3209 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3210 #[must_use]
3211 pub fn request_layout(
3212 &mut self,
3213 style: Style,
3214 children: impl IntoIterator<Item = LayoutId>,
3215 cx: &mut App,
3216 ) -> LayoutId {
3217 self.invalidator.debug_assert_prepaint();
3218
3219 cx.layout_id_buffer.clear();
3220 cx.layout_id_buffer.extend(children);
3221 let rem_size = self.rem_size();
3222
3223 self.layout_engine
3224 .as_mut()
3225 .unwrap()
3226 .request_layout(style, rem_size, &cx.layout_id_buffer)
3227 }
3228
3229 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
3230 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
3231 /// determine the element's size. One place this is used internally is when measuring text.
3232 ///
3233 /// The given closure is invoked at layout time with the known dimensions and available space and
3234 /// returns a `Size`.
3235 ///
3236 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3237 pub fn request_measured_layout<
3238 F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
3239 + 'static,
3240 >(
3241 &mut self,
3242 style: Style,
3243 measure: F,
3244 ) -> LayoutId {
3245 self.invalidator.debug_assert_prepaint();
3246
3247 let rem_size = self.rem_size();
3248 self.layout_engine
3249 .as_mut()
3250 .unwrap()
3251 .request_measured_layout(style, rem_size, measure)
3252 }
3253
3254 /// Compute the layout for the given id within the given available space.
3255 /// This method is called for its side effect, typically by the framework prior to painting.
3256 /// After calling it, you can request the bounds of the given layout node id or any descendant.
3257 ///
3258 /// This method should only be called as part of the prepaint phase of element drawing.
3259 pub fn compute_layout(
3260 &mut self,
3261 layout_id: LayoutId,
3262 available_space: Size<AvailableSpace>,
3263 cx: &mut App,
3264 ) {
3265 self.invalidator.debug_assert_prepaint();
3266
3267 let mut layout_engine = self.layout_engine.take().unwrap();
3268 layout_engine.compute_layout(layout_id, available_space, self, cx);
3269 self.layout_engine = Some(layout_engine);
3270 }
3271
3272 /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
3273 /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
3274 ///
3275 /// This method should only be called as part of element drawing.
3276 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
3277 self.invalidator.debug_assert_prepaint();
3278
3279 let mut bounds = self
3280 .layout_engine
3281 .as_mut()
3282 .unwrap()
3283 .layout_bounds(layout_id)
3284 .map(Into::into);
3285 bounds.origin += self.element_offset();
3286 bounds
3287 }
3288
3289 /// This method should be called during `prepaint`. You can use
3290 /// the returned [Hitbox] during `paint` or in an event handler
3291 /// to determine whether the inserted hitbox was the topmost.
3292 ///
3293 /// This method should only be called as part of the prepaint phase of element drawing.
3294 pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
3295 self.invalidator.debug_assert_prepaint();
3296
3297 let content_mask = self.content_mask();
3298 let mut id = self.next_hitbox_id;
3299 self.next_hitbox_id = self.next_hitbox_id.next();
3300 let hitbox = Hitbox {
3301 id,
3302 bounds,
3303 content_mask,
3304 behavior,
3305 };
3306 self.next_frame.hitboxes.push(hitbox.clone());
3307 hitbox
3308 }
3309
3310 /// Set a hitbox which will act as a control area of the platform window.
3311 ///
3312 /// This method should only be called as part of the paint phase of element drawing.
3313 pub fn insert_window_control_hitbox(&mut self, area: WindowControlArea, hitbox: Hitbox) {
3314 self.invalidator.debug_assert_paint();
3315 self.next_frame.window_control_hitboxes.push((area, hitbox));
3316 }
3317
3318 /// Sets the key context for the current element. This context will be used to translate
3319 /// keybindings into actions.
3320 ///
3321 /// This method should only be called as part of the paint phase of element drawing.
3322 pub fn set_key_context(&mut self, context: KeyContext) {
3323 self.invalidator.debug_assert_paint();
3324 self.next_frame.dispatch_tree.set_key_context(context);
3325 }
3326
3327 /// Sets the focus handle for the current element. This handle will be used to manage focus state
3328 /// and keyboard event dispatch for the element.
3329 ///
3330 /// This method should only be called as part of the prepaint phase of element drawing.
3331 pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3332 self.invalidator.debug_assert_prepaint();
3333 if focus_handle.is_focused(self) {
3334 self.next_frame.focus = Some(focus_handle.id);
3335 }
3336 self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3337 }
3338
3339 /// Sets the view id for the current element, which will be used to manage view caching.
3340 ///
3341 /// This method should only be called as part of element prepaint. We plan on removing this
3342 /// method eventually when we solve some issues that require us to construct editor elements
3343 /// directly instead of always using editors via views.
3344 pub fn set_view_id(&mut self, view_id: EntityId) {
3345 self.invalidator.debug_assert_prepaint();
3346 self.next_frame.dispatch_tree.set_view_id(view_id);
3347 }
3348
3349 /// Get the entity ID for the currently rendering view
3350 pub fn current_view(&self) -> EntityId {
3351 self.invalidator.debug_assert_paint_or_prepaint();
3352 self.rendered_entity_stack.last().copied().unwrap()
3353 }
3354
3355 pub(crate) fn with_rendered_view<R>(
3356 &mut self,
3357 id: EntityId,
3358 f: impl FnOnce(&mut Self) -> R,
3359 ) -> R {
3360 self.rendered_entity_stack.push(id);
3361 let result = f(self);
3362 self.rendered_entity_stack.pop();
3363 result
3364 }
3365
3366 /// Executes the provided function with the specified image cache.
3367 pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3368 where
3369 F: FnOnce(&mut Self) -> R,
3370 {
3371 if let Some(image_cache) = image_cache {
3372 self.image_cache_stack.push(image_cache);
3373 let result = f(self);
3374 self.image_cache_stack.pop();
3375 result
3376 } else {
3377 f(self)
3378 }
3379 }
3380
3381 /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3382 /// platform to receive textual input with proper integration with concerns such
3383 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3384 /// rendered.
3385 ///
3386 /// This method should only be called as part of the paint phase of element drawing.
3387 ///
3388 /// [element_input_handler]: crate::ElementInputHandler
3389 pub fn handle_input(
3390 &mut self,
3391 focus_handle: &FocusHandle,
3392 input_handler: impl InputHandler,
3393 cx: &App,
3394 ) {
3395 self.invalidator.debug_assert_paint();
3396
3397 if focus_handle.is_focused(self) {
3398 let cx = self.to_async(cx);
3399 self.next_frame
3400 .input_handlers
3401 .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3402 }
3403 }
3404
3405 /// Register a mouse event listener on the window for the next frame. The type of event
3406 /// is determined by the first parameter of the given listener. When the next frame is rendered
3407 /// the listener will be cleared.
3408 ///
3409 /// This method should only be called as part of the paint phase of element drawing.
3410 pub fn on_mouse_event<Event: MouseEvent>(
3411 &mut self,
3412 mut handler: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3413 ) {
3414 self.invalidator.debug_assert_paint();
3415
3416 self.next_frame.mouse_listeners.push(Some(Box::new(
3417 move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3418 if let Some(event) = event.downcast_ref() {
3419 handler(event, phase, window, cx)
3420 }
3421 },
3422 )));
3423 }
3424
3425 /// Register a key event listener on the window for the next frame. The type of event
3426 /// is determined by the first parameter of the given listener. When the next frame is rendered
3427 /// the listener will be cleared.
3428 ///
3429 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3430 /// a specific need to register a global listener.
3431 ///
3432 /// This method should only be called as part of the paint phase of element drawing.
3433 pub fn on_key_event<Event: KeyEvent>(
3434 &mut self,
3435 listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3436 ) {
3437 self.invalidator.debug_assert_paint();
3438
3439 self.next_frame.dispatch_tree.on_key_event(Rc::new(
3440 move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3441 if let Some(event) = event.downcast_ref::<Event>() {
3442 listener(event, phase, window, cx)
3443 }
3444 },
3445 ));
3446 }
3447
3448 /// Register a modifiers changed event listener on the window for the next frame.
3449 ///
3450 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3451 /// a specific need to register a global listener.
3452 ///
3453 /// This method should only be called as part of the paint phase of element drawing.
3454 pub fn on_modifiers_changed(
3455 &mut self,
3456 listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3457 ) {
3458 self.invalidator.debug_assert_paint();
3459
3460 self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3461 move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3462 listener(event, window, cx)
3463 },
3464 ));
3465 }
3466
3467 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3468 /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3469 /// Returns a subscription and persists until the subscription is dropped.
3470 pub fn on_focus_in(
3471 &mut self,
3472 handle: &FocusHandle,
3473 cx: &mut App,
3474 mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3475 ) -> Subscription {
3476 let focus_id = handle.id;
3477 let (subscription, activate) =
3478 self.new_focus_listener(Box::new(move |event, window, cx| {
3479 if event.is_focus_in(focus_id) {
3480 listener(window, cx);
3481 }
3482 true
3483 }));
3484 cx.defer(move |_| activate());
3485 subscription
3486 }
3487
3488 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3489 /// Returns a subscription and persists until the subscription is dropped.
3490 pub fn on_focus_out(
3491 &mut self,
3492 handle: &FocusHandle,
3493 cx: &mut App,
3494 mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3495 ) -> Subscription {
3496 let focus_id = handle.id;
3497 let (subscription, activate) =
3498 self.new_focus_listener(Box::new(move |event, window, cx| {
3499 if let Some(blurred_id) = event.previous_focus_path.last().copied()
3500 && event.is_focus_out(focus_id)
3501 {
3502 let event = FocusOutEvent {
3503 blurred: WeakFocusHandle {
3504 id: blurred_id,
3505 handles: Arc::downgrade(&cx.focus_handles),
3506 },
3507 };
3508 listener(event, window, cx)
3509 }
3510 true
3511 }));
3512 cx.defer(move |_| activate());
3513 subscription
3514 }
3515
3516 fn reset_cursor_style(&self, cx: &mut App) {
3517 // Set the cursor only if we're the active window.
3518 if self.is_window_hovered() {
3519 let style = self
3520 .rendered_frame
3521 .cursor_style(self)
3522 .unwrap_or(CursorStyle::Arrow);
3523 cx.platform.set_cursor_style(style);
3524 }
3525 }
3526
3527 /// Dispatch a given keystroke as though the user had typed it.
3528 /// You can create a keystroke with Keystroke::parse("").
3529 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3530 let keystroke = keystroke.with_simulated_ime();
3531 let result = self.dispatch_event(
3532 PlatformInput::KeyDown(KeyDownEvent {
3533 keystroke: keystroke.clone(),
3534 is_held: false,
3535 }),
3536 cx,
3537 );
3538 if !result.propagate {
3539 return true;
3540 }
3541
3542 if let Some(input) = keystroke.key_char
3543 && let Some(mut input_handler) = self.platform_window.take_input_handler()
3544 {
3545 input_handler.dispatch_input(&input, self, cx);
3546 self.platform_window.set_input_handler(input_handler);
3547 return true;
3548 }
3549
3550 false
3551 }
3552
3553 /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3554 /// binding for the action (last binding added to the keymap).
3555 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3556 self.highest_precedence_binding_for_action(action)
3557 .map(|binding| {
3558 binding
3559 .keystrokes()
3560 .iter()
3561 .map(ToString::to_string)
3562 .collect::<Vec<_>>()
3563 .join(" ")
3564 })
3565 .unwrap_or_else(|| action.name().to_string())
3566 }
3567
3568 /// Dispatch a mouse or keyboard event on the window.
3569 #[profiling::function]
3570 pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3571 self.last_input_timestamp.set(Instant::now());
3572 // Handlers may set this to false by calling `stop_propagation`.
3573 cx.propagate_event = true;
3574 // Handlers may set this to true by calling `prevent_default`.
3575 self.default_prevented = false;
3576
3577 let event = match event {
3578 // Track the mouse position with our own state, since accessing the platform
3579 // API for the mouse position can only occur on the main thread.
3580 PlatformInput::MouseMove(mouse_move) => {
3581 self.mouse_position = mouse_move.position;
3582 self.modifiers = mouse_move.modifiers;
3583 PlatformInput::MouseMove(mouse_move)
3584 }
3585 PlatformInput::MouseDown(mouse_down) => {
3586 self.mouse_position = mouse_down.position;
3587 self.modifiers = mouse_down.modifiers;
3588 PlatformInput::MouseDown(mouse_down)
3589 }
3590 PlatformInput::MouseUp(mouse_up) => {
3591 self.mouse_position = mouse_up.position;
3592 self.modifiers = mouse_up.modifiers;
3593 PlatformInput::MouseUp(mouse_up)
3594 }
3595 PlatformInput::MouseExited(mouse_exited) => {
3596 self.modifiers = mouse_exited.modifiers;
3597 PlatformInput::MouseExited(mouse_exited)
3598 }
3599 PlatformInput::ModifiersChanged(modifiers_changed) => {
3600 self.modifiers = modifiers_changed.modifiers;
3601 self.capslock = modifiers_changed.capslock;
3602 PlatformInput::ModifiersChanged(modifiers_changed)
3603 }
3604 PlatformInput::ScrollWheel(scroll_wheel) => {
3605 self.mouse_position = scroll_wheel.position;
3606 self.modifiers = scroll_wheel.modifiers;
3607 PlatformInput::ScrollWheel(scroll_wheel)
3608 }
3609 // Translate dragging and dropping of external files from the operating system
3610 // to internal drag and drop events.
3611 PlatformInput::FileDrop(file_drop) => match file_drop {
3612 FileDropEvent::Entered { position, paths } => {
3613 self.mouse_position = position;
3614 if cx.active_drag.is_none() {
3615 cx.active_drag = Some(AnyDrag {
3616 value: Arc::new(paths.clone()),
3617 view: cx.new(|_| paths).into(),
3618 cursor_offset: position,
3619 cursor_style: None,
3620 });
3621 }
3622 PlatformInput::MouseMove(MouseMoveEvent {
3623 position,
3624 pressed_button: Some(MouseButton::Left),
3625 modifiers: Modifiers::default(),
3626 })
3627 }
3628 FileDropEvent::Pending { position } => {
3629 self.mouse_position = position;
3630 PlatformInput::MouseMove(MouseMoveEvent {
3631 position,
3632 pressed_button: Some(MouseButton::Left),
3633 modifiers: Modifiers::default(),
3634 })
3635 }
3636 FileDropEvent::Submit { position } => {
3637 cx.activate(true);
3638 self.mouse_position = position;
3639 PlatformInput::MouseUp(MouseUpEvent {
3640 button: MouseButton::Left,
3641 position,
3642 modifiers: Modifiers::default(),
3643 click_count: 1,
3644 })
3645 }
3646 FileDropEvent::Exited => {
3647 cx.active_drag.take();
3648 PlatformInput::FileDrop(FileDropEvent::Exited)
3649 }
3650 },
3651 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3652 };
3653
3654 if let Some(any_mouse_event) = event.mouse_event() {
3655 self.dispatch_mouse_event(any_mouse_event, cx);
3656 } else if let Some(any_key_event) = event.keyboard_event() {
3657 self.dispatch_key_event(any_key_event, cx);
3658 }
3659
3660 DispatchEventResult {
3661 propagate: cx.propagate_event,
3662 default_prevented: self.default_prevented,
3663 }
3664 }
3665
3666 fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3667 let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3668 if hit_test != self.mouse_hit_test {
3669 self.mouse_hit_test = hit_test;
3670 self.reset_cursor_style(cx);
3671 }
3672
3673 #[cfg(any(feature = "inspector", debug_assertions))]
3674 if self.is_inspector_picking(cx) {
3675 self.handle_inspector_mouse_event(event, cx);
3676 // When inspector is picking, all other mouse handling is skipped.
3677 return;
3678 }
3679
3680 let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3681
3682 // Capture phase, events bubble from back to front. Handlers for this phase are used for
3683 // special purposes, such as detecting events outside of a given Bounds.
3684 for listener in &mut mouse_listeners {
3685 let listener = listener.as_mut().unwrap();
3686 listener(event, DispatchPhase::Capture, self, cx);
3687 if !cx.propagate_event {
3688 break;
3689 }
3690 }
3691
3692 // Bubble phase, where most normal handlers do their work.
3693 if cx.propagate_event {
3694 for listener in mouse_listeners.iter_mut().rev() {
3695 let listener = listener.as_mut().unwrap();
3696 listener(event, DispatchPhase::Bubble, self, cx);
3697 if !cx.propagate_event {
3698 break;
3699 }
3700 }
3701 }
3702
3703 self.rendered_frame.mouse_listeners = mouse_listeners;
3704
3705 if cx.has_active_drag() {
3706 if event.is::<MouseMoveEvent>() {
3707 // If this was a mouse move event, redraw the window so that the
3708 // active drag can follow the mouse cursor.
3709 self.refresh();
3710 } else if event.is::<MouseUpEvent>() {
3711 // If this was a mouse up event, cancel the active drag and redraw
3712 // the window.
3713 cx.active_drag = None;
3714 self.refresh();
3715 }
3716 }
3717 }
3718
3719 fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3720 if self.invalidator.is_dirty() {
3721 self.draw(cx).clear();
3722 }
3723
3724 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3725 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3726
3727 let mut keystroke: Option<Keystroke> = None;
3728
3729 if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3730 if event.modifiers.number_of_modifiers() == 0
3731 && self.pending_modifier.modifiers.number_of_modifiers() == 1
3732 && !self.pending_modifier.saw_keystroke
3733 {
3734 let key = match self.pending_modifier.modifiers {
3735 modifiers if modifiers.shift => Some("shift"),
3736 modifiers if modifiers.control => Some("control"),
3737 modifiers if modifiers.alt => Some("alt"),
3738 modifiers if modifiers.platform => Some("platform"),
3739 modifiers if modifiers.function => Some("function"),
3740 _ => None,
3741 };
3742 if let Some(key) = key {
3743 keystroke = Some(Keystroke {
3744 key: key.to_string(),
3745 key_char: None,
3746 modifiers: Modifiers::default(),
3747 });
3748 }
3749 }
3750
3751 if self.pending_modifier.modifiers.number_of_modifiers() == 0
3752 && event.modifiers.number_of_modifiers() == 1
3753 {
3754 self.pending_modifier.saw_keystroke = false
3755 }
3756 self.pending_modifier.modifiers = event.modifiers
3757 } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3758 self.pending_modifier.saw_keystroke = true;
3759 keystroke = Some(key_down_event.keystroke.clone());
3760 }
3761
3762 let Some(keystroke) = keystroke else {
3763 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3764 return;
3765 };
3766
3767 cx.propagate_event = true;
3768 self.dispatch_keystroke_interceptors(event, self.context_stack(), cx);
3769 if !cx.propagate_event {
3770 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3771 return;
3772 }
3773
3774 let mut currently_pending = self.pending_input.take().unwrap_or_default();
3775 if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3776 currently_pending = PendingInput::default();
3777 }
3778
3779 let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3780 currently_pending.keystrokes,
3781 keystroke,
3782 &dispatch_path,
3783 );
3784
3785 if !match_result.to_replay.is_empty() {
3786 self.replay_pending_input(match_result.to_replay, cx);
3787 cx.propagate_event = true;
3788 }
3789
3790 if !match_result.pending.is_empty() {
3791 currently_pending.keystrokes = match_result.pending;
3792 currently_pending.focus = self.focus;
3793 currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3794 cx.background_executor.timer(Duration::from_secs(1)).await;
3795 cx.update(move |window, cx| {
3796 let Some(currently_pending) = window
3797 .pending_input
3798 .take()
3799 .filter(|pending| pending.focus == window.focus)
3800 else {
3801 return;
3802 };
3803
3804 let node_id = window.focus_node_id_in_rendered_frame(window.focus);
3805 let dispatch_path = window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3806
3807 let to_replay = window
3808 .rendered_frame
3809 .dispatch_tree
3810 .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3811
3812 window.pending_input_changed(cx);
3813 window.replay_pending_input(to_replay, cx)
3814 })
3815 .log_err();
3816 }));
3817 self.pending_input = Some(currently_pending);
3818 self.pending_input_changed(cx);
3819 cx.propagate_event = false;
3820 return;
3821 }
3822
3823 for binding in match_result.bindings {
3824 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3825 if !cx.propagate_event {
3826 self.dispatch_keystroke_observers(
3827 event,
3828 Some(binding.action),
3829 match_result.context_stack,
3830 cx,
3831 );
3832 self.pending_input_changed(cx);
3833 return;
3834 }
3835 }
3836
3837 self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
3838 self.pending_input_changed(cx);
3839 }
3840
3841 fn finish_dispatch_key_event(
3842 &mut self,
3843 event: &dyn Any,
3844 dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3845 context_stack: Vec<KeyContext>,
3846 cx: &mut App,
3847 ) {
3848 self.dispatch_key_down_up_event(event, &dispatch_path, cx);
3849 if !cx.propagate_event {
3850 return;
3851 }
3852
3853 self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
3854 if !cx.propagate_event {
3855 return;
3856 }
3857
3858 self.dispatch_keystroke_observers(event, None, context_stack, cx);
3859 }
3860
3861 fn pending_input_changed(&mut self, cx: &mut App) {
3862 self.pending_input_observers
3863 .clone()
3864 .retain(&(), |callback| callback(self, cx));
3865 }
3866
3867 fn dispatch_key_down_up_event(
3868 &mut self,
3869 event: &dyn Any,
3870 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3871 cx: &mut App,
3872 ) {
3873 // Capture phase
3874 for node_id in dispatch_path {
3875 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3876
3877 for key_listener in node.key_listeners.clone() {
3878 key_listener(event, DispatchPhase::Capture, self, cx);
3879 if !cx.propagate_event {
3880 return;
3881 }
3882 }
3883 }
3884
3885 // Bubble phase
3886 for node_id in dispatch_path.iter().rev() {
3887 // Handle low level key events
3888 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3889 for key_listener in node.key_listeners.clone() {
3890 key_listener(event, DispatchPhase::Bubble, self, cx);
3891 if !cx.propagate_event {
3892 return;
3893 }
3894 }
3895 }
3896 }
3897
3898 fn dispatch_modifiers_changed_event(
3899 &mut self,
3900 event: &dyn Any,
3901 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3902 cx: &mut App,
3903 ) {
3904 let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
3905 return;
3906 };
3907 for node_id in dispatch_path.iter().rev() {
3908 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3909 for listener in node.modifiers_changed_listeners.clone() {
3910 listener(event, self, cx);
3911 if !cx.propagate_event {
3912 return;
3913 }
3914 }
3915 }
3916 }
3917
3918 /// Determine whether a potential multi-stroke key binding is in progress on this window.
3919 pub fn has_pending_keystrokes(&self) -> bool {
3920 self.pending_input.is_some()
3921 }
3922
3923 pub(crate) fn clear_pending_keystrokes(&mut self) {
3924 self.pending_input.take();
3925 }
3926
3927 /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
3928 pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
3929 self.pending_input
3930 .as_ref()
3931 .map(|pending_input| pending_input.keystrokes.as_slice())
3932 }
3933
3934 fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
3935 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3936 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3937
3938 'replay: for replay in replays {
3939 let event = KeyDownEvent {
3940 keystroke: replay.keystroke.clone(),
3941 is_held: false,
3942 };
3943
3944 cx.propagate_event = true;
3945 for binding in replay.bindings {
3946 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3947 if !cx.propagate_event {
3948 self.dispatch_keystroke_observers(
3949 &event,
3950 Some(binding.action),
3951 Vec::default(),
3952 cx,
3953 );
3954 continue 'replay;
3955 }
3956 }
3957
3958 self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
3959 if !cx.propagate_event {
3960 continue 'replay;
3961 }
3962 if let Some(input) = replay.keystroke.key_char.as_ref().cloned()
3963 && let Some(mut input_handler) = self.platform_window.take_input_handler()
3964 {
3965 input_handler.dispatch_input(&input, self, cx);
3966 self.platform_window.set_input_handler(input_handler)
3967 }
3968 }
3969 }
3970
3971 fn focus_node_id_in_rendered_frame(&self, focus_id: Option<FocusId>) -> DispatchNodeId {
3972 focus_id
3973 .and_then(|focus_id| {
3974 self.rendered_frame
3975 .dispatch_tree
3976 .focusable_node_id(focus_id)
3977 })
3978 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id())
3979 }
3980
3981 fn dispatch_action_on_node(
3982 &mut self,
3983 node_id: DispatchNodeId,
3984 action: &dyn Action,
3985 cx: &mut App,
3986 ) {
3987 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3988
3989 // Capture phase for global actions.
3990 cx.propagate_event = true;
3991 if let Some(mut global_listeners) = cx
3992 .global_action_listeners
3993 .remove(&action.as_any().type_id())
3994 {
3995 for listener in &global_listeners {
3996 listener(action.as_any(), DispatchPhase::Capture, cx);
3997 if !cx.propagate_event {
3998 break;
3999 }
4000 }
4001
4002 global_listeners.extend(
4003 cx.global_action_listeners
4004 .remove(&action.as_any().type_id())
4005 .unwrap_or_default(),
4006 );
4007
4008 cx.global_action_listeners
4009 .insert(action.as_any().type_id(), global_listeners);
4010 }
4011
4012 if !cx.propagate_event {
4013 return;
4014 }
4015
4016 // Capture phase for window actions.
4017 for node_id in &dispatch_path {
4018 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4019 for DispatchActionListener {
4020 action_type,
4021 listener,
4022 } in node.action_listeners.clone()
4023 {
4024 let any_action = action.as_any();
4025 if action_type == any_action.type_id() {
4026 listener(any_action, DispatchPhase::Capture, self, cx);
4027
4028 if !cx.propagate_event {
4029 return;
4030 }
4031 }
4032 }
4033 }
4034
4035 // Bubble phase for window actions.
4036 for node_id in dispatch_path.iter().rev() {
4037 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4038 for DispatchActionListener {
4039 action_type,
4040 listener,
4041 } in node.action_listeners.clone()
4042 {
4043 let any_action = action.as_any();
4044 if action_type == any_action.type_id() {
4045 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4046 listener(any_action, DispatchPhase::Bubble, self, cx);
4047
4048 if !cx.propagate_event {
4049 return;
4050 }
4051 }
4052 }
4053 }
4054
4055 // Bubble phase for global actions.
4056 if let Some(mut global_listeners) = cx
4057 .global_action_listeners
4058 .remove(&action.as_any().type_id())
4059 {
4060 for listener in global_listeners.iter().rev() {
4061 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4062
4063 listener(action.as_any(), DispatchPhase::Bubble, cx);
4064 if !cx.propagate_event {
4065 break;
4066 }
4067 }
4068
4069 global_listeners.extend(
4070 cx.global_action_listeners
4071 .remove(&action.as_any().type_id())
4072 .unwrap_or_default(),
4073 );
4074
4075 cx.global_action_listeners
4076 .insert(action.as_any().type_id(), global_listeners);
4077 }
4078 }
4079
4080 /// Register the given handler to be invoked whenever the global of the given type
4081 /// is updated.
4082 pub fn observe_global<G: Global>(
4083 &mut self,
4084 cx: &mut App,
4085 f: impl Fn(&mut Window, &mut App) + 'static,
4086 ) -> Subscription {
4087 let window_handle = self.handle;
4088 let (subscription, activate) = cx.global_observers.insert(
4089 TypeId::of::<G>(),
4090 Box::new(move |cx| {
4091 window_handle
4092 .update(cx, |_, window, cx| f(window, cx))
4093 .is_ok()
4094 }),
4095 );
4096 cx.defer(move |_| activate());
4097 subscription
4098 }
4099
4100 /// Focus the current window and bring it to the foreground at the platform level.
4101 pub fn activate_window(&self) {
4102 self.platform_window.activate();
4103 }
4104
4105 /// Minimize the current window at the platform level.
4106 pub fn minimize_window(&self) {
4107 self.platform_window.minimize();
4108 }
4109
4110 /// Toggle full screen status on the current window at the platform level.
4111 pub fn toggle_fullscreen(&self) {
4112 self.platform_window.toggle_fullscreen();
4113 }
4114
4115 /// Updates the IME panel position suggestions for languages like japanese, chinese.
4116 pub fn invalidate_character_coordinates(&self) {
4117 self.on_next_frame(|window, cx| {
4118 if let Some(mut input_handler) = window.platform_window.take_input_handler() {
4119 if let Some(bounds) = input_handler.selected_bounds(window, cx) {
4120 window
4121 .platform_window
4122 .update_ime_position(bounds.scale(window.scale_factor()));
4123 }
4124 window.platform_window.set_input_handler(input_handler);
4125 }
4126 });
4127 }
4128
4129 /// Present a platform dialog.
4130 /// The provided message will be presented, along with buttons for each answer.
4131 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
4132 pub fn prompt<T>(
4133 &mut self,
4134 level: PromptLevel,
4135 message: &str,
4136 detail: Option<&str>,
4137 answers: &[T],
4138 cx: &mut App,
4139 ) -> oneshot::Receiver<usize>
4140 where
4141 T: Clone + Into<PromptButton>,
4142 {
4143 let prompt_builder = cx.prompt_builder.take();
4144 let Some(prompt_builder) = prompt_builder else {
4145 unreachable!("Re-entrant window prompting is not supported by GPUI");
4146 };
4147
4148 let answers = answers
4149 .iter()
4150 .map(|answer| answer.clone().into())
4151 .collect::<Vec<_>>();
4152
4153 let receiver = match &prompt_builder {
4154 PromptBuilder::Default => self
4155 .platform_window
4156 .prompt(level, message, detail, &answers)
4157 .unwrap_or_else(|| {
4158 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4159 }),
4160 PromptBuilder::Custom(_) => {
4161 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4162 }
4163 };
4164
4165 cx.prompt_builder = Some(prompt_builder);
4166
4167 receiver
4168 }
4169
4170 fn build_custom_prompt(
4171 &mut self,
4172 prompt_builder: &PromptBuilder,
4173 level: PromptLevel,
4174 message: &str,
4175 detail: Option<&str>,
4176 answers: &[PromptButton],
4177 cx: &mut App,
4178 ) -> oneshot::Receiver<usize> {
4179 let (sender, receiver) = oneshot::channel();
4180 let handle = PromptHandle::new(sender);
4181 let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
4182 self.prompt = Some(handle);
4183 receiver
4184 }
4185
4186 /// Returns the current context stack.
4187 pub fn context_stack(&self) -> Vec<KeyContext> {
4188 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4189 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4190 dispatch_tree
4191 .dispatch_path(node_id)
4192 .iter()
4193 .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
4194 .collect()
4195 }
4196
4197 /// Returns all available actions for the focused element.
4198 pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
4199 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4200 let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
4201 for action_type in cx.global_action_listeners.keys() {
4202 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
4203 let action = cx.actions.build_action_type(action_type).ok();
4204 if let Some(action) = action {
4205 actions.insert(ix, action);
4206 }
4207 }
4208 }
4209 actions
4210 }
4211
4212 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
4213 /// returned in the order they were added. For display, the last binding should take precedence.
4214 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
4215 self.rendered_frame
4216 .dispatch_tree
4217 .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
4218 }
4219
4220 /// Returns the highest precedence key binding that invokes an action on the currently focused
4221 /// element. This is more efficient than getting the last result of `bindings_for_action`.
4222 pub fn highest_precedence_binding_for_action(&self, action: &dyn Action) -> Option<KeyBinding> {
4223 self.rendered_frame
4224 .dispatch_tree
4225 .highest_precedence_binding_for_action(
4226 action,
4227 &self.rendered_frame.dispatch_tree.context_stack,
4228 )
4229 }
4230
4231 /// Returns the key bindings for an action in a context.
4232 pub fn bindings_for_action_in_context(
4233 &self,
4234 action: &dyn Action,
4235 context: KeyContext,
4236 ) -> Vec<KeyBinding> {
4237 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4238 dispatch_tree.bindings_for_action(action, &[context])
4239 }
4240
4241 /// Returns the highest precedence key binding for an action in a context. This is more
4242 /// efficient than getting the last result of `bindings_for_action_in_context`.
4243 pub fn highest_precedence_binding_for_action_in_context(
4244 &self,
4245 action: &dyn Action,
4246 context: KeyContext,
4247 ) -> Option<KeyBinding> {
4248 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4249 dispatch_tree.highest_precedence_binding_for_action(action, &[context])
4250 }
4251
4252 /// Returns any bindings that would invoke an action on the given focus handle if it were
4253 /// focused. Bindings are returned in the order they were added. For display, the last binding
4254 /// should take precedence.
4255 pub fn bindings_for_action_in(
4256 &self,
4257 action: &dyn Action,
4258 focus_handle: &FocusHandle,
4259 ) -> Vec<KeyBinding> {
4260 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4261 let Some(context_stack) = self.context_stack_for_focus_handle(focus_handle) else {
4262 return vec![];
4263 };
4264 dispatch_tree.bindings_for_action(action, &context_stack)
4265 }
4266
4267 /// Returns the highest precedence key binding that would invoke an action on the given focus
4268 /// handle if it were focused. This is more efficient than getting the last result of
4269 /// `bindings_for_action_in`.
4270 pub fn highest_precedence_binding_for_action_in(
4271 &self,
4272 action: &dyn Action,
4273 focus_handle: &FocusHandle,
4274 ) -> Option<KeyBinding> {
4275 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4276 let context_stack = self.context_stack_for_focus_handle(focus_handle)?;
4277 dispatch_tree.highest_precedence_binding_for_action(action, &context_stack)
4278 }
4279
4280 fn context_stack_for_focus_handle(
4281 &self,
4282 focus_handle: &FocusHandle,
4283 ) -> Option<Vec<KeyContext>> {
4284 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4285 let node_id = dispatch_tree.focusable_node_id(focus_handle.id)?;
4286 let context_stack: Vec<_> = dispatch_tree
4287 .dispatch_path(node_id)
4288 .into_iter()
4289 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
4290 .collect();
4291 Some(context_stack)
4292 }
4293
4294 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
4295 pub fn listener_for<V: Render, E>(
4296 &self,
4297 view: &Entity<V>,
4298 f: impl Fn(&mut V, &E, &mut Window, &mut Context<V>) + 'static,
4299 ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
4300 let view = view.downgrade();
4301 move |e: &E, window: &mut Window, cx: &mut App| {
4302 view.update(cx, |view, cx| f(view, e, window, cx)).ok();
4303 }
4304 }
4305
4306 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
4307 pub fn handler_for<V: Render, Callback: Fn(&mut V, &mut Window, &mut Context<V>) + 'static>(
4308 &self,
4309 view: &Entity<V>,
4310 f: Callback,
4311 ) -> impl Fn(&mut Window, &mut App) + use<V, Callback> {
4312 let view = view.downgrade();
4313 move |window: &mut Window, cx: &mut App| {
4314 view.update(cx, |view, cx| f(view, window, cx)).ok();
4315 }
4316 }
4317
4318 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
4319 /// If the callback returns false, the window won't be closed.
4320 pub fn on_window_should_close(
4321 &self,
4322 cx: &App,
4323 f: impl Fn(&mut Window, &mut App) -> bool + 'static,
4324 ) {
4325 let mut cx = self.to_async(cx);
4326 self.platform_window.on_should_close(Box::new(move || {
4327 cx.update(|window, cx| f(window, cx)).unwrap_or(true)
4328 }))
4329 }
4330
4331 /// Register an action listener on the window for the next frame. The type of action
4332 /// is determined by the first parameter of the given listener. When the next frame is rendered
4333 /// the listener will be cleared.
4334 ///
4335 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4336 /// a specific need to register a global listener.
4337 pub fn on_action(
4338 &mut self,
4339 action_type: TypeId,
4340 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4341 ) {
4342 self.next_frame
4343 .dispatch_tree
4344 .on_action(action_type, Rc::new(listener));
4345 }
4346
4347 /// Register an action listener on the window for the next frame if the condition is true.
4348 /// The type of action is determined by the first parameter of the given listener.
4349 /// When the next frame is rendered the listener will be cleared.
4350 ///
4351 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4352 /// a specific need to register a global listener.
4353 pub fn on_action_when(
4354 &mut self,
4355 condition: bool,
4356 action_type: TypeId,
4357 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4358 ) {
4359 if condition {
4360 self.next_frame
4361 .dispatch_tree
4362 .on_action(action_type, Rc::new(listener));
4363 }
4364 }
4365
4366 /// Read information about the GPU backing this window.
4367 /// Currently returns None on Mac and Windows.
4368 pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4369 self.platform_window.gpu_specs()
4370 }
4371
4372 /// Perform titlebar double-click action.
4373 /// This is macOS specific.
4374 pub fn titlebar_double_click(&self) {
4375 self.platform_window.titlebar_double_click();
4376 }
4377
4378 /// Gets the window's title at the platform level.
4379 /// This is macOS specific.
4380 pub fn window_title(&self) -> String {
4381 self.platform_window.get_title()
4382 }
4383
4384 /// Returns a list of all tabbed windows and their titles.
4385 /// This is macOS specific.
4386 pub fn tabbed_windows(&self) -> Option<Vec<SystemWindowTab>> {
4387 self.platform_window.tabbed_windows()
4388 }
4389
4390 /// Returns the tab bar visibility.
4391 /// This is macOS specific.
4392 pub fn tab_bar_visible(&self) -> bool {
4393 self.platform_window.tab_bar_visible()
4394 }
4395
4396 /// Merges all open windows into a single tabbed window.
4397 /// This is macOS specific.
4398 pub fn merge_all_windows(&self) {
4399 self.platform_window.merge_all_windows()
4400 }
4401
4402 /// Moves the tab to a new containing window.
4403 /// This is macOS specific.
4404 pub fn move_tab_to_new_window(&self) {
4405 self.platform_window.move_tab_to_new_window()
4406 }
4407
4408 /// Shows or hides the window tab overview.
4409 /// This is macOS specific.
4410 pub fn toggle_window_tab_overview(&self) {
4411 self.platform_window.toggle_window_tab_overview()
4412 }
4413
4414 /// Sets the tabbing identifier for the window.
4415 /// This is macOS specific.
4416 pub fn set_tabbing_identifier(&self, tabbing_identifier: Option<String>) {
4417 self.platform_window
4418 .set_tabbing_identifier(tabbing_identifier)
4419 }
4420
4421 /// Toggles the inspector mode on this window.
4422 #[cfg(any(feature = "inspector", debug_assertions))]
4423 pub fn toggle_inspector(&mut self, cx: &mut App) {
4424 self.inspector = match self.inspector {
4425 None => Some(cx.new(|_| Inspector::new())),
4426 Some(_) => None,
4427 };
4428 self.refresh();
4429 }
4430
4431 /// Returns true if the window is in inspector mode.
4432 pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4433 #[cfg(any(feature = "inspector", debug_assertions))]
4434 {
4435 if let Some(inspector) = &self.inspector {
4436 return inspector.read(_cx).is_picking();
4437 }
4438 }
4439 false
4440 }
4441
4442 /// Executes the provided function with mutable access to an inspector state.
4443 #[cfg(any(feature = "inspector", debug_assertions))]
4444 pub fn with_inspector_state<T: 'static, R>(
4445 &mut self,
4446 _inspector_id: Option<&crate::InspectorElementId>,
4447 cx: &mut App,
4448 f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4449 ) -> R {
4450 if let Some(inspector_id) = _inspector_id
4451 && let Some(inspector) = &self.inspector
4452 {
4453 let inspector = inspector.clone();
4454 let active_element_id = inspector.read(cx).active_element_id();
4455 if Some(inspector_id) == active_element_id {
4456 return inspector.update(cx, |inspector, _cx| {
4457 inspector.with_active_element_state(self, f)
4458 });
4459 }
4460 }
4461 f(&mut None, self)
4462 }
4463
4464 #[cfg(any(feature = "inspector", debug_assertions))]
4465 pub(crate) fn build_inspector_element_id(
4466 &mut self,
4467 path: crate::InspectorElementPath,
4468 ) -> crate::InspectorElementId {
4469 self.invalidator.debug_assert_paint_or_prepaint();
4470 let path = Rc::new(path);
4471 let next_instance_id = self
4472 .next_frame
4473 .next_inspector_instance_ids
4474 .entry(path.clone())
4475 .or_insert(0);
4476 let instance_id = *next_instance_id;
4477 *next_instance_id += 1;
4478 crate::InspectorElementId { path, instance_id }
4479 }
4480
4481 #[cfg(any(feature = "inspector", debug_assertions))]
4482 fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4483 if let Some(inspector) = self.inspector.take() {
4484 let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4485 inspector_element.prepaint_as_root(
4486 point(self.viewport_size.width - inspector_width, px(0.0)),
4487 size(inspector_width, self.viewport_size.height).into(),
4488 self,
4489 cx,
4490 );
4491 self.inspector = Some(inspector);
4492 Some(inspector_element)
4493 } else {
4494 None
4495 }
4496 }
4497
4498 #[cfg(any(feature = "inspector", debug_assertions))]
4499 fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4500 if let Some(mut inspector_element) = inspector_element {
4501 inspector_element.paint(self, cx);
4502 };
4503 }
4504
4505 /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4506 /// inspect UI elements by clicking on them.
4507 #[cfg(any(feature = "inspector", debug_assertions))]
4508 pub fn insert_inspector_hitbox(
4509 &mut self,
4510 hitbox_id: HitboxId,
4511 inspector_id: Option<&crate::InspectorElementId>,
4512 cx: &App,
4513 ) {
4514 self.invalidator.debug_assert_paint_or_prepaint();
4515 if !self.is_inspector_picking(cx) {
4516 return;
4517 }
4518 if let Some(inspector_id) = inspector_id {
4519 self.next_frame
4520 .inspector_hitboxes
4521 .insert(hitbox_id, inspector_id.clone());
4522 }
4523 }
4524
4525 #[cfg(any(feature = "inspector", debug_assertions))]
4526 fn paint_inspector_hitbox(&mut self, cx: &App) {
4527 if let Some(inspector) = self.inspector.as_ref() {
4528 let inspector = inspector.read(cx);
4529 if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
4530 && let Some(hitbox) = self
4531 .next_frame
4532 .hitboxes
4533 .iter()
4534 .find(|hitbox| hitbox.id == hitbox_id)
4535 {
4536 self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4537 }
4538 }
4539 }
4540
4541 #[cfg(any(feature = "inspector", debug_assertions))]
4542 fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4543 let Some(inspector) = self.inspector.clone() else {
4544 return;
4545 };
4546 if event.downcast_ref::<MouseMoveEvent>().is_some() {
4547 inspector.update(cx, |inspector, _cx| {
4548 if let Some((_, inspector_id)) =
4549 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4550 {
4551 inspector.hover(inspector_id, self);
4552 }
4553 });
4554 } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4555 inspector.update(cx, |inspector, _cx| {
4556 if let Some((_, inspector_id)) =
4557 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4558 {
4559 inspector.select(inspector_id, self);
4560 }
4561 });
4562 } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4563 // This should be kept in sync with SCROLL_LINES in x11 platform.
4564 const SCROLL_LINES: f32 = 3.0;
4565 const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4566 let delta_y = event
4567 .delta
4568 .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4569 .y;
4570 if let Some(inspector) = self.inspector.clone() {
4571 inspector.update(cx, |inspector, _cx| {
4572 if let Some(depth) = inspector.pick_depth.as_mut() {
4573 *depth += delta_y.0 / SCROLL_PIXELS_PER_LAYER;
4574 let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4575 if *depth < 0.0 {
4576 *depth = 0.0;
4577 } else if *depth > max_depth {
4578 *depth = max_depth;
4579 }
4580 if let Some((_, inspector_id)) =
4581 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4582 {
4583 inspector.set_active_element_id(inspector_id, self);
4584 }
4585 }
4586 });
4587 }
4588 }
4589 }
4590
4591 #[cfg(any(feature = "inspector", debug_assertions))]
4592 fn hovered_inspector_hitbox(
4593 &self,
4594 inspector: &Inspector,
4595 frame: &Frame,
4596 ) -> Option<(HitboxId, crate::InspectorElementId)> {
4597 if let Some(pick_depth) = inspector.pick_depth {
4598 let depth = (pick_depth as i64).try_into().unwrap_or(0);
4599 let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4600 let skip_count = (depth as usize).min(max_skipped);
4601 for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4602 if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4603 return Some((*hitbox_id, inspector_id.clone()));
4604 }
4605 }
4606 }
4607 None
4608 }
4609
4610 /// For testing: set the current modifier keys state.
4611 /// This does not generate any events.
4612 #[cfg(any(test, feature = "test-support"))]
4613 pub fn set_modifiers(&mut self, modifiers: Modifiers) {
4614 self.modifiers = modifiers;
4615 }
4616}
4617
4618// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4619slotmap::new_key_type! {
4620 /// A unique identifier for a window.
4621 pub struct WindowId;
4622}
4623
4624impl WindowId {
4625 /// Converts this window ID to a `u64`.
4626 pub fn as_u64(&self) -> u64 {
4627 self.0.as_ffi()
4628 }
4629}
4630
4631impl From<u64> for WindowId {
4632 fn from(value: u64) -> Self {
4633 WindowId(slotmap::KeyData::from_ffi(value))
4634 }
4635}
4636
4637/// A handle to a window with a specific root view type.
4638/// Note that this does not keep the window alive on its own.
4639#[derive(Deref, DerefMut)]
4640pub struct WindowHandle<V> {
4641 #[deref]
4642 #[deref_mut]
4643 pub(crate) any_handle: AnyWindowHandle,
4644 state_type: PhantomData<V>,
4645}
4646
4647impl<V: 'static + Render> WindowHandle<V> {
4648 /// Creates a new handle from a window ID.
4649 /// This does not check if the root type of the window is `V`.
4650 pub fn new(id: WindowId) -> Self {
4651 WindowHandle {
4652 any_handle: AnyWindowHandle {
4653 id,
4654 state_type: TypeId::of::<V>(),
4655 },
4656 state_type: PhantomData,
4657 }
4658 }
4659
4660 /// Get the root view out of this window.
4661 ///
4662 /// This will fail if the window is closed or if the root view's type does not match `V`.
4663 #[cfg(any(test, feature = "test-support"))]
4664 pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4665 where
4666 C: AppContext,
4667 {
4668 crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4669 root_view
4670 .downcast::<V>()
4671 .map_err(|_| anyhow!("the type of the window's root view has changed"))
4672 }))
4673 }
4674
4675 /// Updates the root view of this window.
4676 ///
4677 /// This will fail if the window has been closed or if the root view's type does not match
4678 pub fn update<C, R>(
4679 &self,
4680 cx: &mut C,
4681 update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4682 ) -> Result<R>
4683 where
4684 C: AppContext,
4685 {
4686 cx.update_window(self.any_handle, |root_view, window, cx| {
4687 let view = root_view
4688 .downcast::<V>()
4689 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4690
4691 Ok(view.update(cx, |view, cx| update(view, window, cx)))
4692 })?
4693 }
4694
4695 /// Read the root view out of this window.
4696 ///
4697 /// This will fail if the window is closed or if the root view's type does not match `V`.
4698 pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
4699 let x = cx
4700 .windows
4701 .get(self.id)
4702 .and_then(|window| {
4703 window
4704 .as_ref()
4705 .and_then(|window| window.root.clone())
4706 .map(|root_view| root_view.downcast::<V>())
4707 })
4708 .context("window not found")?
4709 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4710
4711 Ok(x.read(cx))
4712 }
4713
4714 /// Read the root view out of this window, with a callback
4715 ///
4716 /// This will fail if the window is closed or if the root view's type does not match `V`.
4717 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4718 where
4719 C: AppContext,
4720 {
4721 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
4722 }
4723
4724 /// Read the root view pointer off of this window.
4725 ///
4726 /// This will fail if the window is closed or if the root view's type does not match `V`.
4727 pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4728 where
4729 C: AppContext,
4730 {
4731 cx.read_window(self, |root_view, _cx| root_view)
4732 }
4733
4734 /// Check if this window is 'active'.
4735 ///
4736 /// Will return `None` if the window is closed or currently
4737 /// borrowed.
4738 pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4739 cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4740 .ok()
4741 }
4742}
4743
4744impl<V> Copy for WindowHandle<V> {}
4745
4746impl<V> Clone for WindowHandle<V> {
4747 fn clone(&self) -> Self {
4748 *self
4749 }
4750}
4751
4752impl<V> PartialEq for WindowHandle<V> {
4753 fn eq(&self, other: &Self) -> bool {
4754 self.any_handle == other.any_handle
4755 }
4756}
4757
4758impl<V> Eq for WindowHandle<V> {}
4759
4760impl<V> Hash for WindowHandle<V> {
4761 fn hash<H: Hasher>(&self, state: &mut H) {
4762 self.any_handle.hash(state);
4763 }
4764}
4765
4766impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
4767 fn from(val: WindowHandle<V>) -> Self {
4768 val.any_handle
4769 }
4770}
4771
4772unsafe impl<V> Send for WindowHandle<V> {}
4773unsafe impl<V> Sync for WindowHandle<V> {}
4774
4775/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
4776#[derive(Copy, Clone, PartialEq, Eq, Hash)]
4777pub struct AnyWindowHandle {
4778 pub(crate) id: WindowId,
4779 state_type: TypeId,
4780}
4781
4782impl AnyWindowHandle {
4783 /// Get the ID of this window.
4784 pub fn window_id(&self) -> WindowId {
4785 self.id
4786 }
4787
4788 /// Attempt to convert this handle to a window handle with a specific root view type.
4789 /// If the types do not match, this will return `None`.
4790 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
4791 if TypeId::of::<T>() == self.state_type {
4792 Some(WindowHandle {
4793 any_handle: *self,
4794 state_type: PhantomData,
4795 })
4796 } else {
4797 None
4798 }
4799 }
4800
4801 /// Updates the state of the root view of this window.
4802 ///
4803 /// This will fail if the window has been closed.
4804 pub fn update<C, R>(
4805 self,
4806 cx: &mut C,
4807 update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
4808 ) -> Result<R>
4809 where
4810 C: AppContext,
4811 {
4812 cx.update_window(self, update)
4813 }
4814
4815 /// Read the state of the root view of this window.
4816 ///
4817 /// This will fail if the window has been closed.
4818 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
4819 where
4820 C: AppContext,
4821 T: 'static,
4822 {
4823 let view = self
4824 .downcast::<T>()
4825 .context("the type of the window's root view has changed")?;
4826
4827 cx.read_window(&view, read)
4828 }
4829}
4830
4831impl HasWindowHandle for Window {
4832 fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
4833 self.platform_window.window_handle()
4834 }
4835}
4836
4837impl HasDisplayHandle for Window {
4838 fn display_handle(
4839 &self,
4840 ) -> std::result::Result<raw_window_handle::DisplayHandle<'_>, HandleError> {
4841 self.platform_window.display_handle()
4842 }
4843}
4844
4845/// An identifier for an [`Element`].
4846///
4847/// Can be constructed with a string, a number, or both, as well
4848/// as other internal representations.
4849#[derive(Clone, Debug, Eq, PartialEq, Hash)]
4850pub enum ElementId {
4851 /// The ID of a View element
4852 View(EntityId),
4853 /// An integer ID.
4854 Integer(u64),
4855 /// A string based ID.
4856 Name(SharedString),
4857 /// A UUID.
4858 Uuid(Uuid),
4859 /// An ID that's equated with a focus handle.
4860 FocusHandle(FocusId),
4861 /// A combination of a name and an integer.
4862 NamedInteger(SharedString, u64),
4863 /// A path.
4864 Path(Arc<std::path::Path>),
4865 /// A code location.
4866 CodeLocation(core::panic::Location<'static>),
4867 /// A labeled child of an element.
4868 NamedChild(Box<ElementId>, SharedString),
4869}
4870
4871impl ElementId {
4872 /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
4873 pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
4874 Self::NamedInteger(name.into(), integer as u64)
4875 }
4876}
4877
4878impl Display for ElementId {
4879 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4880 match self {
4881 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
4882 ElementId::Integer(ix) => write!(f, "{}", ix)?,
4883 ElementId::Name(name) => write!(f, "{}", name)?,
4884 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
4885 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
4886 ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
4887 ElementId::Path(path) => write!(f, "{}", path.display())?,
4888 ElementId::CodeLocation(location) => write!(f, "{}", location)?,
4889 ElementId::NamedChild(id, name) => write!(f, "{}-{}", id, name)?,
4890 }
4891
4892 Ok(())
4893 }
4894}
4895
4896impl TryInto<SharedString> for ElementId {
4897 type Error = anyhow::Error;
4898
4899 fn try_into(self) -> anyhow::Result<SharedString> {
4900 if let ElementId::Name(name) = self {
4901 Ok(name)
4902 } else {
4903 anyhow::bail!("element id is not string")
4904 }
4905 }
4906}
4907
4908impl From<usize> for ElementId {
4909 fn from(id: usize) -> Self {
4910 ElementId::Integer(id as u64)
4911 }
4912}
4913
4914impl From<i32> for ElementId {
4915 fn from(id: i32) -> Self {
4916 Self::Integer(id as u64)
4917 }
4918}
4919
4920impl From<SharedString> for ElementId {
4921 fn from(name: SharedString) -> Self {
4922 ElementId::Name(name)
4923 }
4924}
4925
4926impl From<Arc<std::path::Path>> for ElementId {
4927 fn from(path: Arc<std::path::Path>) -> Self {
4928 ElementId::Path(path)
4929 }
4930}
4931
4932impl From<&'static str> for ElementId {
4933 fn from(name: &'static str) -> Self {
4934 ElementId::Name(name.into())
4935 }
4936}
4937
4938impl<'a> From<&'a FocusHandle> for ElementId {
4939 fn from(handle: &'a FocusHandle) -> Self {
4940 ElementId::FocusHandle(handle.id)
4941 }
4942}
4943
4944impl From<(&'static str, EntityId)> for ElementId {
4945 fn from((name, id): (&'static str, EntityId)) -> Self {
4946 ElementId::NamedInteger(name.into(), id.as_u64())
4947 }
4948}
4949
4950impl From<(&'static str, usize)> for ElementId {
4951 fn from((name, id): (&'static str, usize)) -> Self {
4952 ElementId::NamedInteger(name.into(), id as u64)
4953 }
4954}
4955
4956impl From<(SharedString, usize)> for ElementId {
4957 fn from((name, id): (SharedString, usize)) -> Self {
4958 ElementId::NamedInteger(name, id as u64)
4959 }
4960}
4961
4962impl From<(&'static str, u64)> for ElementId {
4963 fn from((name, id): (&'static str, u64)) -> Self {
4964 ElementId::NamedInteger(name.into(), id)
4965 }
4966}
4967
4968impl From<Uuid> for ElementId {
4969 fn from(value: Uuid) -> Self {
4970 Self::Uuid(value)
4971 }
4972}
4973
4974impl From<(&'static str, u32)> for ElementId {
4975 fn from((name, id): (&'static str, u32)) -> Self {
4976 ElementId::NamedInteger(name.into(), id.into())
4977 }
4978}
4979
4980impl<T: Into<SharedString>> From<(ElementId, T)> for ElementId {
4981 fn from((id, name): (ElementId, T)) -> Self {
4982 ElementId::NamedChild(Box::new(id), name.into())
4983 }
4984}
4985
4986/// A rectangle to be rendered in the window at the given position and size.
4987/// Passed as an argument [`Window::paint_quad`].
4988#[derive(Clone)]
4989pub struct PaintQuad {
4990 /// The bounds of the quad within the window.
4991 pub bounds: Bounds<Pixels>,
4992 /// The radii of the quad's corners.
4993 pub corner_radii: Corners<Pixels>,
4994 /// The background color of the quad.
4995 pub background: Background,
4996 /// The widths of the quad's borders.
4997 pub border_widths: Edges<Pixels>,
4998 /// The color of the quad's borders.
4999 pub border_color: Hsla,
5000 /// The style of the quad's borders.
5001 pub border_style: BorderStyle,
5002}
5003
5004impl PaintQuad {
5005 /// Sets the corner radii of the quad.
5006 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
5007 PaintQuad {
5008 corner_radii: corner_radii.into(),
5009 ..self
5010 }
5011 }
5012
5013 /// Sets the border widths of the quad.
5014 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
5015 PaintQuad {
5016 border_widths: border_widths.into(),
5017 ..self
5018 }
5019 }
5020
5021 /// Sets the border color of the quad.
5022 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
5023 PaintQuad {
5024 border_color: border_color.into(),
5025 ..self
5026 }
5027 }
5028
5029 /// Sets the background color of the quad.
5030 pub fn background(self, background: impl Into<Background>) -> Self {
5031 PaintQuad {
5032 background: background.into(),
5033 ..self
5034 }
5035 }
5036}
5037
5038/// Creates a quad with the given parameters.
5039pub fn quad(
5040 bounds: Bounds<Pixels>,
5041 corner_radii: impl Into<Corners<Pixels>>,
5042 background: impl Into<Background>,
5043 border_widths: impl Into<Edges<Pixels>>,
5044 border_color: impl Into<Hsla>,
5045 border_style: BorderStyle,
5046) -> PaintQuad {
5047 PaintQuad {
5048 bounds,
5049 corner_radii: corner_radii.into(),
5050 background: background.into(),
5051 border_widths: border_widths.into(),
5052 border_color: border_color.into(),
5053 border_style,
5054 }
5055}
5056
5057/// Creates a filled quad with the given bounds and background color.
5058pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
5059 PaintQuad {
5060 bounds: bounds.into(),
5061 corner_radii: (0.).into(),
5062 background: background.into(),
5063 border_widths: (0.).into(),
5064 border_color: transparent_black(),
5065 border_style: BorderStyle::default(),
5066 }
5067}
5068
5069/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
5070pub fn outline(
5071 bounds: impl Into<Bounds<Pixels>>,
5072 border_color: impl Into<Hsla>,
5073 border_style: BorderStyle,
5074) -> PaintQuad {
5075 PaintQuad {
5076 bounds: bounds.into(),
5077 corner_radii: (0.).into(),
5078 background: transparent_black().into(),
5079 border_widths: (1.).into(),
5080 border_color: border_color.into(),
5081 border_style,
5082 }
5083}