1#[cfg(any(feature = "inspector", debug_assertions))]
2use crate::Inspector;
3use crate::{
4 Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
5 AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Capslock,
6 Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
7 DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
8 FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
9 KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
10 LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
11 MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
12 PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptButton, PromptLevel, Quad,
13 Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge,
14 SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS, ScaledPixels, Scene, Shadow, SharedString, Size,
15 StrikethroughStyle, Style, SubscriberSet, Subscription, TaffyLayoutEngine, Task, TextStyle,
16 TextStyleRefinement, TransformationMatrix, Underline, UnderlineStyle, WindowAppearance,
17 WindowBackgroundAppearance, WindowBounds, WindowControls, WindowDecorations, WindowOptions,
18 WindowParams, WindowTextSystem, point, prelude::*, px, rems, size, transparent_black,
19};
20use anyhow::{Context as _, Result, anyhow};
21use collections::{FxHashMap, FxHashSet};
22#[cfg(target_os = "macos")]
23use core_video::pixel_buffer::CVPixelBuffer;
24use derive_more::{Deref, DerefMut};
25use futures::FutureExt;
26use futures::channel::oneshot;
27use itertools::FoldWhile::{Continue, Done};
28use itertools::Itertools;
29use parking_lot::RwLock;
30use raw_window_handle::{HandleError, HasDisplayHandle, HasWindowHandle};
31use refineable::Refineable;
32use slotmap::SlotMap;
33use smallvec::SmallVec;
34use std::cell::Ref;
35use std::ops::Deref;
36use std::{
37 any::{Any, TypeId},
38 borrow::Cow,
39 cell::{Cell, RefCell},
40 cmp,
41 fmt::{Debug, Display},
42 hash::{Hash, Hasher},
43 marker::PhantomData,
44 mem,
45 ops::{DerefMut, Range},
46 rc::Rc,
47 sync::{
48 Arc, Weak,
49 atomic::{AtomicUsize, Ordering::SeqCst},
50 },
51 time::{Duration, Instant},
52};
53use util::post_inc;
54use util::{ResultExt, measure};
55use uuid::Uuid;
56
57mod prompts;
58
59use crate::util::atomic_incr_if_not_zero;
60pub use prompts::*;
61
62pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1024.), px(700.));
63
64/// Represents the two different phases when dispatching events.
65#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
66pub enum DispatchPhase {
67 /// After the capture phase comes the bubble phase, in which mouse event listeners are
68 /// invoked front to back and keyboard event listeners are invoked from the focused element
69 /// to the root of the element tree. This is the phase you'll most commonly want to use when
70 /// registering event listeners.
71 #[default]
72 Bubble,
73 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
74 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
75 /// is used for special purposes such as clearing the "pressed" state for click events. If
76 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
77 /// outside of the immediate region may rely on detecting non-local events during this phase.
78 Capture,
79}
80
81impl DispatchPhase {
82 /// Returns true if this represents the "bubble" phase.
83 pub fn bubble(self) -> bool {
84 self == DispatchPhase::Bubble
85 }
86
87 /// Returns true if this represents the "capture" phase.
88 pub fn capture(self) -> bool {
89 self == DispatchPhase::Capture
90 }
91}
92
93struct WindowInvalidatorInner {
94 pub dirty: bool,
95 pub draw_phase: DrawPhase,
96 pub dirty_views: FxHashSet<EntityId>,
97}
98
99#[derive(Clone)]
100pub(crate) struct WindowInvalidator {
101 inner: Rc<RefCell<WindowInvalidatorInner>>,
102}
103
104impl WindowInvalidator {
105 pub fn new() -> Self {
106 WindowInvalidator {
107 inner: Rc::new(RefCell::new(WindowInvalidatorInner {
108 dirty: true,
109 draw_phase: DrawPhase::None,
110 dirty_views: FxHashSet::default(),
111 })),
112 }
113 }
114
115 pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
116 let mut inner = self.inner.borrow_mut();
117 inner.dirty_views.insert(entity);
118 if inner.draw_phase == DrawPhase::None {
119 inner.dirty = true;
120 cx.push_effect(Effect::Notify { emitter: entity });
121 true
122 } else {
123 false
124 }
125 }
126
127 pub fn is_dirty(&self) -> bool {
128 self.inner.borrow().dirty
129 }
130
131 pub fn set_dirty(&self, dirty: bool) {
132 self.inner.borrow_mut().dirty = dirty
133 }
134
135 pub fn set_phase(&self, phase: DrawPhase) {
136 self.inner.borrow_mut().draw_phase = phase
137 }
138
139 pub fn take_views(&self) -> FxHashSet<EntityId> {
140 mem::take(&mut self.inner.borrow_mut().dirty_views)
141 }
142
143 pub fn replace_views(&self, views: FxHashSet<EntityId>) {
144 self.inner.borrow_mut().dirty_views = views;
145 }
146
147 pub fn not_drawing(&self) -> bool {
148 self.inner.borrow().draw_phase == DrawPhase::None
149 }
150
151 #[track_caller]
152 pub fn debug_assert_paint(&self) {
153 debug_assert!(
154 matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
155 "this method can only be called during paint"
156 );
157 }
158
159 #[track_caller]
160 pub fn debug_assert_prepaint(&self) {
161 debug_assert!(
162 matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
163 "this method can only be called during request_layout, or prepaint"
164 );
165 }
166
167 #[track_caller]
168 pub fn debug_assert_paint_or_prepaint(&self) {
169 debug_assert!(
170 matches!(
171 self.inner.borrow().draw_phase,
172 DrawPhase::Paint | DrawPhase::Prepaint
173 ),
174 "this method can only be called during request_layout, prepaint, or paint"
175 );
176 }
177}
178
179type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
180
181pub(crate) type AnyWindowFocusListener =
182 Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
183
184pub(crate) struct WindowFocusEvent {
185 pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
186 pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
187}
188
189impl WindowFocusEvent {
190 pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
191 !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
192 }
193
194 pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
195 self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
196 }
197}
198
199/// This is provided when subscribing for `Context::on_focus_out` events.
200pub struct FocusOutEvent {
201 /// A weak focus handle representing what was blurred.
202 pub blurred: WeakFocusHandle,
203}
204
205slotmap::new_key_type! {
206 /// A globally unique identifier for a focusable element.
207 pub struct FocusId;
208}
209
210thread_local! {
211 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(1024 * 1024));
212}
213
214/// Returned when the element arena has been used and so must be cleared before the next draw.
215#[must_use]
216pub struct ArenaClearNeeded;
217
218impl ArenaClearNeeded {
219 /// Clear the element arena.
220 pub fn clear(self) {
221 ELEMENT_ARENA.with_borrow_mut(|element_arena| {
222 element_arena.clear();
223 });
224 }
225}
226
227pub(crate) type FocusMap = RwLock<SlotMap<FocusId, AtomicUsize>>;
228
229impl FocusId {
230 /// Obtains whether the element associated with this handle is currently focused.
231 pub fn is_focused(&self, window: &Window) -> bool {
232 window.focus == Some(*self)
233 }
234
235 /// Obtains whether the element associated with this handle contains the focused
236 /// element or is itself focused.
237 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
238 window
239 .focused(cx)
240 .map_or(false, |focused| self.contains(focused.id, window))
241 }
242
243 /// Obtains whether the element associated with this handle is contained within the
244 /// focused element or is itself focused.
245 pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
246 let focused = window.focused(cx);
247 focused.map_or(false, |focused| focused.id.contains(*self, window))
248 }
249
250 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
251 pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
252 window
253 .rendered_frame
254 .dispatch_tree
255 .focus_contains(*self, other)
256 }
257}
258
259/// A handle which can be used to track and manipulate the focused element in a window.
260pub struct FocusHandle {
261 pub(crate) id: FocusId,
262 handles: Arc<FocusMap>,
263}
264
265impl std::fmt::Debug for FocusHandle {
266 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
267 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
268 }
269}
270
271impl FocusHandle {
272 pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
273 let id = handles.write().insert(AtomicUsize::new(1));
274 Self {
275 id,
276 handles: handles.clone(),
277 }
278 }
279
280 pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
281 let lock = handles.read();
282 let ref_count = lock.get(id)?;
283 if atomic_incr_if_not_zero(ref_count) == 0 {
284 return None;
285 }
286 Some(Self {
287 id,
288 handles: handles.clone(),
289 })
290 }
291
292 /// Converts this focus handle into a weak variant, which does not prevent it from being released.
293 pub fn downgrade(&self) -> WeakFocusHandle {
294 WeakFocusHandle {
295 id: self.id,
296 handles: Arc::downgrade(&self.handles),
297 }
298 }
299
300 /// Moves the focus to the element associated with this handle.
301 pub fn focus(&self, window: &mut Window) {
302 window.focus(self)
303 }
304
305 /// Obtains whether the element associated with this handle is currently focused.
306 pub fn is_focused(&self, window: &Window) -> bool {
307 self.id.is_focused(window)
308 }
309
310 /// Obtains whether the element associated with this handle contains the focused
311 /// element or is itself focused.
312 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
313 self.id.contains_focused(window, cx)
314 }
315
316 /// Obtains whether the element associated with this handle is contained within the
317 /// focused element or is itself focused.
318 pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
319 self.id.within_focused(window, cx)
320 }
321
322 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
323 pub fn contains(&self, other: &Self, window: &Window) -> bool {
324 self.id.contains(other.id, window)
325 }
326
327 /// Dispatch an action on the element that rendered this focus handle
328 pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
329 if let Some(node_id) = window
330 .rendered_frame
331 .dispatch_tree
332 .focusable_node_id(self.id)
333 {
334 window.dispatch_action_on_node(node_id, action, cx)
335 }
336 }
337}
338
339impl Clone for FocusHandle {
340 fn clone(&self) -> Self {
341 Self::for_id(self.id, &self.handles).unwrap()
342 }
343}
344
345impl PartialEq for FocusHandle {
346 fn eq(&self, other: &Self) -> bool {
347 self.id == other.id
348 }
349}
350
351impl Eq for FocusHandle {}
352
353impl Drop for FocusHandle {
354 fn drop(&mut self) {
355 self.handles
356 .read()
357 .get(self.id)
358 .unwrap()
359 .fetch_sub(1, SeqCst);
360 }
361}
362
363/// A weak reference to a focus handle.
364#[derive(Clone, Debug)]
365pub struct WeakFocusHandle {
366 pub(crate) id: FocusId,
367 pub(crate) handles: Weak<FocusMap>,
368}
369
370impl WeakFocusHandle {
371 /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
372 pub fn upgrade(&self) -> Option<FocusHandle> {
373 let handles = self.handles.upgrade()?;
374 FocusHandle::for_id(self.id, &handles)
375 }
376}
377
378impl PartialEq for WeakFocusHandle {
379 fn eq(&self, other: &WeakFocusHandle) -> bool {
380 self.id == other.id
381 }
382}
383
384impl Eq for WeakFocusHandle {}
385
386impl PartialEq<FocusHandle> for WeakFocusHandle {
387 fn eq(&self, other: &FocusHandle) -> bool {
388 self.id == other.id
389 }
390}
391
392impl PartialEq<WeakFocusHandle> for FocusHandle {
393 fn eq(&self, other: &WeakFocusHandle) -> bool {
394 self.id == other.id
395 }
396}
397
398/// Focusable allows users of your view to easily
399/// focus it (using window.focus_view(cx, view))
400pub trait Focusable: 'static {
401 /// Returns the focus handle associated with this view.
402 fn focus_handle(&self, cx: &App) -> FocusHandle;
403}
404
405impl<V: Focusable> Focusable for Entity<V> {
406 fn focus_handle(&self, cx: &App) -> FocusHandle {
407 self.read(cx).focus_handle(cx)
408 }
409}
410
411/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
412/// where the lifecycle of the view is handled by another view.
413pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
414
415impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
416
417/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
418pub struct DismissEvent;
419
420type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
421
422pub(crate) type AnyMouseListener =
423 Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
424
425#[derive(Clone)]
426pub(crate) struct CursorStyleRequest {
427 pub(crate) hitbox_id: Option<HitboxId>,
428 pub(crate) style: CursorStyle,
429}
430
431#[derive(Default, Eq, PartialEq)]
432pub(crate) struct HitTest {
433 pub(crate) ids: SmallVec<[HitboxId; 8]>,
434 pub(crate) hover_hitbox_count: usize,
435}
436
437/// A type of window control area that corresponds to the platform window.
438#[derive(Clone, Copy, Debug, Eq, PartialEq)]
439pub enum WindowControlArea {
440 /// An area that allows dragging of the platform window.
441 Drag,
442 /// An area that allows closing of the platform window.
443 Close,
444 /// An area that allows maximizing of the platform window.
445 Max,
446 /// An area that allows minimizing of the platform window.
447 Min,
448}
449
450/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
451#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
452pub struct HitboxId(u64);
453
454impl HitboxId {
455 /// Checks if the hitbox with this ID is currently hovered. Except when handling
456 /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
457 /// events or paint hover styles.
458 ///
459 /// See [`Hitbox::is_hovered`] for details.
460 pub fn is_hovered(self, window: &Window) -> bool {
461 let hit_test = &window.mouse_hit_test;
462 for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
463 if self == *id {
464 return true;
465 }
466 }
467 return false;
468 }
469
470 /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
471 /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
472 /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
473 /// this distinction.
474 pub fn should_handle_scroll(self, window: &Window) -> bool {
475 window.mouse_hit_test.ids.contains(&self)
476 }
477
478 fn next(mut self) -> HitboxId {
479 HitboxId(self.0.wrapping_add(1))
480 }
481}
482
483/// A rectangular region that potentially blocks hitboxes inserted prior.
484/// See [Window::insert_hitbox] for more details.
485#[derive(Clone, Debug, Deref)]
486pub struct Hitbox {
487 /// A unique identifier for the hitbox.
488 pub id: HitboxId,
489 /// The bounds of the hitbox.
490 #[deref]
491 pub bounds: Bounds<Pixels>,
492 /// The content mask when the hitbox was inserted.
493 pub content_mask: ContentMask<Pixels>,
494 /// Flags that specify hitbox behavior.
495 pub behavior: HitboxBehavior,
496}
497
498impl Hitbox {
499 /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
500 /// typically what you want when determining whether to handle mouse events or paint hover
501 /// styles.
502 ///
503 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
504 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
505 /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
506 ///
507 /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
508 /// Concretely, this is due to use-cases like overlays that cause the elements under to be
509 /// non-interactive while still allowing scrolling. More abstractly, this is because
510 /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
511 /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
512 /// container.
513 pub fn is_hovered(&self, window: &Window) -> bool {
514 self.id.is_hovered(window)
515 }
516
517 /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
518 /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
519 /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
520 ///
521 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
522 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
523 pub fn should_handle_scroll(&self, window: &Window) -> bool {
524 self.id.should_handle_scroll(window)
525 }
526}
527
528/// How the hitbox affects mouse behavior.
529#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
530pub enum HitboxBehavior {
531 /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
532 #[default]
533 Normal,
534
535 /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
536 /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
537 /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
538 /// [`InteractiveElement::occlude`].
539 ///
540 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
541 /// bubble-phase handler for every mouse event type:
542 ///
543 /// ```
544 /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
545 /// if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
546 /// cx.stop_propagation();
547 /// }
548 /// }
549 /// ```
550 ///
551 /// This has effects beyond event handling - any use of hitbox checking, such as hover
552 /// styles and tooltops. These other behaviors are the main point of this mechanism. An
553 /// alternative might be to not affect mouse event handling - but this would allow
554 /// inconsistent UI where clicks and moves interact with elements that are not considered to
555 /// be hovered.
556 BlockMouse,
557
558 /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
559 /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
560 /// interaction except scroll events to be ignored - see the documentation of
561 /// [`Hitbox::is_hovered`] for details. This flag is set by
562 /// [`InteractiveElement::block_mouse_except_scroll`].
563 ///
564 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
565 /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
566 ///
567 /// ```
568 /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, _cx| {
569 /// if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
570 /// cx.stop_propagation();
571 /// }
572 /// }
573 /// ```
574 ///
575 /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
576 /// handled differently than other mouse events. If also blocking these scroll events is
577 /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
578 ///
579 /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
580 /// hover styles and tooltops. These other behaviors are the main point of this mechanism.
581 /// An alternative might be to not affect mouse event handling - but this would allow
582 /// inconsistent UI where clicks and moves interact with elements that are not considered to
583 /// be hovered.
584 BlockMouseExceptScroll,
585}
586
587/// An identifier for a tooltip.
588#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
589pub struct TooltipId(usize);
590
591impl TooltipId {
592 /// Checks if the tooltip is currently hovered.
593 pub fn is_hovered(&self, window: &Window) -> bool {
594 window
595 .tooltip_bounds
596 .as_ref()
597 .map_or(false, |tooltip_bounds| {
598 tooltip_bounds.id == *self
599 && tooltip_bounds.bounds.contains(&window.mouse_position())
600 })
601 }
602}
603
604pub(crate) struct TooltipBounds {
605 id: TooltipId,
606 bounds: Bounds<Pixels>,
607}
608
609#[derive(Clone)]
610pub(crate) struct TooltipRequest {
611 id: TooltipId,
612 tooltip: AnyTooltip,
613}
614
615pub(crate) struct DeferredDraw {
616 current_view: EntityId,
617 priority: usize,
618 parent_node: DispatchNodeId,
619 element_id_stack: SmallVec<[ElementId; 32]>,
620 text_style_stack: Vec<TextStyleRefinement>,
621 element: Option<AnyElement>,
622 absolute_offset: Point<Pixels>,
623 prepaint_range: Range<PrepaintStateIndex>,
624 paint_range: Range<PaintIndex>,
625}
626
627pub(crate) struct Frame {
628 pub(crate) focus: Option<FocusId>,
629 pub(crate) window_active: bool,
630 pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
631 accessed_element_states: Vec<(GlobalElementId, TypeId)>,
632 pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
633 pub(crate) dispatch_tree: DispatchTree,
634 pub(crate) scene: Scene,
635 pub(crate) hitboxes: Vec<Hitbox>,
636 pub(crate) window_control_hitboxes: Vec<(WindowControlArea, Hitbox)>,
637 pub(crate) deferred_draws: Vec<DeferredDraw>,
638 pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
639 pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
640 pub(crate) cursor_styles: Vec<CursorStyleRequest>,
641 #[cfg(any(test, feature = "test-support"))]
642 pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
643 #[cfg(any(feature = "inspector", debug_assertions))]
644 pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
645 #[cfg(any(feature = "inspector", debug_assertions))]
646 pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
647}
648
649#[derive(Clone, Default)]
650pub(crate) struct PrepaintStateIndex {
651 hitboxes_index: usize,
652 tooltips_index: usize,
653 deferred_draws_index: usize,
654 dispatch_tree_index: usize,
655 accessed_element_states_index: usize,
656 line_layout_index: LineLayoutIndex,
657}
658
659#[derive(Clone, Default)]
660pub(crate) struct PaintIndex {
661 scene_index: usize,
662 mouse_listeners_index: usize,
663 input_handlers_index: usize,
664 cursor_styles_index: usize,
665 accessed_element_states_index: usize,
666 line_layout_index: LineLayoutIndex,
667}
668
669impl Frame {
670 pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
671 Frame {
672 focus: None,
673 window_active: false,
674 element_states: FxHashMap::default(),
675 accessed_element_states: Vec::new(),
676 mouse_listeners: Vec::new(),
677 dispatch_tree,
678 scene: Scene::default(),
679 hitboxes: Vec::new(),
680 window_control_hitboxes: Vec::new(),
681 deferred_draws: Vec::new(),
682 input_handlers: Vec::new(),
683 tooltip_requests: Vec::new(),
684 cursor_styles: Vec::new(),
685
686 #[cfg(any(test, feature = "test-support"))]
687 debug_bounds: FxHashMap::default(),
688
689 #[cfg(any(feature = "inspector", debug_assertions))]
690 next_inspector_instance_ids: FxHashMap::default(),
691
692 #[cfg(any(feature = "inspector", debug_assertions))]
693 inspector_hitboxes: FxHashMap::default(),
694 }
695 }
696
697 pub(crate) fn clear(&mut self) {
698 self.element_states.clear();
699 self.accessed_element_states.clear();
700 self.mouse_listeners.clear();
701 self.dispatch_tree.clear();
702 self.scene.clear();
703 self.input_handlers.clear();
704 self.tooltip_requests.clear();
705 self.cursor_styles.clear();
706 self.hitboxes.clear();
707 self.window_control_hitboxes.clear();
708 self.deferred_draws.clear();
709 self.focus = None;
710
711 #[cfg(any(feature = "inspector", debug_assertions))]
712 {
713 self.next_inspector_instance_ids.clear();
714 self.inspector_hitboxes.clear();
715 }
716 }
717
718 pub(crate) fn cursor_style(&self, window: &Window) -> Option<CursorStyle> {
719 self.cursor_styles
720 .iter()
721 .rev()
722 .fold_while(None, |style, request| match request.hitbox_id {
723 None => Done(Some(request.style)),
724 Some(hitbox_id) => Continue(
725 style.or_else(|| hitbox_id.is_hovered(window).then_some(request.style)),
726 ),
727 })
728 .into_inner()
729 }
730
731 pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
732 let mut set_hover_hitbox_count = false;
733 let mut hit_test = HitTest::default();
734 for hitbox in self.hitboxes.iter().rev() {
735 let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
736 if bounds.contains(&position) {
737 hit_test.ids.push(hitbox.id);
738 if !set_hover_hitbox_count
739 && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
740 {
741 hit_test.hover_hitbox_count = hit_test.ids.len();
742 set_hover_hitbox_count = true;
743 }
744 if hitbox.behavior == HitboxBehavior::BlockMouse {
745 break;
746 }
747 }
748 }
749 if !set_hover_hitbox_count {
750 hit_test.hover_hitbox_count = hit_test.ids.len();
751 }
752 hit_test
753 }
754
755 pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
756 self.focus
757 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
758 .unwrap_or_default()
759 }
760
761 pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
762 for element_state_key in &self.accessed_element_states {
763 if let Some((element_state_key, element_state)) =
764 prev_frame.element_states.remove_entry(element_state_key)
765 {
766 self.element_states.insert(element_state_key, element_state);
767 }
768 }
769
770 self.scene.finish();
771 }
772}
773
774/// Holds the state for a specific window.
775pub struct Window {
776 pub(crate) handle: AnyWindowHandle,
777 pub(crate) invalidator: WindowInvalidator,
778 pub(crate) removed: bool,
779 pub(crate) platform_window: Box<dyn PlatformWindow>,
780 display_id: Option<DisplayId>,
781 sprite_atlas: Arc<dyn PlatformAtlas>,
782 text_system: Arc<WindowTextSystem>,
783 rem_size: Pixels,
784 /// The stack of override values for the window's rem size.
785 ///
786 /// This is used by `with_rem_size` to allow rendering an element tree with
787 /// a given rem size.
788 rem_size_override_stack: SmallVec<[Pixels; 8]>,
789 pub(crate) viewport_size: Size<Pixels>,
790 layout_engine: Option<TaffyLayoutEngine>,
791 pub(crate) root: Option<AnyView>,
792 pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
793 pub(crate) text_style_stack: Vec<TextStyleRefinement>,
794 pub(crate) rendered_entity_stack: Vec<EntityId>,
795 pub(crate) element_offset_stack: Vec<Point<Pixels>>,
796 pub(crate) element_opacity: Option<f32>,
797 pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
798 pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
799 pub(crate) image_cache_stack: Vec<AnyImageCache>,
800 pub(crate) rendered_frame: Frame,
801 pub(crate) next_frame: Frame,
802 next_hitbox_id: HitboxId,
803 pub(crate) next_tooltip_id: TooltipId,
804 pub(crate) tooltip_bounds: Option<TooltipBounds>,
805 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
806 pub(crate) dirty_views: FxHashSet<EntityId>,
807 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
808 pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
809 default_prevented: bool,
810 mouse_position: Point<Pixels>,
811 mouse_hit_test: HitTest,
812 modifiers: Modifiers,
813 capslock: Capslock,
814 scale_factor: f32,
815 pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
816 appearance: WindowAppearance,
817 pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
818 active: Rc<Cell<bool>>,
819 hovered: Rc<Cell<bool>>,
820 pub(crate) needs_present: Rc<Cell<bool>>,
821 pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
822 pub(crate) refreshing: bool,
823 pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
824 pub(crate) focus: Option<FocusId>,
825 focus_enabled: bool,
826 pending_input: Option<PendingInput>,
827 pending_modifier: ModifierState,
828 pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
829 prompt: Option<RenderablePromptHandle>,
830 pub(crate) client_inset: Option<Pixels>,
831 #[cfg(any(feature = "inspector", debug_assertions))]
832 inspector: Option<Entity<Inspector>>,
833}
834
835#[derive(Clone, Debug, Default)]
836struct ModifierState {
837 modifiers: Modifiers,
838 saw_keystroke: bool,
839}
840
841#[derive(Clone, Copy, Debug, Eq, PartialEq)]
842pub(crate) enum DrawPhase {
843 None,
844 Prepaint,
845 Paint,
846 Focus,
847}
848
849#[derive(Default, Debug)]
850struct PendingInput {
851 keystrokes: SmallVec<[Keystroke; 1]>,
852 focus: Option<FocusId>,
853 timer: Option<Task<()>>,
854}
855
856pub(crate) struct ElementStateBox {
857 pub(crate) inner: Box<dyn Any>,
858 #[cfg(debug_assertions)]
859 pub(crate) type_name: &'static str,
860}
861
862fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> Bounds<Pixels> {
863 const DEFAULT_WINDOW_OFFSET: Point<Pixels> = point(px(0.), px(35.));
864
865 // TODO, BUG: if you open a window with the currently active window
866 // on the stack, this will erroneously select the 'unwrap_or_else'
867 // code path
868 cx.active_window()
869 .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok())
870 .map(|mut bounds| {
871 bounds.origin += DEFAULT_WINDOW_OFFSET;
872 bounds
873 })
874 .unwrap_or_else(|| {
875 let display = display_id
876 .map(|id| cx.find_display(id))
877 .unwrap_or_else(|| cx.primary_display());
878
879 display
880 .map(|display| display.default_bounds())
881 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE))
882 })
883}
884
885impl Window {
886 pub(crate) fn new(
887 handle: AnyWindowHandle,
888 options: WindowOptions,
889 cx: &mut App,
890 ) -> Result<Self> {
891 let WindowOptions {
892 window_bounds,
893 titlebar,
894 focus,
895 show,
896 kind,
897 is_movable,
898 display_id,
899 window_background,
900 app_id,
901 window_min_size,
902 window_decorations,
903 } = options;
904
905 let bounds = window_bounds
906 .map(|bounds| bounds.get_bounds())
907 .unwrap_or_else(|| default_bounds(display_id, cx));
908 let mut platform_window = cx.platform.open_window(
909 handle,
910 WindowParams {
911 bounds,
912 titlebar,
913 kind,
914 is_movable,
915 focus,
916 show,
917 display_id,
918 window_min_size,
919 },
920 )?;
921 let display_id = platform_window.display().map(|display| display.id());
922 let sprite_atlas = platform_window.sprite_atlas();
923 let mouse_position = platform_window.mouse_position();
924 let modifiers = platform_window.modifiers();
925 let capslock = platform_window.capslock();
926 let content_size = platform_window.content_size();
927 let scale_factor = platform_window.scale_factor();
928 let appearance = platform_window.appearance();
929 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
930 let invalidator = WindowInvalidator::new();
931 let active = Rc::new(Cell::new(platform_window.is_active()));
932 let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
933 let needs_present = Rc::new(Cell::new(false));
934 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
935 let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
936
937 platform_window
938 .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
939 platform_window.set_background_appearance(window_background);
940
941 if let Some(ref window_open_state) = window_bounds {
942 match window_open_state {
943 WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
944 WindowBounds::Maximized(_) => platform_window.zoom(),
945 WindowBounds::Windowed(_) => {}
946 }
947 }
948
949 platform_window.on_close(Box::new({
950 let mut cx = cx.to_async();
951 move || {
952 let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
953 }
954 }));
955 platform_window.on_request_frame(Box::new({
956 let mut cx = cx.to_async();
957 let invalidator = invalidator.clone();
958 let active = active.clone();
959 let needs_present = needs_present.clone();
960 let next_frame_callbacks = next_frame_callbacks.clone();
961 let last_input_timestamp = last_input_timestamp.clone();
962 move |request_frame_options| {
963 let next_frame_callbacks = next_frame_callbacks.take();
964 if !next_frame_callbacks.is_empty() {
965 handle
966 .update(&mut cx, |_, window, cx| {
967 for callback in next_frame_callbacks {
968 callback(window, cx);
969 }
970 })
971 .log_err();
972 }
973
974 // Keep presenting the current scene for 1 extra second since the
975 // last input to prevent the display from underclocking the refresh rate.
976 let needs_present = request_frame_options.require_presentation
977 || needs_present.get()
978 || (active.get()
979 && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
980
981 if invalidator.is_dirty() {
982 measure("frame duration", || {
983 handle
984 .update(&mut cx, |_, window, cx| {
985 let arena_clear_needed = window.draw(cx);
986 window.present();
987 // drop the arena elements after present to reduce latency
988 arena_clear_needed.clear();
989 })
990 .log_err();
991 })
992 } else if needs_present {
993 handle
994 .update(&mut cx, |_, window, _| window.present())
995 .log_err();
996 }
997
998 handle
999 .update(&mut cx, |_, window, _| {
1000 window.complete_frame();
1001 })
1002 .log_err();
1003 }
1004 }));
1005 platform_window.on_resize(Box::new({
1006 let mut cx = cx.to_async();
1007 move |_, _| {
1008 handle
1009 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1010 .log_err();
1011 }
1012 }));
1013 platform_window.on_moved(Box::new({
1014 let mut cx = cx.to_async();
1015 move || {
1016 handle
1017 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1018 .log_err();
1019 }
1020 }));
1021 platform_window.on_appearance_changed(Box::new({
1022 let mut cx = cx.to_async();
1023 move || {
1024 handle
1025 .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
1026 .log_err();
1027 }
1028 }));
1029 platform_window.on_active_status_change(Box::new({
1030 let mut cx = cx.to_async();
1031 move |active| {
1032 handle
1033 .update(&mut cx, |_, window, cx| {
1034 window.active.set(active);
1035 window.modifiers = window.platform_window.modifiers();
1036 window.capslock = window.platform_window.capslock();
1037 window
1038 .activation_observers
1039 .clone()
1040 .retain(&(), |callback| callback(window, cx));
1041 window.refresh();
1042 })
1043 .log_err();
1044 }
1045 }));
1046 platform_window.on_hover_status_change(Box::new({
1047 let mut cx = cx.to_async();
1048 move |active| {
1049 handle
1050 .update(&mut cx, |_, window, _| {
1051 window.hovered.set(active);
1052 window.refresh();
1053 })
1054 .log_err();
1055 }
1056 }));
1057 platform_window.on_input({
1058 let mut cx = cx.to_async();
1059 Box::new(move |event| {
1060 handle
1061 .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1062 .log_err()
1063 .unwrap_or(DispatchEventResult::default())
1064 })
1065 });
1066 platform_window.on_hit_test_window_control({
1067 let mut cx = cx.to_async();
1068 Box::new(move || {
1069 handle
1070 .update(&mut cx, |_, window, _cx| {
1071 for (area, hitbox) in &window.rendered_frame.window_control_hitboxes {
1072 if window.mouse_hit_test.ids.contains(&hitbox.id) {
1073 return Some(*area);
1074 }
1075 }
1076 None
1077 })
1078 .log_err()
1079 .unwrap_or(None)
1080 })
1081 });
1082
1083 if let Some(app_id) = app_id {
1084 platform_window.set_app_id(&app_id);
1085 }
1086
1087 platform_window.map_window().unwrap();
1088
1089 Ok(Window {
1090 handle,
1091 invalidator,
1092 removed: false,
1093 platform_window,
1094 display_id,
1095 sprite_atlas,
1096 text_system,
1097 rem_size: px(16.),
1098 rem_size_override_stack: SmallVec::new(),
1099 viewport_size: content_size,
1100 layout_engine: Some(TaffyLayoutEngine::new()),
1101 root: None,
1102 element_id_stack: SmallVec::default(),
1103 text_style_stack: Vec::new(),
1104 rendered_entity_stack: Vec::new(),
1105 element_offset_stack: Vec::new(),
1106 content_mask_stack: Vec::new(),
1107 element_opacity: None,
1108 requested_autoscroll: None,
1109 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1110 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1111 next_frame_callbacks,
1112 next_hitbox_id: HitboxId(0),
1113 next_tooltip_id: TooltipId::default(),
1114 tooltip_bounds: None,
1115 dirty_views: FxHashSet::default(),
1116 focus_listeners: SubscriberSet::new(),
1117 focus_lost_listeners: SubscriberSet::new(),
1118 default_prevented: true,
1119 mouse_position,
1120 mouse_hit_test: HitTest::default(),
1121 modifiers,
1122 capslock,
1123 scale_factor,
1124 bounds_observers: SubscriberSet::new(),
1125 appearance,
1126 appearance_observers: SubscriberSet::new(),
1127 active,
1128 hovered,
1129 needs_present,
1130 last_input_timestamp,
1131 refreshing: false,
1132 activation_observers: SubscriberSet::new(),
1133 focus: None,
1134 focus_enabled: true,
1135 pending_input: None,
1136 pending_modifier: ModifierState::default(),
1137 pending_input_observers: SubscriberSet::new(),
1138 prompt: None,
1139 client_inset: None,
1140 image_cache_stack: Vec::new(),
1141 #[cfg(any(feature = "inspector", debug_assertions))]
1142 inspector: None,
1143 })
1144 }
1145
1146 pub(crate) fn new_focus_listener(
1147 &self,
1148 value: AnyWindowFocusListener,
1149 ) -> (Subscription, impl FnOnce() + use<>) {
1150 self.focus_listeners.insert((), value)
1151 }
1152}
1153
1154#[derive(Clone, Debug, Default, PartialEq, Eq)]
1155pub(crate) struct DispatchEventResult {
1156 pub propagate: bool,
1157 pub default_prevented: bool,
1158}
1159
1160/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1161/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1162/// to leave room to support more complex shapes in the future.
1163#[derive(Clone, Debug, Default, PartialEq, Eq)]
1164#[repr(C)]
1165pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1166 /// The bounds
1167 pub bounds: Bounds<P>,
1168}
1169
1170impl ContentMask<Pixels> {
1171 /// Scale the content mask's pixel units by the given scaling factor.
1172 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1173 ContentMask {
1174 bounds: self.bounds.scale(factor),
1175 }
1176 }
1177
1178 /// Intersect the content mask with the given content mask.
1179 pub fn intersect(&self, other: &Self) -> Self {
1180 let bounds = self.bounds.intersect(&other.bounds);
1181 ContentMask { bounds }
1182 }
1183}
1184
1185impl Window {
1186 fn mark_view_dirty(&mut self, view_id: EntityId) {
1187 // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1188 // should already be dirty.
1189 for view_id in self
1190 .rendered_frame
1191 .dispatch_tree
1192 .view_path(view_id)
1193 .into_iter()
1194 .rev()
1195 {
1196 if !self.dirty_views.insert(view_id) {
1197 break;
1198 }
1199 }
1200 }
1201
1202 /// Registers a callback to be invoked when the window appearance changes.
1203 pub fn observe_window_appearance(
1204 &self,
1205 mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1206 ) -> Subscription {
1207 let (subscription, activate) = self.appearance_observers.insert(
1208 (),
1209 Box::new(move |window, cx| {
1210 callback(window, cx);
1211 true
1212 }),
1213 );
1214 activate();
1215 subscription
1216 }
1217
1218 /// Replaces the root entity of the window with a new one.
1219 pub fn replace_root<E>(
1220 &mut self,
1221 cx: &mut App,
1222 build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1223 ) -> Entity<E>
1224 where
1225 E: 'static + Render,
1226 {
1227 let view = cx.new(|cx| build_view(self, cx));
1228 self.root = Some(view.clone().into());
1229 self.refresh();
1230 view
1231 }
1232
1233 /// Returns the root entity of the window, if it has one.
1234 pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1235 where
1236 E: 'static + Render,
1237 {
1238 self.root
1239 .as_ref()
1240 .map(|view| view.clone().downcast::<E>().ok())
1241 }
1242
1243 /// Obtain a handle to the window that belongs to this context.
1244 pub fn window_handle(&self) -> AnyWindowHandle {
1245 self.handle
1246 }
1247
1248 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1249 pub fn refresh(&mut self) {
1250 if self.invalidator.not_drawing() {
1251 self.refreshing = true;
1252 self.invalidator.set_dirty(true);
1253 }
1254 }
1255
1256 /// Close this window.
1257 pub fn remove_window(&mut self) {
1258 self.removed = true;
1259 }
1260
1261 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1262 pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1263 self.focus
1264 .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1265 }
1266
1267 /// Move focus to the element associated with the given [`FocusHandle`].
1268 pub fn focus(&mut self, handle: &FocusHandle) {
1269 if !self.focus_enabled || self.focus == Some(handle.id) {
1270 return;
1271 }
1272
1273 self.focus = Some(handle.id);
1274 self.clear_pending_keystrokes();
1275 self.refresh();
1276 }
1277
1278 /// Remove focus from all elements within this context's window.
1279 pub fn blur(&mut self) {
1280 if !self.focus_enabled {
1281 return;
1282 }
1283
1284 self.focus = None;
1285 self.refresh();
1286 }
1287
1288 /// Blur the window and don't allow anything in it to be focused again.
1289 pub fn disable_focus(&mut self) {
1290 self.blur();
1291 self.focus_enabled = false;
1292 }
1293
1294 /// Accessor for the text system.
1295 pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1296 &self.text_system
1297 }
1298
1299 /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1300 pub fn text_style(&self) -> TextStyle {
1301 let mut style = TextStyle::default();
1302 for refinement in &self.text_style_stack {
1303 style.refine(refinement);
1304 }
1305 style
1306 }
1307
1308 /// Check if the platform window is maximized
1309 /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1310 pub fn is_maximized(&self) -> bool {
1311 self.platform_window.is_maximized()
1312 }
1313
1314 /// request a certain window decoration (Wayland)
1315 pub fn request_decorations(&self, decorations: WindowDecorations) {
1316 self.platform_window.request_decorations(decorations);
1317 }
1318
1319 /// Start a window resize operation (Wayland)
1320 pub fn start_window_resize(&self, edge: ResizeEdge) {
1321 self.platform_window.start_window_resize(edge);
1322 }
1323
1324 /// Return the `WindowBounds` to indicate that how a window should be opened
1325 /// after it has been closed
1326 pub fn window_bounds(&self) -> WindowBounds {
1327 self.platform_window.window_bounds()
1328 }
1329
1330 /// Return the `WindowBounds` excluding insets (Wayland and X11)
1331 pub fn inner_window_bounds(&self) -> WindowBounds {
1332 self.platform_window.inner_window_bounds()
1333 }
1334
1335 /// Dispatch the given action on the currently focused element.
1336 pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1337 let focus_id = self.focused(cx).map(|handle| handle.id);
1338
1339 let window = self.handle;
1340 cx.defer(move |cx| {
1341 window
1342 .update(cx, |_, window, cx| {
1343 let node_id = window.focus_node_id_in_rendered_frame(focus_id);
1344 window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1345 })
1346 .log_err();
1347 })
1348 }
1349
1350 pub(crate) fn dispatch_keystroke_observers(
1351 &mut self,
1352 event: &dyn Any,
1353 action: Option<Box<dyn Action>>,
1354 context_stack: Vec<KeyContext>,
1355 cx: &mut App,
1356 ) {
1357 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1358 return;
1359 };
1360
1361 cx.keystroke_observers.clone().retain(&(), move |callback| {
1362 (callback)(
1363 &KeystrokeEvent {
1364 keystroke: key_down_event.keystroke.clone(),
1365 action: action.as_ref().map(|action| action.boxed_clone()),
1366 context_stack: context_stack.clone(),
1367 },
1368 self,
1369 cx,
1370 )
1371 });
1372 }
1373
1374 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1375 /// that are currently on the stack to be returned to the app.
1376 pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1377 let handle = self.handle;
1378 cx.defer(move |cx| {
1379 handle.update(cx, |_, window, cx| f(window, cx)).ok();
1380 });
1381 }
1382
1383 /// Subscribe to events emitted by a entity.
1384 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1385 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1386 pub fn observe<T: 'static>(
1387 &mut self,
1388 observed: &Entity<T>,
1389 cx: &mut App,
1390 mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1391 ) -> Subscription {
1392 let entity_id = observed.entity_id();
1393 let observed = observed.downgrade();
1394 let window_handle = self.handle;
1395 cx.new_observer(
1396 entity_id,
1397 Box::new(move |cx| {
1398 window_handle
1399 .update(cx, |_, window, cx| {
1400 if let Some(handle) = observed.upgrade() {
1401 on_notify(handle, window, cx);
1402 true
1403 } else {
1404 false
1405 }
1406 })
1407 .unwrap_or(false)
1408 }),
1409 )
1410 }
1411
1412 /// Subscribe to events emitted by a entity.
1413 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1414 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1415 pub fn subscribe<Emitter, Evt>(
1416 &mut self,
1417 entity: &Entity<Emitter>,
1418 cx: &mut App,
1419 mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1420 ) -> Subscription
1421 where
1422 Emitter: EventEmitter<Evt>,
1423 Evt: 'static,
1424 {
1425 let entity_id = entity.entity_id();
1426 let handle = entity.downgrade();
1427 let window_handle = self.handle;
1428 cx.new_subscription(
1429 entity_id,
1430 (
1431 TypeId::of::<Evt>(),
1432 Box::new(move |event, cx| {
1433 window_handle
1434 .update(cx, |_, window, cx| {
1435 if let Some(entity) = handle.upgrade() {
1436 let event = event.downcast_ref().expect("invalid event type");
1437 on_event(entity, event, window, cx);
1438 true
1439 } else {
1440 false
1441 }
1442 })
1443 .unwrap_or(false)
1444 }),
1445 ),
1446 )
1447 }
1448
1449 /// Register a callback to be invoked when the given `Entity` is released.
1450 pub fn observe_release<T>(
1451 &self,
1452 entity: &Entity<T>,
1453 cx: &mut App,
1454 mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1455 ) -> Subscription
1456 where
1457 T: 'static,
1458 {
1459 let entity_id = entity.entity_id();
1460 let window_handle = self.handle;
1461 let (subscription, activate) = cx.release_listeners.insert(
1462 entity_id,
1463 Box::new(move |entity, cx| {
1464 let entity = entity.downcast_mut().expect("invalid entity type");
1465 let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1466 }),
1467 );
1468 activate();
1469 subscription
1470 }
1471
1472 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1473 /// await points in async code.
1474 pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1475 AsyncWindowContext::new_context(cx.to_async(), self.handle)
1476 }
1477
1478 /// Schedule the given closure to be run directly after the current frame is rendered.
1479 pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1480 RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1481 }
1482
1483 /// Schedule a frame to be drawn on the next animation frame.
1484 ///
1485 /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1486 /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1487 ///
1488 /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1489 pub fn request_animation_frame(&self) {
1490 let entity = self.current_view();
1491 self.on_next_frame(move |_, cx| cx.notify(entity));
1492 }
1493
1494 /// Spawn the future returned by the given closure on the application thread pool.
1495 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1496 /// use within your future.
1497 #[track_caller]
1498 pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1499 where
1500 R: 'static,
1501 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1502 {
1503 let handle = self.handle;
1504 cx.spawn(async move |app| {
1505 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1506 f(&mut async_window_cx).await
1507 })
1508 }
1509
1510 fn bounds_changed(&mut self, cx: &mut App) {
1511 self.scale_factor = self.platform_window.scale_factor();
1512 self.viewport_size = self.platform_window.content_size();
1513 self.display_id = self.platform_window.display().map(|display| display.id());
1514
1515 self.refresh();
1516
1517 self.bounds_observers
1518 .clone()
1519 .retain(&(), |callback| callback(self, cx));
1520 }
1521
1522 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1523 pub fn bounds(&self) -> Bounds<Pixels> {
1524 self.platform_window.bounds()
1525 }
1526
1527 /// Set the content size of the window.
1528 pub fn resize(&mut self, size: Size<Pixels>) {
1529 self.platform_window.resize(size);
1530 }
1531
1532 /// Returns whether or not the window is currently fullscreen
1533 pub fn is_fullscreen(&self) -> bool {
1534 self.platform_window.is_fullscreen()
1535 }
1536
1537 pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1538 self.appearance = self.platform_window.appearance();
1539
1540 self.appearance_observers
1541 .clone()
1542 .retain(&(), |callback| callback(self, cx));
1543 }
1544
1545 /// Returns the appearance of the current window.
1546 pub fn appearance(&self) -> WindowAppearance {
1547 self.appearance
1548 }
1549
1550 /// Returns the size of the drawable area within the window.
1551 pub fn viewport_size(&self) -> Size<Pixels> {
1552 self.viewport_size
1553 }
1554
1555 /// Returns whether this window is focused by the operating system (receiving key events).
1556 pub fn is_window_active(&self) -> bool {
1557 self.active.get()
1558 }
1559
1560 /// Returns whether this window is considered to be the window
1561 /// that currently owns the mouse cursor.
1562 /// On mac, this is equivalent to `is_window_active`.
1563 pub fn is_window_hovered(&self) -> bool {
1564 if cfg!(any(
1565 target_os = "windows",
1566 target_os = "linux",
1567 target_os = "freebsd"
1568 )) {
1569 self.hovered.get()
1570 } else {
1571 self.is_window_active()
1572 }
1573 }
1574
1575 /// Toggle zoom on the window.
1576 pub fn zoom_window(&self) {
1577 self.platform_window.zoom();
1578 }
1579
1580 /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1581 pub fn show_window_menu(&self, position: Point<Pixels>) {
1582 self.platform_window.show_window_menu(position)
1583 }
1584
1585 /// Tells the compositor to take control of window movement (Wayland and X11)
1586 ///
1587 /// Events may not be received during a move operation.
1588 pub fn start_window_move(&self) {
1589 self.platform_window.start_window_move()
1590 }
1591
1592 /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1593 pub fn set_client_inset(&mut self, inset: Pixels) {
1594 self.client_inset = Some(inset);
1595 self.platform_window.set_client_inset(inset);
1596 }
1597
1598 /// Returns the client_inset value by [`Self::set_client_inset`].
1599 pub fn client_inset(&self) -> Option<Pixels> {
1600 self.client_inset
1601 }
1602
1603 /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1604 pub fn window_decorations(&self) -> Decorations {
1605 self.platform_window.window_decorations()
1606 }
1607
1608 /// Returns which window controls are currently visible (Wayland)
1609 pub fn window_controls(&self) -> WindowControls {
1610 self.platform_window.window_controls()
1611 }
1612
1613 /// Updates the window's title at the platform level.
1614 pub fn set_window_title(&mut self, title: &str) {
1615 self.platform_window.set_title(title);
1616 }
1617
1618 /// Sets the application identifier.
1619 pub fn set_app_id(&mut self, app_id: &str) {
1620 self.platform_window.set_app_id(app_id);
1621 }
1622
1623 /// Sets the window background appearance.
1624 pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1625 self.platform_window
1626 .set_background_appearance(background_appearance);
1627 }
1628
1629 /// Mark the window as dirty at the platform level.
1630 pub fn set_window_edited(&mut self, edited: bool) {
1631 self.platform_window.set_edited(edited);
1632 }
1633
1634 /// Determine the display on which the window is visible.
1635 pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1636 cx.platform
1637 .displays()
1638 .into_iter()
1639 .find(|display| Some(display.id()) == self.display_id)
1640 }
1641
1642 /// Show the platform character palette.
1643 pub fn show_character_palette(&self) {
1644 self.platform_window.show_character_palette();
1645 }
1646
1647 /// The scale factor of the display associated with the window. For example, it could
1648 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1649 /// be rendered as two pixels on screen.
1650 pub fn scale_factor(&self) -> f32 {
1651 self.scale_factor
1652 }
1653
1654 /// The size of an em for the base font of the application. Adjusting this value allows the
1655 /// UI to scale, just like zooming a web page.
1656 pub fn rem_size(&self) -> Pixels {
1657 self.rem_size_override_stack
1658 .last()
1659 .copied()
1660 .unwrap_or(self.rem_size)
1661 }
1662
1663 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1664 /// UI to scale, just like zooming a web page.
1665 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1666 self.rem_size = rem_size.into();
1667 }
1668
1669 /// Acquire a globally unique identifier for the given ElementId.
1670 /// Only valid for the duration of the provided closure.
1671 pub fn with_global_id<R>(
1672 &mut self,
1673 element_id: ElementId,
1674 f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1675 ) -> R {
1676 self.element_id_stack.push(element_id);
1677 let global_id = GlobalElementId(self.element_id_stack.clone());
1678 let result = f(&global_id, self);
1679 self.element_id_stack.pop();
1680 result
1681 }
1682
1683 /// Executes the provided function with the specified rem size.
1684 ///
1685 /// This method must only be called as part of element drawing.
1686 pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1687 where
1688 F: FnOnce(&mut Self) -> R,
1689 {
1690 self.invalidator.debug_assert_paint_or_prepaint();
1691
1692 if let Some(rem_size) = rem_size {
1693 self.rem_size_override_stack.push(rem_size.into());
1694 let result = f(self);
1695 self.rem_size_override_stack.pop();
1696 result
1697 } else {
1698 f(self)
1699 }
1700 }
1701
1702 /// The line height associated with the current text style.
1703 pub fn line_height(&self) -> Pixels {
1704 self.text_style().line_height_in_pixels(self.rem_size())
1705 }
1706
1707 /// Call to prevent the default action of an event. Currently only used to prevent
1708 /// parent elements from becoming focused on mouse down.
1709 pub fn prevent_default(&mut self) {
1710 self.default_prevented = true;
1711 }
1712
1713 /// Obtain whether default has been prevented for the event currently being dispatched.
1714 pub fn default_prevented(&self) -> bool {
1715 self.default_prevented
1716 }
1717
1718 /// Determine whether the given action is available along the dispatch path to the currently focused element.
1719 pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1720 let node_id =
1721 self.focus_node_id_in_rendered_frame(self.focused(cx).map(|handle| handle.id));
1722 self.rendered_frame
1723 .dispatch_tree
1724 .is_action_available(action, node_id)
1725 }
1726
1727 /// The position of the mouse relative to the window.
1728 pub fn mouse_position(&self) -> Point<Pixels> {
1729 self.mouse_position
1730 }
1731
1732 /// The current state of the keyboard's modifiers
1733 pub fn modifiers(&self) -> Modifiers {
1734 self.modifiers
1735 }
1736
1737 /// The current state of the keyboard's capslock
1738 pub fn capslock(&self) -> Capslock {
1739 self.capslock
1740 }
1741
1742 fn complete_frame(&self) {
1743 self.platform_window.completed_frame();
1744 }
1745
1746 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1747 /// the contents of the new [Scene], use [present].
1748 #[profiling::function]
1749 pub fn draw(&mut self, cx: &mut App) -> ArenaClearNeeded {
1750 self.invalidate_entities();
1751 cx.entities.clear_accessed();
1752 debug_assert!(self.rendered_entity_stack.is_empty());
1753 self.invalidator.set_dirty(false);
1754 self.requested_autoscroll = None;
1755
1756 // Restore the previously-used input handler.
1757 if let Some(input_handler) = self.platform_window.take_input_handler() {
1758 self.rendered_frame.input_handlers.push(Some(input_handler));
1759 }
1760 self.draw_roots(cx);
1761 self.dirty_views.clear();
1762 self.next_frame.window_active = self.active.get();
1763
1764 // Register requested input handler with the platform window.
1765 if let Some(input_handler) = self.next_frame.input_handlers.pop() {
1766 self.platform_window
1767 .set_input_handler(input_handler.unwrap());
1768 }
1769
1770 self.layout_engine.as_mut().unwrap().clear();
1771 self.text_system().finish_frame();
1772 self.next_frame.finish(&mut self.rendered_frame);
1773
1774 self.invalidator.set_phase(DrawPhase::Focus);
1775 let previous_focus_path = self.rendered_frame.focus_path();
1776 let previous_window_active = self.rendered_frame.window_active;
1777 mem::swap(&mut self.rendered_frame, &mut self.next_frame);
1778 self.next_frame.clear();
1779 let current_focus_path = self.rendered_frame.focus_path();
1780 let current_window_active = self.rendered_frame.window_active;
1781
1782 if previous_focus_path != current_focus_path
1783 || previous_window_active != current_window_active
1784 {
1785 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
1786 self.focus_lost_listeners
1787 .clone()
1788 .retain(&(), |listener| listener(self, cx));
1789 }
1790
1791 let event = WindowFocusEvent {
1792 previous_focus_path: if previous_window_active {
1793 previous_focus_path
1794 } else {
1795 Default::default()
1796 },
1797 current_focus_path: if current_window_active {
1798 current_focus_path
1799 } else {
1800 Default::default()
1801 },
1802 };
1803 self.focus_listeners
1804 .clone()
1805 .retain(&(), |listener| listener(&event, self, cx));
1806 }
1807
1808 debug_assert!(self.rendered_entity_stack.is_empty());
1809 self.record_entities_accessed(cx);
1810 self.reset_cursor_style(cx);
1811 self.refreshing = false;
1812 self.invalidator.set_phase(DrawPhase::None);
1813 self.needs_present.set(true);
1814
1815 ArenaClearNeeded
1816 }
1817
1818 fn record_entities_accessed(&mut self, cx: &mut App) {
1819 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1820 let mut entities = mem::take(entities_ref.deref_mut());
1821 drop(entities_ref);
1822 let handle = self.handle;
1823 cx.record_entities_accessed(
1824 handle,
1825 // Try moving window invalidator into the Window
1826 self.invalidator.clone(),
1827 &entities,
1828 );
1829 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1830 mem::swap(&mut entities, entities_ref.deref_mut());
1831 }
1832
1833 fn invalidate_entities(&mut self) {
1834 let mut views = self.invalidator.take_views();
1835 for entity in views.drain() {
1836 self.mark_view_dirty(entity);
1837 }
1838 self.invalidator.replace_views(views);
1839 }
1840
1841 #[profiling::function]
1842 fn present(&self) {
1843 self.platform_window.draw(&self.rendered_frame.scene);
1844 self.needs_present.set(false);
1845 profiling::finish_frame!();
1846 }
1847
1848 fn draw_roots(&mut self, cx: &mut App) {
1849 self.invalidator.set_phase(DrawPhase::Prepaint);
1850 self.tooltip_bounds.take();
1851
1852 let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
1853 let root_size = {
1854 #[cfg(any(feature = "inspector", debug_assertions))]
1855 {
1856 if self.inspector.is_some() {
1857 let mut size = self.viewport_size;
1858 size.width = (size.width - _inspector_width).max(px(0.0));
1859 size
1860 } else {
1861 self.viewport_size
1862 }
1863 }
1864 #[cfg(not(any(feature = "inspector", debug_assertions)))]
1865 {
1866 self.viewport_size
1867 }
1868 };
1869
1870 // Layout all root elements.
1871 let mut root_element = self.root.as_ref().unwrap().clone().into_any();
1872 root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
1873
1874 #[cfg(any(feature = "inspector", debug_assertions))]
1875 let inspector_element = self.prepaint_inspector(_inspector_width, cx);
1876
1877 let mut sorted_deferred_draws =
1878 (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
1879 sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
1880 self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
1881
1882 let mut prompt_element = None;
1883 let mut active_drag_element = None;
1884 let mut tooltip_element = None;
1885 if let Some(prompt) = self.prompt.take() {
1886 let mut element = prompt.view.any_view().into_any();
1887 element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
1888 prompt_element = Some(element);
1889 self.prompt = Some(prompt);
1890 } else if let Some(active_drag) = cx.active_drag.take() {
1891 let mut element = active_drag.view.clone().into_any();
1892 let offset = self.mouse_position() - active_drag.cursor_offset;
1893 element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
1894 active_drag_element = Some(element);
1895 cx.active_drag = Some(active_drag);
1896 } else {
1897 tooltip_element = self.prepaint_tooltip(cx);
1898 }
1899
1900 self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
1901
1902 // Now actually paint the elements.
1903 self.invalidator.set_phase(DrawPhase::Paint);
1904 root_element.paint(self, cx);
1905
1906 #[cfg(any(feature = "inspector", debug_assertions))]
1907 self.paint_inspector(inspector_element, cx);
1908
1909 self.paint_deferred_draws(&sorted_deferred_draws, cx);
1910
1911 if let Some(mut prompt_element) = prompt_element {
1912 prompt_element.paint(self, cx);
1913 } else if let Some(mut drag_element) = active_drag_element {
1914 drag_element.paint(self, cx);
1915 } else if let Some(mut tooltip_element) = tooltip_element {
1916 tooltip_element.paint(self, cx);
1917 }
1918
1919 #[cfg(any(feature = "inspector", debug_assertions))]
1920 self.paint_inspector_hitbox(cx);
1921 }
1922
1923 fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
1924 // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
1925 for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
1926 let Some(Some(tooltip_request)) = self
1927 .next_frame
1928 .tooltip_requests
1929 .get(tooltip_request_index)
1930 .cloned()
1931 else {
1932 log::error!("Unexpectedly absent TooltipRequest");
1933 continue;
1934 };
1935 let mut element = tooltip_request.tooltip.view.clone().into_any();
1936 let mouse_position = tooltip_request.tooltip.mouse_position;
1937 let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
1938
1939 let mut tooltip_bounds =
1940 Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
1941 let window_bounds = Bounds {
1942 origin: Point::default(),
1943 size: self.viewport_size(),
1944 };
1945
1946 if tooltip_bounds.right() > window_bounds.right() {
1947 let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
1948 if new_x >= Pixels::ZERO {
1949 tooltip_bounds.origin.x = new_x;
1950 } else {
1951 tooltip_bounds.origin.x = cmp::max(
1952 Pixels::ZERO,
1953 tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
1954 );
1955 }
1956 }
1957
1958 if tooltip_bounds.bottom() > window_bounds.bottom() {
1959 let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
1960 if new_y >= Pixels::ZERO {
1961 tooltip_bounds.origin.y = new_y;
1962 } else {
1963 tooltip_bounds.origin.y = cmp::max(
1964 Pixels::ZERO,
1965 tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
1966 );
1967 }
1968 }
1969
1970 // It's possible for an element to have an active tooltip while not being painted (e.g.
1971 // via the `visible_on_hover` method). Since mouse listeners are not active in this
1972 // case, instead update the tooltip's visibility here.
1973 let is_visible =
1974 (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
1975 if !is_visible {
1976 continue;
1977 }
1978
1979 self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
1980 element.prepaint(window, cx)
1981 });
1982
1983 self.tooltip_bounds = Some(TooltipBounds {
1984 id: tooltip_request.id,
1985 bounds: tooltip_bounds,
1986 });
1987 return Some(element);
1988 }
1989 None
1990 }
1991
1992 fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
1993 assert_eq!(self.element_id_stack.len(), 0);
1994
1995 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
1996 for deferred_draw_ix in deferred_draw_indices {
1997 let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
1998 self.element_id_stack
1999 .clone_from(&deferred_draw.element_id_stack);
2000 self.text_style_stack
2001 .clone_from(&deferred_draw.text_style_stack);
2002 self.next_frame
2003 .dispatch_tree
2004 .set_active_node(deferred_draw.parent_node);
2005
2006 let prepaint_start = self.prepaint_index();
2007 if let Some(element) = deferred_draw.element.as_mut() {
2008 self.with_rendered_view(deferred_draw.current_view, |window| {
2009 window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
2010 element.prepaint(window, cx)
2011 });
2012 })
2013 } else {
2014 self.reuse_prepaint(deferred_draw.prepaint_range.clone());
2015 }
2016 let prepaint_end = self.prepaint_index();
2017 deferred_draw.prepaint_range = prepaint_start..prepaint_end;
2018 }
2019 assert_eq!(
2020 self.next_frame.deferred_draws.len(),
2021 0,
2022 "cannot call defer_draw during deferred drawing"
2023 );
2024 self.next_frame.deferred_draws = deferred_draws;
2025 self.element_id_stack.clear();
2026 self.text_style_stack.clear();
2027 }
2028
2029 fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2030 assert_eq!(self.element_id_stack.len(), 0);
2031
2032 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2033 for deferred_draw_ix in deferred_draw_indices {
2034 let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2035 self.element_id_stack
2036 .clone_from(&deferred_draw.element_id_stack);
2037 self.next_frame
2038 .dispatch_tree
2039 .set_active_node(deferred_draw.parent_node);
2040
2041 let paint_start = self.paint_index();
2042 if let Some(element) = deferred_draw.element.as_mut() {
2043 self.with_rendered_view(deferred_draw.current_view, |window| {
2044 element.paint(window, cx);
2045 })
2046 } else {
2047 self.reuse_paint(deferred_draw.paint_range.clone());
2048 }
2049 let paint_end = self.paint_index();
2050 deferred_draw.paint_range = paint_start..paint_end;
2051 }
2052 self.next_frame.deferred_draws = deferred_draws;
2053 self.element_id_stack.clear();
2054 }
2055
2056 pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2057 PrepaintStateIndex {
2058 hitboxes_index: self.next_frame.hitboxes.len(),
2059 tooltips_index: self.next_frame.tooltip_requests.len(),
2060 deferred_draws_index: self.next_frame.deferred_draws.len(),
2061 dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2062 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2063 line_layout_index: self.text_system.layout_index(),
2064 }
2065 }
2066
2067 pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2068 self.next_frame.hitboxes.extend(
2069 self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2070 .iter()
2071 .cloned(),
2072 );
2073 self.next_frame.tooltip_requests.extend(
2074 self.rendered_frame.tooltip_requests
2075 [range.start.tooltips_index..range.end.tooltips_index]
2076 .iter_mut()
2077 .map(|request| request.take()),
2078 );
2079 self.next_frame.accessed_element_states.extend(
2080 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2081 ..range.end.accessed_element_states_index]
2082 .iter()
2083 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2084 );
2085 self.text_system
2086 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2087
2088 let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2089 range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2090 &mut self.rendered_frame.dispatch_tree,
2091 self.focus,
2092 );
2093
2094 if reused_subtree.contains_focus() {
2095 self.next_frame.focus = self.focus;
2096 }
2097
2098 self.next_frame.deferred_draws.extend(
2099 self.rendered_frame.deferred_draws
2100 [range.start.deferred_draws_index..range.end.deferred_draws_index]
2101 .iter()
2102 .map(|deferred_draw| DeferredDraw {
2103 current_view: deferred_draw.current_view,
2104 parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2105 element_id_stack: deferred_draw.element_id_stack.clone(),
2106 text_style_stack: deferred_draw.text_style_stack.clone(),
2107 priority: deferred_draw.priority,
2108 element: None,
2109 absolute_offset: deferred_draw.absolute_offset,
2110 prepaint_range: deferred_draw.prepaint_range.clone(),
2111 paint_range: deferred_draw.paint_range.clone(),
2112 }),
2113 );
2114 }
2115
2116 pub(crate) fn paint_index(&self) -> PaintIndex {
2117 PaintIndex {
2118 scene_index: self.next_frame.scene.len(),
2119 mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2120 input_handlers_index: self.next_frame.input_handlers.len(),
2121 cursor_styles_index: self.next_frame.cursor_styles.len(),
2122 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2123 line_layout_index: self.text_system.layout_index(),
2124 }
2125 }
2126
2127 pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2128 self.next_frame.cursor_styles.extend(
2129 self.rendered_frame.cursor_styles
2130 [range.start.cursor_styles_index..range.end.cursor_styles_index]
2131 .iter()
2132 .cloned(),
2133 );
2134 self.next_frame.input_handlers.extend(
2135 self.rendered_frame.input_handlers
2136 [range.start.input_handlers_index..range.end.input_handlers_index]
2137 .iter_mut()
2138 .map(|handler| handler.take()),
2139 );
2140 self.next_frame.mouse_listeners.extend(
2141 self.rendered_frame.mouse_listeners
2142 [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2143 .iter_mut()
2144 .map(|listener| listener.take()),
2145 );
2146 self.next_frame.accessed_element_states.extend(
2147 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2148 ..range.end.accessed_element_states_index]
2149 .iter()
2150 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2151 );
2152
2153 self.text_system
2154 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2155 self.next_frame.scene.replay(
2156 range.start.scene_index..range.end.scene_index,
2157 &self.rendered_frame.scene,
2158 );
2159 }
2160
2161 /// Push a text style onto the stack, and call a function with that style active.
2162 /// Use [`Window::text_style`] to get the current, combined text style. This method
2163 /// should only be called as part of element drawing.
2164 pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2165 where
2166 F: FnOnce(&mut Self) -> R,
2167 {
2168 self.invalidator.debug_assert_paint_or_prepaint();
2169 if let Some(style) = style {
2170 self.text_style_stack.push(style);
2171 let result = f(self);
2172 self.text_style_stack.pop();
2173 result
2174 } else {
2175 f(self)
2176 }
2177 }
2178
2179 /// Updates the cursor style at the platform level. This method should only be called
2180 /// during the prepaint phase of element drawing.
2181 pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
2182 self.invalidator.debug_assert_paint();
2183 self.next_frame.cursor_styles.push(CursorStyleRequest {
2184 hitbox_id: Some(hitbox.id),
2185 style,
2186 });
2187 }
2188
2189 /// Updates the cursor style for the entire window at the platform level. A cursor
2190 /// style using this method will have precedence over any cursor style set using
2191 /// `set_cursor_style`. This method should only be called during the prepaint
2192 /// phase of element drawing.
2193 pub fn set_window_cursor_style(&mut self, style: CursorStyle) {
2194 self.invalidator.debug_assert_paint();
2195 self.next_frame.cursor_styles.push(CursorStyleRequest {
2196 hitbox_id: None,
2197 style,
2198 })
2199 }
2200
2201 /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2202 /// during the paint phase of element drawing.
2203 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2204 self.invalidator.debug_assert_prepaint();
2205 let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2206 self.next_frame
2207 .tooltip_requests
2208 .push(Some(TooltipRequest { id, tooltip }));
2209 id
2210 }
2211
2212 /// Invoke the given function with the given content mask after intersecting it
2213 /// with the current mask. This method should only be called during element drawing.
2214 pub fn with_content_mask<R>(
2215 &mut self,
2216 mask: Option<ContentMask<Pixels>>,
2217 f: impl FnOnce(&mut Self) -> R,
2218 ) -> R {
2219 self.invalidator.debug_assert_paint_or_prepaint();
2220 if let Some(mask) = mask {
2221 let mask = mask.intersect(&self.content_mask());
2222 self.content_mask_stack.push(mask);
2223 let result = f(self);
2224 self.content_mask_stack.pop();
2225 result
2226 } else {
2227 f(self)
2228 }
2229 }
2230
2231 /// Updates the global element offset relative to the current offset. This is used to implement
2232 /// scrolling. This method should only be called during the prepaint phase of element drawing.
2233 pub fn with_element_offset<R>(
2234 &mut self,
2235 offset: Point<Pixels>,
2236 f: impl FnOnce(&mut Self) -> R,
2237 ) -> R {
2238 self.invalidator.debug_assert_prepaint();
2239
2240 if offset.is_zero() {
2241 return f(self);
2242 };
2243
2244 let abs_offset = self.element_offset() + offset;
2245 self.with_absolute_element_offset(abs_offset, f)
2246 }
2247
2248 /// Updates the global element offset based on the given offset. This is used to implement
2249 /// drag handles and other manual painting of elements. This method should only be called during
2250 /// the prepaint phase of element drawing.
2251 pub fn with_absolute_element_offset<R>(
2252 &mut self,
2253 offset: Point<Pixels>,
2254 f: impl FnOnce(&mut Self) -> R,
2255 ) -> R {
2256 self.invalidator.debug_assert_prepaint();
2257 self.element_offset_stack.push(offset);
2258 let result = f(self);
2259 self.element_offset_stack.pop();
2260 result
2261 }
2262
2263 pub(crate) fn with_element_opacity<R>(
2264 &mut self,
2265 opacity: Option<f32>,
2266 f: impl FnOnce(&mut Self) -> R,
2267 ) -> R {
2268 if opacity.is_none() {
2269 return f(self);
2270 }
2271
2272 self.invalidator.debug_assert_paint_or_prepaint();
2273 self.element_opacity = opacity;
2274 let result = f(self);
2275 self.element_opacity = None;
2276 result
2277 }
2278
2279 /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2280 /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2281 /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2282 /// element offset and prepaint again. See [`List`] for an example. This method should only be
2283 /// called during the prepaint phase of element drawing.
2284 pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2285 self.invalidator.debug_assert_prepaint();
2286 let index = self.prepaint_index();
2287 let result = f(self);
2288 if result.is_err() {
2289 self.next_frame.hitboxes.truncate(index.hitboxes_index);
2290 self.next_frame
2291 .tooltip_requests
2292 .truncate(index.tooltips_index);
2293 self.next_frame
2294 .deferred_draws
2295 .truncate(index.deferred_draws_index);
2296 self.next_frame
2297 .dispatch_tree
2298 .truncate(index.dispatch_tree_index);
2299 self.next_frame
2300 .accessed_element_states
2301 .truncate(index.accessed_element_states_index);
2302 self.text_system.truncate_layouts(index.line_layout_index);
2303 }
2304 result
2305 }
2306
2307 /// When you call this method during [`prepaint`], containing elements will attempt to
2308 /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2309 /// [`prepaint`] again with a new set of bounds. See [`List`] for an example of an element
2310 /// that supports this method being called on the elements it contains. This method should only be
2311 /// called during the prepaint phase of element drawing.
2312 pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2313 self.invalidator.debug_assert_prepaint();
2314 self.requested_autoscroll = Some(bounds);
2315 }
2316
2317 /// This method can be called from a containing element such as [`List`] to support the autoscroll behavior
2318 /// described in [`request_autoscroll`].
2319 pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2320 self.invalidator.debug_assert_prepaint();
2321 self.requested_autoscroll.take()
2322 }
2323
2324 /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2325 /// Your view will be re-drawn once the asset has finished loading.
2326 ///
2327 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2328 /// time.
2329 pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2330 let (task, is_first) = cx.fetch_asset::<A>(source);
2331 task.clone().now_or_never().or_else(|| {
2332 if is_first {
2333 let entity_id = self.current_view();
2334 self.spawn(cx, {
2335 let task = task.clone();
2336 async move |cx| {
2337 task.await;
2338
2339 cx.on_next_frame(move |_, cx| {
2340 cx.notify(entity_id);
2341 });
2342 }
2343 })
2344 .detach();
2345 }
2346
2347 None
2348 })
2349 }
2350
2351 /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2352 /// Your view will not be re-drawn once the asset has finished loading.
2353 ///
2354 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2355 /// time.
2356 pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2357 let (task, _) = cx.fetch_asset::<A>(source);
2358 task.clone().now_or_never()
2359 }
2360 /// Obtain the current element offset. This method should only be called during the
2361 /// prepaint phase of element drawing.
2362 pub fn element_offset(&self) -> Point<Pixels> {
2363 self.invalidator.debug_assert_prepaint();
2364 self.element_offset_stack
2365 .last()
2366 .copied()
2367 .unwrap_or_default()
2368 }
2369
2370 /// Obtain the current element opacity. This method should only be called during the
2371 /// prepaint phase of element drawing.
2372 pub(crate) fn element_opacity(&self) -> f32 {
2373 self.invalidator.debug_assert_paint_or_prepaint();
2374 self.element_opacity.unwrap_or(1.0)
2375 }
2376
2377 /// Obtain the current content mask. This method should only be called during element drawing.
2378 pub fn content_mask(&self) -> ContentMask<Pixels> {
2379 self.invalidator.debug_assert_paint_or_prepaint();
2380 self.content_mask_stack
2381 .last()
2382 .cloned()
2383 .unwrap_or_else(|| ContentMask {
2384 bounds: Bounds {
2385 origin: Point::default(),
2386 size: self.viewport_size,
2387 },
2388 })
2389 }
2390
2391 /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2392 /// This can be used within a custom element to distinguish multiple sets of child elements.
2393 pub fn with_element_namespace<R>(
2394 &mut self,
2395 element_id: impl Into<ElementId>,
2396 f: impl FnOnce(&mut Self) -> R,
2397 ) -> R {
2398 self.element_id_stack.push(element_id.into());
2399 let result = f(self);
2400 self.element_id_stack.pop();
2401 result
2402 }
2403
2404 /// Updates or initializes state for an element with the given id that lives across multiple
2405 /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2406 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2407 /// when drawing the next frame. This method should only be called as part of element drawing.
2408 pub fn with_element_state<S, R>(
2409 &mut self,
2410 global_id: &GlobalElementId,
2411 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2412 ) -> R
2413 where
2414 S: 'static,
2415 {
2416 self.invalidator.debug_assert_paint_or_prepaint();
2417
2418 let key = (GlobalElementId(global_id.0.clone()), TypeId::of::<S>());
2419 self.next_frame
2420 .accessed_element_states
2421 .push((GlobalElementId(key.0.clone()), TypeId::of::<S>()));
2422
2423 if let Some(any) = self
2424 .next_frame
2425 .element_states
2426 .remove(&key)
2427 .or_else(|| self.rendered_frame.element_states.remove(&key))
2428 {
2429 let ElementStateBox {
2430 inner,
2431 #[cfg(debug_assertions)]
2432 type_name,
2433 } = any;
2434 // Using the extra inner option to avoid needing to reallocate a new box.
2435 let mut state_box = inner
2436 .downcast::<Option<S>>()
2437 .map_err(|_| {
2438 #[cfg(debug_assertions)]
2439 {
2440 anyhow::anyhow!(
2441 "invalid element state type for id, requested {:?}, actual: {:?}",
2442 std::any::type_name::<S>(),
2443 type_name
2444 )
2445 }
2446
2447 #[cfg(not(debug_assertions))]
2448 {
2449 anyhow::anyhow!(
2450 "invalid element state type for id, requested {:?}",
2451 std::any::type_name::<S>(),
2452 )
2453 }
2454 })
2455 .unwrap();
2456
2457 let state = state_box.take().expect(
2458 "reentrant call to with_element_state for the same state type and element id",
2459 );
2460 let (result, state) = f(Some(state), self);
2461 state_box.replace(state);
2462 self.next_frame.element_states.insert(
2463 key,
2464 ElementStateBox {
2465 inner: state_box,
2466 #[cfg(debug_assertions)]
2467 type_name,
2468 },
2469 );
2470 result
2471 } else {
2472 let (result, state) = f(None, self);
2473 self.next_frame.element_states.insert(
2474 key,
2475 ElementStateBox {
2476 inner: Box::new(Some(state)),
2477 #[cfg(debug_assertions)]
2478 type_name: std::any::type_name::<S>(),
2479 },
2480 );
2481 result
2482 }
2483 }
2484
2485 /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2486 /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2487 /// when the element is guaranteed to have an id.
2488 ///
2489 /// The first option means 'no ID provided'
2490 /// The second option means 'not yet initialized'
2491 pub fn with_optional_element_state<S, R>(
2492 &mut self,
2493 global_id: Option<&GlobalElementId>,
2494 f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2495 ) -> R
2496 where
2497 S: 'static,
2498 {
2499 self.invalidator.debug_assert_paint_or_prepaint();
2500
2501 if let Some(global_id) = global_id {
2502 self.with_element_state(global_id, |state, cx| {
2503 let (result, state) = f(Some(state), cx);
2504 let state =
2505 state.expect("you must return some state when you pass some element id");
2506 (result, state)
2507 })
2508 } else {
2509 let (result, state) = f(None, self);
2510 debug_assert!(
2511 state.is_none(),
2512 "you must not return an element state when passing None for the global id"
2513 );
2514 result
2515 }
2516 }
2517
2518 /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2519 /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2520 /// with higher values being drawn on top.
2521 ///
2522 /// This method should only be called as part of the prepaint phase of element drawing.
2523 pub fn defer_draw(
2524 &mut self,
2525 element: AnyElement,
2526 absolute_offset: Point<Pixels>,
2527 priority: usize,
2528 ) {
2529 self.invalidator.debug_assert_prepaint();
2530 let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2531 self.next_frame.deferred_draws.push(DeferredDraw {
2532 current_view: self.current_view(),
2533 parent_node,
2534 element_id_stack: self.element_id_stack.clone(),
2535 text_style_stack: self.text_style_stack.clone(),
2536 priority,
2537 element: Some(element),
2538 absolute_offset,
2539 prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2540 paint_range: PaintIndex::default()..PaintIndex::default(),
2541 });
2542 }
2543
2544 /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2545 /// of geometry that are non-overlapping and have the same draw order. This is typically used
2546 /// for performance reasons.
2547 ///
2548 /// This method should only be called as part of the paint phase of element drawing.
2549 pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2550 self.invalidator.debug_assert_paint();
2551
2552 let scale_factor = self.scale_factor();
2553 let content_mask = self.content_mask();
2554 let clipped_bounds = bounds.intersect(&content_mask.bounds);
2555 if !clipped_bounds.is_empty() {
2556 self.next_frame
2557 .scene
2558 .push_layer(clipped_bounds.scale(scale_factor));
2559 }
2560
2561 let result = f(self);
2562
2563 if !clipped_bounds.is_empty() {
2564 self.next_frame.scene.pop_layer();
2565 }
2566
2567 result
2568 }
2569
2570 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2571 ///
2572 /// This method should only be called as part of the paint phase of element drawing.
2573 pub fn paint_shadows(
2574 &mut self,
2575 bounds: Bounds<Pixels>,
2576 corner_radii: Corners<Pixels>,
2577 shadows: &[BoxShadow],
2578 ) {
2579 self.invalidator.debug_assert_paint();
2580
2581 let scale_factor = self.scale_factor();
2582 let content_mask = self.content_mask();
2583 let opacity = self.element_opacity();
2584 for shadow in shadows {
2585 let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2586 self.next_frame.scene.insert_primitive(Shadow {
2587 order: 0,
2588 blur_radius: shadow.blur_radius.scale(scale_factor),
2589 bounds: shadow_bounds.scale(scale_factor),
2590 content_mask: content_mask.scale(scale_factor),
2591 corner_radii: corner_radii.scale(scale_factor),
2592 color: shadow.color.opacity(opacity),
2593 });
2594 }
2595 }
2596
2597 /// Paint one or more quads into the scene for the next frame at the current stacking context.
2598 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2599 /// see [`fill`](crate::fill), [`outline`](crate::outline), and [`quad`](crate::quad) to construct this type.
2600 ///
2601 /// This method should only be called as part of the paint phase of element drawing.
2602 ///
2603 /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2604 /// where the circular arcs meet. This will not display well when combined with dashed borders.
2605 /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2606 pub fn paint_quad(&mut self, quad: PaintQuad) {
2607 self.invalidator.debug_assert_paint();
2608
2609 let scale_factor = self.scale_factor();
2610 let content_mask = self.content_mask();
2611 let opacity = self.element_opacity();
2612 self.next_frame.scene.insert_primitive(Quad {
2613 order: 0,
2614 bounds: quad.bounds.scale(scale_factor),
2615 content_mask: content_mask.scale(scale_factor),
2616 background: quad.background.opacity(opacity),
2617 border_color: quad.border_color.opacity(opacity),
2618 corner_radii: quad.corner_radii.scale(scale_factor),
2619 border_widths: quad.border_widths.scale(scale_factor),
2620 border_style: quad.border_style,
2621 });
2622 }
2623
2624 /// Paint the given `Path` into the scene for the next frame at the current z-index.
2625 ///
2626 /// This method should only be called as part of the paint phase of element drawing.
2627 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2628 self.invalidator.debug_assert_paint();
2629
2630 let scale_factor = self.scale_factor();
2631 let content_mask = self.content_mask();
2632 let opacity = self.element_opacity();
2633 path.content_mask = content_mask;
2634 let color: Background = color.into();
2635 path.color = color.opacity(opacity);
2636 self.next_frame
2637 .scene
2638 .insert_primitive(path.apply_scale(scale_factor));
2639 }
2640
2641 /// Paint an underline into the scene for the next frame at the current z-index.
2642 ///
2643 /// This method should only be called as part of the paint phase of element drawing.
2644 pub fn paint_underline(
2645 &mut self,
2646 origin: Point<Pixels>,
2647 width: Pixels,
2648 style: &UnderlineStyle,
2649 ) {
2650 self.invalidator.debug_assert_paint();
2651
2652 let scale_factor = self.scale_factor();
2653 let height = if style.wavy {
2654 style.thickness * 3.
2655 } else {
2656 style.thickness
2657 };
2658 let bounds = Bounds {
2659 origin,
2660 size: size(width, height),
2661 };
2662 let content_mask = self.content_mask();
2663 let element_opacity = self.element_opacity();
2664
2665 self.next_frame.scene.insert_primitive(Underline {
2666 order: 0,
2667 pad: 0,
2668 bounds: bounds.scale(scale_factor),
2669 content_mask: content_mask.scale(scale_factor),
2670 color: style.color.unwrap_or_default().opacity(element_opacity),
2671 thickness: style.thickness.scale(scale_factor),
2672 wavy: style.wavy,
2673 });
2674 }
2675
2676 /// Paint a strikethrough into the scene for the next frame at the current z-index.
2677 ///
2678 /// This method should only be called as part of the paint phase of element drawing.
2679 pub fn paint_strikethrough(
2680 &mut self,
2681 origin: Point<Pixels>,
2682 width: Pixels,
2683 style: &StrikethroughStyle,
2684 ) {
2685 self.invalidator.debug_assert_paint();
2686
2687 let scale_factor = self.scale_factor();
2688 let height = style.thickness;
2689 let bounds = Bounds {
2690 origin,
2691 size: size(width, height),
2692 };
2693 let content_mask = self.content_mask();
2694 let opacity = self.element_opacity();
2695
2696 self.next_frame.scene.insert_primitive(Underline {
2697 order: 0,
2698 pad: 0,
2699 bounds: bounds.scale(scale_factor),
2700 content_mask: content_mask.scale(scale_factor),
2701 thickness: style.thickness.scale(scale_factor),
2702 color: style.color.unwrap_or_default().opacity(opacity),
2703 wavy: false,
2704 });
2705 }
2706
2707 /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
2708 ///
2709 /// The y component of the origin is the baseline of the glyph.
2710 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2711 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2712 /// This method is only useful if you need to paint a single glyph that has already been shaped.
2713 ///
2714 /// This method should only be called as part of the paint phase of element drawing.
2715 pub fn paint_glyph(
2716 &mut self,
2717 origin: Point<Pixels>,
2718 font_id: FontId,
2719 glyph_id: GlyphId,
2720 font_size: Pixels,
2721 color: Hsla,
2722 ) -> Result<()> {
2723 self.invalidator.debug_assert_paint();
2724
2725 let element_opacity = self.element_opacity();
2726 let scale_factor = self.scale_factor();
2727 let glyph_origin = origin.scale(scale_factor);
2728 let subpixel_variant = Point {
2729 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2730 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2731 };
2732 let params = RenderGlyphParams {
2733 font_id,
2734 glyph_id,
2735 font_size,
2736 subpixel_variant,
2737 scale_factor,
2738 is_emoji: false,
2739 };
2740
2741 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2742 if !raster_bounds.is_zero() {
2743 let tile = self
2744 .sprite_atlas
2745 .get_or_insert_with(¶ms.clone().into(), &mut || {
2746 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2747 Ok(Some((size, Cow::Owned(bytes))))
2748 })?
2749 .expect("Callback above only errors or returns Some");
2750 let bounds = Bounds {
2751 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2752 size: tile.bounds.size.map(Into::into),
2753 };
2754 let content_mask = self.content_mask().scale(scale_factor);
2755 self.next_frame.scene.insert_primitive(MonochromeSprite {
2756 order: 0,
2757 pad: 0,
2758 bounds,
2759 content_mask,
2760 color: color.opacity(element_opacity),
2761 tile,
2762 transformation: TransformationMatrix::unit(),
2763 });
2764 }
2765 Ok(())
2766 }
2767
2768 /// Paints an emoji glyph into the scene for the next frame at the current z-index.
2769 ///
2770 /// The y component of the origin is the baseline of the glyph.
2771 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2772 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2773 /// This method is only useful if you need to paint a single emoji that has already been shaped.
2774 ///
2775 /// This method should only be called as part of the paint phase of element drawing.
2776 pub fn paint_emoji(
2777 &mut self,
2778 origin: Point<Pixels>,
2779 font_id: FontId,
2780 glyph_id: GlyphId,
2781 font_size: Pixels,
2782 ) -> Result<()> {
2783 self.invalidator.debug_assert_paint();
2784
2785 let scale_factor = self.scale_factor();
2786 let glyph_origin = origin.scale(scale_factor);
2787 let params = RenderGlyphParams {
2788 font_id,
2789 glyph_id,
2790 font_size,
2791 // We don't render emojis with subpixel variants.
2792 subpixel_variant: Default::default(),
2793 scale_factor,
2794 is_emoji: true,
2795 };
2796
2797 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2798 if !raster_bounds.is_zero() {
2799 let tile = self
2800 .sprite_atlas
2801 .get_or_insert_with(¶ms.clone().into(), &mut || {
2802 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2803 Ok(Some((size, Cow::Owned(bytes))))
2804 })?
2805 .expect("Callback above only errors or returns Some");
2806
2807 let bounds = Bounds {
2808 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2809 size: tile.bounds.size.map(Into::into),
2810 };
2811 let content_mask = self.content_mask().scale(scale_factor);
2812 let opacity = self.element_opacity();
2813
2814 self.next_frame.scene.insert_primitive(PolychromeSprite {
2815 order: 0,
2816 pad: 0,
2817 grayscale: false,
2818 bounds,
2819 corner_radii: Default::default(),
2820 content_mask,
2821 tile,
2822 opacity,
2823 });
2824 }
2825 Ok(())
2826 }
2827
2828 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
2829 ///
2830 /// This method should only be called as part of the paint phase of element drawing.
2831 pub fn paint_svg(
2832 &mut self,
2833 bounds: Bounds<Pixels>,
2834 path: SharedString,
2835 transformation: TransformationMatrix,
2836 color: Hsla,
2837 cx: &App,
2838 ) -> Result<()> {
2839 self.invalidator.debug_assert_paint();
2840
2841 let element_opacity = self.element_opacity();
2842 let scale_factor = self.scale_factor();
2843 let bounds = bounds.scale(scale_factor);
2844 let params = RenderSvgParams {
2845 path,
2846 size: bounds.size.map(|pixels| {
2847 DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
2848 }),
2849 };
2850
2851 let Some(tile) =
2852 self.sprite_atlas
2853 .get_or_insert_with(¶ms.clone().into(), &mut || {
2854 let Some(bytes) = cx.svg_renderer.render(¶ms)? else {
2855 return Ok(None);
2856 };
2857 Ok(Some((params.size, Cow::Owned(bytes))))
2858 })?
2859 else {
2860 return Ok(());
2861 };
2862 let content_mask = self.content_mask().scale(scale_factor);
2863
2864 self.next_frame.scene.insert_primitive(MonochromeSprite {
2865 order: 0,
2866 pad: 0,
2867 bounds: bounds
2868 .map_origin(|origin| origin.floor())
2869 .map_size(|size| size.ceil()),
2870 content_mask,
2871 color: color.opacity(element_opacity),
2872 tile,
2873 transformation,
2874 });
2875
2876 Ok(())
2877 }
2878
2879 /// Paint an image into the scene for the next frame at the current z-index.
2880 /// This method will panic if the frame_index is not valid
2881 ///
2882 /// This method should only be called as part of the paint phase of element drawing.
2883 pub fn paint_image(
2884 &mut self,
2885 bounds: Bounds<Pixels>,
2886 corner_radii: Corners<Pixels>,
2887 data: Arc<RenderImage>,
2888 frame_index: usize,
2889 grayscale: bool,
2890 ) -> Result<()> {
2891 self.invalidator.debug_assert_paint();
2892
2893 let scale_factor = self.scale_factor();
2894 let bounds = bounds.scale(scale_factor);
2895 let params = RenderImageParams {
2896 image_id: data.id,
2897 frame_index,
2898 };
2899
2900 let tile = self
2901 .sprite_atlas
2902 .get_or_insert_with(¶ms.clone().into(), &mut || {
2903 Ok(Some((
2904 data.size(frame_index),
2905 Cow::Borrowed(
2906 data.as_bytes(frame_index)
2907 .expect("It's the caller's job to pass a valid frame index"),
2908 ),
2909 )))
2910 })?
2911 .expect("Callback above only returns Some");
2912 let content_mask = self.content_mask().scale(scale_factor);
2913 let corner_radii = corner_radii.scale(scale_factor);
2914 let opacity = self.element_opacity();
2915
2916 self.next_frame.scene.insert_primitive(PolychromeSprite {
2917 order: 0,
2918 pad: 0,
2919 grayscale,
2920 bounds: bounds
2921 .map_origin(|origin| origin.floor())
2922 .map_size(|size| size.ceil()),
2923 content_mask,
2924 corner_radii,
2925 tile,
2926 opacity,
2927 });
2928 Ok(())
2929 }
2930
2931 /// Paint a surface into the scene for the next frame at the current z-index.
2932 ///
2933 /// This method should only be called as part of the paint phase of element drawing.
2934 #[cfg(target_os = "macos")]
2935 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
2936 use crate::PaintSurface;
2937
2938 self.invalidator.debug_assert_paint();
2939
2940 let scale_factor = self.scale_factor();
2941 let bounds = bounds.scale(scale_factor);
2942 let content_mask = self.content_mask().scale(scale_factor);
2943 self.next_frame.scene.insert_primitive(PaintSurface {
2944 order: 0,
2945 bounds,
2946 content_mask,
2947 image_buffer,
2948 });
2949 }
2950
2951 /// Removes an image from the sprite atlas.
2952 pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
2953 for frame_index in 0..data.frame_count() {
2954 let params = RenderImageParams {
2955 image_id: data.id,
2956 frame_index,
2957 };
2958
2959 self.sprite_atlas.remove(¶ms.clone().into());
2960 }
2961
2962 Ok(())
2963 }
2964
2965 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
2966 /// layout is being requested, along with the layout ids of any children. This method is called during
2967 /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
2968 ///
2969 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
2970 #[must_use]
2971 pub fn request_layout(
2972 &mut self,
2973 style: Style,
2974 children: impl IntoIterator<Item = LayoutId>,
2975 cx: &mut App,
2976 ) -> LayoutId {
2977 self.invalidator.debug_assert_prepaint();
2978
2979 cx.layout_id_buffer.clear();
2980 cx.layout_id_buffer.extend(children);
2981 let rem_size = self.rem_size();
2982
2983 self.layout_engine
2984 .as_mut()
2985 .unwrap()
2986 .request_layout(style, rem_size, &cx.layout_id_buffer)
2987 }
2988
2989 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
2990 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
2991 /// determine the element's size. One place this is used internally is when measuring text.
2992 ///
2993 /// The given closure is invoked at layout time with the known dimensions and available space and
2994 /// returns a `Size`.
2995 ///
2996 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
2997 pub fn request_measured_layout<
2998 F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
2999 + 'static,
3000 >(
3001 &mut self,
3002 style: Style,
3003 measure: F,
3004 ) -> LayoutId {
3005 self.invalidator.debug_assert_prepaint();
3006
3007 let rem_size = self.rem_size();
3008 self.layout_engine
3009 .as_mut()
3010 .unwrap()
3011 .request_measured_layout(style, rem_size, measure)
3012 }
3013
3014 /// Compute the layout for the given id within the given available space.
3015 /// This method is called for its side effect, typically by the framework prior to painting.
3016 /// After calling it, you can request the bounds of the given layout node id or any descendant.
3017 ///
3018 /// This method should only be called as part of the prepaint phase of element drawing.
3019 pub fn compute_layout(
3020 &mut self,
3021 layout_id: LayoutId,
3022 available_space: Size<AvailableSpace>,
3023 cx: &mut App,
3024 ) {
3025 self.invalidator.debug_assert_prepaint();
3026
3027 let mut layout_engine = self.layout_engine.take().unwrap();
3028 layout_engine.compute_layout(layout_id, available_space, self, cx);
3029 self.layout_engine = Some(layout_engine);
3030 }
3031
3032 /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
3033 /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
3034 ///
3035 /// This method should only be called as part of element drawing.
3036 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
3037 self.invalidator.debug_assert_prepaint();
3038
3039 let mut bounds = self
3040 .layout_engine
3041 .as_mut()
3042 .unwrap()
3043 .layout_bounds(layout_id)
3044 .map(Into::into);
3045 bounds.origin += self.element_offset();
3046 bounds
3047 }
3048
3049 /// This method should be called during `prepaint`. You can use
3050 /// the returned [Hitbox] during `paint` or in an event handler
3051 /// to determine whether the inserted hitbox was the topmost.
3052 ///
3053 /// This method should only be called as part of the prepaint phase of element drawing.
3054 pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
3055 self.invalidator.debug_assert_prepaint();
3056
3057 let content_mask = self.content_mask();
3058 let mut id = self.next_hitbox_id;
3059 self.next_hitbox_id = self.next_hitbox_id.next();
3060 let hitbox = Hitbox {
3061 id,
3062 bounds,
3063 content_mask,
3064 behavior,
3065 };
3066 self.next_frame.hitboxes.push(hitbox.clone());
3067 hitbox
3068 }
3069
3070 /// Set a hitbox which will act as a control area of the platform window.
3071 ///
3072 /// This method should only be called as part of the paint phase of element drawing.
3073 pub fn insert_window_control_hitbox(&mut self, area: WindowControlArea, hitbox: Hitbox) {
3074 self.invalidator.debug_assert_paint();
3075 self.next_frame.window_control_hitboxes.push((area, hitbox));
3076 }
3077
3078 /// Sets the key context for the current element. This context will be used to translate
3079 /// keybindings into actions.
3080 ///
3081 /// This method should only be called as part of the paint phase of element drawing.
3082 pub fn set_key_context(&mut self, context: KeyContext) {
3083 self.invalidator.debug_assert_paint();
3084 self.next_frame.dispatch_tree.set_key_context(context);
3085 }
3086
3087 /// Sets the focus handle for the current element. This handle will be used to manage focus state
3088 /// and keyboard event dispatch for the element.
3089 ///
3090 /// This method should only be called as part of the prepaint phase of element drawing.
3091 pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3092 self.invalidator.debug_assert_prepaint();
3093 if focus_handle.is_focused(self) {
3094 self.next_frame.focus = Some(focus_handle.id);
3095 }
3096 self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3097 }
3098
3099 /// Sets the view id for the current element, which will be used to manage view caching.
3100 ///
3101 /// This method should only be called as part of element prepaint. We plan on removing this
3102 /// method eventually when we solve some issues that require us to construct editor elements
3103 /// directly instead of always using editors via views.
3104 pub fn set_view_id(&mut self, view_id: EntityId) {
3105 self.invalidator.debug_assert_prepaint();
3106 self.next_frame.dispatch_tree.set_view_id(view_id);
3107 }
3108
3109 /// Get the entity ID for the currently rendering view
3110 pub fn current_view(&self) -> EntityId {
3111 self.invalidator.debug_assert_paint_or_prepaint();
3112 self.rendered_entity_stack.last().copied().unwrap()
3113 }
3114
3115 pub(crate) fn with_rendered_view<R>(
3116 &mut self,
3117 id: EntityId,
3118 f: impl FnOnce(&mut Self) -> R,
3119 ) -> R {
3120 self.rendered_entity_stack.push(id);
3121 let result = f(self);
3122 self.rendered_entity_stack.pop();
3123 result
3124 }
3125
3126 /// Executes the provided function with the specified image cache.
3127 pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3128 where
3129 F: FnOnce(&mut Self) -> R,
3130 {
3131 if let Some(image_cache) = image_cache {
3132 self.image_cache_stack.push(image_cache);
3133 let result = f(self);
3134 self.image_cache_stack.pop();
3135 result
3136 } else {
3137 f(self)
3138 }
3139 }
3140
3141 /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3142 /// platform to receive textual input with proper integration with concerns such
3143 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3144 /// rendered.
3145 ///
3146 /// This method should only be called as part of the paint phase of element drawing.
3147 ///
3148 /// [element_input_handler]: crate::ElementInputHandler
3149 pub fn handle_input(
3150 &mut self,
3151 focus_handle: &FocusHandle,
3152 input_handler: impl InputHandler,
3153 cx: &App,
3154 ) {
3155 self.invalidator.debug_assert_paint();
3156
3157 if focus_handle.is_focused(self) {
3158 let cx = self.to_async(cx);
3159 self.next_frame
3160 .input_handlers
3161 .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3162 }
3163 }
3164
3165 /// Register a mouse event listener on the window for the next frame. The type of event
3166 /// is determined by the first parameter of the given listener. When the next frame is rendered
3167 /// the listener will be cleared.
3168 ///
3169 /// This method should only be called as part of the paint phase of element drawing.
3170 pub fn on_mouse_event<Event: MouseEvent>(
3171 &mut self,
3172 mut handler: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3173 ) {
3174 self.invalidator.debug_assert_paint();
3175
3176 self.next_frame.mouse_listeners.push(Some(Box::new(
3177 move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3178 if let Some(event) = event.downcast_ref() {
3179 handler(event, phase, window, cx)
3180 }
3181 },
3182 )));
3183 }
3184
3185 /// Register a key event listener on the window for the next frame. The type of event
3186 /// is determined by the first parameter of the given listener. When the next frame is rendered
3187 /// the listener will be cleared.
3188 ///
3189 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3190 /// a specific need to register a global listener.
3191 ///
3192 /// This method should only be called as part of the paint phase of element drawing.
3193 pub fn on_key_event<Event: KeyEvent>(
3194 &mut self,
3195 listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3196 ) {
3197 self.invalidator.debug_assert_paint();
3198
3199 self.next_frame.dispatch_tree.on_key_event(Rc::new(
3200 move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3201 if let Some(event) = event.downcast_ref::<Event>() {
3202 listener(event, phase, window, cx)
3203 }
3204 },
3205 ));
3206 }
3207
3208 /// Register a modifiers changed event listener on the window for the next frame.
3209 ///
3210 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3211 /// a specific need to register a global listener.
3212 ///
3213 /// This method should only be called as part of the paint phase of element drawing.
3214 pub fn on_modifiers_changed(
3215 &mut self,
3216 listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3217 ) {
3218 self.invalidator.debug_assert_paint();
3219
3220 self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3221 move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3222 listener(event, window, cx)
3223 },
3224 ));
3225 }
3226
3227 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3228 /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3229 /// Returns a subscription and persists until the subscription is dropped.
3230 pub fn on_focus_in(
3231 &mut self,
3232 handle: &FocusHandle,
3233 cx: &mut App,
3234 mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3235 ) -> Subscription {
3236 let focus_id = handle.id;
3237 let (subscription, activate) =
3238 self.new_focus_listener(Box::new(move |event, window, cx| {
3239 if event.is_focus_in(focus_id) {
3240 listener(window, cx);
3241 }
3242 true
3243 }));
3244 cx.defer(move |_| activate());
3245 subscription
3246 }
3247
3248 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3249 /// Returns a subscription and persists until the subscription is dropped.
3250 pub fn on_focus_out(
3251 &mut self,
3252 handle: &FocusHandle,
3253 cx: &mut App,
3254 mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3255 ) -> Subscription {
3256 let focus_id = handle.id;
3257 let (subscription, activate) =
3258 self.new_focus_listener(Box::new(move |event, window, cx| {
3259 if let Some(blurred_id) = event.previous_focus_path.last().copied() {
3260 if event.is_focus_out(focus_id) {
3261 let event = FocusOutEvent {
3262 blurred: WeakFocusHandle {
3263 id: blurred_id,
3264 handles: Arc::downgrade(&cx.focus_handles),
3265 },
3266 };
3267 listener(event, window, cx)
3268 }
3269 }
3270 true
3271 }));
3272 cx.defer(move |_| activate());
3273 subscription
3274 }
3275
3276 fn reset_cursor_style(&self, cx: &mut App) {
3277 // Set the cursor only if we're the active window.
3278 if self.is_window_hovered() {
3279 let style = self
3280 .rendered_frame
3281 .cursor_style(self)
3282 .unwrap_or(CursorStyle::Arrow);
3283 cx.platform.set_cursor_style(style);
3284 }
3285 }
3286
3287 /// Dispatch a given keystroke as though the user had typed it.
3288 /// You can create a keystroke with Keystroke::parse("").
3289 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3290 let keystroke = keystroke.with_simulated_ime();
3291 let result = self.dispatch_event(
3292 PlatformInput::KeyDown(KeyDownEvent {
3293 keystroke: keystroke.clone(),
3294 is_held: false,
3295 }),
3296 cx,
3297 );
3298 if !result.propagate {
3299 return true;
3300 }
3301
3302 if let Some(input) = keystroke.key_char {
3303 if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3304 input_handler.dispatch_input(&input, self, cx);
3305 self.platform_window.set_input_handler(input_handler);
3306 return true;
3307 }
3308 }
3309
3310 false
3311 }
3312
3313 /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3314 /// binding for the action (last binding added to the keymap).
3315 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3316 self.highest_precedence_binding_for_action(action)
3317 .map(|binding| {
3318 binding
3319 .keystrokes()
3320 .iter()
3321 .map(ToString::to_string)
3322 .collect::<Vec<_>>()
3323 .join(" ")
3324 })
3325 .unwrap_or_else(|| action.name().to_string())
3326 }
3327
3328 /// Dispatch a mouse or keyboard event on the window.
3329 #[profiling::function]
3330 pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3331 self.last_input_timestamp.set(Instant::now());
3332 // Handlers may set this to false by calling `stop_propagation`.
3333 cx.propagate_event = true;
3334 // Handlers may set this to true by calling `prevent_default`.
3335 self.default_prevented = false;
3336
3337 let event = match event {
3338 // Track the mouse position with our own state, since accessing the platform
3339 // API for the mouse position can only occur on the main thread.
3340 PlatformInput::MouseMove(mouse_move) => {
3341 self.mouse_position = mouse_move.position;
3342 self.modifiers = mouse_move.modifiers;
3343 PlatformInput::MouseMove(mouse_move)
3344 }
3345 PlatformInput::MouseDown(mouse_down) => {
3346 self.mouse_position = mouse_down.position;
3347 self.modifiers = mouse_down.modifiers;
3348 PlatformInput::MouseDown(mouse_down)
3349 }
3350 PlatformInput::MouseUp(mouse_up) => {
3351 self.mouse_position = mouse_up.position;
3352 self.modifiers = mouse_up.modifiers;
3353 PlatformInput::MouseUp(mouse_up)
3354 }
3355 PlatformInput::MouseExited(mouse_exited) => {
3356 self.modifiers = mouse_exited.modifiers;
3357 PlatformInput::MouseExited(mouse_exited)
3358 }
3359 PlatformInput::ModifiersChanged(modifiers_changed) => {
3360 self.modifiers = modifiers_changed.modifiers;
3361 self.capslock = modifiers_changed.capslock;
3362 PlatformInput::ModifiersChanged(modifiers_changed)
3363 }
3364 PlatformInput::ScrollWheel(scroll_wheel) => {
3365 self.mouse_position = scroll_wheel.position;
3366 self.modifiers = scroll_wheel.modifiers;
3367 PlatformInput::ScrollWheel(scroll_wheel)
3368 }
3369 // Translate dragging and dropping of external files from the operating system
3370 // to internal drag and drop events.
3371 PlatformInput::FileDrop(file_drop) => match file_drop {
3372 FileDropEvent::Entered { position, paths } => {
3373 self.mouse_position = position;
3374 if cx.active_drag.is_none() {
3375 cx.active_drag = Some(AnyDrag {
3376 value: Arc::new(paths.clone()),
3377 view: cx.new(|_| paths).into(),
3378 cursor_offset: position,
3379 cursor_style: None,
3380 });
3381 }
3382 PlatformInput::MouseMove(MouseMoveEvent {
3383 position,
3384 pressed_button: Some(MouseButton::Left),
3385 modifiers: Modifiers::default(),
3386 })
3387 }
3388 FileDropEvent::Pending { position } => {
3389 self.mouse_position = position;
3390 PlatformInput::MouseMove(MouseMoveEvent {
3391 position,
3392 pressed_button: Some(MouseButton::Left),
3393 modifiers: Modifiers::default(),
3394 })
3395 }
3396 FileDropEvent::Submit { position } => {
3397 cx.activate(true);
3398 self.mouse_position = position;
3399 PlatformInput::MouseUp(MouseUpEvent {
3400 button: MouseButton::Left,
3401 position,
3402 modifiers: Modifiers::default(),
3403 click_count: 1,
3404 })
3405 }
3406 FileDropEvent::Exited => {
3407 cx.active_drag.take();
3408 PlatformInput::FileDrop(FileDropEvent::Exited)
3409 }
3410 },
3411 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3412 };
3413
3414 if let Some(any_mouse_event) = event.mouse_event() {
3415 self.dispatch_mouse_event(any_mouse_event, cx);
3416 } else if let Some(any_key_event) = event.keyboard_event() {
3417 self.dispatch_key_event(any_key_event, cx);
3418 }
3419
3420 DispatchEventResult {
3421 propagate: cx.propagate_event,
3422 default_prevented: self.default_prevented,
3423 }
3424 }
3425
3426 fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3427 let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3428 if hit_test != self.mouse_hit_test {
3429 self.mouse_hit_test = hit_test;
3430 self.reset_cursor_style(cx);
3431 }
3432
3433 #[cfg(any(feature = "inspector", debug_assertions))]
3434 if self.is_inspector_picking(cx) {
3435 self.handle_inspector_mouse_event(event, cx);
3436 // When inspector is picking, all other mouse handling is skipped.
3437 return;
3438 }
3439
3440 let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3441
3442 // Capture phase, events bubble from back to front. Handlers for this phase are used for
3443 // special purposes, such as detecting events outside of a given Bounds.
3444 for listener in &mut mouse_listeners {
3445 let listener = listener.as_mut().unwrap();
3446 listener(event, DispatchPhase::Capture, self, cx);
3447 if !cx.propagate_event {
3448 break;
3449 }
3450 }
3451
3452 // Bubble phase, where most normal handlers do their work.
3453 if cx.propagate_event {
3454 for listener in mouse_listeners.iter_mut().rev() {
3455 let listener = listener.as_mut().unwrap();
3456 listener(event, DispatchPhase::Bubble, self, cx);
3457 if !cx.propagate_event {
3458 break;
3459 }
3460 }
3461 }
3462
3463 self.rendered_frame.mouse_listeners = mouse_listeners;
3464
3465 if cx.has_active_drag() {
3466 if event.is::<MouseMoveEvent>() {
3467 // If this was a mouse move event, redraw the window so that the
3468 // active drag can follow the mouse cursor.
3469 self.refresh();
3470 } else if event.is::<MouseUpEvent>() {
3471 // If this was a mouse up event, cancel the active drag and redraw
3472 // the window.
3473 cx.active_drag = None;
3474 self.refresh();
3475 }
3476 }
3477 }
3478
3479 fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3480 if self.invalidator.is_dirty() {
3481 self.draw(cx).clear();
3482 }
3483
3484 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3485 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3486
3487 let mut keystroke: Option<Keystroke> = None;
3488
3489 if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3490 if event.modifiers.number_of_modifiers() == 0
3491 && self.pending_modifier.modifiers.number_of_modifiers() == 1
3492 && !self.pending_modifier.saw_keystroke
3493 {
3494 let key = match self.pending_modifier.modifiers {
3495 modifiers if modifiers.shift => Some("shift"),
3496 modifiers if modifiers.control => Some("control"),
3497 modifiers if modifiers.alt => Some("alt"),
3498 modifiers if modifiers.platform => Some("platform"),
3499 modifiers if modifiers.function => Some("function"),
3500 _ => None,
3501 };
3502 if let Some(key) = key {
3503 keystroke = Some(Keystroke {
3504 key: key.to_string(),
3505 key_char: None,
3506 modifiers: Modifiers::default(),
3507 });
3508 }
3509 }
3510
3511 if self.pending_modifier.modifiers.number_of_modifiers() == 0
3512 && event.modifiers.number_of_modifiers() == 1
3513 {
3514 self.pending_modifier.saw_keystroke = false
3515 }
3516 self.pending_modifier.modifiers = event.modifiers
3517 } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3518 self.pending_modifier.saw_keystroke = true;
3519 keystroke = Some(key_down_event.keystroke.clone());
3520 }
3521
3522 let Some(keystroke) = keystroke else {
3523 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3524 return;
3525 };
3526
3527 let mut currently_pending = self.pending_input.take().unwrap_or_default();
3528 if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3529 currently_pending = PendingInput::default();
3530 }
3531
3532 let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3533 currently_pending.keystrokes,
3534 keystroke,
3535 &dispatch_path,
3536 );
3537
3538 if !match_result.to_replay.is_empty() {
3539 self.replay_pending_input(match_result.to_replay, cx)
3540 }
3541
3542 if !match_result.pending.is_empty() {
3543 currently_pending.keystrokes = match_result.pending;
3544 currently_pending.focus = self.focus;
3545 currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3546 cx.background_executor.timer(Duration::from_secs(1)).await;
3547 cx.update(move |window, cx| {
3548 let Some(currently_pending) = window
3549 .pending_input
3550 .take()
3551 .filter(|pending| pending.focus == window.focus)
3552 else {
3553 return;
3554 };
3555
3556 let node_id = window.focus_node_id_in_rendered_frame(window.focus);
3557 let dispatch_path = window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3558
3559 let to_replay = window
3560 .rendered_frame
3561 .dispatch_tree
3562 .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3563
3564 window.pending_input_changed(cx);
3565 window.replay_pending_input(to_replay, cx)
3566 })
3567 .log_err();
3568 }));
3569 self.pending_input = Some(currently_pending);
3570 self.pending_input_changed(cx);
3571 cx.propagate_event = false;
3572 return;
3573 }
3574
3575 cx.propagate_event = true;
3576 for binding in match_result.bindings {
3577 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3578 if !cx.propagate_event {
3579 self.dispatch_keystroke_observers(
3580 event,
3581 Some(binding.action),
3582 match_result.context_stack.clone(),
3583 cx,
3584 );
3585 self.pending_input_changed(cx);
3586 return;
3587 }
3588 }
3589
3590 self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
3591 self.pending_input_changed(cx);
3592 }
3593
3594 fn finish_dispatch_key_event(
3595 &mut self,
3596 event: &dyn Any,
3597 dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3598 context_stack: Vec<KeyContext>,
3599 cx: &mut App,
3600 ) {
3601 self.dispatch_key_down_up_event(event, &dispatch_path, cx);
3602 if !cx.propagate_event {
3603 return;
3604 }
3605
3606 self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
3607 if !cx.propagate_event {
3608 return;
3609 }
3610
3611 self.dispatch_keystroke_observers(event, None, context_stack, cx);
3612 }
3613
3614 fn pending_input_changed(&mut self, cx: &mut App) {
3615 self.pending_input_observers
3616 .clone()
3617 .retain(&(), |callback| callback(self, cx));
3618 }
3619
3620 fn dispatch_key_down_up_event(
3621 &mut self,
3622 event: &dyn Any,
3623 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3624 cx: &mut App,
3625 ) {
3626 // Capture phase
3627 for node_id in dispatch_path {
3628 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3629
3630 for key_listener in node.key_listeners.clone() {
3631 key_listener(event, DispatchPhase::Capture, self, cx);
3632 if !cx.propagate_event {
3633 return;
3634 }
3635 }
3636 }
3637
3638 // Bubble phase
3639 for node_id in dispatch_path.iter().rev() {
3640 // Handle low level key events
3641 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3642 for key_listener in node.key_listeners.clone() {
3643 key_listener(event, DispatchPhase::Bubble, self, cx);
3644 if !cx.propagate_event {
3645 return;
3646 }
3647 }
3648 }
3649 }
3650
3651 fn dispatch_modifiers_changed_event(
3652 &mut self,
3653 event: &dyn Any,
3654 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3655 cx: &mut App,
3656 ) {
3657 let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
3658 return;
3659 };
3660 for node_id in dispatch_path.iter().rev() {
3661 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3662 for listener in node.modifiers_changed_listeners.clone() {
3663 listener(event, self, cx);
3664 if !cx.propagate_event {
3665 return;
3666 }
3667 }
3668 }
3669 }
3670
3671 /// Determine whether a potential multi-stroke key binding is in progress on this window.
3672 pub fn has_pending_keystrokes(&self) -> bool {
3673 self.pending_input.is_some()
3674 }
3675
3676 pub(crate) fn clear_pending_keystrokes(&mut self) {
3677 self.pending_input.take();
3678 }
3679
3680 /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
3681 pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
3682 self.pending_input
3683 .as_ref()
3684 .map(|pending_input| pending_input.keystrokes.as_slice())
3685 }
3686
3687 fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
3688 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3689 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3690
3691 'replay: for replay in replays {
3692 let event = KeyDownEvent {
3693 keystroke: replay.keystroke.clone(),
3694 is_held: false,
3695 };
3696
3697 cx.propagate_event = true;
3698 for binding in replay.bindings {
3699 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3700 if !cx.propagate_event {
3701 self.dispatch_keystroke_observers(
3702 &event,
3703 Some(binding.action),
3704 Vec::default(),
3705 cx,
3706 );
3707 continue 'replay;
3708 }
3709 }
3710
3711 self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
3712 if !cx.propagate_event {
3713 continue 'replay;
3714 }
3715 if let Some(input) = replay.keystroke.key_char.as_ref().cloned() {
3716 if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3717 input_handler.dispatch_input(&input, self, cx);
3718 self.platform_window.set_input_handler(input_handler)
3719 }
3720 }
3721 }
3722 }
3723
3724 fn focus_node_id_in_rendered_frame(&self, focus_id: Option<FocusId>) -> DispatchNodeId {
3725 focus_id
3726 .and_then(|focus_id| {
3727 self.rendered_frame
3728 .dispatch_tree
3729 .focusable_node_id(focus_id)
3730 })
3731 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id())
3732 }
3733
3734 fn dispatch_action_on_node(
3735 &mut self,
3736 node_id: DispatchNodeId,
3737 action: &dyn Action,
3738 cx: &mut App,
3739 ) {
3740 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3741
3742 // Capture phase for global actions.
3743 cx.propagate_event = true;
3744 if let Some(mut global_listeners) = cx
3745 .global_action_listeners
3746 .remove(&action.as_any().type_id())
3747 {
3748 for listener in &global_listeners {
3749 listener(action.as_any(), DispatchPhase::Capture, cx);
3750 if !cx.propagate_event {
3751 break;
3752 }
3753 }
3754
3755 global_listeners.extend(
3756 cx.global_action_listeners
3757 .remove(&action.as_any().type_id())
3758 .unwrap_or_default(),
3759 );
3760
3761 cx.global_action_listeners
3762 .insert(action.as_any().type_id(), global_listeners);
3763 }
3764
3765 if !cx.propagate_event {
3766 return;
3767 }
3768
3769 // Capture phase for window actions.
3770 for node_id in &dispatch_path {
3771 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3772 for DispatchActionListener {
3773 action_type,
3774 listener,
3775 } in node.action_listeners.clone()
3776 {
3777 let any_action = action.as_any();
3778 if action_type == any_action.type_id() {
3779 listener(any_action, DispatchPhase::Capture, self, cx);
3780
3781 if !cx.propagate_event {
3782 return;
3783 }
3784 }
3785 }
3786 }
3787
3788 // Bubble phase for window actions.
3789 for node_id in dispatch_path.iter().rev() {
3790 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3791 for DispatchActionListener {
3792 action_type,
3793 listener,
3794 } in node.action_listeners.clone()
3795 {
3796 let any_action = action.as_any();
3797 if action_type == any_action.type_id() {
3798 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3799 listener(any_action, DispatchPhase::Bubble, self, cx);
3800
3801 if !cx.propagate_event {
3802 return;
3803 }
3804 }
3805 }
3806 }
3807
3808 // Bubble phase for global actions.
3809 if let Some(mut global_listeners) = cx
3810 .global_action_listeners
3811 .remove(&action.as_any().type_id())
3812 {
3813 for listener in global_listeners.iter().rev() {
3814 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3815
3816 listener(action.as_any(), DispatchPhase::Bubble, cx);
3817 if !cx.propagate_event {
3818 break;
3819 }
3820 }
3821
3822 global_listeners.extend(
3823 cx.global_action_listeners
3824 .remove(&action.as_any().type_id())
3825 .unwrap_or_default(),
3826 );
3827
3828 cx.global_action_listeners
3829 .insert(action.as_any().type_id(), global_listeners);
3830 }
3831 }
3832
3833 /// Register the given handler to be invoked whenever the global of the given type
3834 /// is updated.
3835 pub fn observe_global<G: Global>(
3836 &mut self,
3837 cx: &mut App,
3838 f: impl Fn(&mut Window, &mut App) + 'static,
3839 ) -> Subscription {
3840 let window_handle = self.handle;
3841 let (subscription, activate) = cx.global_observers.insert(
3842 TypeId::of::<G>(),
3843 Box::new(move |cx| {
3844 window_handle
3845 .update(cx, |_, window, cx| f(window, cx))
3846 .is_ok()
3847 }),
3848 );
3849 cx.defer(move |_| activate());
3850 subscription
3851 }
3852
3853 /// Focus the current window and bring it to the foreground at the platform level.
3854 pub fn activate_window(&self) {
3855 self.platform_window.activate();
3856 }
3857
3858 /// Minimize the current window at the platform level.
3859 pub fn minimize_window(&self) {
3860 self.platform_window.minimize();
3861 }
3862
3863 /// Toggle full screen status on the current window at the platform level.
3864 pub fn toggle_fullscreen(&self) {
3865 self.platform_window.toggle_fullscreen();
3866 }
3867
3868 /// Updates the IME panel position suggestions for languages like japanese, chinese.
3869 pub fn invalidate_character_coordinates(&self) {
3870 self.on_next_frame(|window, cx| {
3871 if let Some(mut input_handler) = window.platform_window.take_input_handler() {
3872 if let Some(bounds) = input_handler.selected_bounds(window, cx) {
3873 window
3874 .platform_window
3875 .update_ime_position(bounds.scale(window.scale_factor()));
3876 }
3877 window.platform_window.set_input_handler(input_handler);
3878 }
3879 });
3880 }
3881
3882 /// Present a platform dialog.
3883 /// The provided message will be presented, along with buttons for each answer.
3884 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
3885 pub fn prompt<T>(
3886 &mut self,
3887 level: PromptLevel,
3888 message: &str,
3889 detail: Option<&str>,
3890 answers: &[T],
3891 cx: &mut App,
3892 ) -> oneshot::Receiver<usize>
3893 where
3894 T: Clone + Into<PromptButton>,
3895 {
3896 let prompt_builder = cx.prompt_builder.take();
3897 let Some(prompt_builder) = prompt_builder else {
3898 unreachable!("Re-entrant window prompting is not supported by GPUI");
3899 };
3900
3901 let answers = answers
3902 .iter()
3903 .map(|answer| answer.clone().into())
3904 .collect::<Vec<_>>();
3905
3906 let receiver = match &prompt_builder {
3907 PromptBuilder::Default => self
3908 .platform_window
3909 .prompt(level, message, detail, &answers)
3910 .unwrap_or_else(|| {
3911 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
3912 }),
3913 PromptBuilder::Custom(_) => {
3914 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
3915 }
3916 };
3917
3918 cx.prompt_builder = Some(prompt_builder);
3919
3920 receiver
3921 }
3922
3923 fn build_custom_prompt(
3924 &mut self,
3925 prompt_builder: &PromptBuilder,
3926 level: PromptLevel,
3927 message: &str,
3928 detail: Option<&str>,
3929 answers: &[PromptButton],
3930 cx: &mut App,
3931 ) -> oneshot::Receiver<usize> {
3932 let (sender, receiver) = oneshot::channel();
3933 let handle = PromptHandle::new(sender);
3934 let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
3935 self.prompt = Some(handle);
3936 receiver
3937 }
3938
3939 /// Returns the current context stack.
3940 pub fn context_stack(&self) -> Vec<KeyContext> {
3941 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3942 let dispatch_tree = &self.rendered_frame.dispatch_tree;
3943 dispatch_tree
3944 .dispatch_path(node_id)
3945 .iter()
3946 .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
3947 .collect()
3948 }
3949
3950 /// Returns all available actions for the focused element.
3951 pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
3952 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3953 let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
3954 for action_type in cx.global_action_listeners.keys() {
3955 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
3956 let action = cx.actions.build_action_type(action_type).ok();
3957 if let Some(action) = action {
3958 actions.insert(ix, action);
3959 }
3960 }
3961 }
3962 actions
3963 }
3964
3965 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
3966 /// returned in the order they were added. For display, the last binding should take precedence.
3967 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
3968 self.rendered_frame
3969 .dispatch_tree
3970 .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
3971 }
3972
3973 /// Returns the highest precedence key binding that invokes an action on the currently focused
3974 /// element. This is more efficient than getting the last result of `bindings_for_action`.
3975 pub fn highest_precedence_binding_for_action(&self, action: &dyn Action) -> Option<KeyBinding> {
3976 self.rendered_frame
3977 .dispatch_tree
3978 .highest_precedence_binding_for_action(
3979 action,
3980 &self.rendered_frame.dispatch_tree.context_stack,
3981 )
3982 }
3983
3984 /// Returns the key bindings for an action in a context.
3985 pub fn bindings_for_action_in_context(
3986 &self,
3987 action: &dyn Action,
3988 context: KeyContext,
3989 ) -> Vec<KeyBinding> {
3990 let dispatch_tree = &self.rendered_frame.dispatch_tree;
3991 dispatch_tree.bindings_for_action(action, &[context])
3992 }
3993
3994 /// Returns the highest precedence key binding for an action in a context. This is more
3995 /// efficient than getting the last result of `bindings_for_action_in_context`.
3996 pub fn highest_precedence_binding_for_action_in_context(
3997 &self,
3998 action: &dyn Action,
3999 context: KeyContext,
4000 ) -> Option<KeyBinding> {
4001 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4002 dispatch_tree.highest_precedence_binding_for_action(action, &[context])
4003 }
4004
4005 /// Returns any bindings that would invoke an action on the given focus handle if it were
4006 /// focused. Bindings are returned in the order they were added. For display, the last binding
4007 /// should take precedence.
4008 pub fn bindings_for_action_in(
4009 &self,
4010 action: &dyn Action,
4011 focus_handle: &FocusHandle,
4012 ) -> Vec<KeyBinding> {
4013 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4014 let Some(context_stack) = self.context_stack_for_focus_handle(focus_handle) else {
4015 return vec![];
4016 };
4017 dispatch_tree.bindings_for_action(action, &context_stack)
4018 }
4019
4020 /// Returns the highest precedence key binding that would invoke an action on the given focus
4021 /// handle if it were focused. This is more efficient than getting the last result of
4022 /// `bindings_for_action_in`.
4023 pub fn highest_precedence_binding_for_action_in(
4024 &self,
4025 action: &dyn Action,
4026 focus_handle: &FocusHandle,
4027 ) -> Option<KeyBinding> {
4028 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4029 let context_stack = self.context_stack_for_focus_handle(focus_handle)?;
4030 dispatch_tree.highest_precedence_binding_for_action(action, &context_stack)
4031 }
4032
4033 fn context_stack_for_focus_handle(
4034 &self,
4035 focus_handle: &FocusHandle,
4036 ) -> Option<Vec<KeyContext>> {
4037 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4038 let node_id = dispatch_tree.focusable_node_id(focus_handle.id)?;
4039 let context_stack: Vec<_> = dispatch_tree
4040 .dispatch_path(node_id)
4041 .into_iter()
4042 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
4043 .collect();
4044 Some(context_stack)
4045 }
4046
4047 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
4048 pub fn listener_for<V: Render, E>(
4049 &self,
4050 view: &Entity<V>,
4051 f: impl Fn(&mut V, &E, &mut Window, &mut Context<V>) + 'static,
4052 ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
4053 let view = view.downgrade();
4054 move |e: &E, window: &mut Window, cx: &mut App| {
4055 view.update(cx, |view, cx| f(view, e, window, cx)).ok();
4056 }
4057 }
4058
4059 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
4060 pub fn handler_for<V: Render, Callback: Fn(&mut V, &mut Window, &mut Context<V>) + 'static>(
4061 &self,
4062 view: &Entity<V>,
4063 f: Callback,
4064 ) -> impl Fn(&mut Window, &mut App) + use<V, Callback> {
4065 let view = view.downgrade();
4066 move |window: &mut Window, cx: &mut App| {
4067 view.update(cx, |view, cx| f(view, window, cx)).ok();
4068 }
4069 }
4070
4071 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
4072 /// If the callback returns false, the window won't be closed.
4073 pub fn on_window_should_close(
4074 &self,
4075 cx: &App,
4076 f: impl Fn(&mut Window, &mut App) -> bool + 'static,
4077 ) {
4078 let mut cx = self.to_async(cx);
4079 self.platform_window.on_should_close(Box::new(move || {
4080 cx.update(|window, cx| f(window, cx)).unwrap_or(true)
4081 }))
4082 }
4083
4084 /// Register an action listener on the window for the next frame. The type of action
4085 /// is determined by the first parameter of the given listener. When the next frame is rendered
4086 /// the listener will be cleared.
4087 ///
4088 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4089 /// a specific need to register a global listener.
4090 pub fn on_action(
4091 &mut self,
4092 action_type: TypeId,
4093 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4094 ) {
4095 self.next_frame
4096 .dispatch_tree
4097 .on_action(action_type, Rc::new(listener));
4098 }
4099
4100 /// Read information about the GPU backing this window.
4101 /// Currently returns None on Mac and Windows.
4102 pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4103 self.platform_window.gpu_specs()
4104 }
4105
4106 /// Perform titlebar double-click action.
4107 /// This is MacOS specific.
4108 pub fn titlebar_double_click(&self) {
4109 self.platform_window.titlebar_double_click();
4110 }
4111
4112 /// Toggles the inspector mode on this window.
4113 #[cfg(any(feature = "inspector", debug_assertions))]
4114 pub fn toggle_inspector(&mut self, cx: &mut App) {
4115 self.inspector = match self.inspector {
4116 None => Some(cx.new(|_| Inspector::new())),
4117 Some(_) => None,
4118 };
4119 self.refresh();
4120 }
4121
4122 /// Returns true if the window is in inspector mode.
4123 pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4124 #[cfg(any(feature = "inspector", debug_assertions))]
4125 {
4126 if let Some(inspector) = &self.inspector {
4127 return inspector.read(_cx).is_picking();
4128 }
4129 }
4130 false
4131 }
4132
4133 /// Executes the provided function with mutable access to an inspector state.
4134 #[cfg(any(feature = "inspector", debug_assertions))]
4135 pub fn with_inspector_state<T: 'static, R>(
4136 &mut self,
4137 _inspector_id: Option<&crate::InspectorElementId>,
4138 cx: &mut App,
4139 f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4140 ) -> R {
4141 if let Some(inspector_id) = _inspector_id {
4142 if let Some(inspector) = &self.inspector {
4143 let inspector = inspector.clone();
4144 let inspector_ref = inspector.read(cx);
4145 let active_element_id = inspector_ref.active_element_id();
4146 if Some(inspector_id) == active_element_id {
4147 return inspector.update(cx, |inspector, _cx| {
4148 inspector.with_active_element_state(self, f)
4149 });
4150 }
4151 }
4152 }
4153 f(&mut None, self)
4154 }
4155
4156 #[cfg(any(feature = "inspector", debug_assertions))]
4157 pub(crate) fn build_inspector_element_id(
4158 &mut self,
4159 path: crate::InspectorElementPath,
4160 ) -> crate::InspectorElementId {
4161 self.invalidator.debug_assert_paint_or_prepaint();
4162 let path = Rc::new(path);
4163 let next_instance_id = self
4164 .next_frame
4165 .next_inspector_instance_ids
4166 .entry(path.clone())
4167 .or_insert(0);
4168 let instance_id = *next_instance_id;
4169 *next_instance_id += 1;
4170 crate::InspectorElementId { path, instance_id }
4171 }
4172
4173 #[cfg(any(feature = "inspector", debug_assertions))]
4174 fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4175 if let Some(inspector) = self.inspector.take() {
4176 let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4177 inspector_element.prepaint_as_root(
4178 point(self.viewport_size.width - inspector_width, px(0.0)),
4179 size(inspector_width, self.viewport_size.height).into(),
4180 self,
4181 cx,
4182 );
4183 self.inspector = Some(inspector);
4184 Some(inspector_element)
4185 } else {
4186 None
4187 }
4188 }
4189
4190 #[cfg(any(feature = "inspector", debug_assertions))]
4191 fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4192 if let Some(mut inspector_element) = inspector_element {
4193 inspector_element.paint(self, cx);
4194 };
4195 }
4196
4197 /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4198 /// inspect UI elements by clicking on them.
4199 #[cfg(any(feature = "inspector", debug_assertions))]
4200 pub fn insert_inspector_hitbox(
4201 &mut self,
4202 hitbox_id: HitboxId,
4203 inspector_id: Option<&crate::InspectorElementId>,
4204 cx: &App,
4205 ) {
4206 self.invalidator.debug_assert_paint_or_prepaint();
4207 if !self.is_inspector_picking(cx) {
4208 return;
4209 }
4210 if let Some(inspector_id) = inspector_id {
4211 self.next_frame
4212 .inspector_hitboxes
4213 .insert(hitbox_id, inspector_id.clone());
4214 }
4215 }
4216
4217 #[cfg(any(feature = "inspector", debug_assertions))]
4218 fn paint_inspector_hitbox(&mut self, cx: &App) {
4219 if let Some(inspector) = self.inspector.clone() {
4220 if let Some((hitbox_id, _)) =
4221 self.hovered_inspector_hitbox(inspector.read(cx).deref(), &self.next_frame)
4222 {
4223 if let Some(hitbox) = self
4224 .next_frame
4225 .hitboxes
4226 .iter()
4227 .find(|hitbox| hitbox.id == hitbox_id)
4228 {
4229 self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4230 }
4231 }
4232 }
4233 }
4234
4235 #[cfg(any(feature = "inspector", debug_assertions))]
4236 fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4237 let Some(inspector) = self.inspector.clone() else {
4238 return;
4239 };
4240 if event.downcast_ref::<MouseMoveEvent>().is_some() {
4241 inspector.update(cx, |inspector, _cx| {
4242 if let Some((_, inspector_id)) =
4243 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4244 {
4245 inspector.hover(inspector_id, self);
4246 }
4247 });
4248 } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4249 inspector.update(cx, |inspector, _cx| {
4250 if let Some((_, inspector_id)) =
4251 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4252 {
4253 inspector.select(inspector_id, self);
4254 }
4255 });
4256 } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4257 // This should be kept in sync with SCROLL_LINES in x11 platform.
4258 const SCROLL_LINES: f32 = 3.0;
4259 const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4260 let delta_y = event
4261 .delta
4262 .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4263 .y;
4264 if let Some(inspector) = self.inspector.clone() {
4265 inspector.update(cx, |inspector, _cx| {
4266 if let Some(depth) = inspector.pick_depth.as_mut() {
4267 *depth += delta_y.0 / SCROLL_PIXELS_PER_LAYER;
4268 let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4269 if *depth < 0.0 {
4270 *depth = 0.0;
4271 } else if *depth > max_depth {
4272 *depth = max_depth;
4273 }
4274 if let Some((_, inspector_id)) =
4275 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4276 {
4277 inspector.set_active_element_id(inspector_id.clone(), self);
4278 }
4279 }
4280 });
4281 }
4282 }
4283 }
4284
4285 #[cfg(any(feature = "inspector", debug_assertions))]
4286 fn hovered_inspector_hitbox(
4287 &self,
4288 inspector: &Inspector,
4289 frame: &Frame,
4290 ) -> Option<(HitboxId, crate::InspectorElementId)> {
4291 if let Some(pick_depth) = inspector.pick_depth {
4292 let depth = (pick_depth as i64).try_into().unwrap_or(0);
4293 let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4294 let skip_count = (depth as usize).min(max_skipped);
4295 for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4296 if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4297 return Some((*hitbox_id, inspector_id.clone()));
4298 }
4299 }
4300 }
4301 return None;
4302 }
4303}
4304
4305// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4306slotmap::new_key_type! {
4307 /// A unique identifier for a window.
4308 pub struct WindowId;
4309}
4310
4311impl WindowId {
4312 /// Converts this window ID to a `u64`.
4313 pub fn as_u64(&self) -> u64 {
4314 self.0.as_ffi()
4315 }
4316}
4317
4318impl From<u64> for WindowId {
4319 fn from(value: u64) -> Self {
4320 WindowId(slotmap::KeyData::from_ffi(value))
4321 }
4322}
4323
4324/// A handle to a window with a specific root view type.
4325/// Note that this does not keep the window alive on its own.
4326#[derive(Deref, DerefMut)]
4327pub struct WindowHandle<V> {
4328 #[deref]
4329 #[deref_mut]
4330 pub(crate) any_handle: AnyWindowHandle,
4331 state_type: PhantomData<V>,
4332}
4333
4334impl<V: 'static + Render> WindowHandle<V> {
4335 /// Creates a new handle from a window ID.
4336 /// This does not check if the root type of the window is `V`.
4337 pub fn new(id: WindowId) -> Self {
4338 WindowHandle {
4339 any_handle: AnyWindowHandle {
4340 id,
4341 state_type: TypeId::of::<V>(),
4342 },
4343 state_type: PhantomData,
4344 }
4345 }
4346
4347 /// Get the root view out of this window.
4348 ///
4349 /// This will fail if the window is closed or if the root view's type does not match `V`.
4350 #[cfg(any(test, feature = "test-support"))]
4351 pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4352 where
4353 C: AppContext,
4354 {
4355 crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4356 root_view
4357 .downcast::<V>()
4358 .map_err(|_| anyhow!("the type of the window's root view has changed"))
4359 }))
4360 }
4361
4362 /// Updates the root view of this window.
4363 ///
4364 /// This will fail if the window has been closed or if the root view's type does not match
4365 pub fn update<C, R>(
4366 &self,
4367 cx: &mut C,
4368 update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4369 ) -> Result<R>
4370 where
4371 C: AppContext,
4372 {
4373 cx.update_window(self.any_handle, |root_view, window, cx| {
4374 let view = root_view
4375 .downcast::<V>()
4376 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4377
4378 Ok(view.update(cx, |view, cx| update(view, window, cx)))
4379 })?
4380 }
4381
4382 /// Read the root view out of this window.
4383 ///
4384 /// This will fail if the window is closed or if the root view's type does not match `V`.
4385 pub fn read(&self, cx: &App) -> Result<Ref<V>> {
4386 let x = cx
4387 .windows
4388 .get(self.id)
4389 .and_then(|window| {
4390 window
4391 .as_ref()
4392 .and_then(|window| window.root.clone())
4393 .map(|root_view| root_view.downcast::<V>())
4394 })
4395 .context("window not found")?
4396 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4397
4398 todo!()
4399 }
4400
4401 /// Read the root view out of this window, with a callback
4402 ///
4403 /// This will fail if the window is closed or if the root view's type does not match `V`.
4404 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4405 where
4406 C: AppContext,
4407 {
4408 cx.read_window(self, |root_view, cx| {
4409 read_with(root_view.read(cx).deref(), cx)
4410 })
4411 }
4412
4413 /// Read the root view pointer off of this window.
4414 ///
4415 /// This will fail if the window is closed or if the root view's type does not match `V`.
4416 pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4417 where
4418 C: AppContext,
4419 {
4420 cx.read_window(self, |root_view, _cx| root_view.clone())
4421 }
4422
4423 /// Check if this window is 'active'.
4424 ///
4425 /// Will return `None` if the window is closed or currently
4426 /// borrowed.
4427 pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4428 cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4429 .ok()
4430 }
4431}
4432
4433impl<V> Copy for WindowHandle<V> {}
4434
4435impl<V> Clone for WindowHandle<V> {
4436 fn clone(&self) -> Self {
4437 *self
4438 }
4439}
4440
4441impl<V> PartialEq for WindowHandle<V> {
4442 fn eq(&self, other: &Self) -> bool {
4443 self.any_handle == other.any_handle
4444 }
4445}
4446
4447impl<V> Eq for WindowHandle<V> {}
4448
4449impl<V> Hash for WindowHandle<V> {
4450 fn hash<H: Hasher>(&self, state: &mut H) {
4451 self.any_handle.hash(state);
4452 }
4453}
4454
4455impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
4456 fn from(val: WindowHandle<V>) -> Self {
4457 val.any_handle
4458 }
4459}
4460
4461unsafe impl<V> Send for WindowHandle<V> {}
4462unsafe impl<V> Sync for WindowHandle<V> {}
4463
4464/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
4465#[derive(Copy, Clone, PartialEq, Eq, Hash)]
4466pub struct AnyWindowHandle {
4467 pub(crate) id: WindowId,
4468 state_type: TypeId,
4469}
4470
4471impl AnyWindowHandle {
4472 /// Get the ID of this window.
4473 pub fn window_id(&self) -> WindowId {
4474 self.id
4475 }
4476
4477 /// Attempt to convert this handle to a window handle with a specific root view type.
4478 /// If the types do not match, this will return `None`.
4479 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
4480 if TypeId::of::<T>() == self.state_type {
4481 Some(WindowHandle {
4482 any_handle: *self,
4483 state_type: PhantomData,
4484 })
4485 } else {
4486 None
4487 }
4488 }
4489
4490 /// Updates the state of the root view of this window.
4491 ///
4492 /// This will fail if the window has been closed.
4493 pub fn update<C, R>(
4494 self,
4495 cx: &mut C,
4496 update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
4497 ) -> Result<R>
4498 where
4499 C: AppContext,
4500 {
4501 cx.update_window(self, update)
4502 }
4503
4504 /// Read the state of the root view of this window.
4505 ///
4506 /// This will fail if the window has been closed.
4507 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
4508 where
4509 C: AppContext,
4510 T: 'static,
4511 {
4512 let view = self
4513 .downcast::<T>()
4514 .context("the type of the window's root view has changed")?;
4515
4516 cx.read_window(&view, read)
4517 }
4518}
4519
4520impl HasWindowHandle for Window {
4521 fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
4522 self.platform_window.window_handle()
4523 }
4524}
4525
4526impl HasDisplayHandle for Window {
4527 fn display_handle(
4528 &self,
4529 ) -> std::result::Result<raw_window_handle::DisplayHandle<'_>, HandleError> {
4530 self.platform_window.display_handle()
4531 }
4532}
4533
4534/// An identifier for an [`Element`](crate::Element).
4535///
4536/// Can be constructed with a string, a number, or both, as well
4537/// as other internal representations.
4538#[derive(Clone, Debug, Eq, PartialEq, Hash)]
4539pub enum ElementId {
4540 /// The ID of a View element
4541 View(EntityId),
4542 /// An integer ID.
4543 Integer(u64),
4544 /// A string based ID.
4545 Name(SharedString),
4546 /// A UUID.
4547 Uuid(Uuid),
4548 /// An ID that's equated with a focus handle.
4549 FocusHandle(FocusId),
4550 /// A combination of a name and an integer.
4551 NamedInteger(SharedString, u64),
4552 /// A path.
4553 Path(Arc<std::path::Path>),
4554}
4555
4556impl ElementId {
4557 /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
4558 pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
4559 Self::NamedInteger(name.into(), integer as u64)
4560 }
4561}
4562
4563impl Display for ElementId {
4564 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4565 match self {
4566 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
4567 ElementId::Integer(ix) => write!(f, "{}", ix)?,
4568 ElementId::Name(name) => write!(f, "{}", name)?,
4569 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
4570 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
4571 ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
4572 ElementId::Path(path) => write!(f, "{}", path.display())?,
4573 }
4574
4575 Ok(())
4576 }
4577}
4578
4579impl TryInto<SharedString> for ElementId {
4580 type Error = anyhow::Error;
4581
4582 fn try_into(self) -> anyhow::Result<SharedString> {
4583 if let ElementId::Name(name) = self {
4584 Ok(name)
4585 } else {
4586 anyhow::bail!("element id is not string")
4587 }
4588 }
4589}
4590
4591impl From<usize> for ElementId {
4592 fn from(id: usize) -> Self {
4593 ElementId::Integer(id as u64)
4594 }
4595}
4596
4597impl From<i32> for ElementId {
4598 fn from(id: i32) -> Self {
4599 Self::Integer(id as u64)
4600 }
4601}
4602
4603impl From<SharedString> for ElementId {
4604 fn from(name: SharedString) -> Self {
4605 ElementId::Name(name)
4606 }
4607}
4608
4609impl From<Arc<std::path::Path>> for ElementId {
4610 fn from(path: Arc<std::path::Path>) -> Self {
4611 ElementId::Path(path)
4612 }
4613}
4614
4615impl From<&'static str> for ElementId {
4616 fn from(name: &'static str) -> Self {
4617 ElementId::Name(name.into())
4618 }
4619}
4620
4621impl<'a> From<&'a FocusHandle> for ElementId {
4622 fn from(handle: &'a FocusHandle) -> Self {
4623 ElementId::FocusHandle(handle.id)
4624 }
4625}
4626
4627impl From<(&'static str, EntityId)> for ElementId {
4628 fn from((name, id): (&'static str, EntityId)) -> Self {
4629 ElementId::NamedInteger(name.into(), id.as_u64())
4630 }
4631}
4632
4633impl From<(&'static str, usize)> for ElementId {
4634 fn from((name, id): (&'static str, usize)) -> Self {
4635 ElementId::NamedInteger(name.into(), id as u64)
4636 }
4637}
4638
4639impl From<(SharedString, usize)> for ElementId {
4640 fn from((name, id): (SharedString, usize)) -> Self {
4641 ElementId::NamedInteger(name, id as u64)
4642 }
4643}
4644
4645impl From<(&'static str, u64)> for ElementId {
4646 fn from((name, id): (&'static str, u64)) -> Self {
4647 ElementId::NamedInteger(name.into(), id)
4648 }
4649}
4650
4651impl From<Uuid> for ElementId {
4652 fn from(value: Uuid) -> Self {
4653 Self::Uuid(value)
4654 }
4655}
4656
4657impl From<(&'static str, u32)> for ElementId {
4658 fn from((name, id): (&'static str, u32)) -> Self {
4659 ElementId::NamedInteger(name.into(), id.into())
4660 }
4661}
4662
4663/// A rectangle to be rendered in the window at the given position and size.
4664/// Passed as an argument [`Window::paint_quad`].
4665#[derive(Clone)]
4666pub struct PaintQuad {
4667 /// The bounds of the quad within the window.
4668 pub bounds: Bounds<Pixels>,
4669 /// The radii of the quad's corners.
4670 pub corner_radii: Corners<Pixels>,
4671 /// The background color of the quad.
4672 pub background: Background,
4673 /// The widths of the quad's borders.
4674 pub border_widths: Edges<Pixels>,
4675 /// The color of the quad's borders.
4676 pub border_color: Hsla,
4677 /// The style of the quad's borders.
4678 pub border_style: BorderStyle,
4679}
4680
4681impl PaintQuad {
4682 /// Sets the corner radii of the quad.
4683 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
4684 PaintQuad {
4685 corner_radii: corner_radii.into(),
4686 ..self
4687 }
4688 }
4689
4690 /// Sets the border widths of the quad.
4691 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
4692 PaintQuad {
4693 border_widths: border_widths.into(),
4694 ..self
4695 }
4696 }
4697
4698 /// Sets the border color of the quad.
4699 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
4700 PaintQuad {
4701 border_color: border_color.into(),
4702 ..self
4703 }
4704 }
4705
4706 /// Sets the background color of the quad.
4707 pub fn background(self, background: impl Into<Background>) -> Self {
4708 PaintQuad {
4709 background: background.into(),
4710 ..self
4711 }
4712 }
4713}
4714
4715/// Creates a quad with the given parameters.
4716pub fn quad(
4717 bounds: Bounds<Pixels>,
4718 corner_radii: impl Into<Corners<Pixels>>,
4719 background: impl Into<Background>,
4720 border_widths: impl Into<Edges<Pixels>>,
4721 border_color: impl Into<Hsla>,
4722 border_style: BorderStyle,
4723) -> PaintQuad {
4724 PaintQuad {
4725 bounds,
4726 corner_radii: corner_radii.into(),
4727 background: background.into(),
4728 border_widths: border_widths.into(),
4729 border_color: border_color.into(),
4730 border_style,
4731 }
4732}
4733
4734/// Creates a filled quad with the given bounds and background color.
4735pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
4736 PaintQuad {
4737 bounds: bounds.into(),
4738 corner_radii: (0.).into(),
4739 background: background.into(),
4740 border_widths: (0.).into(),
4741 border_color: transparent_black(),
4742 border_style: BorderStyle::default(),
4743 }
4744}
4745
4746/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
4747pub fn outline(
4748 bounds: impl Into<Bounds<Pixels>>,
4749 border_color: impl Into<Hsla>,
4750 border_style: BorderStyle,
4751) -> PaintQuad {
4752 PaintQuad {
4753 bounds: bounds.into(),
4754 corner_radii: (0.).into(),
4755 background: transparent_black().into(),
4756 border_widths: (1.).into(),
4757 border_color: border_color.into(),
4758 border_style,
4759 }
4760}