1#[cfg(any(feature = "inspector", debug_assertions))]
2use crate::Inspector;
3use crate::{
4 Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
5 AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Capslock,
6 Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
7 DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
8 FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
9 KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
10 LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
11 MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
12 PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptButton, PromptLevel, Quad,
13 Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge,
14 SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS_X, SUBPIXEL_VARIANTS_Y, ScaledPixels, Scene, Shadow,
15 SharedString, Size, StrikethroughStyle, Style, SubscriberSet, Subscription, SystemWindowTab,
16 SystemWindowTabController, TabStopMap, TaffyLayoutEngine, Task, TextStyle, TextStyleRefinement,
17 TransformationMatrix, Underline, UnderlineStyle, WindowAppearance, WindowBackgroundAppearance,
18 WindowBounds, WindowControls, WindowDecorations, WindowOptions, WindowParams, WindowTextSystem,
19 point, prelude::*, px, rems, size, transparent_black,
20};
21use anyhow::{Context as _, Result, anyhow};
22use collections::{FxHashMap, FxHashSet};
23#[cfg(target_os = "macos")]
24use core_video::pixel_buffer::CVPixelBuffer;
25use derive_more::{Deref, DerefMut};
26use futures::FutureExt;
27use futures::channel::oneshot;
28use itertools::FoldWhile::{Continue, Done};
29use itertools::Itertools;
30use parking_lot::RwLock;
31use raw_window_handle::{HandleError, HasDisplayHandle, HasWindowHandle};
32use refineable::Refineable;
33use slotmap::SlotMap;
34use smallvec::SmallVec;
35use std::{
36 any::{Any, TypeId},
37 borrow::Cow,
38 cell::{Cell, RefCell},
39 cmp,
40 fmt::{Debug, Display},
41 hash::{Hash, Hasher},
42 marker::PhantomData,
43 mem,
44 ops::{DerefMut, Range},
45 rc::Rc,
46 sync::{
47 Arc, Weak,
48 atomic::{AtomicUsize, Ordering::SeqCst},
49 },
50 time::{Duration, Instant},
51};
52use util::post_inc;
53use util::{ResultExt, measure};
54use uuid::Uuid;
55
56mod prompts;
57
58use crate::util::atomic_incr_if_not_zero;
59pub use prompts::*;
60
61pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1536.), px(864.));
62
63/// A 6:5 aspect ratio minimum window size to be used for functional,
64/// additional-to-main-Zed windows, like the settings and rules library windows.
65pub const DEFAULT_ADDITIONAL_WINDOW_SIZE: Size<Pixels> = Size {
66 width: Pixels(900.),
67 height: Pixels(750.),
68};
69
70/// Represents the two different phases when dispatching events.
71#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
72pub enum DispatchPhase {
73 /// After the capture phase comes the bubble phase, in which mouse event listeners are
74 /// invoked front to back and keyboard event listeners are invoked from the focused element
75 /// to the root of the element tree. This is the phase you'll most commonly want to use when
76 /// registering event listeners.
77 #[default]
78 Bubble,
79 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
80 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
81 /// is used for special purposes such as clearing the "pressed" state for click events. If
82 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
83 /// outside of the immediate region may rely on detecting non-local events during this phase.
84 Capture,
85}
86
87impl DispatchPhase {
88 /// Returns true if this represents the "bubble" phase.
89 #[inline]
90 pub fn bubble(self) -> bool {
91 self == DispatchPhase::Bubble
92 }
93
94 /// Returns true if this represents the "capture" phase.
95 #[inline]
96 pub fn capture(self) -> bool {
97 self == DispatchPhase::Capture
98 }
99}
100
101struct WindowInvalidatorInner {
102 pub dirty: bool,
103 pub draw_phase: DrawPhase,
104 pub dirty_views: FxHashSet<EntityId>,
105}
106
107#[derive(Clone)]
108pub(crate) struct WindowInvalidator {
109 inner: Rc<RefCell<WindowInvalidatorInner>>,
110}
111
112impl WindowInvalidator {
113 pub fn new() -> Self {
114 WindowInvalidator {
115 inner: Rc::new(RefCell::new(WindowInvalidatorInner {
116 dirty: true,
117 draw_phase: DrawPhase::None,
118 dirty_views: FxHashSet::default(),
119 })),
120 }
121 }
122
123 pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
124 let mut inner = self.inner.borrow_mut();
125 inner.dirty_views.insert(entity);
126 if inner.draw_phase == DrawPhase::None {
127 inner.dirty = true;
128 cx.push_effect(Effect::Notify { emitter: entity });
129 true
130 } else {
131 false
132 }
133 }
134
135 pub fn is_dirty(&self) -> bool {
136 self.inner.borrow().dirty
137 }
138
139 pub fn set_dirty(&self, dirty: bool) {
140 self.inner.borrow_mut().dirty = dirty
141 }
142
143 pub fn set_phase(&self, phase: DrawPhase) {
144 self.inner.borrow_mut().draw_phase = phase
145 }
146
147 pub fn take_views(&self) -> FxHashSet<EntityId> {
148 mem::take(&mut self.inner.borrow_mut().dirty_views)
149 }
150
151 pub fn replace_views(&self, views: FxHashSet<EntityId>) {
152 self.inner.borrow_mut().dirty_views = views;
153 }
154
155 pub fn not_drawing(&self) -> bool {
156 self.inner.borrow().draw_phase == DrawPhase::None
157 }
158
159 #[track_caller]
160 pub fn debug_assert_paint(&self) {
161 debug_assert!(
162 matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
163 "this method can only be called during paint"
164 );
165 }
166
167 #[track_caller]
168 pub fn debug_assert_prepaint(&self) {
169 debug_assert!(
170 matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
171 "this method can only be called during request_layout, or prepaint"
172 );
173 }
174
175 #[track_caller]
176 pub fn debug_assert_paint_or_prepaint(&self) {
177 debug_assert!(
178 matches!(
179 self.inner.borrow().draw_phase,
180 DrawPhase::Paint | DrawPhase::Prepaint
181 ),
182 "this method can only be called during request_layout, prepaint, or paint"
183 );
184 }
185}
186
187type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
188
189pub(crate) type AnyWindowFocusListener =
190 Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
191
192pub(crate) struct WindowFocusEvent {
193 pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
194 pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
195}
196
197impl WindowFocusEvent {
198 pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
199 !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
200 }
201
202 pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
203 self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
204 }
205}
206
207/// This is provided when subscribing for `Context::on_focus_out` events.
208pub struct FocusOutEvent {
209 /// A weak focus handle representing what was blurred.
210 pub blurred: WeakFocusHandle,
211}
212
213slotmap::new_key_type! {
214 /// A globally unique identifier for a focusable element.
215 pub struct FocusId;
216}
217
218thread_local! {
219 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(1024 * 1024));
220}
221
222/// Returned when the element arena has been used and so must be cleared before the next draw.
223#[must_use]
224pub struct ArenaClearNeeded;
225
226impl ArenaClearNeeded {
227 /// Clear the element arena.
228 pub fn clear(self) {
229 ELEMENT_ARENA.with_borrow_mut(|element_arena| {
230 element_arena.clear();
231 });
232 }
233}
234
235pub(crate) type FocusMap = RwLock<SlotMap<FocusId, FocusRef>>;
236pub(crate) struct FocusRef {
237 pub(crate) ref_count: AtomicUsize,
238 pub(crate) tab_index: isize,
239 pub(crate) tab_stop: bool,
240}
241
242impl FocusId {
243 /// Obtains whether the element associated with this handle is currently focused.
244 pub fn is_focused(&self, window: &Window) -> bool {
245 window.focus == Some(*self)
246 }
247
248 /// Obtains whether the element associated with this handle contains the focused
249 /// element or is itself focused.
250 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
251 window
252 .focused(cx)
253 .is_some_and(|focused| self.contains(focused.id, window))
254 }
255
256 /// Obtains whether the element associated with this handle is contained within the
257 /// focused element or is itself focused.
258 pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
259 let focused = window.focused(cx);
260 focused.is_some_and(|focused| focused.id.contains(*self, window))
261 }
262
263 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
264 pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
265 window
266 .rendered_frame
267 .dispatch_tree
268 .focus_contains(*self, other)
269 }
270}
271
272/// A handle which can be used to track and manipulate the focused element in a window.
273pub struct FocusHandle {
274 pub(crate) id: FocusId,
275 handles: Arc<FocusMap>,
276 /// The index of this element in the tab order.
277 pub tab_index: isize,
278 /// Whether this element can be focused by tab navigation.
279 pub tab_stop: bool,
280}
281
282impl std::fmt::Debug for FocusHandle {
283 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
284 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
285 }
286}
287
288impl FocusHandle {
289 pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
290 let id = handles.write().insert(FocusRef {
291 ref_count: AtomicUsize::new(1),
292 tab_index: 0,
293 tab_stop: false,
294 });
295
296 Self {
297 id,
298 tab_index: 0,
299 tab_stop: false,
300 handles: handles.clone(),
301 }
302 }
303
304 pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
305 let lock = handles.read();
306 let focus = lock.get(id)?;
307 if atomic_incr_if_not_zero(&focus.ref_count) == 0 {
308 return None;
309 }
310 Some(Self {
311 id,
312 tab_index: focus.tab_index,
313 tab_stop: focus.tab_stop,
314 handles: handles.clone(),
315 })
316 }
317
318 /// Sets the tab index of the element associated with this handle.
319 pub fn tab_index(mut self, index: isize) -> Self {
320 self.tab_index = index;
321 if let Some(focus) = self.handles.write().get_mut(self.id) {
322 focus.tab_index = index;
323 }
324 self
325 }
326
327 /// Sets whether the element associated with this handle is a tab stop.
328 ///
329 /// When `false`, the element will not be included in the tab order.
330 pub fn tab_stop(mut self, tab_stop: bool) -> Self {
331 self.tab_stop = tab_stop;
332 if let Some(focus) = self.handles.write().get_mut(self.id) {
333 focus.tab_stop = tab_stop;
334 }
335 self
336 }
337
338 /// Converts this focus handle into a weak variant, which does not prevent it from being released.
339 pub fn downgrade(&self) -> WeakFocusHandle {
340 WeakFocusHandle {
341 id: self.id,
342 handles: Arc::downgrade(&self.handles),
343 }
344 }
345
346 /// Moves the focus to the element associated with this handle.
347 pub fn focus(&self, window: &mut Window) {
348 window.focus(self)
349 }
350
351 /// Obtains whether the element associated with this handle is currently focused.
352 pub fn is_focused(&self, window: &Window) -> bool {
353 self.id.is_focused(window)
354 }
355
356 /// Obtains whether the element associated with this handle contains the focused
357 /// element or is itself focused.
358 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
359 self.id.contains_focused(window, cx)
360 }
361
362 /// Obtains whether the element associated with this handle is contained within the
363 /// focused element or is itself focused.
364 pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
365 self.id.within_focused(window, cx)
366 }
367
368 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
369 pub fn contains(&self, other: &Self, window: &Window) -> bool {
370 self.id.contains(other.id, window)
371 }
372
373 /// Dispatch an action on the element that rendered this focus handle
374 pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
375 if let Some(node_id) = window
376 .rendered_frame
377 .dispatch_tree
378 .focusable_node_id(self.id)
379 {
380 window.dispatch_action_on_node(node_id, action, cx)
381 }
382 }
383}
384
385impl Clone for FocusHandle {
386 fn clone(&self) -> Self {
387 Self::for_id(self.id, &self.handles).unwrap()
388 }
389}
390
391impl PartialEq for FocusHandle {
392 fn eq(&self, other: &Self) -> bool {
393 self.id == other.id
394 }
395}
396
397impl Eq for FocusHandle {}
398
399impl Drop for FocusHandle {
400 fn drop(&mut self) {
401 self.handles
402 .read()
403 .get(self.id)
404 .unwrap()
405 .ref_count
406 .fetch_sub(1, SeqCst);
407 }
408}
409
410/// A weak reference to a focus handle.
411#[derive(Clone, Debug)]
412pub struct WeakFocusHandle {
413 pub(crate) id: FocusId,
414 pub(crate) handles: Weak<FocusMap>,
415}
416
417impl WeakFocusHandle {
418 /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
419 pub fn upgrade(&self) -> Option<FocusHandle> {
420 let handles = self.handles.upgrade()?;
421 FocusHandle::for_id(self.id, &handles)
422 }
423}
424
425impl PartialEq for WeakFocusHandle {
426 fn eq(&self, other: &WeakFocusHandle) -> bool {
427 self.id == other.id
428 }
429}
430
431impl Eq for WeakFocusHandle {}
432
433impl PartialEq<FocusHandle> for WeakFocusHandle {
434 fn eq(&self, other: &FocusHandle) -> bool {
435 self.id == other.id
436 }
437}
438
439impl PartialEq<WeakFocusHandle> for FocusHandle {
440 fn eq(&self, other: &WeakFocusHandle) -> bool {
441 self.id == other.id
442 }
443}
444
445/// Focusable allows users of your view to easily
446/// focus it (using window.focus_view(cx, view))
447pub trait Focusable: 'static {
448 /// Returns the focus handle associated with this view.
449 fn focus_handle(&self, cx: &App) -> FocusHandle;
450}
451
452impl<V: Focusable> Focusable for Entity<V> {
453 fn focus_handle(&self, cx: &App) -> FocusHandle {
454 self.read(cx).focus_handle(cx)
455 }
456}
457
458/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
459/// where the lifecycle of the view is handled by another view.
460pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
461
462impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
463
464/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
465pub struct DismissEvent;
466
467type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
468
469pub(crate) type AnyMouseListener =
470 Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
471
472#[derive(Clone)]
473pub(crate) struct CursorStyleRequest {
474 pub(crate) hitbox_id: Option<HitboxId>,
475 pub(crate) style: CursorStyle,
476}
477
478#[derive(Default, Eq, PartialEq)]
479pub(crate) struct HitTest {
480 pub(crate) ids: SmallVec<[HitboxId; 8]>,
481 pub(crate) hover_hitbox_count: usize,
482}
483
484/// A type of window control area that corresponds to the platform window.
485#[derive(Clone, Copy, Debug, Eq, PartialEq)]
486pub enum WindowControlArea {
487 /// An area that allows dragging of the platform window.
488 Drag,
489 /// An area that allows closing of the platform window.
490 Close,
491 /// An area that allows maximizing of the platform window.
492 Max,
493 /// An area that allows minimizing of the platform window.
494 Min,
495}
496
497/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
498#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
499pub struct HitboxId(u64);
500
501impl HitboxId {
502 /// Checks if the hitbox with this ID is currently hovered. Except when handling
503 /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
504 /// events or paint hover styles.
505 ///
506 /// See [`Hitbox::is_hovered`] for details.
507 pub fn is_hovered(self, window: &Window) -> bool {
508 let hit_test = &window.mouse_hit_test;
509 for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
510 if self == *id {
511 return true;
512 }
513 }
514 false
515 }
516
517 /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
518 /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
519 /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
520 /// this distinction.
521 pub fn should_handle_scroll(self, window: &Window) -> bool {
522 window.mouse_hit_test.ids.contains(&self)
523 }
524
525 fn next(mut self) -> HitboxId {
526 HitboxId(self.0.wrapping_add(1))
527 }
528}
529
530/// A rectangular region that potentially blocks hitboxes inserted prior.
531/// See [Window::insert_hitbox] for more details.
532#[derive(Clone, Debug, Deref)]
533pub struct Hitbox {
534 /// A unique identifier for the hitbox.
535 pub id: HitboxId,
536 /// The bounds of the hitbox.
537 #[deref]
538 pub bounds: Bounds<Pixels>,
539 /// The content mask when the hitbox was inserted.
540 pub content_mask: ContentMask<Pixels>,
541 /// Flags that specify hitbox behavior.
542 pub behavior: HitboxBehavior,
543}
544
545impl Hitbox {
546 /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
547 /// typically what you want when determining whether to handle mouse events or paint hover
548 /// styles.
549 ///
550 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
551 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
552 /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
553 ///
554 /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
555 /// Concretely, this is due to use-cases like overlays that cause the elements under to be
556 /// non-interactive while still allowing scrolling. More abstractly, this is because
557 /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
558 /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
559 /// container.
560 pub fn is_hovered(&self, window: &Window) -> bool {
561 self.id.is_hovered(window)
562 }
563
564 /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
565 /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
566 /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
567 ///
568 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
569 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
570 pub fn should_handle_scroll(&self, window: &Window) -> bool {
571 self.id.should_handle_scroll(window)
572 }
573}
574
575/// How the hitbox affects mouse behavior.
576#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
577pub enum HitboxBehavior {
578 /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
579 #[default]
580 Normal,
581
582 /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
583 /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
584 /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
585 /// [`InteractiveElement::occlude`].
586 ///
587 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
588 /// bubble-phase handler for every mouse event type:
589 ///
590 /// ```ignore
591 /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
592 /// if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
593 /// cx.stop_propagation();
594 /// }
595 /// })
596 /// ```
597 ///
598 /// This has effects beyond event handling - any use of hitbox checking, such as hover
599 /// styles and tooltips. These other behaviors are the main point of this mechanism. An
600 /// alternative might be to not affect mouse event handling - but this would allow
601 /// inconsistent UI where clicks and moves interact with elements that are not considered to
602 /// be hovered.
603 BlockMouse,
604
605 /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
606 /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
607 /// interaction except scroll events to be ignored - see the documentation of
608 /// [`Hitbox::is_hovered`] for details. This flag is set by
609 /// [`InteractiveElement::block_mouse_except_scroll`].
610 ///
611 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
612 /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
613 ///
614 /// ```ignore
615 /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, cx| {
616 /// if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
617 /// cx.stop_propagation();
618 /// }
619 /// })
620 /// ```
621 ///
622 /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
623 /// handled differently than other mouse events. If also blocking these scroll events is
624 /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
625 ///
626 /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
627 /// hover styles and tooltips. These other behaviors are the main point of this mechanism.
628 /// An alternative might be to not affect mouse event handling - but this would allow
629 /// inconsistent UI where clicks and moves interact with elements that are not considered to
630 /// be hovered.
631 BlockMouseExceptScroll,
632}
633
634/// An identifier for a tooltip.
635#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
636pub struct TooltipId(usize);
637
638impl TooltipId {
639 /// Checks if the tooltip is currently hovered.
640 pub fn is_hovered(&self, window: &Window) -> bool {
641 window
642 .tooltip_bounds
643 .as_ref()
644 .is_some_and(|tooltip_bounds| {
645 tooltip_bounds.id == *self
646 && tooltip_bounds.bounds.contains(&window.mouse_position())
647 })
648 }
649}
650
651pub(crate) struct TooltipBounds {
652 id: TooltipId,
653 bounds: Bounds<Pixels>,
654}
655
656#[derive(Clone)]
657pub(crate) struct TooltipRequest {
658 id: TooltipId,
659 tooltip: AnyTooltip,
660}
661
662pub(crate) struct DeferredDraw {
663 current_view: EntityId,
664 priority: usize,
665 parent_node: DispatchNodeId,
666 element_id_stack: SmallVec<[ElementId; 32]>,
667 text_style_stack: Vec<TextStyleRefinement>,
668 element: Option<AnyElement>,
669 absolute_offset: Point<Pixels>,
670 prepaint_range: Range<PrepaintStateIndex>,
671 paint_range: Range<PaintIndex>,
672}
673
674pub(crate) struct Frame {
675 pub(crate) focus: Option<FocusId>,
676 pub(crate) window_active: bool,
677 pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
678 accessed_element_states: Vec<(GlobalElementId, TypeId)>,
679 pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
680 pub(crate) dispatch_tree: DispatchTree,
681 pub(crate) scene: Scene,
682 pub(crate) hitboxes: Vec<Hitbox>,
683 pub(crate) window_control_hitboxes: Vec<(WindowControlArea, Hitbox)>,
684 pub(crate) deferred_draws: Vec<DeferredDraw>,
685 pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
686 pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
687 pub(crate) cursor_styles: Vec<CursorStyleRequest>,
688 #[cfg(any(test, feature = "test-support"))]
689 pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
690 #[cfg(any(feature = "inspector", debug_assertions))]
691 pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
692 #[cfg(any(feature = "inspector", debug_assertions))]
693 pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
694 pub(crate) tab_stops: TabStopMap,
695}
696
697#[derive(Clone, Default)]
698pub(crate) struct PrepaintStateIndex {
699 hitboxes_index: usize,
700 tooltips_index: usize,
701 deferred_draws_index: usize,
702 dispatch_tree_index: usize,
703 accessed_element_states_index: usize,
704 line_layout_index: LineLayoutIndex,
705}
706
707#[derive(Clone, Default)]
708pub(crate) struct PaintIndex {
709 scene_index: usize,
710 mouse_listeners_index: usize,
711 input_handlers_index: usize,
712 cursor_styles_index: usize,
713 accessed_element_states_index: usize,
714 tab_handle_index: usize,
715 line_layout_index: LineLayoutIndex,
716}
717
718impl Frame {
719 pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
720 Frame {
721 focus: None,
722 window_active: false,
723 element_states: FxHashMap::default(),
724 accessed_element_states: Vec::new(),
725 mouse_listeners: Vec::new(),
726 dispatch_tree,
727 scene: Scene::default(),
728 hitboxes: Vec::new(),
729 window_control_hitboxes: Vec::new(),
730 deferred_draws: Vec::new(),
731 input_handlers: Vec::new(),
732 tooltip_requests: Vec::new(),
733 cursor_styles: Vec::new(),
734
735 #[cfg(any(test, feature = "test-support"))]
736 debug_bounds: FxHashMap::default(),
737
738 #[cfg(any(feature = "inspector", debug_assertions))]
739 next_inspector_instance_ids: FxHashMap::default(),
740
741 #[cfg(any(feature = "inspector", debug_assertions))]
742 inspector_hitboxes: FxHashMap::default(),
743 tab_stops: TabStopMap::default(),
744 }
745 }
746
747 pub(crate) fn clear(&mut self) {
748 self.element_states.clear();
749 self.accessed_element_states.clear();
750 self.mouse_listeners.clear();
751 self.dispatch_tree.clear();
752 self.scene.clear();
753 self.input_handlers.clear();
754 self.tooltip_requests.clear();
755 self.cursor_styles.clear();
756 self.hitboxes.clear();
757 self.window_control_hitboxes.clear();
758 self.deferred_draws.clear();
759 self.tab_stops.clear();
760 self.focus = None;
761
762 #[cfg(any(feature = "inspector", debug_assertions))]
763 {
764 self.next_inspector_instance_ids.clear();
765 self.inspector_hitboxes.clear();
766 }
767 }
768
769 pub(crate) fn cursor_style(&self, window: &Window) -> Option<CursorStyle> {
770 self.cursor_styles
771 .iter()
772 .rev()
773 .fold_while(None, |style, request| match request.hitbox_id {
774 None => Done(Some(request.style)),
775 Some(hitbox_id) => Continue(
776 style.or_else(|| hitbox_id.is_hovered(window).then_some(request.style)),
777 ),
778 })
779 .into_inner()
780 }
781
782 pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
783 let mut set_hover_hitbox_count = false;
784 let mut hit_test = HitTest::default();
785 for hitbox in self.hitboxes.iter().rev() {
786 let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
787 if bounds.contains(&position) {
788 hit_test.ids.push(hitbox.id);
789 if !set_hover_hitbox_count
790 && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
791 {
792 hit_test.hover_hitbox_count = hit_test.ids.len();
793 set_hover_hitbox_count = true;
794 }
795 if hitbox.behavior == HitboxBehavior::BlockMouse {
796 break;
797 }
798 }
799 }
800 if !set_hover_hitbox_count {
801 hit_test.hover_hitbox_count = hit_test.ids.len();
802 }
803 hit_test
804 }
805
806 pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
807 self.focus
808 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
809 .unwrap_or_default()
810 }
811
812 pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
813 for element_state_key in &self.accessed_element_states {
814 if let Some((element_state_key, element_state)) =
815 prev_frame.element_states.remove_entry(element_state_key)
816 {
817 self.element_states.insert(element_state_key, element_state);
818 }
819 }
820
821 self.scene.finish();
822 }
823}
824
825#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Ord, PartialOrd)]
826enum InputModality {
827 Mouse,
828 Keyboard,
829}
830
831/// Holds the state for a specific window.
832pub struct Window {
833 pub(crate) handle: AnyWindowHandle,
834 pub(crate) invalidator: WindowInvalidator,
835 pub(crate) removed: bool,
836 pub(crate) platform_window: Box<dyn PlatformWindow>,
837 display_id: Option<DisplayId>,
838 sprite_atlas: Arc<dyn PlatformAtlas>,
839 text_system: Arc<WindowTextSystem>,
840 rem_size: Pixels,
841 /// The stack of override values for the window's rem size.
842 ///
843 /// This is used by `with_rem_size` to allow rendering an element tree with
844 /// a given rem size.
845 rem_size_override_stack: SmallVec<[Pixels; 8]>,
846 pub(crate) viewport_size: Size<Pixels>,
847 layout_engine: Option<TaffyLayoutEngine>,
848 pub(crate) root: Option<AnyView>,
849 pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
850 pub(crate) text_style_stack: Vec<TextStyleRefinement>,
851 pub(crate) rendered_entity_stack: Vec<EntityId>,
852 pub(crate) element_offset_stack: Vec<Point<Pixels>>,
853 pub(crate) element_opacity: f32,
854 pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
855 pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
856 pub(crate) image_cache_stack: Vec<AnyImageCache>,
857 pub(crate) rendered_frame: Frame,
858 pub(crate) next_frame: Frame,
859 next_hitbox_id: HitboxId,
860 pub(crate) next_tooltip_id: TooltipId,
861 pub(crate) tooltip_bounds: Option<TooltipBounds>,
862 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
863 pub(crate) dirty_views: FxHashSet<EntityId>,
864 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
865 pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
866 default_prevented: bool,
867 mouse_position: Point<Pixels>,
868 mouse_hit_test: HitTest,
869 modifiers: Modifiers,
870 capslock: Capslock,
871 scale_factor: f32,
872 pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
873 appearance: WindowAppearance,
874 pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
875 active: Rc<Cell<bool>>,
876 hovered: Rc<Cell<bool>>,
877 pub(crate) needs_present: Rc<Cell<bool>>,
878 pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
879 last_input_modality: InputModality,
880 pub(crate) refreshing: bool,
881 pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
882 pub(crate) focus: Option<FocusId>,
883 focus_enabled: bool,
884 pending_input: Option<PendingInput>,
885 pending_modifier: ModifierState,
886 pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
887 prompt: Option<RenderablePromptHandle>,
888 pub(crate) client_inset: Option<Pixels>,
889 #[cfg(any(feature = "inspector", debug_assertions))]
890 inspector: Option<Entity<Inspector>>,
891}
892
893#[derive(Clone, Debug, Default)]
894struct ModifierState {
895 modifiers: Modifiers,
896 saw_keystroke: bool,
897}
898
899#[derive(Clone, Copy, Debug, Eq, PartialEq)]
900pub(crate) enum DrawPhase {
901 None,
902 Prepaint,
903 Paint,
904 Focus,
905}
906
907#[derive(Default, Debug)]
908struct PendingInput {
909 keystrokes: SmallVec<[Keystroke; 1]>,
910 focus: Option<FocusId>,
911 timer: Option<Task<()>>,
912 needs_timeout: bool,
913}
914
915pub(crate) struct ElementStateBox {
916 pub(crate) inner: Box<dyn Any>,
917 #[cfg(debug_assertions)]
918 pub(crate) type_name: &'static str,
919}
920
921fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> Bounds<Pixels> {
922 #[cfg(target_os = "macos")]
923 {
924 const CASCADE_OFFSET: f32 = 25.0;
925
926 let display = display_id
927 .map(|id| cx.find_display(id))
928 .unwrap_or_else(|| cx.primary_display());
929
930 let display_bounds = display
931 .as_ref()
932 .map(|d| d.bounds())
933 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE));
934
935 // TODO, BUG: if you open a window with the currently active window
936 // on the stack, this will erroneously select the 'unwrap_or_else'
937 // code path
938 let (base_origin, base_size) = cx
939 .active_window()
940 .and_then(|w| {
941 w.update(cx, |_, window, _| {
942 let bounds = window.bounds();
943 (bounds.origin, bounds.size)
944 })
945 .ok()
946 })
947 .unwrap_or_else(|| {
948 let default_bounds = display
949 .as_ref()
950 .map(|d| d.default_bounds())
951 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE));
952 (default_bounds.origin, default_bounds.size)
953 });
954
955 let cascade_offset = point(px(CASCADE_OFFSET), px(CASCADE_OFFSET));
956 let proposed_origin = base_origin + cascade_offset;
957 let proposed_bounds = Bounds::new(proposed_origin, base_size);
958
959 let display_right = display_bounds.origin.x + display_bounds.size.width;
960 let display_bottom = display_bounds.origin.y + display_bounds.size.height;
961 let window_right = proposed_bounds.origin.x + proposed_bounds.size.width;
962 let window_bottom = proposed_bounds.origin.y + proposed_bounds.size.height;
963
964 let fits_horizontally = window_right <= display_right;
965 let fits_vertically = window_bottom <= display_bottom;
966
967 let final_origin = match (fits_horizontally, fits_vertically) {
968 (true, true) => proposed_origin,
969 (false, true) => point(display_bounds.origin.x, base_origin.y),
970 (true, false) => point(base_origin.x, display_bounds.origin.y),
971 (false, false) => display_bounds.origin,
972 };
973
974 Bounds::new(final_origin, base_size)
975 }
976
977 #[cfg(not(target_os = "macos"))]
978 {
979 const DEFAULT_WINDOW_OFFSET: Point<Pixels> = point(px(0.), px(35.));
980
981 // TODO, BUG: if you open a window with the currently active window
982 // on the stack, this will erroneously select the 'unwrap_or_else'
983 // code path
984 cx.active_window()
985 .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok())
986 .map(|mut bounds| {
987 bounds.origin += DEFAULT_WINDOW_OFFSET;
988 bounds
989 })
990 .unwrap_or_else(|| {
991 let display = display_id
992 .map(|id| cx.find_display(id))
993 .unwrap_or_else(|| cx.primary_display());
994
995 display
996 .as_ref()
997 .map(|display| display.default_bounds())
998 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE))
999 })
1000 }
1001}
1002
1003impl Window {
1004 pub(crate) fn new(
1005 handle: AnyWindowHandle,
1006 options: WindowOptions,
1007 cx: &mut App,
1008 ) -> Result<Self> {
1009 let WindowOptions {
1010 window_bounds,
1011 titlebar,
1012 focus,
1013 show,
1014 kind,
1015 is_movable,
1016 is_resizable,
1017 is_minimizable,
1018 display_id,
1019 window_background,
1020 app_id,
1021 window_min_size,
1022 window_decorations,
1023 #[cfg_attr(not(target_os = "macos"), allow(unused_variables))]
1024 tabbing_identifier,
1025 } = options;
1026
1027 let bounds = window_bounds
1028 .map(|bounds| bounds.get_bounds())
1029 .unwrap_or_else(|| default_bounds(display_id, cx));
1030 let mut platform_window = cx.platform.open_window(
1031 handle,
1032 WindowParams {
1033 bounds,
1034 titlebar,
1035 kind,
1036 is_movable,
1037 is_resizable,
1038 is_minimizable,
1039 focus,
1040 show,
1041 display_id,
1042 window_min_size,
1043 #[cfg(target_os = "macos")]
1044 tabbing_identifier,
1045 },
1046 )?;
1047
1048 let tab_bar_visible = platform_window.tab_bar_visible();
1049 SystemWindowTabController::init_visible(cx, tab_bar_visible);
1050 if let Some(tabs) = platform_window.tabbed_windows() {
1051 SystemWindowTabController::add_tab(cx, handle.window_id(), tabs);
1052 }
1053
1054 let display_id = platform_window.display().map(|display| display.id());
1055 let sprite_atlas = platform_window.sprite_atlas();
1056 let mouse_position = platform_window.mouse_position();
1057 let modifiers = platform_window.modifiers();
1058 let capslock = platform_window.capslock();
1059 let content_size = platform_window.content_size();
1060 let scale_factor = platform_window.scale_factor();
1061 let appearance = platform_window.appearance();
1062 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
1063 let invalidator = WindowInvalidator::new();
1064 let active = Rc::new(Cell::new(platform_window.is_active()));
1065 let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
1066 let needs_present = Rc::new(Cell::new(false));
1067 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
1068 let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
1069
1070 platform_window
1071 .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
1072 platform_window.set_background_appearance(window_background);
1073
1074 if let Some(ref window_open_state) = window_bounds {
1075 match window_open_state {
1076 WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
1077 WindowBounds::Maximized(_) => platform_window.zoom(),
1078 WindowBounds::Windowed(_) => {}
1079 }
1080 }
1081
1082 platform_window.on_close(Box::new({
1083 let window_id = handle.window_id();
1084 let mut cx = cx.to_async();
1085 move || {
1086 let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
1087 let _ = cx.update(|cx| {
1088 SystemWindowTabController::remove_tab(cx, window_id);
1089 });
1090 }
1091 }));
1092 platform_window.on_request_frame(Box::new({
1093 let mut cx = cx.to_async();
1094 let invalidator = invalidator.clone();
1095 let active = active.clone();
1096 let needs_present = needs_present.clone();
1097 let next_frame_callbacks = next_frame_callbacks.clone();
1098 let last_input_timestamp = last_input_timestamp.clone();
1099 move |request_frame_options| {
1100 let next_frame_callbacks = next_frame_callbacks.take();
1101 if !next_frame_callbacks.is_empty() {
1102 handle
1103 .update(&mut cx, |_, window, cx| {
1104 for callback in next_frame_callbacks {
1105 callback(window, cx);
1106 }
1107 })
1108 .log_err();
1109 }
1110
1111 // Keep presenting the current scene for 1 extra second since the
1112 // last input to prevent the display from underclocking the refresh rate.
1113 let needs_present = request_frame_options.require_presentation
1114 || needs_present.get()
1115 || (active.get()
1116 && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
1117
1118 if invalidator.is_dirty() || request_frame_options.force_render {
1119 measure("frame duration", || {
1120 handle
1121 .update(&mut cx, |_, window, cx| {
1122 let arena_clear_needed = window.draw(cx);
1123 window.present();
1124 // drop the arena elements after present to reduce latency
1125 arena_clear_needed.clear();
1126 })
1127 .log_err();
1128 })
1129 } else if needs_present {
1130 handle
1131 .update(&mut cx, |_, window, _| window.present())
1132 .log_err();
1133 }
1134
1135 handle
1136 .update(&mut cx, |_, window, _| {
1137 window.complete_frame();
1138 })
1139 .log_err();
1140 }
1141 }));
1142 platform_window.on_resize(Box::new({
1143 let mut cx = cx.to_async();
1144 move |_, _| {
1145 handle
1146 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1147 .log_err();
1148 }
1149 }));
1150 platform_window.on_moved(Box::new({
1151 let mut cx = cx.to_async();
1152 move || {
1153 handle
1154 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1155 .log_err();
1156 }
1157 }));
1158 platform_window.on_appearance_changed(Box::new({
1159 let mut cx = cx.to_async();
1160 move || {
1161 handle
1162 .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
1163 .log_err();
1164 }
1165 }));
1166 platform_window.on_active_status_change(Box::new({
1167 let mut cx = cx.to_async();
1168 move |active| {
1169 handle
1170 .update(&mut cx, |_, window, cx| {
1171 window.active.set(active);
1172 window.modifiers = window.platform_window.modifiers();
1173 window.capslock = window.platform_window.capslock();
1174 window
1175 .activation_observers
1176 .clone()
1177 .retain(&(), |callback| callback(window, cx));
1178
1179 window.bounds_changed(cx);
1180 window.refresh();
1181
1182 SystemWindowTabController::update_last_active(cx, window.handle.id);
1183 })
1184 .log_err();
1185 }
1186 }));
1187 platform_window.on_hover_status_change(Box::new({
1188 let mut cx = cx.to_async();
1189 move |active| {
1190 handle
1191 .update(&mut cx, |_, window, _| {
1192 window.hovered.set(active);
1193 window.refresh();
1194 })
1195 .log_err();
1196 }
1197 }));
1198 platform_window.on_input({
1199 let mut cx = cx.to_async();
1200 Box::new(move |event| {
1201 handle
1202 .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1203 .log_err()
1204 .unwrap_or(DispatchEventResult::default())
1205 })
1206 });
1207 platform_window.on_hit_test_window_control({
1208 let mut cx = cx.to_async();
1209 Box::new(move || {
1210 handle
1211 .update(&mut cx, |_, window, _cx| {
1212 for (area, hitbox) in &window.rendered_frame.window_control_hitboxes {
1213 if window.mouse_hit_test.ids.contains(&hitbox.id) {
1214 return Some(*area);
1215 }
1216 }
1217 None
1218 })
1219 .log_err()
1220 .unwrap_or(None)
1221 })
1222 });
1223 platform_window.on_move_tab_to_new_window({
1224 let mut cx = cx.to_async();
1225 Box::new(move || {
1226 handle
1227 .update(&mut cx, |_, _window, cx| {
1228 SystemWindowTabController::move_tab_to_new_window(cx, handle.window_id());
1229 })
1230 .log_err();
1231 })
1232 });
1233 platform_window.on_merge_all_windows({
1234 let mut cx = cx.to_async();
1235 Box::new(move || {
1236 handle
1237 .update(&mut cx, |_, _window, cx| {
1238 SystemWindowTabController::merge_all_windows(cx, handle.window_id());
1239 })
1240 .log_err();
1241 })
1242 });
1243 platform_window.on_select_next_tab({
1244 let mut cx = cx.to_async();
1245 Box::new(move || {
1246 handle
1247 .update(&mut cx, |_, _window, cx| {
1248 SystemWindowTabController::select_next_tab(cx, handle.window_id());
1249 })
1250 .log_err();
1251 })
1252 });
1253 platform_window.on_select_previous_tab({
1254 let mut cx = cx.to_async();
1255 Box::new(move || {
1256 handle
1257 .update(&mut cx, |_, _window, cx| {
1258 SystemWindowTabController::select_previous_tab(cx, handle.window_id())
1259 })
1260 .log_err();
1261 })
1262 });
1263 platform_window.on_toggle_tab_bar({
1264 let mut cx = cx.to_async();
1265 Box::new(move || {
1266 handle
1267 .update(&mut cx, |_, window, cx| {
1268 let tab_bar_visible = window.platform_window.tab_bar_visible();
1269 SystemWindowTabController::set_visible(cx, tab_bar_visible);
1270 })
1271 .log_err();
1272 })
1273 });
1274
1275 if let Some(app_id) = app_id {
1276 platform_window.set_app_id(&app_id);
1277 }
1278
1279 platform_window.map_window().unwrap();
1280
1281 Ok(Window {
1282 handle,
1283 invalidator,
1284 removed: false,
1285 platform_window,
1286 display_id,
1287 sprite_atlas,
1288 text_system,
1289 rem_size: px(16.),
1290 rem_size_override_stack: SmallVec::new(),
1291 viewport_size: content_size,
1292 layout_engine: Some(TaffyLayoutEngine::new()),
1293 root: None,
1294 element_id_stack: SmallVec::default(),
1295 text_style_stack: Vec::new(),
1296 rendered_entity_stack: Vec::new(),
1297 element_offset_stack: Vec::new(),
1298 content_mask_stack: Vec::new(),
1299 element_opacity: 1.0,
1300 requested_autoscroll: None,
1301 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1302 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1303 next_frame_callbacks,
1304 next_hitbox_id: HitboxId(0),
1305 next_tooltip_id: TooltipId::default(),
1306 tooltip_bounds: None,
1307 dirty_views: FxHashSet::default(),
1308 focus_listeners: SubscriberSet::new(),
1309 focus_lost_listeners: SubscriberSet::new(),
1310 default_prevented: true,
1311 mouse_position,
1312 mouse_hit_test: HitTest::default(),
1313 modifiers,
1314 capslock,
1315 scale_factor,
1316 bounds_observers: SubscriberSet::new(),
1317 appearance,
1318 appearance_observers: SubscriberSet::new(),
1319 active,
1320 hovered,
1321 needs_present,
1322 last_input_timestamp,
1323 last_input_modality: InputModality::Mouse,
1324 refreshing: false,
1325 activation_observers: SubscriberSet::new(),
1326 focus: None,
1327 focus_enabled: true,
1328 pending_input: None,
1329 pending_modifier: ModifierState::default(),
1330 pending_input_observers: SubscriberSet::new(),
1331 prompt: None,
1332 client_inset: None,
1333 image_cache_stack: Vec::new(),
1334 #[cfg(any(feature = "inspector", debug_assertions))]
1335 inspector: None,
1336 })
1337 }
1338
1339 pub(crate) fn new_focus_listener(
1340 &self,
1341 value: AnyWindowFocusListener,
1342 ) -> (Subscription, impl FnOnce() + use<>) {
1343 self.focus_listeners.insert((), value)
1344 }
1345}
1346
1347#[derive(Clone, Debug, Default, PartialEq, Eq)]
1348pub(crate) struct DispatchEventResult {
1349 pub propagate: bool,
1350 pub default_prevented: bool,
1351}
1352
1353/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1354/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1355/// to leave room to support more complex shapes in the future.
1356#[derive(Clone, Debug, Default, PartialEq, Eq)]
1357#[repr(C)]
1358pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1359 /// The bounds
1360 pub bounds: Bounds<P>,
1361}
1362
1363impl ContentMask<Pixels> {
1364 /// Scale the content mask's pixel units by the given scaling factor.
1365 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1366 ContentMask {
1367 bounds: self.bounds.scale(factor),
1368 }
1369 }
1370
1371 /// Intersect the content mask with the given content mask.
1372 pub fn intersect(&self, other: &Self) -> Self {
1373 let bounds = self.bounds.intersect(&other.bounds);
1374 ContentMask { bounds }
1375 }
1376}
1377
1378impl Window {
1379 fn mark_view_dirty(&mut self, view_id: EntityId) {
1380 // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1381 // should already be dirty.
1382 for view_id in self
1383 .rendered_frame
1384 .dispatch_tree
1385 .view_path_reversed(view_id)
1386 {
1387 if !self.dirty_views.insert(view_id) {
1388 break;
1389 }
1390 }
1391 }
1392
1393 /// Registers a callback to be invoked when the window appearance changes.
1394 pub fn observe_window_appearance(
1395 &self,
1396 mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1397 ) -> Subscription {
1398 let (subscription, activate) = self.appearance_observers.insert(
1399 (),
1400 Box::new(move |window, cx| {
1401 callback(window, cx);
1402 true
1403 }),
1404 );
1405 activate();
1406 subscription
1407 }
1408
1409 /// Replaces the root entity of the window with a new one.
1410 pub fn replace_root<E>(
1411 &mut self,
1412 cx: &mut App,
1413 build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1414 ) -> Entity<E>
1415 where
1416 E: 'static + Render,
1417 {
1418 let view = cx.new(|cx| build_view(self, cx));
1419 self.root = Some(view.clone().into());
1420 self.refresh();
1421 view
1422 }
1423
1424 /// Returns the root entity of the window, if it has one.
1425 pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1426 where
1427 E: 'static + Render,
1428 {
1429 self.root
1430 .as_ref()
1431 .map(|view| view.clone().downcast::<E>().ok())
1432 }
1433
1434 /// Obtain a handle to the window that belongs to this context.
1435 pub fn window_handle(&self) -> AnyWindowHandle {
1436 self.handle
1437 }
1438
1439 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1440 pub fn refresh(&mut self) {
1441 if self.invalidator.not_drawing() {
1442 self.refreshing = true;
1443 self.invalidator.set_dirty(true);
1444 }
1445 }
1446
1447 /// Close this window.
1448 pub fn remove_window(&mut self) {
1449 self.removed = true;
1450 }
1451
1452 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1453 pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1454 self.focus
1455 .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1456 }
1457
1458 /// Move focus to the element associated with the given [`FocusHandle`].
1459 pub fn focus(&mut self, handle: &FocusHandle) {
1460 if !self.focus_enabled || self.focus == Some(handle.id) {
1461 return;
1462 }
1463
1464 self.focus = Some(handle.id);
1465 self.clear_pending_keystrokes();
1466 self.refresh();
1467 }
1468
1469 /// Remove focus from all elements within this context's window.
1470 pub fn blur(&mut self) {
1471 if !self.focus_enabled {
1472 return;
1473 }
1474
1475 self.focus = None;
1476 self.refresh();
1477 }
1478
1479 /// Blur the window and don't allow anything in it to be focused again.
1480 pub fn disable_focus(&mut self) {
1481 self.blur();
1482 self.focus_enabled = false;
1483 }
1484
1485 /// Move focus to next tab stop.
1486 pub fn focus_next(&mut self) {
1487 if !self.focus_enabled {
1488 return;
1489 }
1490
1491 if let Some(handle) = self.rendered_frame.tab_stops.next(self.focus.as_ref()) {
1492 self.focus(&handle)
1493 }
1494 }
1495
1496 /// Move focus to previous tab stop.
1497 pub fn focus_prev(&mut self) {
1498 if !self.focus_enabled {
1499 return;
1500 }
1501
1502 if let Some(handle) = self.rendered_frame.tab_stops.prev(self.focus.as_ref()) {
1503 self.focus(&handle)
1504 }
1505 }
1506
1507 /// Accessor for the text system.
1508 pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1509 &self.text_system
1510 }
1511
1512 /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1513 pub fn text_style(&self) -> TextStyle {
1514 let mut style = TextStyle::default();
1515 for refinement in &self.text_style_stack {
1516 style.refine(refinement);
1517 }
1518 style
1519 }
1520
1521 /// Check if the platform window is maximized
1522 /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1523 pub fn is_maximized(&self) -> bool {
1524 self.platform_window.is_maximized()
1525 }
1526
1527 /// request a certain window decoration (Wayland)
1528 pub fn request_decorations(&self, decorations: WindowDecorations) {
1529 self.platform_window.request_decorations(decorations);
1530 }
1531
1532 /// Start a window resize operation (Wayland)
1533 pub fn start_window_resize(&self, edge: ResizeEdge) {
1534 self.platform_window.start_window_resize(edge);
1535 }
1536
1537 /// Return the `WindowBounds` to indicate that how a window should be opened
1538 /// after it has been closed
1539 pub fn window_bounds(&self) -> WindowBounds {
1540 self.platform_window.window_bounds()
1541 }
1542
1543 /// Return the `WindowBounds` excluding insets (Wayland and X11)
1544 pub fn inner_window_bounds(&self) -> WindowBounds {
1545 self.platform_window.inner_window_bounds()
1546 }
1547
1548 /// Dispatch the given action on the currently focused element.
1549 pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1550 let focus_id = self.focused(cx).map(|handle| handle.id);
1551
1552 let window = self.handle;
1553 cx.defer(move |cx| {
1554 window
1555 .update(cx, |_, window, cx| {
1556 let node_id = window.focus_node_id_in_rendered_frame(focus_id);
1557 window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1558 })
1559 .log_err();
1560 })
1561 }
1562
1563 pub(crate) fn dispatch_keystroke_observers(
1564 &mut self,
1565 event: &dyn Any,
1566 action: Option<Box<dyn Action>>,
1567 context_stack: Vec<KeyContext>,
1568 cx: &mut App,
1569 ) {
1570 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1571 return;
1572 };
1573
1574 cx.keystroke_observers.clone().retain(&(), move |callback| {
1575 (callback)(
1576 &KeystrokeEvent {
1577 keystroke: key_down_event.keystroke.clone(),
1578 action: action.as_ref().map(|action| action.boxed_clone()),
1579 context_stack: context_stack.clone(),
1580 },
1581 self,
1582 cx,
1583 )
1584 });
1585 }
1586
1587 pub(crate) fn dispatch_keystroke_interceptors(
1588 &mut self,
1589 event: &dyn Any,
1590 context_stack: Vec<KeyContext>,
1591 cx: &mut App,
1592 ) {
1593 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1594 return;
1595 };
1596
1597 cx.keystroke_interceptors
1598 .clone()
1599 .retain(&(), move |callback| {
1600 (callback)(
1601 &KeystrokeEvent {
1602 keystroke: key_down_event.keystroke.clone(),
1603 action: None,
1604 context_stack: context_stack.clone(),
1605 },
1606 self,
1607 cx,
1608 )
1609 });
1610 }
1611
1612 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1613 /// that are currently on the stack to be returned to the app.
1614 pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1615 let handle = self.handle;
1616 cx.defer(move |cx| {
1617 handle.update(cx, |_, window, cx| f(window, cx)).ok();
1618 });
1619 }
1620
1621 /// Subscribe to events emitted by a entity.
1622 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1623 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1624 pub fn observe<T: 'static>(
1625 &mut self,
1626 observed: &Entity<T>,
1627 cx: &mut App,
1628 mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1629 ) -> Subscription {
1630 let entity_id = observed.entity_id();
1631 let observed = observed.downgrade();
1632 let window_handle = self.handle;
1633 cx.new_observer(
1634 entity_id,
1635 Box::new(move |cx| {
1636 window_handle
1637 .update(cx, |_, window, cx| {
1638 if let Some(handle) = observed.upgrade() {
1639 on_notify(handle, window, cx);
1640 true
1641 } else {
1642 false
1643 }
1644 })
1645 .unwrap_or(false)
1646 }),
1647 )
1648 }
1649
1650 /// Subscribe to events emitted by a entity.
1651 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1652 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1653 pub fn subscribe<Emitter, Evt>(
1654 &mut self,
1655 entity: &Entity<Emitter>,
1656 cx: &mut App,
1657 mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1658 ) -> Subscription
1659 where
1660 Emitter: EventEmitter<Evt>,
1661 Evt: 'static,
1662 {
1663 let entity_id = entity.entity_id();
1664 let handle = entity.downgrade();
1665 let window_handle = self.handle;
1666 cx.new_subscription(
1667 entity_id,
1668 (
1669 TypeId::of::<Evt>(),
1670 Box::new(move |event, cx| {
1671 window_handle
1672 .update(cx, |_, window, cx| {
1673 if let Some(entity) = handle.upgrade() {
1674 let event = event.downcast_ref().expect("invalid event type");
1675 on_event(entity, event, window, cx);
1676 true
1677 } else {
1678 false
1679 }
1680 })
1681 .unwrap_or(false)
1682 }),
1683 ),
1684 )
1685 }
1686
1687 /// Register a callback to be invoked when the given `Entity` is released.
1688 pub fn observe_release<T>(
1689 &self,
1690 entity: &Entity<T>,
1691 cx: &mut App,
1692 mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1693 ) -> Subscription
1694 where
1695 T: 'static,
1696 {
1697 let entity_id = entity.entity_id();
1698 let window_handle = self.handle;
1699 let (subscription, activate) = cx.release_listeners.insert(
1700 entity_id,
1701 Box::new(move |entity, cx| {
1702 let entity = entity.downcast_mut().expect("invalid entity type");
1703 let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1704 }),
1705 );
1706 activate();
1707 subscription
1708 }
1709
1710 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1711 /// await points in async code.
1712 pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1713 AsyncWindowContext::new_context(cx.to_async(), self.handle)
1714 }
1715
1716 /// Schedule the given closure to be run directly after the current frame is rendered.
1717 pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1718 RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1719 }
1720
1721 /// Schedule a frame to be drawn on the next animation frame.
1722 ///
1723 /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1724 /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1725 ///
1726 /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1727 pub fn request_animation_frame(&self) {
1728 let entity = self.current_view();
1729 self.on_next_frame(move |_, cx| cx.notify(entity));
1730 }
1731
1732 /// Spawn the future returned by the given closure on the application thread pool.
1733 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1734 /// use within your future.
1735 #[track_caller]
1736 pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1737 where
1738 R: 'static,
1739 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1740 {
1741 let handle = self.handle;
1742 cx.spawn(async move |app| {
1743 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1744 f(&mut async_window_cx).await
1745 })
1746 }
1747
1748 fn bounds_changed(&mut self, cx: &mut App) {
1749 self.scale_factor = self.platform_window.scale_factor();
1750 self.viewport_size = self.platform_window.content_size();
1751 self.display_id = self.platform_window.display().map(|display| display.id());
1752
1753 self.refresh();
1754
1755 self.bounds_observers
1756 .clone()
1757 .retain(&(), |callback| callback(self, cx));
1758 }
1759
1760 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1761 pub fn bounds(&self) -> Bounds<Pixels> {
1762 self.platform_window.bounds()
1763 }
1764
1765 /// Set the content size of the window.
1766 pub fn resize(&mut self, size: Size<Pixels>) {
1767 self.platform_window.resize(size);
1768 }
1769
1770 /// Returns whether or not the window is currently fullscreen
1771 pub fn is_fullscreen(&self) -> bool {
1772 self.platform_window.is_fullscreen()
1773 }
1774
1775 pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1776 self.appearance = self.platform_window.appearance();
1777
1778 self.appearance_observers
1779 .clone()
1780 .retain(&(), |callback| callback(self, cx));
1781 }
1782
1783 /// Returns the appearance of the current window.
1784 pub fn appearance(&self) -> WindowAppearance {
1785 self.appearance
1786 }
1787
1788 /// Returns the size of the drawable area within the window.
1789 pub fn viewport_size(&self) -> Size<Pixels> {
1790 self.viewport_size
1791 }
1792
1793 /// Returns whether this window is focused by the operating system (receiving key events).
1794 pub fn is_window_active(&self) -> bool {
1795 self.active.get()
1796 }
1797
1798 /// Returns whether this window is considered to be the window
1799 /// that currently owns the mouse cursor.
1800 /// On mac, this is equivalent to `is_window_active`.
1801 pub fn is_window_hovered(&self) -> bool {
1802 if cfg!(any(
1803 target_os = "windows",
1804 target_os = "linux",
1805 target_os = "freebsd"
1806 )) {
1807 self.hovered.get()
1808 } else {
1809 self.is_window_active()
1810 }
1811 }
1812
1813 /// Toggle zoom on the window.
1814 pub fn zoom_window(&self) {
1815 self.platform_window.zoom();
1816 }
1817
1818 /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1819 pub fn show_window_menu(&self, position: Point<Pixels>) {
1820 self.platform_window.show_window_menu(position)
1821 }
1822
1823 /// Handle window movement for Linux and macOS.
1824 /// Tells the compositor to take control of window movement (Wayland and X11)
1825 ///
1826 /// Events may not be received during a move operation.
1827 pub fn start_window_move(&self) {
1828 self.platform_window.start_window_move()
1829 }
1830
1831 /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1832 pub fn set_client_inset(&mut self, inset: Pixels) {
1833 self.client_inset = Some(inset);
1834 self.platform_window.set_client_inset(inset);
1835 }
1836
1837 /// Returns the client_inset value by [`Self::set_client_inset`].
1838 pub fn client_inset(&self) -> Option<Pixels> {
1839 self.client_inset
1840 }
1841
1842 /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1843 pub fn window_decorations(&self) -> Decorations {
1844 self.platform_window.window_decorations()
1845 }
1846
1847 /// Returns which window controls are currently visible (Wayland)
1848 pub fn window_controls(&self) -> WindowControls {
1849 self.platform_window.window_controls()
1850 }
1851
1852 /// Updates the window's title at the platform level.
1853 pub fn set_window_title(&mut self, title: &str) {
1854 self.platform_window.set_title(title);
1855 }
1856
1857 /// Sets the application identifier.
1858 pub fn set_app_id(&mut self, app_id: &str) {
1859 self.platform_window.set_app_id(app_id);
1860 }
1861
1862 /// Sets the window background appearance.
1863 pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1864 self.platform_window
1865 .set_background_appearance(background_appearance);
1866 }
1867
1868 /// Mark the window as dirty at the platform level.
1869 pub fn set_window_edited(&mut self, edited: bool) {
1870 self.platform_window.set_edited(edited);
1871 }
1872
1873 /// Determine the display on which the window is visible.
1874 pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1875 cx.platform
1876 .displays()
1877 .into_iter()
1878 .find(|display| Some(display.id()) == self.display_id)
1879 }
1880
1881 /// Show the platform character palette.
1882 pub fn show_character_palette(&self) {
1883 self.platform_window.show_character_palette();
1884 }
1885
1886 /// The scale factor of the display associated with the window. For example, it could
1887 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1888 /// be rendered as two pixels on screen.
1889 pub fn scale_factor(&self) -> f32 {
1890 self.scale_factor
1891 }
1892
1893 /// The size of an em for the base font of the application. Adjusting this value allows the
1894 /// UI to scale, just like zooming a web page.
1895 pub fn rem_size(&self) -> Pixels {
1896 self.rem_size_override_stack
1897 .last()
1898 .copied()
1899 .unwrap_or(self.rem_size)
1900 }
1901
1902 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1903 /// UI to scale, just like zooming a web page.
1904 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1905 self.rem_size = rem_size.into();
1906 }
1907
1908 /// Acquire a globally unique identifier for the given ElementId.
1909 /// Only valid for the duration of the provided closure.
1910 pub fn with_global_id<R>(
1911 &mut self,
1912 element_id: ElementId,
1913 f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1914 ) -> R {
1915 self.element_id_stack.push(element_id);
1916 let global_id = GlobalElementId(Arc::from(&*self.element_id_stack));
1917
1918 let result = f(&global_id, self);
1919 self.element_id_stack.pop();
1920 result
1921 }
1922
1923 /// Executes the provided function with the specified rem size.
1924 ///
1925 /// This method must only be called as part of element drawing.
1926 // This function is called in a highly recursive manner in editor
1927 // prepainting, make sure its inlined to reduce the stack burden
1928 #[inline]
1929 pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1930 where
1931 F: FnOnce(&mut Self) -> R,
1932 {
1933 self.invalidator.debug_assert_paint_or_prepaint();
1934
1935 if let Some(rem_size) = rem_size {
1936 self.rem_size_override_stack.push(rem_size.into());
1937 let result = f(self);
1938 self.rem_size_override_stack.pop();
1939 result
1940 } else {
1941 f(self)
1942 }
1943 }
1944
1945 /// The line height associated with the current text style.
1946 pub fn line_height(&self) -> Pixels {
1947 self.text_style().line_height_in_pixels(self.rem_size())
1948 }
1949
1950 /// Call to prevent the default action of an event. Currently only used to prevent
1951 /// parent elements from becoming focused on mouse down.
1952 pub fn prevent_default(&mut self) {
1953 self.default_prevented = true;
1954 }
1955
1956 /// Obtain whether default has been prevented for the event currently being dispatched.
1957 pub fn default_prevented(&self) -> bool {
1958 self.default_prevented
1959 }
1960
1961 /// Determine whether the given action is available along the dispatch path to the currently focused element.
1962 pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1963 let node_id =
1964 self.focus_node_id_in_rendered_frame(self.focused(cx).map(|handle| handle.id));
1965 self.rendered_frame
1966 .dispatch_tree
1967 .is_action_available(action, node_id)
1968 }
1969
1970 /// The position of the mouse relative to the window.
1971 pub fn mouse_position(&self) -> Point<Pixels> {
1972 self.mouse_position
1973 }
1974
1975 /// The current state of the keyboard's modifiers
1976 pub fn modifiers(&self) -> Modifiers {
1977 self.modifiers
1978 }
1979
1980 /// Returns true if the last input event was keyboard-based (key press, tab navigation, etc.)
1981 /// This is used for focus-visible styling to show focus indicators only for keyboard navigation.
1982 pub fn last_input_was_keyboard(&self) -> bool {
1983 self.last_input_modality == InputModality::Keyboard
1984 }
1985
1986 /// The current state of the keyboard's capslock
1987 pub fn capslock(&self) -> Capslock {
1988 self.capslock
1989 }
1990
1991 fn complete_frame(&self) {
1992 self.platform_window.completed_frame();
1993 }
1994
1995 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1996 /// the contents of the new [`Scene`], use [`Self::present`].
1997 #[profiling::function]
1998 pub fn draw(&mut self, cx: &mut App) -> ArenaClearNeeded {
1999 self.invalidate_entities();
2000 cx.entities.clear_accessed();
2001 debug_assert!(self.rendered_entity_stack.is_empty());
2002 self.invalidator.set_dirty(false);
2003 self.requested_autoscroll = None;
2004
2005 // Restore the previously-used input handler.
2006 if let Some(input_handler) = self.platform_window.take_input_handler() {
2007 self.rendered_frame.input_handlers.push(Some(input_handler));
2008 }
2009 if !cx.mode.skip_drawing() {
2010 self.draw_roots(cx);
2011 }
2012 self.dirty_views.clear();
2013 self.next_frame.window_active = self.active.get();
2014
2015 // Register requested input handler with the platform window.
2016 if let Some(input_handler) = self.next_frame.input_handlers.pop() {
2017 self.platform_window
2018 .set_input_handler(input_handler.unwrap());
2019 }
2020
2021 self.layout_engine.as_mut().unwrap().clear();
2022 self.text_system().finish_frame();
2023 self.next_frame.finish(&mut self.rendered_frame);
2024
2025 self.invalidator.set_phase(DrawPhase::Focus);
2026 let previous_focus_path = self.rendered_frame.focus_path();
2027 let previous_window_active = self.rendered_frame.window_active;
2028 mem::swap(&mut self.rendered_frame, &mut self.next_frame);
2029 self.next_frame.clear();
2030 let current_focus_path = self.rendered_frame.focus_path();
2031 let current_window_active = self.rendered_frame.window_active;
2032
2033 if previous_focus_path != current_focus_path
2034 || previous_window_active != current_window_active
2035 {
2036 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
2037 self.focus_lost_listeners
2038 .clone()
2039 .retain(&(), |listener| listener(self, cx));
2040 }
2041
2042 let event = WindowFocusEvent {
2043 previous_focus_path: if previous_window_active {
2044 previous_focus_path
2045 } else {
2046 Default::default()
2047 },
2048 current_focus_path: if current_window_active {
2049 current_focus_path
2050 } else {
2051 Default::default()
2052 },
2053 };
2054 self.focus_listeners
2055 .clone()
2056 .retain(&(), |listener| listener(&event, self, cx));
2057 }
2058
2059 debug_assert!(self.rendered_entity_stack.is_empty());
2060 self.record_entities_accessed(cx);
2061 self.reset_cursor_style(cx);
2062 self.refreshing = false;
2063 self.invalidator.set_phase(DrawPhase::None);
2064 self.needs_present.set(true);
2065
2066 ArenaClearNeeded
2067 }
2068
2069 fn record_entities_accessed(&mut self, cx: &mut App) {
2070 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2071 let mut entities = mem::take(entities_ref.deref_mut());
2072 drop(entities_ref);
2073 let handle = self.handle;
2074 cx.record_entities_accessed(
2075 handle,
2076 // Try moving window invalidator into the Window
2077 self.invalidator.clone(),
2078 &entities,
2079 );
2080 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2081 mem::swap(&mut entities, entities_ref.deref_mut());
2082 }
2083
2084 fn invalidate_entities(&mut self) {
2085 let mut views = self.invalidator.take_views();
2086 for entity in views.drain() {
2087 self.mark_view_dirty(entity);
2088 }
2089 self.invalidator.replace_views(views);
2090 }
2091
2092 #[profiling::function]
2093 fn present(&self) {
2094 self.platform_window.draw(&self.rendered_frame.scene);
2095 self.needs_present.set(false);
2096 profiling::finish_frame!();
2097 }
2098
2099 fn draw_roots(&mut self, cx: &mut App) {
2100 self.invalidator.set_phase(DrawPhase::Prepaint);
2101 self.tooltip_bounds.take();
2102
2103 let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
2104 let root_size = {
2105 #[cfg(any(feature = "inspector", debug_assertions))]
2106 {
2107 if self.inspector.is_some() {
2108 let mut size = self.viewport_size;
2109 size.width = (size.width - _inspector_width).max(px(0.0));
2110 size
2111 } else {
2112 self.viewport_size
2113 }
2114 }
2115 #[cfg(not(any(feature = "inspector", debug_assertions)))]
2116 {
2117 self.viewport_size
2118 }
2119 };
2120
2121 // Layout all root elements.
2122 let mut root_element = self.root.as_ref().unwrap().clone().into_any();
2123 root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2124
2125 #[cfg(any(feature = "inspector", debug_assertions))]
2126 let inspector_element = self.prepaint_inspector(_inspector_width, cx);
2127
2128 let mut sorted_deferred_draws =
2129 (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
2130 sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
2131 self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
2132
2133 let mut prompt_element = None;
2134 let mut active_drag_element = None;
2135 let mut tooltip_element = None;
2136 if let Some(prompt) = self.prompt.take() {
2137 let mut element = prompt.view.any_view().into_any();
2138 element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2139 prompt_element = Some(element);
2140 self.prompt = Some(prompt);
2141 } else if let Some(active_drag) = cx.active_drag.take() {
2142 let mut element = active_drag.view.clone().into_any();
2143 let offset = self.mouse_position() - active_drag.cursor_offset;
2144 element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
2145 active_drag_element = Some(element);
2146 cx.active_drag = Some(active_drag);
2147 } else {
2148 tooltip_element = self.prepaint_tooltip(cx);
2149 }
2150
2151 self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
2152
2153 // Now actually paint the elements.
2154 self.invalidator.set_phase(DrawPhase::Paint);
2155 root_element.paint(self, cx);
2156
2157 #[cfg(any(feature = "inspector", debug_assertions))]
2158 self.paint_inspector(inspector_element, cx);
2159
2160 self.paint_deferred_draws(&sorted_deferred_draws, cx);
2161
2162 if let Some(mut prompt_element) = prompt_element {
2163 prompt_element.paint(self, cx);
2164 } else if let Some(mut drag_element) = active_drag_element {
2165 drag_element.paint(self, cx);
2166 } else if let Some(mut tooltip_element) = tooltip_element {
2167 tooltip_element.paint(self, cx);
2168 }
2169
2170 #[cfg(any(feature = "inspector", debug_assertions))]
2171 self.paint_inspector_hitbox(cx);
2172 }
2173
2174 fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
2175 // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
2176 for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
2177 let Some(Some(tooltip_request)) = self
2178 .next_frame
2179 .tooltip_requests
2180 .get(tooltip_request_index)
2181 .cloned()
2182 else {
2183 log::error!("Unexpectedly absent TooltipRequest");
2184 continue;
2185 };
2186 let mut element = tooltip_request.tooltip.view.clone().into_any();
2187 let mouse_position = tooltip_request.tooltip.mouse_position;
2188 let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
2189
2190 let mut tooltip_bounds =
2191 Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
2192 let window_bounds = Bounds {
2193 origin: Point::default(),
2194 size: self.viewport_size(),
2195 };
2196
2197 if tooltip_bounds.right() > window_bounds.right() {
2198 let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
2199 if new_x >= Pixels::ZERO {
2200 tooltip_bounds.origin.x = new_x;
2201 } else {
2202 tooltip_bounds.origin.x = cmp::max(
2203 Pixels::ZERO,
2204 tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
2205 );
2206 }
2207 }
2208
2209 if tooltip_bounds.bottom() > window_bounds.bottom() {
2210 let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
2211 if new_y >= Pixels::ZERO {
2212 tooltip_bounds.origin.y = new_y;
2213 } else {
2214 tooltip_bounds.origin.y = cmp::max(
2215 Pixels::ZERO,
2216 tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
2217 );
2218 }
2219 }
2220
2221 // It's possible for an element to have an active tooltip while not being painted (e.g.
2222 // via the `visible_on_hover` method). Since mouse listeners are not active in this
2223 // case, instead update the tooltip's visibility here.
2224 let is_visible =
2225 (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
2226 if !is_visible {
2227 continue;
2228 }
2229
2230 self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
2231 element.prepaint(window, cx)
2232 });
2233
2234 self.tooltip_bounds = Some(TooltipBounds {
2235 id: tooltip_request.id,
2236 bounds: tooltip_bounds,
2237 });
2238 return Some(element);
2239 }
2240 None
2241 }
2242
2243 fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2244 assert_eq!(self.element_id_stack.len(), 0);
2245
2246 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2247 for deferred_draw_ix in deferred_draw_indices {
2248 let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2249 self.element_id_stack
2250 .clone_from(&deferred_draw.element_id_stack);
2251 self.text_style_stack
2252 .clone_from(&deferred_draw.text_style_stack);
2253 self.next_frame
2254 .dispatch_tree
2255 .set_active_node(deferred_draw.parent_node);
2256
2257 let prepaint_start = self.prepaint_index();
2258 if let Some(element) = deferred_draw.element.as_mut() {
2259 self.with_rendered_view(deferred_draw.current_view, |window| {
2260 window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
2261 element.prepaint(window, cx)
2262 });
2263 })
2264 } else {
2265 self.reuse_prepaint(deferred_draw.prepaint_range.clone());
2266 }
2267 let prepaint_end = self.prepaint_index();
2268 deferred_draw.prepaint_range = prepaint_start..prepaint_end;
2269 }
2270 assert_eq!(
2271 self.next_frame.deferred_draws.len(),
2272 0,
2273 "cannot call defer_draw during deferred drawing"
2274 );
2275 self.next_frame.deferred_draws = deferred_draws;
2276 self.element_id_stack.clear();
2277 self.text_style_stack.clear();
2278 }
2279
2280 fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2281 assert_eq!(self.element_id_stack.len(), 0);
2282
2283 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2284 for deferred_draw_ix in deferred_draw_indices {
2285 let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2286 self.element_id_stack
2287 .clone_from(&deferred_draw.element_id_stack);
2288 self.next_frame
2289 .dispatch_tree
2290 .set_active_node(deferred_draw.parent_node);
2291
2292 let paint_start = self.paint_index();
2293 if let Some(element) = deferred_draw.element.as_mut() {
2294 self.with_rendered_view(deferred_draw.current_view, |window| {
2295 element.paint(window, cx);
2296 })
2297 } else {
2298 self.reuse_paint(deferred_draw.paint_range.clone());
2299 }
2300 let paint_end = self.paint_index();
2301 deferred_draw.paint_range = paint_start..paint_end;
2302 }
2303 self.next_frame.deferred_draws = deferred_draws;
2304 self.element_id_stack.clear();
2305 }
2306
2307 pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2308 PrepaintStateIndex {
2309 hitboxes_index: self.next_frame.hitboxes.len(),
2310 tooltips_index: self.next_frame.tooltip_requests.len(),
2311 deferred_draws_index: self.next_frame.deferred_draws.len(),
2312 dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2313 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2314 line_layout_index: self.text_system.layout_index(),
2315 }
2316 }
2317
2318 pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2319 self.next_frame.hitboxes.extend(
2320 self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2321 .iter()
2322 .cloned(),
2323 );
2324 self.next_frame.tooltip_requests.extend(
2325 self.rendered_frame.tooltip_requests
2326 [range.start.tooltips_index..range.end.tooltips_index]
2327 .iter_mut()
2328 .map(|request| request.take()),
2329 );
2330 self.next_frame.accessed_element_states.extend(
2331 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2332 ..range.end.accessed_element_states_index]
2333 .iter()
2334 .map(|(id, type_id)| (id.clone(), *type_id)),
2335 );
2336 self.text_system
2337 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2338
2339 let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2340 range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2341 &mut self.rendered_frame.dispatch_tree,
2342 self.focus,
2343 );
2344
2345 if reused_subtree.contains_focus() {
2346 self.next_frame.focus = self.focus;
2347 }
2348
2349 self.next_frame.deferred_draws.extend(
2350 self.rendered_frame.deferred_draws
2351 [range.start.deferred_draws_index..range.end.deferred_draws_index]
2352 .iter()
2353 .map(|deferred_draw| DeferredDraw {
2354 current_view: deferred_draw.current_view,
2355 parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2356 element_id_stack: deferred_draw.element_id_stack.clone(),
2357 text_style_stack: deferred_draw.text_style_stack.clone(),
2358 priority: deferred_draw.priority,
2359 element: None,
2360 absolute_offset: deferred_draw.absolute_offset,
2361 prepaint_range: deferred_draw.prepaint_range.clone(),
2362 paint_range: deferred_draw.paint_range.clone(),
2363 }),
2364 );
2365 }
2366
2367 pub(crate) fn paint_index(&self) -> PaintIndex {
2368 PaintIndex {
2369 scene_index: self.next_frame.scene.len(),
2370 mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2371 input_handlers_index: self.next_frame.input_handlers.len(),
2372 cursor_styles_index: self.next_frame.cursor_styles.len(),
2373 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2374 tab_handle_index: self.next_frame.tab_stops.paint_index(),
2375 line_layout_index: self.text_system.layout_index(),
2376 }
2377 }
2378
2379 pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2380 self.next_frame.cursor_styles.extend(
2381 self.rendered_frame.cursor_styles
2382 [range.start.cursor_styles_index..range.end.cursor_styles_index]
2383 .iter()
2384 .cloned(),
2385 );
2386 self.next_frame.input_handlers.extend(
2387 self.rendered_frame.input_handlers
2388 [range.start.input_handlers_index..range.end.input_handlers_index]
2389 .iter_mut()
2390 .map(|handler| handler.take()),
2391 );
2392 self.next_frame.mouse_listeners.extend(
2393 self.rendered_frame.mouse_listeners
2394 [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2395 .iter_mut()
2396 .map(|listener| listener.take()),
2397 );
2398 self.next_frame.accessed_element_states.extend(
2399 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2400 ..range.end.accessed_element_states_index]
2401 .iter()
2402 .map(|(id, type_id)| (id.clone(), *type_id)),
2403 );
2404 self.next_frame.tab_stops.replay(
2405 &self.rendered_frame.tab_stops.insertion_history
2406 [range.start.tab_handle_index..range.end.tab_handle_index],
2407 );
2408
2409 self.text_system
2410 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2411 self.next_frame.scene.replay(
2412 range.start.scene_index..range.end.scene_index,
2413 &self.rendered_frame.scene,
2414 );
2415 }
2416
2417 /// Push a text style onto the stack, and call a function with that style active.
2418 /// Use [`Window::text_style`] to get the current, combined text style. This method
2419 /// should only be called as part of element drawing.
2420 // This function is called in a highly recursive manner in editor
2421 // prepainting, make sure its inlined to reduce the stack burden
2422 #[inline]
2423 pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2424 where
2425 F: FnOnce(&mut Self) -> R,
2426 {
2427 self.invalidator.debug_assert_paint_or_prepaint();
2428 if let Some(style) = style {
2429 self.text_style_stack.push(style);
2430 let result = f(self);
2431 self.text_style_stack.pop();
2432 result
2433 } else {
2434 f(self)
2435 }
2436 }
2437
2438 /// Updates the cursor style at the platform level. This method should only be called
2439 /// during the paint phase of element drawing.
2440 pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
2441 self.invalidator.debug_assert_paint();
2442 self.next_frame.cursor_styles.push(CursorStyleRequest {
2443 hitbox_id: Some(hitbox.id),
2444 style,
2445 });
2446 }
2447
2448 /// Updates the cursor style for the entire window at the platform level. A cursor
2449 /// style using this method will have precedence over any cursor style set using
2450 /// `set_cursor_style`. This method should only be called during the paint
2451 /// phase of element drawing.
2452 pub fn set_window_cursor_style(&mut self, style: CursorStyle) {
2453 self.invalidator.debug_assert_paint();
2454 self.next_frame.cursor_styles.push(CursorStyleRequest {
2455 hitbox_id: None,
2456 style,
2457 })
2458 }
2459
2460 /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2461 /// during the paint phase of element drawing.
2462 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2463 self.invalidator.debug_assert_prepaint();
2464 let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2465 self.next_frame
2466 .tooltip_requests
2467 .push(Some(TooltipRequest { id, tooltip }));
2468 id
2469 }
2470
2471 /// Invoke the given function with the given content mask after intersecting it
2472 /// with the current mask. This method should only be called during element drawing.
2473 // This function is called in a highly recursive manner in editor
2474 // prepainting, make sure its inlined to reduce the stack burden
2475 #[inline]
2476 pub fn with_content_mask<R>(
2477 &mut self,
2478 mask: Option<ContentMask<Pixels>>,
2479 f: impl FnOnce(&mut Self) -> R,
2480 ) -> R {
2481 self.invalidator.debug_assert_paint_or_prepaint();
2482 if let Some(mask) = mask {
2483 let mask = mask.intersect(&self.content_mask());
2484 self.content_mask_stack.push(mask);
2485 let result = f(self);
2486 self.content_mask_stack.pop();
2487 result
2488 } else {
2489 f(self)
2490 }
2491 }
2492
2493 /// Updates the global element offset relative to the current offset. This is used to implement
2494 /// scrolling. This method should only be called during the prepaint phase of element drawing.
2495 pub fn with_element_offset<R>(
2496 &mut self,
2497 offset: Point<Pixels>,
2498 f: impl FnOnce(&mut Self) -> R,
2499 ) -> R {
2500 self.invalidator.debug_assert_prepaint();
2501
2502 if offset.is_zero() {
2503 return f(self);
2504 };
2505
2506 let abs_offset = self.element_offset() + offset;
2507 self.with_absolute_element_offset(abs_offset, f)
2508 }
2509
2510 /// Updates the global element offset based on the given offset. This is used to implement
2511 /// drag handles and other manual painting of elements. This method should only be called during
2512 /// the prepaint phase of element drawing.
2513 pub fn with_absolute_element_offset<R>(
2514 &mut self,
2515 offset: Point<Pixels>,
2516 f: impl FnOnce(&mut Self) -> R,
2517 ) -> R {
2518 self.invalidator.debug_assert_prepaint();
2519 self.element_offset_stack.push(offset);
2520 let result = f(self);
2521 self.element_offset_stack.pop();
2522 result
2523 }
2524
2525 pub(crate) fn with_element_opacity<R>(
2526 &mut self,
2527 opacity: Option<f32>,
2528 f: impl FnOnce(&mut Self) -> R,
2529 ) -> R {
2530 self.invalidator.debug_assert_paint_or_prepaint();
2531
2532 let Some(opacity) = opacity else {
2533 return f(self);
2534 };
2535
2536 let previous_opacity = self.element_opacity;
2537 self.element_opacity = previous_opacity * opacity;
2538 let result = f(self);
2539 self.element_opacity = previous_opacity;
2540 result
2541 }
2542
2543 /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2544 /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2545 /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2546 /// element offset and prepaint again. See [`crate::List`] for an example. This method should only be
2547 /// called during the prepaint phase of element drawing.
2548 pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2549 self.invalidator.debug_assert_prepaint();
2550 let index = self.prepaint_index();
2551 let result = f(self);
2552 if result.is_err() {
2553 self.next_frame.hitboxes.truncate(index.hitboxes_index);
2554 self.next_frame
2555 .tooltip_requests
2556 .truncate(index.tooltips_index);
2557 self.next_frame
2558 .deferred_draws
2559 .truncate(index.deferred_draws_index);
2560 self.next_frame
2561 .dispatch_tree
2562 .truncate(index.dispatch_tree_index);
2563 self.next_frame
2564 .accessed_element_states
2565 .truncate(index.accessed_element_states_index);
2566 self.text_system.truncate_layouts(index.line_layout_index);
2567 }
2568 result
2569 }
2570
2571 /// When you call this method during [`Element::prepaint`], containing elements will attempt to
2572 /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2573 /// [`Element::prepaint`] again with a new set of bounds. See [`crate::List`] for an example of an element
2574 /// that supports this method being called on the elements it contains. This method should only be
2575 /// called during the prepaint phase of element drawing.
2576 pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2577 self.invalidator.debug_assert_prepaint();
2578 self.requested_autoscroll = Some(bounds);
2579 }
2580
2581 /// This method can be called from a containing element such as [`crate::List`] to support the autoscroll behavior
2582 /// described in [`Self::request_autoscroll`].
2583 pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2584 self.invalidator.debug_assert_prepaint();
2585 self.requested_autoscroll.take()
2586 }
2587
2588 /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2589 /// Your view will be re-drawn once the asset has finished loading.
2590 ///
2591 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2592 /// time.
2593 pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2594 let (task, is_first) = cx.fetch_asset::<A>(source);
2595 task.clone().now_or_never().or_else(|| {
2596 if is_first {
2597 let entity_id = self.current_view();
2598 self.spawn(cx, {
2599 let task = task.clone();
2600 async move |cx| {
2601 task.await;
2602
2603 cx.on_next_frame(move |_, cx| {
2604 cx.notify(entity_id);
2605 });
2606 }
2607 })
2608 .detach();
2609 }
2610
2611 None
2612 })
2613 }
2614
2615 /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2616 /// Your view will not be re-drawn once the asset has finished loading.
2617 ///
2618 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2619 /// time.
2620 pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2621 let (task, _) = cx.fetch_asset::<A>(source);
2622 task.now_or_never()
2623 }
2624 /// Obtain the current element offset. This method should only be called during the
2625 /// prepaint phase of element drawing.
2626 pub fn element_offset(&self) -> Point<Pixels> {
2627 self.invalidator.debug_assert_prepaint();
2628 self.element_offset_stack
2629 .last()
2630 .copied()
2631 .unwrap_or_default()
2632 }
2633
2634 /// Obtain the current element opacity. This method should only be called during the
2635 /// prepaint phase of element drawing.
2636 #[inline]
2637 pub(crate) fn element_opacity(&self) -> f32 {
2638 self.invalidator.debug_assert_paint_or_prepaint();
2639 self.element_opacity
2640 }
2641
2642 /// Obtain the current content mask. This method should only be called during element drawing.
2643 pub fn content_mask(&self) -> ContentMask<Pixels> {
2644 self.invalidator.debug_assert_paint_or_prepaint();
2645 self.content_mask_stack
2646 .last()
2647 .cloned()
2648 .unwrap_or_else(|| ContentMask {
2649 bounds: Bounds {
2650 origin: Point::default(),
2651 size: self.viewport_size,
2652 },
2653 })
2654 }
2655
2656 /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2657 /// This can be used within a custom element to distinguish multiple sets of child elements.
2658 pub fn with_element_namespace<R>(
2659 &mut self,
2660 element_id: impl Into<ElementId>,
2661 f: impl FnOnce(&mut Self) -> R,
2662 ) -> R {
2663 self.element_id_stack.push(element_id.into());
2664 let result = f(self);
2665 self.element_id_stack.pop();
2666 result
2667 }
2668
2669 /// Use a piece of state that exists as long this element is being rendered in consecutive frames.
2670 pub fn use_keyed_state<S: 'static>(
2671 &mut self,
2672 key: impl Into<ElementId>,
2673 cx: &mut App,
2674 init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2675 ) -> Entity<S> {
2676 let current_view = self.current_view();
2677 self.with_global_id(key.into(), |global_id, window| {
2678 window.with_element_state(global_id, |state: Option<Entity<S>>, window| {
2679 if let Some(state) = state {
2680 (state.clone(), state)
2681 } else {
2682 let new_state = cx.new(|cx| init(window, cx));
2683 cx.observe(&new_state, move |_, cx| {
2684 cx.notify(current_view);
2685 })
2686 .detach();
2687 (new_state.clone(), new_state)
2688 }
2689 })
2690 })
2691 }
2692
2693 /// Immediately push an element ID onto the stack. Useful for simplifying IDs in lists
2694 pub fn with_id<R>(&mut self, id: impl Into<ElementId>, f: impl FnOnce(&mut Self) -> R) -> R {
2695 self.with_global_id(id.into(), |_, window| f(window))
2696 }
2697
2698 /// Use a piece of state that exists as long this element is being rendered in consecutive frames, without needing to specify a key
2699 ///
2700 /// NOTE: This method uses the location of the caller to generate an ID for this state.
2701 /// If this is not sufficient to identify your state (e.g. you're rendering a list item),
2702 /// you can provide a custom ElementID using the `use_keyed_state` method.
2703 #[track_caller]
2704 pub fn use_state<S: 'static>(
2705 &mut self,
2706 cx: &mut App,
2707 init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2708 ) -> Entity<S> {
2709 self.use_keyed_state(
2710 ElementId::CodeLocation(*core::panic::Location::caller()),
2711 cx,
2712 init,
2713 )
2714 }
2715
2716 /// Updates or initializes state for an element with the given id that lives across multiple
2717 /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2718 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2719 /// when drawing the next frame. This method should only be called as part of element drawing.
2720 pub fn with_element_state<S, R>(
2721 &mut self,
2722 global_id: &GlobalElementId,
2723 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2724 ) -> R
2725 where
2726 S: 'static,
2727 {
2728 self.invalidator.debug_assert_paint_or_prepaint();
2729
2730 let key = (global_id.clone(), TypeId::of::<S>());
2731 self.next_frame.accessed_element_states.push(key.clone());
2732
2733 if let Some(any) = self
2734 .next_frame
2735 .element_states
2736 .remove(&key)
2737 .or_else(|| self.rendered_frame.element_states.remove(&key))
2738 {
2739 let ElementStateBox {
2740 inner,
2741 #[cfg(debug_assertions)]
2742 type_name,
2743 } = any;
2744 // Using the extra inner option to avoid needing to reallocate a new box.
2745 let mut state_box = inner
2746 .downcast::<Option<S>>()
2747 .map_err(|_| {
2748 #[cfg(debug_assertions)]
2749 {
2750 anyhow::anyhow!(
2751 "invalid element state type for id, requested {:?}, actual: {:?}",
2752 std::any::type_name::<S>(),
2753 type_name
2754 )
2755 }
2756
2757 #[cfg(not(debug_assertions))]
2758 {
2759 anyhow::anyhow!(
2760 "invalid element state type for id, requested {:?}",
2761 std::any::type_name::<S>(),
2762 )
2763 }
2764 })
2765 .unwrap();
2766
2767 let state = state_box.take().expect(
2768 "reentrant call to with_element_state for the same state type and element id",
2769 );
2770 let (result, state) = f(Some(state), self);
2771 state_box.replace(state);
2772 self.next_frame.element_states.insert(
2773 key,
2774 ElementStateBox {
2775 inner: state_box,
2776 #[cfg(debug_assertions)]
2777 type_name,
2778 },
2779 );
2780 result
2781 } else {
2782 let (result, state) = f(None, self);
2783 self.next_frame.element_states.insert(
2784 key,
2785 ElementStateBox {
2786 inner: Box::new(Some(state)),
2787 #[cfg(debug_assertions)]
2788 type_name: std::any::type_name::<S>(),
2789 },
2790 );
2791 result
2792 }
2793 }
2794
2795 /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2796 /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2797 /// when the element is guaranteed to have an id.
2798 ///
2799 /// The first option means 'no ID provided'
2800 /// The second option means 'not yet initialized'
2801 pub fn with_optional_element_state<S, R>(
2802 &mut self,
2803 global_id: Option<&GlobalElementId>,
2804 f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2805 ) -> R
2806 where
2807 S: 'static,
2808 {
2809 self.invalidator.debug_assert_paint_or_prepaint();
2810
2811 if let Some(global_id) = global_id {
2812 self.with_element_state(global_id, |state, cx| {
2813 let (result, state) = f(Some(state), cx);
2814 let state =
2815 state.expect("you must return some state when you pass some element id");
2816 (result, state)
2817 })
2818 } else {
2819 let (result, state) = f(None, self);
2820 debug_assert!(
2821 state.is_none(),
2822 "you must not return an element state when passing None for the global id"
2823 );
2824 result
2825 }
2826 }
2827
2828 /// Executes the given closure within the context of a tab group.
2829 #[inline]
2830 pub fn with_tab_group<R>(&mut self, index: Option<isize>, f: impl FnOnce(&mut Self) -> R) -> R {
2831 if let Some(index) = index {
2832 self.next_frame.tab_stops.begin_group(index);
2833 let result = f(self);
2834 self.next_frame.tab_stops.end_group();
2835 result
2836 } else {
2837 f(self)
2838 }
2839 }
2840
2841 /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2842 /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2843 /// with higher values being drawn on top.
2844 ///
2845 /// This method should only be called as part of the prepaint phase of element drawing.
2846 pub fn defer_draw(
2847 &mut self,
2848 element: AnyElement,
2849 absolute_offset: Point<Pixels>,
2850 priority: usize,
2851 ) {
2852 self.invalidator.debug_assert_prepaint();
2853 let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2854 self.next_frame.deferred_draws.push(DeferredDraw {
2855 current_view: self.current_view(),
2856 parent_node,
2857 element_id_stack: self.element_id_stack.clone(),
2858 text_style_stack: self.text_style_stack.clone(),
2859 priority,
2860 element: Some(element),
2861 absolute_offset,
2862 prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2863 paint_range: PaintIndex::default()..PaintIndex::default(),
2864 });
2865 }
2866
2867 /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2868 /// of geometry that are non-overlapping and have the same draw order. This is typically used
2869 /// for performance reasons.
2870 ///
2871 /// This method should only be called as part of the paint phase of element drawing.
2872 pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2873 self.invalidator.debug_assert_paint();
2874
2875 let scale_factor = self.scale_factor();
2876 let content_mask = self.content_mask();
2877 let clipped_bounds = bounds.intersect(&content_mask.bounds);
2878 if !clipped_bounds.is_empty() {
2879 self.next_frame
2880 .scene
2881 .push_layer(clipped_bounds.scale(scale_factor));
2882 }
2883
2884 let result = f(self);
2885
2886 if !clipped_bounds.is_empty() {
2887 self.next_frame.scene.pop_layer();
2888 }
2889
2890 result
2891 }
2892
2893 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2894 ///
2895 /// This method should only be called as part of the paint phase of element drawing.
2896 pub fn paint_shadows(
2897 &mut self,
2898 bounds: Bounds<Pixels>,
2899 corner_radii: Corners<Pixels>,
2900 shadows: &[BoxShadow],
2901 ) {
2902 self.invalidator.debug_assert_paint();
2903
2904 let scale_factor = self.scale_factor();
2905 let content_mask = self.content_mask();
2906 let opacity = self.element_opacity();
2907 for shadow in shadows {
2908 let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2909 self.next_frame.scene.insert_primitive(Shadow {
2910 order: 0,
2911 blur_radius: shadow.blur_radius.scale(scale_factor),
2912 bounds: shadow_bounds.scale(scale_factor),
2913 content_mask: content_mask.scale(scale_factor),
2914 corner_radii: corner_radii.scale(scale_factor),
2915 color: shadow.color.opacity(opacity),
2916 });
2917 }
2918 }
2919
2920 /// Paint one or more quads into the scene for the next frame at the current stacking context.
2921 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2922 /// see [`fill`], [`outline`], and [`quad`] to construct this type.
2923 ///
2924 /// This method should only be called as part of the paint phase of element drawing.
2925 ///
2926 /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2927 /// where the circular arcs meet. This will not display well when combined with dashed borders.
2928 /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2929 pub fn paint_quad(&mut self, quad: PaintQuad) {
2930 self.invalidator.debug_assert_paint();
2931
2932 let scale_factor = self.scale_factor();
2933 let content_mask = self.content_mask();
2934 let opacity = self.element_opacity();
2935 self.next_frame.scene.insert_primitive(Quad {
2936 order: 0,
2937 bounds: quad.bounds.scale(scale_factor),
2938 content_mask: content_mask.scale(scale_factor),
2939 background: quad.background.opacity(opacity),
2940 border_color: quad.border_color.opacity(opacity),
2941 corner_radii: quad.corner_radii.scale(scale_factor),
2942 border_widths: quad.border_widths.scale(scale_factor),
2943 border_style: quad.border_style,
2944 });
2945 }
2946
2947 /// Paint the given `Path` into the scene for the next frame at the current z-index.
2948 ///
2949 /// This method should only be called as part of the paint phase of element drawing.
2950 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2951 self.invalidator.debug_assert_paint();
2952
2953 let scale_factor = self.scale_factor();
2954 let content_mask = self.content_mask();
2955 let opacity = self.element_opacity();
2956 path.content_mask = content_mask;
2957 let color: Background = color.into();
2958 path.color = color.opacity(opacity);
2959 self.next_frame
2960 .scene
2961 .insert_primitive(path.scale(scale_factor));
2962 }
2963
2964 /// Paint an underline into the scene for the next frame at the current z-index.
2965 ///
2966 /// This method should only be called as part of the paint phase of element drawing.
2967 pub fn paint_underline(
2968 &mut self,
2969 origin: Point<Pixels>,
2970 width: Pixels,
2971 style: &UnderlineStyle,
2972 ) {
2973 self.invalidator.debug_assert_paint();
2974
2975 let scale_factor = self.scale_factor();
2976 let height = if style.wavy {
2977 style.thickness * 3.
2978 } else {
2979 style.thickness
2980 };
2981 let bounds = Bounds {
2982 origin,
2983 size: size(width, height),
2984 };
2985 let content_mask = self.content_mask();
2986 let element_opacity = self.element_opacity();
2987
2988 self.next_frame.scene.insert_primitive(Underline {
2989 order: 0,
2990 pad: 0,
2991 bounds: bounds.scale(scale_factor),
2992 content_mask: content_mask.scale(scale_factor),
2993 color: style.color.unwrap_or_default().opacity(element_opacity),
2994 thickness: style.thickness.scale(scale_factor),
2995 wavy: if style.wavy { 1 } else { 0 },
2996 });
2997 }
2998
2999 /// Paint a strikethrough into the scene for the next frame at the current z-index.
3000 ///
3001 /// This method should only be called as part of the paint phase of element drawing.
3002 pub fn paint_strikethrough(
3003 &mut self,
3004 origin: Point<Pixels>,
3005 width: Pixels,
3006 style: &StrikethroughStyle,
3007 ) {
3008 self.invalidator.debug_assert_paint();
3009
3010 let scale_factor = self.scale_factor();
3011 let height = style.thickness;
3012 let bounds = Bounds {
3013 origin,
3014 size: size(width, height),
3015 };
3016 let content_mask = self.content_mask();
3017 let opacity = self.element_opacity();
3018
3019 self.next_frame.scene.insert_primitive(Underline {
3020 order: 0,
3021 pad: 0,
3022 bounds: bounds.scale(scale_factor),
3023 content_mask: content_mask.scale(scale_factor),
3024 thickness: style.thickness.scale(scale_factor),
3025 color: style.color.unwrap_or_default().opacity(opacity),
3026 wavy: 0,
3027 });
3028 }
3029
3030 /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
3031 ///
3032 /// The y component of the origin is the baseline of the glyph.
3033 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3034 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3035 /// This method is only useful if you need to paint a single glyph that has already been shaped.
3036 ///
3037 /// This method should only be called as part of the paint phase of element drawing.
3038 pub fn paint_glyph(
3039 &mut self,
3040 origin: Point<Pixels>,
3041 font_id: FontId,
3042 glyph_id: GlyphId,
3043 font_size: Pixels,
3044 color: Hsla,
3045 ) -> Result<()> {
3046 self.invalidator.debug_assert_paint();
3047
3048 let element_opacity = self.element_opacity();
3049 let scale_factor = self.scale_factor();
3050 let glyph_origin = origin.scale(scale_factor);
3051
3052 let subpixel_variant = Point {
3053 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS_X as f32).floor() as u8,
3054 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS_Y as f32).floor() as u8,
3055 };
3056 let params = RenderGlyphParams {
3057 font_id,
3058 glyph_id,
3059 font_size,
3060 subpixel_variant,
3061 scale_factor,
3062 is_emoji: false,
3063 };
3064
3065 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
3066 if !raster_bounds.is_zero() {
3067 let tile = self
3068 .sprite_atlas
3069 .get_or_insert_with(¶ms.clone().into(), &mut || {
3070 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
3071 Ok(Some((size, Cow::Owned(bytes))))
3072 })?
3073 .expect("Callback above only errors or returns Some");
3074 let bounds = Bounds {
3075 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3076 size: tile.bounds.size.map(Into::into),
3077 };
3078 let content_mask = self.content_mask().scale(scale_factor);
3079 self.next_frame.scene.insert_primitive(MonochromeSprite {
3080 order: 0,
3081 pad: 0,
3082 bounds,
3083 content_mask,
3084 color: color.opacity(element_opacity),
3085 tile,
3086 transformation: TransformationMatrix::unit(),
3087 });
3088 }
3089 Ok(())
3090 }
3091
3092 /// Paints an emoji glyph into the scene for the next frame at the current z-index.
3093 ///
3094 /// The y component of the origin is the baseline of the glyph.
3095 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3096 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3097 /// This method is only useful if you need to paint a single emoji that has already been shaped.
3098 ///
3099 /// This method should only be called as part of the paint phase of element drawing.
3100 pub fn paint_emoji(
3101 &mut self,
3102 origin: Point<Pixels>,
3103 font_id: FontId,
3104 glyph_id: GlyphId,
3105 font_size: Pixels,
3106 ) -> Result<()> {
3107 self.invalidator.debug_assert_paint();
3108
3109 let scale_factor = self.scale_factor();
3110 let glyph_origin = origin.scale(scale_factor);
3111 let params = RenderGlyphParams {
3112 font_id,
3113 glyph_id,
3114 font_size,
3115 // We don't render emojis with subpixel variants.
3116 subpixel_variant: Default::default(),
3117 scale_factor,
3118 is_emoji: true,
3119 };
3120
3121 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
3122 if !raster_bounds.is_zero() {
3123 let tile = self
3124 .sprite_atlas
3125 .get_or_insert_with(¶ms.clone().into(), &mut || {
3126 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
3127 Ok(Some((size, Cow::Owned(bytes))))
3128 })?
3129 .expect("Callback above only errors or returns Some");
3130
3131 let bounds = Bounds {
3132 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3133 size: tile.bounds.size.map(Into::into),
3134 };
3135 let content_mask = self.content_mask().scale(scale_factor);
3136 let opacity = self.element_opacity();
3137
3138 self.next_frame.scene.insert_primitive(PolychromeSprite {
3139 order: 0,
3140 pad: 0,
3141 grayscale: false,
3142 bounds,
3143 corner_radii: Default::default(),
3144 content_mask,
3145 tile,
3146 opacity,
3147 });
3148 }
3149 Ok(())
3150 }
3151
3152 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
3153 ///
3154 /// This method should only be called as part of the paint phase of element drawing.
3155 pub fn paint_svg(
3156 &mut self,
3157 bounds: Bounds<Pixels>,
3158 path: SharedString,
3159 mut data: Option<&[u8]>,
3160 transformation: TransformationMatrix,
3161 color: Hsla,
3162 cx: &App,
3163 ) -> Result<()> {
3164 self.invalidator.debug_assert_paint();
3165
3166 let element_opacity = self.element_opacity();
3167 let scale_factor = self.scale_factor();
3168
3169 let bounds = bounds.scale(scale_factor);
3170 let params = RenderSvgParams {
3171 path,
3172 size: bounds.size.map(|pixels| {
3173 DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
3174 }),
3175 };
3176
3177 let Some(tile) =
3178 self.sprite_atlas
3179 .get_or_insert_with(¶ms.clone().into(), &mut || {
3180 let Some((size, bytes)) = cx.svg_renderer.render_alpha_mask(¶ms, data)?
3181 else {
3182 return Ok(None);
3183 };
3184 Ok(Some((size, Cow::Owned(bytes))))
3185 })?
3186 else {
3187 return Ok(());
3188 };
3189 let content_mask = self.content_mask().scale(scale_factor);
3190 let svg_bounds = Bounds {
3191 origin: bounds.center()
3192 - Point::new(
3193 ScaledPixels(tile.bounds.size.width.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3194 ScaledPixels(tile.bounds.size.height.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3195 ),
3196 size: tile
3197 .bounds
3198 .size
3199 .map(|value| ScaledPixels(value.0 as f32 / SMOOTH_SVG_SCALE_FACTOR)),
3200 };
3201
3202 self.next_frame.scene.insert_primitive(MonochromeSprite {
3203 order: 0,
3204 pad: 0,
3205 bounds: svg_bounds
3206 .map_origin(|origin| origin.round())
3207 .map_size(|size| size.ceil()),
3208 content_mask,
3209 color: color.opacity(element_opacity),
3210 tile,
3211 transformation,
3212 });
3213
3214 Ok(())
3215 }
3216
3217 /// Paint an image into the scene for the next frame at the current z-index.
3218 /// This method will panic if the frame_index is not valid
3219 ///
3220 /// This method should only be called as part of the paint phase of element drawing.
3221 pub fn paint_image(
3222 &mut self,
3223 bounds: Bounds<Pixels>,
3224 corner_radii: Corners<Pixels>,
3225 data: Arc<RenderImage>,
3226 frame_index: usize,
3227 grayscale: bool,
3228 ) -> Result<()> {
3229 self.invalidator.debug_assert_paint();
3230
3231 let scale_factor = self.scale_factor();
3232 let bounds = bounds.scale(scale_factor);
3233 let params = RenderImageParams {
3234 image_id: data.id,
3235 frame_index,
3236 };
3237
3238 let tile = self
3239 .sprite_atlas
3240 .get_or_insert_with(¶ms.into(), &mut || {
3241 Ok(Some((
3242 data.size(frame_index),
3243 Cow::Borrowed(
3244 data.as_bytes(frame_index)
3245 .expect("It's the caller's job to pass a valid frame index"),
3246 ),
3247 )))
3248 })?
3249 .expect("Callback above only returns Some");
3250 let content_mask = self.content_mask().scale(scale_factor);
3251 let corner_radii = corner_radii.scale(scale_factor);
3252 let opacity = self.element_opacity();
3253
3254 self.next_frame.scene.insert_primitive(PolychromeSprite {
3255 order: 0,
3256 pad: 0,
3257 grayscale,
3258 bounds: bounds
3259 .map_origin(|origin| origin.floor())
3260 .map_size(|size| size.ceil()),
3261 content_mask,
3262 corner_radii,
3263 tile,
3264 opacity,
3265 });
3266 Ok(())
3267 }
3268
3269 /// Paint a surface into the scene for the next frame at the current z-index.
3270 ///
3271 /// This method should only be called as part of the paint phase of element drawing.
3272 #[cfg(target_os = "macos")]
3273 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
3274 use crate::PaintSurface;
3275
3276 self.invalidator.debug_assert_paint();
3277
3278 let scale_factor = self.scale_factor();
3279 let bounds = bounds.scale(scale_factor);
3280 let content_mask = self.content_mask().scale(scale_factor);
3281 self.next_frame.scene.insert_primitive(PaintSurface {
3282 order: 0,
3283 bounds,
3284 content_mask,
3285 image_buffer,
3286 });
3287 }
3288
3289 /// Removes an image from the sprite atlas.
3290 pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
3291 for frame_index in 0..data.frame_count() {
3292 let params = RenderImageParams {
3293 image_id: data.id,
3294 frame_index,
3295 };
3296
3297 self.sprite_atlas.remove(¶ms.clone().into());
3298 }
3299
3300 Ok(())
3301 }
3302
3303 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
3304 /// layout is being requested, along with the layout ids of any children. This method is called during
3305 /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
3306 ///
3307 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3308 #[must_use]
3309 pub fn request_layout(
3310 &mut self,
3311 style: Style,
3312 children: impl IntoIterator<Item = LayoutId>,
3313 cx: &mut App,
3314 ) -> LayoutId {
3315 self.invalidator.debug_assert_prepaint();
3316
3317 cx.layout_id_buffer.clear();
3318 cx.layout_id_buffer.extend(children);
3319 let rem_size = self.rem_size();
3320 let scale_factor = self.scale_factor();
3321
3322 self.layout_engine.as_mut().unwrap().request_layout(
3323 style,
3324 rem_size,
3325 scale_factor,
3326 &cx.layout_id_buffer,
3327 )
3328 }
3329
3330 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
3331 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
3332 /// determine the element's size. One place this is used internally is when measuring text.
3333 ///
3334 /// The given closure is invoked at layout time with the known dimensions and available space and
3335 /// returns a `Size`.
3336 ///
3337 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3338 pub fn request_measured_layout<F>(&mut self, style: Style, measure: F) -> LayoutId
3339 where
3340 F: Fn(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
3341 + 'static,
3342 {
3343 self.invalidator.debug_assert_prepaint();
3344
3345 let rem_size = self.rem_size();
3346 let scale_factor = self.scale_factor();
3347 self.layout_engine
3348 .as_mut()
3349 .unwrap()
3350 .request_measured_layout(style, rem_size, scale_factor, measure)
3351 }
3352
3353 /// Compute the layout for the given id within the given available space.
3354 /// This method is called for its side effect, typically by the framework prior to painting.
3355 /// After calling it, you can request the bounds of the given layout node id or any descendant.
3356 ///
3357 /// This method should only be called as part of the prepaint phase of element drawing.
3358 pub fn compute_layout(
3359 &mut self,
3360 layout_id: LayoutId,
3361 available_space: Size<AvailableSpace>,
3362 cx: &mut App,
3363 ) {
3364 self.invalidator.debug_assert_prepaint();
3365
3366 let mut layout_engine = self.layout_engine.take().unwrap();
3367 layout_engine.compute_layout(layout_id, available_space, self, cx);
3368 self.layout_engine = Some(layout_engine);
3369 }
3370
3371 /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
3372 /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
3373 ///
3374 /// This method should only be called as part of element drawing.
3375 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
3376 self.invalidator.debug_assert_prepaint();
3377
3378 let scale_factor = self.scale_factor();
3379 let mut bounds = self
3380 .layout_engine
3381 .as_mut()
3382 .unwrap()
3383 .layout_bounds(layout_id, scale_factor)
3384 .map(Into::into);
3385 bounds.origin += self.element_offset();
3386 bounds
3387 }
3388
3389 /// This method should be called during `prepaint`. You can use
3390 /// the returned [Hitbox] during `paint` or in an event handler
3391 /// to determine whether the inserted hitbox was the topmost.
3392 ///
3393 /// This method should only be called as part of the prepaint phase of element drawing.
3394 pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
3395 self.invalidator.debug_assert_prepaint();
3396
3397 let content_mask = self.content_mask();
3398 let mut id = self.next_hitbox_id;
3399 self.next_hitbox_id = self.next_hitbox_id.next();
3400 let hitbox = Hitbox {
3401 id,
3402 bounds,
3403 content_mask,
3404 behavior,
3405 };
3406 self.next_frame.hitboxes.push(hitbox.clone());
3407 hitbox
3408 }
3409
3410 /// Set a hitbox which will act as a control area of the platform window.
3411 ///
3412 /// This method should only be called as part of the paint phase of element drawing.
3413 pub fn insert_window_control_hitbox(&mut self, area: WindowControlArea, hitbox: Hitbox) {
3414 self.invalidator.debug_assert_paint();
3415 self.next_frame.window_control_hitboxes.push((area, hitbox));
3416 }
3417
3418 /// Sets the key context for the current element. This context will be used to translate
3419 /// keybindings into actions.
3420 ///
3421 /// This method should only be called as part of the paint phase of element drawing.
3422 pub fn set_key_context(&mut self, context: KeyContext) {
3423 self.invalidator.debug_assert_paint();
3424 self.next_frame.dispatch_tree.set_key_context(context);
3425 }
3426
3427 /// Sets the focus handle for the current element. This handle will be used to manage focus state
3428 /// and keyboard event dispatch for the element.
3429 ///
3430 /// This method should only be called as part of the prepaint phase of element drawing.
3431 pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3432 self.invalidator.debug_assert_prepaint();
3433 if focus_handle.is_focused(self) {
3434 self.next_frame.focus = Some(focus_handle.id);
3435 }
3436 self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3437 }
3438
3439 /// Sets the view id for the current element, which will be used to manage view caching.
3440 ///
3441 /// This method should only be called as part of element prepaint. We plan on removing this
3442 /// method eventually when we solve some issues that require us to construct editor elements
3443 /// directly instead of always using editors via views.
3444 pub fn set_view_id(&mut self, view_id: EntityId) {
3445 self.invalidator.debug_assert_prepaint();
3446 self.next_frame.dispatch_tree.set_view_id(view_id);
3447 }
3448
3449 /// Get the entity ID for the currently rendering view
3450 pub fn current_view(&self) -> EntityId {
3451 self.invalidator.debug_assert_paint_or_prepaint();
3452 self.rendered_entity_stack.last().copied().unwrap()
3453 }
3454
3455 pub(crate) fn with_rendered_view<R>(
3456 &mut self,
3457 id: EntityId,
3458 f: impl FnOnce(&mut Self) -> R,
3459 ) -> R {
3460 self.rendered_entity_stack.push(id);
3461 let result = f(self);
3462 self.rendered_entity_stack.pop();
3463 result
3464 }
3465
3466 /// Executes the provided function with the specified image cache.
3467 pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3468 where
3469 F: FnOnce(&mut Self) -> R,
3470 {
3471 if let Some(image_cache) = image_cache {
3472 self.image_cache_stack.push(image_cache);
3473 let result = f(self);
3474 self.image_cache_stack.pop();
3475 result
3476 } else {
3477 f(self)
3478 }
3479 }
3480
3481 /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3482 /// platform to receive textual input with proper integration with concerns such
3483 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3484 /// rendered.
3485 ///
3486 /// This method should only be called as part of the paint phase of element drawing.
3487 ///
3488 /// [element_input_handler]: crate::ElementInputHandler
3489 pub fn handle_input(
3490 &mut self,
3491 focus_handle: &FocusHandle,
3492 input_handler: impl InputHandler,
3493 cx: &App,
3494 ) {
3495 self.invalidator.debug_assert_paint();
3496
3497 if focus_handle.is_focused(self) {
3498 let cx = self.to_async(cx);
3499 self.next_frame
3500 .input_handlers
3501 .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3502 }
3503 }
3504
3505 /// Register a mouse event listener on the window for the next frame. The type of event
3506 /// is determined by the first parameter of the given listener. When the next frame is rendered
3507 /// the listener will be cleared.
3508 ///
3509 /// This method should only be called as part of the paint phase of element drawing.
3510 pub fn on_mouse_event<Event: MouseEvent>(
3511 &mut self,
3512 mut listener: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3513 ) {
3514 self.invalidator.debug_assert_paint();
3515
3516 self.next_frame.mouse_listeners.push(Some(Box::new(
3517 move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3518 if let Some(event) = event.downcast_ref() {
3519 listener(event, phase, window, cx)
3520 }
3521 },
3522 )));
3523 }
3524
3525 /// Register a key event listener on this node for the next frame. The type of event
3526 /// is determined by the first parameter of the given listener. When the next frame is rendered
3527 /// the listener will be cleared.
3528 ///
3529 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3530 /// a specific need to register a listener yourself.
3531 ///
3532 /// This method should only be called as part of the paint phase of element drawing.
3533 pub fn on_key_event<Event: KeyEvent>(
3534 &mut self,
3535 listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3536 ) {
3537 self.invalidator.debug_assert_paint();
3538
3539 self.next_frame.dispatch_tree.on_key_event(Rc::new(
3540 move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3541 if let Some(event) = event.downcast_ref::<Event>() {
3542 listener(event, phase, window, cx)
3543 }
3544 },
3545 ));
3546 }
3547
3548 /// Register a modifiers changed event listener on the window for the next frame.
3549 ///
3550 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3551 /// a specific need to register a global listener.
3552 ///
3553 /// This method should only be called as part of the paint phase of element drawing.
3554 pub fn on_modifiers_changed(
3555 &mut self,
3556 listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3557 ) {
3558 self.invalidator.debug_assert_paint();
3559
3560 self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3561 move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3562 listener(event, window, cx)
3563 },
3564 ));
3565 }
3566
3567 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3568 /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3569 /// Returns a subscription and persists until the subscription is dropped.
3570 pub fn on_focus_in(
3571 &mut self,
3572 handle: &FocusHandle,
3573 cx: &mut App,
3574 mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3575 ) -> Subscription {
3576 let focus_id = handle.id;
3577 let (subscription, activate) =
3578 self.new_focus_listener(Box::new(move |event, window, cx| {
3579 if event.is_focus_in(focus_id) {
3580 listener(window, cx);
3581 }
3582 true
3583 }));
3584 cx.defer(move |_| activate());
3585 subscription
3586 }
3587
3588 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3589 /// Returns a subscription and persists until the subscription is dropped.
3590 pub fn on_focus_out(
3591 &mut self,
3592 handle: &FocusHandle,
3593 cx: &mut App,
3594 mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3595 ) -> Subscription {
3596 let focus_id = handle.id;
3597 let (subscription, activate) =
3598 self.new_focus_listener(Box::new(move |event, window, cx| {
3599 if let Some(blurred_id) = event.previous_focus_path.last().copied()
3600 && event.is_focus_out(focus_id)
3601 {
3602 let event = FocusOutEvent {
3603 blurred: WeakFocusHandle {
3604 id: blurred_id,
3605 handles: Arc::downgrade(&cx.focus_handles),
3606 },
3607 };
3608 listener(event, window, cx)
3609 }
3610 true
3611 }));
3612 cx.defer(move |_| activate());
3613 subscription
3614 }
3615
3616 fn reset_cursor_style(&self, cx: &mut App) {
3617 // Set the cursor only if we're the active window.
3618 if self.is_window_hovered() {
3619 let style = self
3620 .rendered_frame
3621 .cursor_style(self)
3622 .unwrap_or(CursorStyle::Arrow);
3623 cx.platform.set_cursor_style(style);
3624 }
3625 }
3626
3627 /// Dispatch a given keystroke as though the user had typed it.
3628 /// You can create a keystroke with Keystroke::parse("").
3629 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3630 let keystroke = keystroke.with_simulated_ime();
3631 let result = self.dispatch_event(
3632 PlatformInput::KeyDown(KeyDownEvent {
3633 keystroke: keystroke.clone(),
3634 is_held: false,
3635 prefer_character_input: false,
3636 }),
3637 cx,
3638 );
3639 if !result.propagate {
3640 return true;
3641 }
3642
3643 if let Some(input) = keystroke.key_char
3644 && let Some(mut input_handler) = self.platform_window.take_input_handler()
3645 {
3646 input_handler.dispatch_input(&input, self, cx);
3647 self.platform_window.set_input_handler(input_handler);
3648 return true;
3649 }
3650
3651 false
3652 }
3653
3654 /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3655 /// binding for the action (last binding added to the keymap).
3656 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3657 self.highest_precedence_binding_for_action(action)
3658 .map(|binding| {
3659 binding
3660 .keystrokes()
3661 .iter()
3662 .map(ToString::to_string)
3663 .collect::<Vec<_>>()
3664 .join(" ")
3665 })
3666 .unwrap_or_else(|| action.name().to_string())
3667 }
3668
3669 /// Dispatch a mouse or keyboard event on the window.
3670 #[profiling::function]
3671 pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3672 self.last_input_timestamp.set(Instant::now());
3673
3674 // Track whether this input was keyboard-based for focus-visible styling
3675 self.last_input_modality = match &event {
3676 PlatformInput::KeyDown(_) | PlatformInput::ModifiersChanged(_) => {
3677 InputModality::Keyboard
3678 }
3679 PlatformInput::MouseDown(e) if e.is_focusing() => InputModality::Mouse,
3680 _ => self.last_input_modality,
3681 };
3682
3683 // Handlers may set this to false by calling `stop_propagation`.
3684 cx.propagate_event = true;
3685 // Handlers may set this to true by calling `prevent_default`.
3686 self.default_prevented = false;
3687
3688 let event = match event {
3689 // Track the mouse position with our own state, since accessing the platform
3690 // API for the mouse position can only occur on the main thread.
3691 PlatformInput::MouseMove(mouse_move) => {
3692 self.mouse_position = mouse_move.position;
3693 self.modifiers = mouse_move.modifiers;
3694 PlatformInput::MouseMove(mouse_move)
3695 }
3696 PlatformInput::MouseDown(mouse_down) => {
3697 self.mouse_position = mouse_down.position;
3698 self.modifiers = mouse_down.modifiers;
3699 PlatformInput::MouseDown(mouse_down)
3700 }
3701 PlatformInput::MouseUp(mouse_up) => {
3702 self.mouse_position = mouse_up.position;
3703 self.modifiers = mouse_up.modifiers;
3704 PlatformInput::MouseUp(mouse_up)
3705 }
3706 PlatformInput::MouseExited(mouse_exited) => {
3707 self.modifiers = mouse_exited.modifiers;
3708 PlatformInput::MouseExited(mouse_exited)
3709 }
3710 PlatformInput::ModifiersChanged(modifiers_changed) => {
3711 self.modifiers = modifiers_changed.modifiers;
3712 self.capslock = modifiers_changed.capslock;
3713 PlatformInput::ModifiersChanged(modifiers_changed)
3714 }
3715 PlatformInput::ScrollWheel(scroll_wheel) => {
3716 self.mouse_position = scroll_wheel.position;
3717 self.modifiers = scroll_wheel.modifiers;
3718 PlatformInput::ScrollWheel(scroll_wheel)
3719 }
3720 // Translate dragging and dropping of external files from the operating system
3721 // to internal drag and drop events.
3722 PlatformInput::FileDrop(file_drop) => match file_drop {
3723 FileDropEvent::Entered { position, paths } => {
3724 self.mouse_position = position;
3725 if cx.active_drag.is_none() {
3726 cx.active_drag = Some(AnyDrag {
3727 value: Arc::new(paths.clone()),
3728 view: cx.new(|_| paths).into(),
3729 cursor_offset: position,
3730 cursor_style: None,
3731 });
3732 }
3733 PlatformInput::MouseMove(MouseMoveEvent {
3734 position,
3735 pressed_button: Some(MouseButton::Left),
3736 modifiers: Modifiers::default(),
3737 })
3738 }
3739 FileDropEvent::Pending { position } => {
3740 self.mouse_position = position;
3741 PlatformInput::MouseMove(MouseMoveEvent {
3742 position,
3743 pressed_button: Some(MouseButton::Left),
3744 modifiers: Modifiers::default(),
3745 })
3746 }
3747 FileDropEvent::Submit { position } => {
3748 cx.activate(true);
3749 self.mouse_position = position;
3750 PlatformInput::MouseUp(MouseUpEvent {
3751 button: MouseButton::Left,
3752 position,
3753 modifiers: Modifiers::default(),
3754 click_count: 1,
3755 })
3756 }
3757 FileDropEvent::Exited => {
3758 cx.active_drag.take();
3759 PlatformInput::FileDrop(FileDropEvent::Exited)
3760 }
3761 },
3762 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3763 };
3764
3765 if let Some(any_mouse_event) = event.mouse_event() {
3766 self.dispatch_mouse_event(any_mouse_event, cx);
3767 } else if let Some(any_key_event) = event.keyboard_event() {
3768 self.dispatch_key_event(any_key_event, cx);
3769 }
3770
3771 DispatchEventResult {
3772 propagate: cx.propagate_event,
3773 default_prevented: self.default_prevented,
3774 }
3775 }
3776
3777 fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3778 let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3779 if hit_test != self.mouse_hit_test {
3780 self.mouse_hit_test = hit_test;
3781 self.reset_cursor_style(cx);
3782 }
3783
3784 #[cfg(any(feature = "inspector", debug_assertions))]
3785 if self.is_inspector_picking(cx) {
3786 self.handle_inspector_mouse_event(event, cx);
3787 // When inspector is picking, all other mouse handling is skipped.
3788 return;
3789 }
3790
3791 let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3792
3793 // Capture phase, events bubble from back to front. Handlers for this phase are used for
3794 // special purposes, such as detecting events outside of a given Bounds.
3795 for listener in &mut mouse_listeners {
3796 let listener = listener.as_mut().unwrap();
3797 listener(event, DispatchPhase::Capture, self, cx);
3798 if !cx.propagate_event {
3799 break;
3800 }
3801 }
3802
3803 // Bubble phase, where most normal handlers do their work.
3804 if cx.propagate_event {
3805 for listener in mouse_listeners.iter_mut().rev() {
3806 let listener = listener.as_mut().unwrap();
3807 listener(event, DispatchPhase::Bubble, self, cx);
3808 if !cx.propagate_event {
3809 break;
3810 }
3811 }
3812 }
3813
3814 self.rendered_frame.mouse_listeners = mouse_listeners;
3815
3816 if cx.has_active_drag() {
3817 if event.is::<MouseMoveEvent>() {
3818 // If this was a mouse move event, redraw the window so that the
3819 // active drag can follow the mouse cursor.
3820 self.refresh();
3821 } else if event.is::<MouseUpEvent>() {
3822 // If this was a mouse up event, cancel the active drag and redraw
3823 // the window.
3824 cx.active_drag = None;
3825 self.refresh();
3826 }
3827 }
3828 }
3829
3830 fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3831 if self.invalidator.is_dirty() {
3832 self.draw(cx).clear();
3833 }
3834
3835 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3836 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3837
3838 let mut keystroke: Option<Keystroke> = None;
3839
3840 if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3841 if event.modifiers.number_of_modifiers() == 0
3842 && self.pending_modifier.modifiers.number_of_modifiers() == 1
3843 && !self.pending_modifier.saw_keystroke
3844 {
3845 let key = match self.pending_modifier.modifiers {
3846 modifiers if modifiers.shift => Some("shift"),
3847 modifiers if modifiers.control => Some("control"),
3848 modifiers if modifiers.alt => Some("alt"),
3849 modifiers if modifiers.platform => Some("platform"),
3850 modifiers if modifiers.function => Some("function"),
3851 _ => None,
3852 };
3853 if let Some(key) = key {
3854 keystroke = Some(Keystroke {
3855 key: key.to_string(),
3856 key_char: None,
3857 modifiers: Modifiers::default(),
3858 });
3859 }
3860 }
3861
3862 if self.pending_modifier.modifiers.number_of_modifiers() == 0
3863 && event.modifiers.number_of_modifiers() == 1
3864 {
3865 self.pending_modifier.saw_keystroke = false
3866 }
3867 self.pending_modifier.modifiers = event.modifiers
3868 } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3869 self.pending_modifier.saw_keystroke = true;
3870 keystroke = Some(key_down_event.keystroke.clone());
3871 }
3872
3873 let Some(keystroke) = keystroke else {
3874 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3875 return;
3876 };
3877
3878 cx.propagate_event = true;
3879 self.dispatch_keystroke_interceptors(event, self.context_stack(), cx);
3880 if !cx.propagate_event {
3881 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3882 return;
3883 }
3884
3885 let mut currently_pending = self.pending_input.take().unwrap_or_default();
3886 if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3887 currently_pending = PendingInput::default();
3888 }
3889
3890 let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3891 currently_pending.keystrokes,
3892 keystroke,
3893 &dispatch_path,
3894 );
3895
3896 if !match_result.to_replay.is_empty() {
3897 self.replay_pending_input(match_result.to_replay, cx);
3898 cx.propagate_event = true;
3899 }
3900
3901 if !match_result.pending.is_empty() {
3902 currently_pending.timer.take();
3903 currently_pending.keystrokes = match_result.pending;
3904 currently_pending.focus = self.focus;
3905
3906 let text_input_requires_timeout = event
3907 .downcast_ref::<KeyDownEvent>()
3908 .filter(|key_down| key_down.keystroke.key_char.is_some())
3909 .and_then(|_| self.platform_window.take_input_handler())
3910 .map_or(false, |mut input_handler| {
3911 let accepts = input_handler.accepts_text_input(self, cx);
3912 self.platform_window.set_input_handler(input_handler);
3913 accepts
3914 });
3915
3916 currently_pending.needs_timeout |=
3917 match_result.pending_has_binding || text_input_requires_timeout;
3918
3919 if currently_pending.needs_timeout {
3920 currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3921 cx.background_executor.timer(Duration::from_secs(1)).await;
3922 cx.update(move |window, cx| {
3923 let Some(currently_pending) = window
3924 .pending_input
3925 .take()
3926 .filter(|pending| pending.focus == window.focus)
3927 else {
3928 return;
3929 };
3930
3931 let node_id = window.focus_node_id_in_rendered_frame(window.focus);
3932 let dispatch_path =
3933 window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3934
3935 let to_replay = window
3936 .rendered_frame
3937 .dispatch_tree
3938 .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3939
3940 window.pending_input_changed(cx);
3941 window.replay_pending_input(to_replay, cx)
3942 })
3943 .log_err();
3944 }));
3945 } else {
3946 currently_pending.timer = None;
3947 }
3948 self.pending_input = Some(currently_pending);
3949 self.pending_input_changed(cx);
3950 cx.propagate_event = false;
3951 return;
3952 }
3953
3954 let skip_bindings = event
3955 .downcast_ref::<KeyDownEvent>()
3956 .filter(|key_down_event| key_down_event.prefer_character_input)
3957 .map(|_| {
3958 self.platform_window
3959 .take_input_handler()
3960 .map_or(false, |mut input_handler| {
3961 let accepts = input_handler.accepts_text_input(self, cx);
3962 self.platform_window.set_input_handler(input_handler);
3963 // If modifiers are not excessive (e.g. AltGr), and the input handler is accepting text input,
3964 // we prefer the text input over bindings.
3965 accepts
3966 })
3967 })
3968 .unwrap_or(false);
3969
3970 if !skip_bindings {
3971 for binding in match_result.bindings {
3972 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3973 if !cx.propagate_event {
3974 self.dispatch_keystroke_observers(
3975 event,
3976 Some(binding.action),
3977 match_result.context_stack,
3978 cx,
3979 );
3980 self.pending_input_changed(cx);
3981 return;
3982 }
3983 }
3984 }
3985
3986 self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
3987 self.pending_input_changed(cx);
3988 }
3989
3990 fn finish_dispatch_key_event(
3991 &mut self,
3992 event: &dyn Any,
3993 dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3994 context_stack: Vec<KeyContext>,
3995 cx: &mut App,
3996 ) {
3997 self.dispatch_key_down_up_event(event, &dispatch_path, cx);
3998 if !cx.propagate_event {
3999 return;
4000 }
4001
4002 self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
4003 if !cx.propagate_event {
4004 return;
4005 }
4006
4007 self.dispatch_keystroke_observers(event, None, context_stack, cx);
4008 }
4009
4010 fn pending_input_changed(&mut self, cx: &mut App) {
4011 self.pending_input_observers
4012 .clone()
4013 .retain(&(), |callback| callback(self, cx));
4014 }
4015
4016 fn dispatch_key_down_up_event(
4017 &mut self,
4018 event: &dyn Any,
4019 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
4020 cx: &mut App,
4021 ) {
4022 // Capture phase
4023 for node_id in dispatch_path {
4024 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4025
4026 for key_listener in node.key_listeners.clone() {
4027 key_listener(event, DispatchPhase::Capture, self, cx);
4028 if !cx.propagate_event {
4029 return;
4030 }
4031 }
4032 }
4033
4034 // Bubble phase
4035 for node_id in dispatch_path.iter().rev() {
4036 // Handle low level key events
4037 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4038 for key_listener in node.key_listeners.clone() {
4039 key_listener(event, DispatchPhase::Bubble, self, cx);
4040 if !cx.propagate_event {
4041 return;
4042 }
4043 }
4044 }
4045 }
4046
4047 fn dispatch_modifiers_changed_event(
4048 &mut self,
4049 event: &dyn Any,
4050 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
4051 cx: &mut App,
4052 ) {
4053 let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
4054 return;
4055 };
4056 for node_id in dispatch_path.iter().rev() {
4057 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4058 for listener in node.modifiers_changed_listeners.clone() {
4059 listener(event, self, cx);
4060 if !cx.propagate_event {
4061 return;
4062 }
4063 }
4064 }
4065 }
4066
4067 /// Determine whether a potential multi-stroke key binding is in progress on this window.
4068 pub fn has_pending_keystrokes(&self) -> bool {
4069 self.pending_input.is_some()
4070 }
4071
4072 pub(crate) fn clear_pending_keystrokes(&mut self) {
4073 self.pending_input.take();
4074 }
4075
4076 /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
4077 pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
4078 self.pending_input
4079 .as_ref()
4080 .map(|pending_input| pending_input.keystrokes.as_slice())
4081 }
4082
4083 fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
4084 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4085 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
4086
4087 'replay: for replay in replays {
4088 let event = KeyDownEvent {
4089 keystroke: replay.keystroke.clone(),
4090 is_held: false,
4091 prefer_character_input: true,
4092 };
4093
4094 cx.propagate_event = true;
4095 for binding in replay.bindings {
4096 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
4097 if !cx.propagate_event {
4098 self.dispatch_keystroke_observers(
4099 &event,
4100 Some(binding.action),
4101 Vec::default(),
4102 cx,
4103 );
4104 continue 'replay;
4105 }
4106 }
4107
4108 self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
4109 if !cx.propagate_event {
4110 continue 'replay;
4111 }
4112 if let Some(input) = replay.keystroke.key_char.as_ref().cloned()
4113 && let Some(mut input_handler) = self.platform_window.take_input_handler()
4114 {
4115 input_handler.dispatch_input(&input, self, cx);
4116 self.platform_window.set_input_handler(input_handler)
4117 }
4118 }
4119 }
4120
4121 fn focus_node_id_in_rendered_frame(&self, focus_id: Option<FocusId>) -> DispatchNodeId {
4122 focus_id
4123 .and_then(|focus_id| {
4124 self.rendered_frame
4125 .dispatch_tree
4126 .focusable_node_id(focus_id)
4127 })
4128 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id())
4129 }
4130
4131 fn dispatch_action_on_node(
4132 &mut self,
4133 node_id: DispatchNodeId,
4134 action: &dyn Action,
4135 cx: &mut App,
4136 ) {
4137 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
4138
4139 // Capture phase for global actions.
4140 cx.propagate_event = true;
4141 if let Some(mut global_listeners) = cx
4142 .global_action_listeners
4143 .remove(&action.as_any().type_id())
4144 {
4145 for listener in &global_listeners {
4146 listener(action.as_any(), DispatchPhase::Capture, cx);
4147 if !cx.propagate_event {
4148 break;
4149 }
4150 }
4151
4152 global_listeners.extend(
4153 cx.global_action_listeners
4154 .remove(&action.as_any().type_id())
4155 .unwrap_or_default(),
4156 );
4157
4158 cx.global_action_listeners
4159 .insert(action.as_any().type_id(), global_listeners);
4160 }
4161
4162 if !cx.propagate_event {
4163 return;
4164 }
4165
4166 // Capture phase for window actions.
4167 for node_id in &dispatch_path {
4168 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4169 for DispatchActionListener {
4170 action_type,
4171 listener,
4172 } in node.action_listeners.clone()
4173 {
4174 let any_action = action.as_any();
4175 if action_type == any_action.type_id() {
4176 listener(any_action, DispatchPhase::Capture, self, cx);
4177
4178 if !cx.propagate_event {
4179 return;
4180 }
4181 }
4182 }
4183 }
4184
4185 // Bubble phase for window actions.
4186 for node_id in dispatch_path.iter().rev() {
4187 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4188 for DispatchActionListener {
4189 action_type,
4190 listener,
4191 } in node.action_listeners.clone()
4192 {
4193 let any_action = action.as_any();
4194 if action_type == any_action.type_id() {
4195 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4196 listener(any_action, DispatchPhase::Bubble, self, cx);
4197
4198 if !cx.propagate_event {
4199 return;
4200 }
4201 }
4202 }
4203 }
4204
4205 // Bubble phase for global actions.
4206 if let Some(mut global_listeners) = cx
4207 .global_action_listeners
4208 .remove(&action.as_any().type_id())
4209 {
4210 for listener in global_listeners.iter().rev() {
4211 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4212
4213 listener(action.as_any(), DispatchPhase::Bubble, cx);
4214 if !cx.propagate_event {
4215 break;
4216 }
4217 }
4218
4219 global_listeners.extend(
4220 cx.global_action_listeners
4221 .remove(&action.as_any().type_id())
4222 .unwrap_or_default(),
4223 );
4224
4225 cx.global_action_listeners
4226 .insert(action.as_any().type_id(), global_listeners);
4227 }
4228 }
4229
4230 /// Register the given handler to be invoked whenever the global of the given type
4231 /// is updated.
4232 pub fn observe_global<G: Global>(
4233 &mut self,
4234 cx: &mut App,
4235 f: impl Fn(&mut Window, &mut App) + 'static,
4236 ) -> Subscription {
4237 let window_handle = self.handle;
4238 let (subscription, activate) = cx.global_observers.insert(
4239 TypeId::of::<G>(),
4240 Box::new(move |cx| {
4241 window_handle
4242 .update(cx, |_, window, cx| f(window, cx))
4243 .is_ok()
4244 }),
4245 );
4246 cx.defer(move |_| activate());
4247 subscription
4248 }
4249
4250 /// Focus the current window and bring it to the foreground at the platform level.
4251 pub fn activate_window(&self) {
4252 self.platform_window.activate();
4253 }
4254
4255 /// Minimize the current window at the platform level.
4256 pub fn minimize_window(&self) {
4257 self.platform_window.minimize();
4258 }
4259
4260 /// Toggle full screen status on the current window at the platform level.
4261 pub fn toggle_fullscreen(&self) {
4262 self.platform_window.toggle_fullscreen();
4263 }
4264
4265 /// Updates the IME panel position suggestions for languages like japanese, chinese.
4266 pub fn invalidate_character_coordinates(&self) {
4267 self.on_next_frame(|window, cx| {
4268 if let Some(mut input_handler) = window.platform_window.take_input_handler() {
4269 if let Some(bounds) = input_handler.selected_bounds(window, cx) {
4270 window.platform_window.update_ime_position(bounds);
4271 }
4272 window.platform_window.set_input_handler(input_handler);
4273 }
4274 });
4275 }
4276
4277 /// Present a platform dialog.
4278 /// The provided message will be presented, along with buttons for each answer.
4279 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
4280 pub fn prompt<T>(
4281 &mut self,
4282 level: PromptLevel,
4283 message: &str,
4284 detail: Option<&str>,
4285 answers: &[T],
4286 cx: &mut App,
4287 ) -> oneshot::Receiver<usize>
4288 where
4289 T: Clone + Into<PromptButton>,
4290 {
4291 let prompt_builder = cx.prompt_builder.take();
4292 let Some(prompt_builder) = prompt_builder else {
4293 unreachable!("Re-entrant window prompting is not supported by GPUI");
4294 };
4295
4296 let answers = answers
4297 .iter()
4298 .map(|answer| answer.clone().into())
4299 .collect::<Vec<_>>();
4300
4301 let receiver = match &prompt_builder {
4302 PromptBuilder::Default => self
4303 .platform_window
4304 .prompt(level, message, detail, &answers)
4305 .unwrap_or_else(|| {
4306 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4307 }),
4308 PromptBuilder::Custom(_) => {
4309 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4310 }
4311 };
4312
4313 cx.prompt_builder = Some(prompt_builder);
4314
4315 receiver
4316 }
4317
4318 fn build_custom_prompt(
4319 &mut self,
4320 prompt_builder: &PromptBuilder,
4321 level: PromptLevel,
4322 message: &str,
4323 detail: Option<&str>,
4324 answers: &[PromptButton],
4325 cx: &mut App,
4326 ) -> oneshot::Receiver<usize> {
4327 let (sender, receiver) = oneshot::channel();
4328 let handle = PromptHandle::new(sender);
4329 let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
4330 self.prompt = Some(handle);
4331 receiver
4332 }
4333
4334 /// Returns the current context stack.
4335 pub fn context_stack(&self) -> Vec<KeyContext> {
4336 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4337 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4338 dispatch_tree
4339 .dispatch_path(node_id)
4340 .iter()
4341 .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
4342 .collect()
4343 }
4344
4345 /// Returns all available actions for the focused element.
4346 pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
4347 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4348 let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
4349 for action_type in cx.global_action_listeners.keys() {
4350 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
4351 let action = cx.actions.build_action_type(action_type).ok();
4352 if let Some(action) = action {
4353 actions.insert(ix, action);
4354 }
4355 }
4356 }
4357 actions
4358 }
4359
4360 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
4361 /// returned in the order they were added. For display, the last binding should take precedence.
4362 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
4363 self.rendered_frame
4364 .dispatch_tree
4365 .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
4366 }
4367
4368 /// Returns the highest precedence key binding that invokes an action on the currently focused
4369 /// element. This is more efficient than getting the last result of `bindings_for_action`.
4370 pub fn highest_precedence_binding_for_action(&self, action: &dyn Action) -> Option<KeyBinding> {
4371 self.rendered_frame
4372 .dispatch_tree
4373 .highest_precedence_binding_for_action(
4374 action,
4375 &self.rendered_frame.dispatch_tree.context_stack,
4376 )
4377 }
4378
4379 /// Returns the key bindings for an action in a context.
4380 pub fn bindings_for_action_in_context(
4381 &self,
4382 action: &dyn Action,
4383 context: KeyContext,
4384 ) -> Vec<KeyBinding> {
4385 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4386 dispatch_tree.bindings_for_action(action, &[context])
4387 }
4388
4389 /// Returns the highest precedence key binding for an action in a context. This is more
4390 /// efficient than getting the last result of `bindings_for_action_in_context`.
4391 pub fn highest_precedence_binding_for_action_in_context(
4392 &self,
4393 action: &dyn Action,
4394 context: KeyContext,
4395 ) -> Option<KeyBinding> {
4396 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4397 dispatch_tree.highest_precedence_binding_for_action(action, &[context])
4398 }
4399
4400 /// Returns any bindings that would invoke an action on the given focus handle if it were
4401 /// focused. Bindings are returned in the order they were added. For display, the last binding
4402 /// should take precedence.
4403 pub fn bindings_for_action_in(
4404 &self,
4405 action: &dyn Action,
4406 focus_handle: &FocusHandle,
4407 ) -> Vec<KeyBinding> {
4408 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4409 let Some(context_stack) = self.context_stack_for_focus_handle(focus_handle) else {
4410 return vec![];
4411 };
4412 dispatch_tree.bindings_for_action(action, &context_stack)
4413 }
4414
4415 /// Returns the highest precedence key binding that would invoke an action on the given focus
4416 /// handle if it were focused. This is more efficient than getting the last result of
4417 /// `bindings_for_action_in`.
4418 pub fn highest_precedence_binding_for_action_in(
4419 &self,
4420 action: &dyn Action,
4421 focus_handle: &FocusHandle,
4422 ) -> Option<KeyBinding> {
4423 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4424 let context_stack = self.context_stack_for_focus_handle(focus_handle)?;
4425 dispatch_tree.highest_precedence_binding_for_action(action, &context_stack)
4426 }
4427
4428 fn context_stack_for_focus_handle(
4429 &self,
4430 focus_handle: &FocusHandle,
4431 ) -> Option<Vec<KeyContext>> {
4432 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4433 let node_id = dispatch_tree.focusable_node_id(focus_handle.id)?;
4434 let context_stack: Vec<_> = dispatch_tree
4435 .dispatch_path(node_id)
4436 .into_iter()
4437 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
4438 .collect();
4439 Some(context_stack)
4440 }
4441
4442 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
4443 pub fn listener_for<T: 'static, E>(
4444 &self,
4445 view: &Entity<T>,
4446 f: impl Fn(&mut T, &E, &mut Window, &mut Context<T>) + 'static,
4447 ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
4448 let view = view.downgrade();
4449 move |e: &E, window: &mut Window, cx: &mut App| {
4450 view.update(cx, |view, cx| f(view, e, window, cx)).ok();
4451 }
4452 }
4453
4454 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
4455 pub fn handler_for<E: 'static, Callback: Fn(&mut E, &mut Window, &mut Context<E>) + 'static>(
4456 &self,
4457 entity: &Entity<E>,
4458 f: Callback,
4459 ) -> impl Fn(&mut Window, &mut App) + 'static {
4460 let entity = entity.downgrade();
4461 move |window: &mut Window, cx: &mut App| {
4462 entity.update(cx, |entity, cx| f(entity, window, cx)).ok();
4463 }
4464 }
4465
4466 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
4467 /// If the callback returns false, the window won't be closed.
4468 pub fn on_window_should_close(
4469 &self,
4470 cx: &App,
4471 f: impl Fn(&mut Window, &mut App) -> bool + 'static,
4472 ) {
4473 let mut cx = self.to_async(cx);
4474 self.platform_window.on_should_close(Box::new(move || {
4475 cx.update(|window, cx| f(window, cx)).unwrap_or(true)
4476 }))
4477 }
4478
4479 /// Register an action listener on this node for the next frame. The type of action
4480 /// is determined by the first parameter of the given listener. When the next frame is rendered
4481 /// the listener will be cleared.
4482 ///
4483 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4484 /// a specific need to register a listener yourself.
4485 ///
4486 /// This method should only be called as part of the paint phase of element drawing.
4487 pub fn on_action(
4488 &mut self,
4489 action_type: TypeId,
4490 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4491 ) {
4492 self.invalidator.debug_assert_paint();
4493
4494 self.next_frame
4495 .dispatch_tree
4496 .on_action(action_type, Rc::new(listener));
4497 }
4498
4499 /// Register a capturing action listener on this node for the next frame if the condition is true.
4500 /// The type of action is determined by the first parameter of the given listener. When the next
4501 /// frame is rendered the listener will be cleared.
4502 ///
4503 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4504 /// a specific need to register a listener yourself.
4505 ///
4506 /// This method should only be called as part of the paint phase of element drawing.
4507 pub fn on_action_when(
4508 &mut self,
4509 condition: bool,
4510 action_type: TypeId,
4511 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4512 ) {
4513 self.invalidator.debug_assert_paint();
4514
4515 if condition {
4516 self.next_frame
4517 .dispatch_tree
4518 .on_action(action_type, Rc::new(listener));
4519 }
4520 }
4521
4522 /// Read information about the GPU backing this window.
4523 /// Currently returns None on Mac and Windows.
4524 pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4525 self.platform_window.gpu_specs()
4526 }
4527
4528 /// Perform titlebar double-click action.
4529 /// This is macOS specific.
4530 pub fn titlebar_double_click(&self) {
4531 self.platform_window.titlebar_double_click();
4532 }
4533
4534 /// Gets the window's title at the platform level.
4535 /// This is macOS specific.
4536 pub fn window_title(&self) -> String {
4537 self.platform_window.get_title()
4538 }
4539
4540 /// Returns a list of all tabbed windows and their titles.
4541 /// This is macOS specific.
4542 pub fn tabbed_windows(&self) -> Option<Vec<SystemWindowTab>> {
4543 self.platform_window.tabbed_windows()
4544 }
4545
4546 /// Returns the tab bar visibility.
4547 /// This is macOS specific.
4548 pub fn tab_bar_visible(&self) -> bool {
4549 self.platform_window.tab_bar_visible()
4550 }
4551
4552 /// Merges all open windows into a single tabbed window.
4553 /// This is macOS specific.
4554 pub fn merge_all_windows(&self) {
4555 self.platform_window.merge_all_windows()
4556 }
4557
4558 /// Moves the tab to a new containing window.
4559 /// This is macOS specific.
4560 pub fn move_tab_to_new_window(&self) {
4561 self.platform_window.move_tab_to_new_window()
4562 }
4563
4564 /// Shows or hides the window tab overview.
4565 /// This is macOS specific.
4566 pub fn toggle_window_tab_overview(&self) {
4567 self.platform_window.toggle_window_tab_overview()
4568 }
4569
4570 /// Sets the tabbing identifier for the window.
4571 /// This is macOS specific.
4572 pub fn set_tabbing_identifier(&self, tabbing_identifier: Option<String>) {
4573 self.platform_window
4574 .set_tabbing_identifier(tabbing_identifier)
4575 }
4576
4577 /// Toggles the inspector mode on this window.
4578 #[cfg(any(feature = "inspector", debug_assertions))]
4579 pub fn toggle_inspector(&mut self, cx: &mut App) {
4580 self.inspector = match self.inspector {
4581 None => Some(cx.new(|_| Inspector::new())),
4582 Some(_) => None,
4583 };
4584 self.refresh();
4585 }
4586
4587 /// Returns true if the window is in inspector mode.
4588 pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4589 #[cfg(any(feature = "inspector", debug_assertions))]
4590 {
4591 if let Some(inspector) = &self.inspector {
4592 return inspector.read(_cx).is_picking();
4593 }
4594 }
4595 false
4596 }
4597
4598 /// Executes the provided function with mutable access to an inspector state.
4599 #[cfg(any(feature = "inspector", debug_assertions))]
4600 pub fn with_inspector_state<T: 'static, R>(
4601 &mut self,
4602 _inspector_id: Option<&crate::InspectorElementId>,
4603 cx: &mut App,
4604 f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4605 ) -> R {
4606 if let Some(inspector_id) = _inspector_id
4607 && let Some(inspector) = &self.inspector
4608 {
4609 let inspector = inspector.clone();
4610 let active_element_id = inspector.read(cx).active_element_id();
4611 if Some(inspector_id) == active_element_id {
4612 return inspector.update(cx, |inspector, _cx| {
4613 inspector.with_active_element_state(self, f)
4614 });
4615 }
4616 }
4617 f(&mut None, self)
4618 }
4619
4620 #[cfg(any(feature = "inspector", debug_assertions))]
4621 pub(crate) fn build_inspector_element_id(
4622 &mut self,
4623 path: crate::InspectorElementPath,
4624 ) -> crate::InspectorElementId {
4625 self.invalidator.debug_assert_paint_or_prepaint();
4626 let path = Rc::new(path);
4627 let next_instance_id = self
4628 .next_frame
4629 .next_inspector_instance_ids
4630 .entry(path.clone())
4631 .or_insert(0);
4632 let instance_id = *next_instance_id;
4633 *next_instance_id += 1;
4634 crate::InspectorElementId { path, instance_id }
4635 }
4636
4637 #[cfg(any(feature = "inspector", debug_assertions))]
4638 fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4639 if let Some(inspector) = self.inspector.take() {
4640 let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4641 inspector_element.prepaint_as_root(
4642 point(self.viewport_size.width - inspector_width, px(0.0)),
4643 size(inspector_width, self.viewport_size.height).into(),
4644 self,
4645 cx,
4646 );
4647 self.inspector = Some(inspector);
4648 Some(inspector_element)
4649 } else {
4650 None
4651 }
4652 }
4653
4654 #[cfg(any(feature = "inspector", debug_assertions))]
4655 fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4656 if let Some(mut inspector_element) = inspector_element {
4657 inspector_element.paint(self, cx);
4658 };
4659 }
4660
4661 /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4662 /// inspect UI elements by clicking on them.
4663 #[cfg(any(feature = "inspector", debug_assertions))]
4664 pub fn insert_inspector_hitbox(
4665 &mut self,
4666 hitbox_id: HitboxId,
4667 inspector_id: Option<&crate::InspectorElementId>,
4668 cx: &App,
4669 ) {
4670 self.invalidator.debug_assert_paint_or_prepaint();
4671 if !self.is_inspector_picking(cx) {
4672 return;
4673 }
4674 if let Some(inspector_id) = inspector_id {
4675 self.next_frame
4676 .inspector_hitboxes
4677 .insert(hitbox_id, inspector_id.clone());
4678 }
4679 }
4680
4681 #[cfg(any(feature = "inspector", debug_assertions))]
4682 fn paint_inspector_hitbox(&mut self, cx: &App) {
4683 if let Some(inspector) = self.inspector.as_ref() {
4684 let inspector = inspector.read(cx);
4685 if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
4686 && let Some(hitbox) = self
4687 .next_frame
4688 .hitboxes
4689 .iter()
4690 .find(|hitbox| hitbox.id == hitbox_id)
4691 {
4692 self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4693 }
4694 }
4695 }
4696
4697 #[cfg(any(feature = "inspector", debug_assertions))]
4698 fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4699 let Some(inspector) = self.inspector.clone() else {
4700 return;
4701 };
4702 if event.downcast_ref::<MouseMoveEvent>().is_some() {
4703 inspector.update(cx, |inspector, _cx| {
4704 if let Some((_, inspector_id)) =
4705 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4706 {
4707 inspector.hover(inspector_id, self);
4708 }
4709 });
4710 } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4711 inspector.update(cx, |inspector, _cx| {
4712 if let Some((_, inspector_id)) =
4713 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4714 {
4715 inspector.select(inspector_id, self);
4716 }
4717 });
4718 } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4719 // This should be kept in sync with SCROLL_LINES in x11 platform.
4720 const SCROLL_LINES: f32 = 3.0;
4721 const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4722 let delta_y = event
4723 .delta
4724 .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4725 .y;
4726 if let Some(inspector) = self.inspector.clone() {
4727 inspector.update(cx, |inspector, _cx| {
4728 if let Some(depth) = inspector.pick_depth.as_mut() {
4729 *depth += f32::from(delta_y) / SCROLL_PIXELS_PER_LAYER;
4730 let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4731 if *depth < 0.0 {
4732 *depth = 0.0;
4733 } else if *depth > max_depth {
4734 *depth = max_depth;
4735 }
4736 if let Some((_, inspector_id)) =
4737 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4738 {
4739 inspector.set_active_element_id(inspector_id, self);
4740 }
4741 }
4742 });
4743 }
4744 }
4745 }
4746
4747 #[cfg(any(feature = "inspector", debug_assertions))]
4748 fn hovered_inspector_hitbox(
4749 &self,
4750 inspector: &Inspector,
4751 frame: &Frame,
4752 ) -> Option<(HitboxId, crate::InspectorElementId)> {
4753 if let Some(pick_depth) = inspector.pick_depth {
4754 let depth = (pick_depth as i64).try_into().unwrap_or(0);
4755 let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4756 let skip_count = (depth as usize).min(max_skipped);
4757 for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4758 if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4759 return Some((*hitbox_id, inspector_id.clone()));
4760 }
4761 }
4762 }
4763 None
4764 }
4765
4766 /// For testing: set the current modifier keys state.
4767 /// This does not generate any events.
4768 #[cfg(any(test, feature = "test-support"))]
4769 pub fn set_modifiers(&mut self, modifiers: Modifiers) {
4770 self.modifiers = modifiers;
4771 }
4772}
4773
4774// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4775slotmap::new_key_type! {
4776 /// A unique identifier for a window.
4777 pub struct WindowId;
4778}
4779
4780impl WindowId {
4781 /// Converts this window ID to a `u64`.
4782 pub fn as_u64(&self) -> u64 {
4783 self.0.as_ffi()
4784 }
4785}
4786
4787impl From<u64> for WindowId {
4788 fn from(value: u64) -> Self {
4789 WindowId(slotmap::KeyData::from_ffi(value))
4790 }
4791}
4792
4793/// A handle to a window with a specific root view type.
4794/// Note that this does not keep the window alive on its own.
4795#[derive(Deref, DerefMut)]
4796pub struct WindowHandle<V> {
4797 #[deref]
4798 #[deref_mut]
4799 pub(crate) any_handle: AnyWindowHandle,
4800 state_type: PhantomData<fn(V) -> V>,
4801}
4802
4803impl<V> Debug for WindowHandle<V> {
4804 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4805 f.debug_struct("WindowHandle")
4806 .field("any_handle", &self.any_handle.id.as_u64())
4807 .finish()
4808 }
4809}
4810
4811impl<V: 'static + Render> WindowHandle<V> {
4812 /// Creates a new handle from a window ID.
4813 /// This does not check if the root type of the window is `V`.
4814 pub fn new(id: WindowId) -> Self {
4815 WindowHandle {
4816 any_handle: AnyWindowHandle {
4817 id,
4818 state_type: TypeId::of::<V>(),
4819 },
4820 state_type: PhantomData,
4821 }
4822 }
4823
4824 /// Get the root view out of this window.
4825 ///
4826 /// This will fail if the window is closed or if the root view's type does not match `V`.
4827 #[cfg(any(test, feature = "test-support"))]
4828 pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4829 where
4830 C: AppContext,
4831 {
4832 crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4833 root_view
4834 .downcast::<V>()
4835 .map_err(|_| anyhow!("the type of the window's root view has changed"))
4836 }))
4837 }
4838
4839 /// Updates the root view of this window.
4840 ///
4841 /// This will fail if the window has been closed or if the root view's type does not match
4842 pub fn update<C, R>(
4843 &self,
4844 cx: &mut C,
4845 update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4846 ) -> Result<R>
4847 where
4848 C: AppContext,
4849 {
4850 cx.update_window(self.any_handle, |root_view, window, cx| {
4851 let view = root_view
4852 .downcast::<V>()
4853 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4854
4855 Ok(view.update(cx, |view, cx| update(view, window, cx)))
4856 })?
4857 }
4858
4859 /// Read the root view out of this window.
4860 ///
4861 /// This will fail if the window is closed or if the root view's type does not match `V`.
4862 pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
4863 let x = cx
4864 .windows
4865 .get(self.id)
4866 .and_then(|window| {
4867 window
4868 .as_deref()
4869 .and_then(|window| window.root.clone())
4870 .map(|root_view| root_view.downcast::<V>())
4871 })
4872 .context("window not found")?
4873 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4874
4875 Ok(x.read(cx))
4876 }
4877
4878 /// Read the root view out of this window, with a callback
4879 ///
4880 /// This will fail if the window is closed or if the root view's type does not match `V`.
4881 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4882 where
4883 C: AppContext,
4884 {
4885 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
4886 }
4887
4888 /// Read the root view pointer off of this window.
4889 ///
4890 /// This will fail if the window is closed or if the root view's type does not match `V`.
4891 pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4892 where
4893 C: AppContext,
4894 {
4895 cx.read_window(self, |root_view, _cx| root_view)
4896 }
4897
4898 /// Check if this window is 'active'.
4899 ///
4900 /// Will return `None` if the window is closed or currently
4901 /// borrowed.
4902 pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4903 cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4904 .ok()
4905 }
4906}
4907
4908impl<V> Copy for WindowHandle<V> {}
4909
4910impl<V> Clone for WindowHandle<V> {
4911 fn clone(&self) -> Self {
4912 *self
4913 }
4914}
4915
4916impl<V> PartialEq for WindowHandle<V> {
4917 fn eq(&self, other: &Self) -> bool {
4918 self.any_handle == other.any_handle
4919 }
4920}
4921
4922impl<V> Eq for WindowHandle<V> {}
4923
4924impl<V> Hash for WindowHandle<V> {
4925 fn hash<H: Hasher>(&self, state: &mut H) {
4926 self.any_handle.hash(state);
4927 }
4928}
4929
4930impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
4931 fn from(val: WindowHandle<V>) -> Self {
4932 val.any_handle
4933 }
4934}
4935
4936/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
4937#[derive(Copy, Clone, PartialEq, Eq, Hash)]
4938pub struct AnyWindowHandle {
4939 pub(crate) id: WindowId,
4940 state_type: TypeId,
4941}
4942
4943impl AnyWindowHandle {
4944 /// Get the ID of this window.
4945 pub fn window_id(&self) -> WindowId {
4946 self.id
4947 }
4948
4949 /// Attempt to convert this handle to a window handle with a specific root view type.
4950 /// If the types do not match, this will return `None`.
4951 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
4952 if TypeId::of::<T>() == self.state_type {
4953 Some(WindowHandle {
4954 any_handle: *self,
4955 state_type: PhantomData,
4956 })
4957 } else {
4958 None
4959 }
4960 }
4961
4962 /// Updates the state of the root view of this window.
4963 ///
4964 /// This will fail if the window has been closed.
4965 pub fn update<C, R>(
4966 self,
4967 cx: &mut C,
4968 update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
4969 ) -> Result<R>
4970 where
4971 C: AppContext,
4972 {
4973 cx.update_window(self, update)
4974 }
4975
4976 /// Read the state of the root view of this window.
4977 ///
4978 /// This will fail if the window has been closed.
4979 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
4980 where
4981 C: AppContext,
4982 T: 'static,
4983 {
4984 let view = self
4985 .downcast::<T>()
4986 .context("the type of the window's root view has changed")?;
4987
4988 cx.read_window(&view, read)
4989 }
4990}
4991
4992impl HasWindowHandle for Window {
4993 fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
4994 self.platform_window.window_handle()
4995 }
4996}
4997
4998impl HasDisplayHandle for Window {
4999 fn display_handle(
5000 &self,
5001 ) -> std::result::Result<raw_window_handle::DisplayHandle<'_>, HandleError> {
5002 self.platform_window.display_handle()
5003 }
5004}
5005
5006/// An identifier for an [`Element`].
5007///
5008/// Can be constructed with a string, a number, or both, as well
5009/// as other internal representations.
5010#[derive(Clone, Debug, Eq, PartialEq, Hash)]
5011pub enum ElementId {
5012 /// The ID of a View element
5013 View(EntityId),
5014 /// An integer ID.
5015 Integer(u64),
5016 /// A string based ID.
5017 Name(SharedString),
5018 /// A UUID.
5019 Uuid(Uuid),
5020 /// An ID that's equated with a focus handle.
5021 FocusHandle(FocusId),
5022 /// A combination of a name and an integer.
5023 NamedInteger(SharedString, u64),
5024 /// A path.
5025 Path(Arc<std::path::Path>),
5026 /// A code location.
5027 CodeLocation(core::panic::Location<'static>),
5028 /// A labeled child of an element.
5029 NamedChild(Arc<ElementId>, SharedString),
5030}
5031
5032impl ElementId {
5033 /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
5034 pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
5035 Self::NamedInteger(name.into(), integer as u64)
5036 }
5037}
5038
5039impl Display for ElementId {
5040 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
5041 match self {
5042 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
5043 ElementId::Integer(ix) => write!(f, "{}", ix)?,
5044 ElementId::Name(name) => write!(f, "{}", name)?,
5045 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
5046 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
5047 ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
5048 ElementId::Path(path) => write!(f, "{}", path.display())?,
5049 ElementId::CodeLocation(location) => write!(f, "{}", location)?,
5050 ElementId::NamedChild(id, name) => write!(f, "{}-{}", id, name)?,
5051 }
5052
5053 Ok(())
5054 }
5055}
5056
5057impl TryInto<SharedString> for ElementId {
5058 type Error = anyhow::Error;
5059
5060 fn try_into(self) -> anyhow::Result<SharedString> {
5061 if let ElementId::Name(name) = self {
5062 Ok(name)
5063 } else {
5064 anyhow::bail!("element id is not string")
5065 }
5066 }
5067}
5068
5069impl From<usize> for ElementId {
5070 fn from(id: usize) -> Self {
5071 ElementId::Integer(id as u64)
5072 }
5073}
5074
5075impl From<i32> for ElementId {
5076 fn from(id: i32) -> Self {
5077 Self::Integer(id as u64)
5078 }
5079}
5080
5081impl From<SharedString> for ElementId {
5082 fn from(name: SharedString) -> Self {
5083 ElementId::Name(name)
5084 }
5085}
5086
5087impl From<Arc<std::path::Path>> for ElementId {
5088 fn from(path: Arc<std::path::Path>) -> Self {
5089 ElementId::Path(path)
5090 }
5091}
5092
5093impl From<&'static str> for ElementId {
5094 fn from(name: &'static str) -> Self {
5095 ElementId::Name(name.into())
5096 }
5097}
5098
5099impl<'a> From<&'a FocusHandle> for ElementId {
5100 fn from(handle: &'a FocusHandle) -> Self {
5101 ElementId::FocusHandle(handle.id)
5102 }
5103}
5104
5105impl From<(&'static str, EntityId)> for ElementId {
5106 fn from((name, id): (&'static str, EntityId)) -> Self {
5107 ElementId::NamedInteger(name.into(), id.as_u64())
5108 }
5109}
5110
5111impl From<(&'static str, usize)> for ElementId {
5112 fn from((name, id): (&'static str, usize)) -> Self {
5113 ElementId::NamedInteger(name.into(), id as u64)
5114 }
5115}
5116
5117impl From<(SharedString, usize)> for ElementId {
5118 fn from((name, id): (SharedString, usize)) -> Self {
5119 ElementId::NamedInteger(name, id as u64)
5120 }
5121}
5122
5123impl From<(&'static str, u64)> for ElementId {
5124 fn from((name, id): (&'static str, u64)) -> Self {
5125 ElementId::NamedInteger(name.into(), id)
5126 }
5127}
5128
5129impl From<Uuid> for ElementId {
5130 fn from(value: Uuid) -> Self {
5131 Self::Uuid(value)
5132 }
5133}
5134
5135impl From<(&'static str, u32)> for ElementId {
5136 fn from((name, id): (&'static str, u32)) -> Self {
5137 ElementId::NamedInteger(name.into(), id.into())
5138 }
5139}
5140
5141impl<T: Into<SharedString>> From<(ElementId, T)> for ElementId {
5142 fn from((id, name): (ElementId, T)) -> Self {
5143 ElementId::NamedChild(Arc::new(id), name.into())
5144 }
5145}
5146
5147impl From<&'static core::panic::Location<'static>> for ElementId {
5148 fn from(location: &'static core::panic::Location<'static>) -> Self {
5149 ElementId::CodeLocation(*location)
5150 }
5151}
5152
5153/// A rectangle to be rendered in the window at the given position and size.
5154/// Passed as an argument [`Window::paint_quad`].
5155#[derive(Clone)]
5156pub struct PaintQuad {
5157 /// The bounds of the quad within the window.
5158 pub bounds: Bounds<Pixels>,
5159 /// The radii of the quad's corners.
5160 pub corner_radii: Corners<Pixels>,
5161 /// The background color of the quad.
5162 pub background: Background,
5163 /// The widths of the quad's borders.
5164 pub border_widths: Edges<Pixels>,
5165 /// The color of the quad's borders.
5166 pub border_color: Hsla,
5167 /// The style of the quad's borders.
5168 pub border_style: BorderStyle,
5169}
5170
5171impl PaintQuad {
5172 /// Sets the corner radii of the quad.
5173 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
5174 PaintQuad {
5175 corner_radii: corner_radii.into(),
5176 ..self
5177 }
5178 }
5179
5180 /// Sets the border widths of the quad.
5181 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
5182 PaintQuad {
5183 border_widths: border_widths.into(),
5184 ..self
5185 }
5186 }
5187
5188 /// Sets the border color of the quad.
5189 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
5190 PaintQuad {
5191 border_color: border_color.into(),
5192 ..self
5193 }
5194 }
5195
5196 /// Sets the background color of the quad.
5197 pub fn background(self, background: impl Into<Background>) -> Self {
5198 PaintQuad {
5199 background: background.into(),
5200 ..self
5201 }
5202 }
5203}
5204
5205/// Creates a quad with the given parameters.
5206pub fn quad(
5207 bounds: Bounds<Pixels>,
5208 corner_radii: impl Into<Corners<Pixels>>,
5209 background: impl Into<Background>,
5210 border_widths: impl Into<Edges<Pixels>>,
5211 border_color: impl Into<Hsla>,
5212 border_style: BorderStyle,
5213) -> PaintQuad {
5214 PaintQuad {
5215 bounds,
5216 corner_radii: corner_radii.into(),
5217 background: background.into(),
5218 border_widths: border_widths.into(),
5219 border_color: border_color.into(),
5220 border_style,
5221 }
5222}
5223
5224/// Creates a filled quad with the given bounds and background color.
5225pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
5226 PaintQuad {
5227 bounds: bounds.into(),
5228 corner_radii: (0.).into(),
5229 background: background.into(),
5230 border_widths: (0.).into(),
5231 border_color: transparent_black(),
5232 border_style: BorderStyle::default(),
5233 }
5234}
5235
5236/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
5237pub fn outline(
5238 bounds: impl Into<Bounds<Pixels>>,
5239 border_color: impl Into<Hsla>,
5240 border_style: BorderStyle,
5241) -> PaintQuad {
5242 PaintQuad {
5243 bounds: bounds.into(),
5244 corner_radii: (0.).into(),
5245 background: transparent_black().into(),
5246 border_widths: (1.).into(),
5247 border_color: border_color.into(),
5248 border_style,
5249 }
5250}