1use super::{
2 auth,
3 db::{ChannelId, MessageId, UserId},
4 AppState,
5};
6use anyhow::anyhow;
7use async_std::{sync::RwLock, task};
8use async_tungstenite::{tungstenite::protocol::Role, WebSocketStream};
9use futures::{future::BoxFuture, FutureExt};
10use postage::{mpsc, prelude::Sink as _, prelude::Stream as _};
11use sha1::{Digest as _, Sha1};
12use std::{
13 any::TypeId,
14 collections::{hash_map, HashMap, HashSet},
15 future::Future,
16 mem,
17 sync::Arc,
18 time::Instant,
19};
20use surf::StatusCode;
21use tide::log;
22use tide::{
23 http::headers::{HeaderName, CONNECTION, UPGRADE},
24 Request, Response,
25};
26use time::OffsetDateTime;
27use zrpc::{
28 auth::random_token,
29 proto::{self, AnyTypedEnvelope, EnvelopedMessage},
30 Connection, ConnectionId, Peer, TypedEnvelope,
31};
32
33type ReplicaId = u16;
34
35type MessageHandler = Box<
36 dyn Send
37 + Sync
38 + Fn(Arc<Server>, Box<dyn AnyTypedEnvelope>) -> BoxFuture<'static, tide::Result<()>>,
39>;
40
41pub struct Server {
42 peer: Arc<Peer>,
43 state: RwLock<ServerState>,
44 app_state: Arc<AppState>,
45 handlers: HashMap<TypeId, MessageHandler>,
46 notifications: Option<mpsc::Sender<()>>,
47}
48
49#[derive(Default)]
50struct ServerState {
51 connections: HashMap<ConnectionId, ConnectionState>,
52 pub worktrees: HashMap<u64, Worktree>,
53 channels: HashMap<ChannelId, Channel>,
54 next_worktree_id: u64,
55}
56
57struct ConnectionState {
58 user_id: UserId,
59 worktrees: HashSet<u64>,
60 channels: HashSet<ChannelId>,
61}
62
63struct Worktree {
64 host_connection_id: Option<ConnectionId>,
65 guest_connection_ids: HashMap<ConnectionId, ReplicaId>,
66 active_replica_ids: HashSet<ReplicaId>,
67 access_token: String,
68 root_name: String,
69 entries: HashMap<u64, proto::Entry>,
70}
71
72#[derive(Default)]
73struct Channel {
74 connection_ids: HashSet<ConnectionId>,
75}
76
77const MESSAGE_COUNT_PER_PAGE: usize = 100;
78const MAX_MESSAGE_LEN: usize = 1024;
79
80impl Server {
81 pub fn new(
82 app_state: Arc<AppState>,
83 peer: Arc<Peer>,
84 notifications: Option<mpsc::Sender<()>>,
85 ) -> Arc<Self> {
86 let mut server = Self {
87 peer,
88 app_state,
89 state: Default::default(),
90 handlers: Default::default(),
91 notifications,
92 };
93
94 server
95 .add_handler(Server::ping)
96 .add_handler(Server::share_worktree)
97 .add_handler(Server::join_worktree)
98 .add_handler(Server::update_worktree)
99 .add_handler(Server::close_worktree)
100 .add_handler(Server::open_buffer)
101 .add_handler(Server::close_buffer)
102 .add_handler(Server::update_buffer)
103 .add_handler(Server::buffer_saved)
104 .add_handler(Server::save_buffer)
105 .add_handler(Server::get_channels)
106 .add_handler(Server::get_users)
107 .add_handler(Server::join_channel)
108 .add_handler(Server::leave_channel)
109 .add_handler(Server::send_channel_message)
110 .add_handler(Server::get_channel_messages);
111
112 Arc::new(server)
113 }
114
115 fn add_handler<F, Fut, M>(&mut self, handler: F) -> &mut Self
116 where
117 F: 'static + Send + Sync + Fn(Arc<Self>, TypedEnvelope<M>) -> Fut,
118 Fut: 'static + Send + Future<Output = tide::Result<()>>,
119 M: EnvelopedMessage,
120 {
121 let prev_handler = self.handlers.insert(
122 TypeId::of::<M>(),
123 Box::new(move |server, envelope| {
124 let envelope = envelope.into_any().downcast::<TypedEnvelope<M>>().unwrap();
125 (handler)(server, *envelope).boxed()
126 }),
127 );
128 if prev_handler.is_some() {
129 panic!("registered a handler for the same message twice");
130 }
131 self
132 }
133
134 pub fn handle_connection(
135 self: &Arc<Self>,
136 connection: Connection,
137 addr: String,
138 user_id: UserId,
139 ) -> impl Future<Output = ()> {
140 let this = self.clone();
141 async move {
142 let (connection_id, handle_io, mut incoming_rx) =
143 this.peer.add_connection(connection).await;
144 this.add_connection(connection_id, user_id).await;
145
146 let handle_io = handle_io.fuse();
147 futures::pin_mut!(handle_io);
148 loop {
149 let next_message = incoming_rx.recv().fuse();
150 futures::pin_mut!(next_message);
151 futures::select_biased! {
152 message = next_message => {
153 if let Some(message) = message {
154 let start_time = Instant::now();
155 log::info!("RPC message received: {}", message.payload_type_name());
156 if let Some(handler) = this.handlers.get(&message.payload_type_id()) {
157 if let Err(err) = (handler)(this.clone(), message).await {
158 log::error!("error handling message: {:?}", err);
159 } else {
160 log::info!("RPC message handled. duration:{:?}", start_time.elapsed());
161 }
162
163 if let Some(mut notifications) = this.notifications.clone() {
164 let _ = notifications.send(()).await;
165 }
166 } else {
167 log::warn!("unhandled message: {}", message.payload_type_name());
168 }
169 } else {
170 log::info!("rpc connection closed {:?}", addr);
171 break;
172 }
173 }
174 handle_io = handle_io => {
175 if let Err(err) = handle_io {
176 log::error!("error handling rpc connection {:?} - {:?}", addr, err);
177 }
178 break;
179 }
180 }
181 }
182
183 if let Err(err) = this.sign_out(connection_id).await {
184 log::error!("error signing out connection {:?} - {:?}", addr, err);
185 }
186 }
187 }
188
189 async fn sign_out(self: &Arc<Self>, connection_id: zrpc::ConnectionId) -> tide::Result<()> {
190 self.peer.disconnect(connection_id).await;
191 let worktree_ids = self.remove_connection(connection_id).await;
192 for worktree_id in worktree_ids {
193 let state = self.state.read().await;
194 if let Some(worktree) = state.worktrees.get(&worktree_id) {
195 broadcast(connection_id, worktree.connection_ids(), |conn_id| {
196 self.peer.send(
197 conn_id,
198 proto::RemovePeer {
199 worktree_id,
200 peer_id: connection_id.0,
201 },
202 )
203 })
204 .await?;
205 }
206 }
207 Ok(())
208 }
209
210 // Add a new connection associated with a given user.
211 async fn add_connection(&self, connection_id: ConnectionId, user_id: UserId) {
212 self.state.write().await.connections.insert(
213 connection_id,
214 ConnectionState {
215 user_id,
216 worktrees: Default::default(),
217 channels: Default::default(),
218 },
219 );
220 }
221
222 // Remove the given connection and its association with any worktrees.
223 async fn remove_connection(&self, connection_id: ConnectionId) -> Vec<u64> {
224 let mut worktree_ids = Vec::new();
225 let mut state = self.state.write().await;
226 if let Some(connection) = state.connections.remove(&connection_id) {
227 for channel_id in connection.channels {
228 if let Some(channel) = state.channels.get_mut(&channel_id) {
229 channel.connection_ids.remove(&connection_id);
230 }
231 }
232 for worktree_id in connection.worktrees {
233 if let Some(worktree) = state.worktrees.get_mut(&worktree_id) {
234 if worktree.host_connection_id == Some(connection_id) {
235 worktree_ids.push(worktree_id);
236 } else if let Some(replica_id) =
237 worktree.guest_connection_ids.remove(&connection_id)
238 {
239 worktree.active_replica_ids.remove(&replica_id);
240 worktree_ids.push(worktree_id);
241 }
242 }
243 }
244 }
245 worktree_ids
246 }
247
248 async fn ping(self: Arc<Server>, request: TypedEnvelope<proto::Ping>) -> tide::Result<()> {
249 self.peer.respond(request.receipt(), proto::Ack {}).await?;
250 Ok(())
251 }
252
253 async fn share_worktree(
254 self: Arc<Server>,
255 mut request: TypedEnvelope<proto::ShareWorktree>,
256 ) -> tide::Result<()> {
257 let mut state = self.state.write().await;
258 let worktree_id = state.next_worktree_id;
259 state.next_worktree_id += 1;
260 let access_token = random_token();
261 let worktree = request
262 .payload
263 .worktree
264 .as_mut()
265 .ok_or_else(|| anyhow!("missing worktree"))?;
266 let entries = mem::take(&mut worktree.entries)
267 .into_iter()
268 .map(|entry| (entry.id, entry))
269 .collect();
270 state.worktrees.insert(
271 worktree_id,
272 Worktree {
273 host_connection_id: Some(request.sender_id),
274 guest_connection_ids: Default::default(),
275 active_replica_ids: Default::default(),
276 access_token: access_token.clone(),
277 root_name: mem::take(&mut worktree.root_name),
278 entries,
279 },
280 );
281
282 self.peer
283 .respond(
284 request.receipt(),
285 proto::ShareWorktreeResponse {
286 worktree_id,
287 access_token,
288 },
289 )
290 .await?;
291 Ok(())
292 }
293
294 async fn join_worktree(
295 self: Arc<Server>,
296 request: TypedEnvelope<proto::OpenWorktree>,
297 ) -> tide::Result<()> {
298 let worktree_id = request.payload.worktree_id;
299 let access_token = &request.payload.access_token;
300
301 let mut state = self.state.write().await;
302 if let Some((peer_replica_id, worktree)) =
303 state.join_worktree(request.sender_id, worktree_id, access_token)
304 {
305 let mut peers = Vec::new();
306 if let Some(host_connection_id) = worktree.host_connection_id {
307 peers.push(proto::Peer {
308 peer_id: host_connection_id.0,
309 replica_id: 0,
310 });
311 }
312 for (peer_conn_id, peer_replica_id) in &worktree.guest_connection_ids {
313 if *peer_conn_id != request.sender_id {
314 peers.push(proto::Peer {
315 peer_id: peer_conn_id.0,
316 replica_id: *peer_replica_id as u32,
317 });
318 }
319 }
320
321 broadcast(request.sender_id, worktree.connection_ids(), |conn_id| {
322 self.peer.send(
323 conn_id,
324 proto::AddPeer {
325 worktree_id,
326 peer: Some(proto::Peer {
327 peer_id: request.sender_id.0,
328 replica_id: peer_replica_id as u32,
329 }),
330 },
331 )
332 })
333 .await?;
334 self.peer
335 .respond(
336 request.receipt(),
337 proto::OpenWorktreeResponse {
338 worktree_id,
339 worktree: Some(proto::Worktree {
340 root_name: worktree.root_name.clone(),
341 entries: worktree.entries.values().cloned().collect(),
342 }),
343 replica_id: peer_replica_id as u32,
344 peers,
345 },
346 )
347 .await?;
348 } else {
349 self.peer
350 .respond(
351 request.receipt(),
352 proto::OpenWorktreeResponse {
353 worktree_id,
354 worktree: None,
355 replica_id: 0,
356 peers: Vec::new(),
357 },
358 )
359 .await?;
360 }
361
362 Ok(())
363 }
364
365 async fn update_worktree(
366 self: Arc<Server>,
367 request: TypedEnvelope<proto::UpdateWorktree>,
368 ) -> tide::Result<()> {
369 {
370 let mut state = self.state.write().await;
371 let worktree = state.write_worktree(request.payload.worktree_id, request.sender_id)?;
372 for entry_id in &request.payload.removed_entries {
373 worktree.entries.remove(&entry_id);
374 }
375
376 for entry in &request.payload.updated_entries {
377 worktree.entries.insert(entry.id, entry.clone());
378 }
379 }
380
381 self.broadcast_in_worktree(request.payload.worktree_id, &request)
382 .await?;
383 Ok(())
384 }
385
386 async fn close_worktree(
387 self: Arc<Server>,
388 request: TypedEnvelope<proto::CloseWorktree>,
389 ) -> tide::Result<()> {
390 let connection_ids;
391 {
392 let mut state = self.state.write().await;
393 let worktree = state.write_worktree(request.payload.worktree_id, request.sender_id)?;
394 connection_ids = worktree.connection_ids();
395 if worktree.host_connection_id == Some(request.sender_id) {
396 worktree.host_connection_id = None;
397 } else if let Some(replica_id) =
398 worktree.guest_connection_ids.remove(&request.sender_id)
399 {
400 worktree.active_replica_ids.remove(&replica_id);
401 }
402 }
403
404 broadcast(request.sender_id, connection_ids, |conn_id| {
405 self.peer.send(
406 conn_id,
407 proto::RemovePeer {
408 worktree_id: request.payload.worktree_id,
409 peer_id: request.sender_id.0,
410 },
411 )
412 })
413 .await?;
414
415 Ok(())
416 }
417
418 async fn open_buffer(
419 self: Arc<Server>,
420 request: TypedEnvelope<proto::OpenBuffer>,
421 ) -> tide::Result<()> {
422 let receipt = request.receipt();
423 let worktree_id = request.payload.worktree_id;
424 let host_connection_id = self
425 .state
426 .read()
427 .await
428 .read_worktree(worktree_id, request.sender_id)?
429 .host_connection_id()?;
430
431 let response = self
432 .peer
433 .forward_request(request.sender_id, host_connection_id, request.payload)
434 .await?;
435 self.peer.respond(receipt, response).await?;
436 Ok(())
437 }
438
439 async fn close_buffer(
440 self: Arc<Server>,
441 request: TypedEnvelope<proto::CloseBuffer>,
442 ) -> tide::Result<()> {
443 let host_connection_id = self
444 .state
445 .read()
446 .await
447 .read_worktree(request.payload.worktree_id, request.sender_id)?
448 .host_connection_id()?;
449
450 self.peer
451 .forward_send(request.sender_id, host_connection_id, request.payload)
452 .await?;
453
454 Ok(())
455 }
456
457 async fn save_buffer(
458 self: Arc<Server>,
459 request: TypedEnvelope<proto::SaveBuffer>,
460 ) -> tide::Result<()> {
461 let host;
462 let guests;
463 {
464 let state = self.state.read().await;
465 let worktree = state.read_worktree(request.payload.worktree_id, request.sender_id)?;
466 host = worktree.host_connection_id()?;
467 guests = worktree
468 .guest_connection_ids
469 .keys()
470 .copied()
471 .collect::<Vec<_>>();
472 }
473
474 let sender = request.sender_id;
475 let receipt = request.receipt();
476 let response = self
477 .peer
478 .forward_request(sender, host, request.payload.clone())
479 .await?;
480
481 broadcast(host, guests, |conn_id| {
482 let response = response.clone();
483 let peer = &self.peer;
484 async move {
485 if conn_id == sender {
486 peer.respond(receipt, response).await
487 } else {
488 peer.forward_send(host, conn_id, response).await
489 }
490 }
491 })
492 .await?;
493
494 Ok(())
495 }
496
497 async fn update_buffer(
498 self: Arc<Server>,
499 request: TypedEnvelope<proto::UpdateBuffer>,
500 ) -> tide::Result<()> {
501 self.broadcast_in_worktree(request.payload.worktree_id, &request)
502 .await?;
503 self.peer.respond(request.receipt(), proto::Ack {}).await?;
504 Ok(())
505 }
506
507 async fn buffer_saved(
508 self: Arc<Server>,
509 request: TypedEnvelope<proto::BufferSaved>,
510 ) -> tide::Result<()> {
511 self.broadcast_in_worktree(request.payload.worktree_id, &request)
512 .await
513 }
514
515 async fn get_channels(
516 self: Arc<Server>,
517 request: TypedEnvelope<proto::GetChannels>,
518 ) -> tide::Result<()> {
519 let user_id = self
520 .state
521 .read()
522 .await
523 .user_id_for_connection(request.sender_id)?;
524 let channels = self.app_state.db.get_accessible_channels(user_id).await?;
525 self.peer
526 .respond(
527 request.receipt(),
528 proto::GetChannelsResponse {
529 channels: channels
530 .into_iter()
531 .map(|chan| proto::Channel {
532 id: chan.id.to_proto(),
533 name: chan.name,
534 })
535 .collect(),
536 },
537 )
538 .await?;
539 Ok(())
540 }
541
542 async fn get_users(
543 self: Arc<Server>,
544 request: TypedEnvelope<proto::GetUsers>,
545 ) -> tide::Result<()> {
546 let user_id = self
547 .state
548 .read()
549 .await
550 .user_id_for_connection(request.sender_id)?;
551 let receipt = request.receipt();
552 let user_ids = request.payload.user_ids.into_iter().map(UserId::from_proto);
553 let users = self
554 .app_state
555 .db
556 .get_users_by_ids(user_id, user_ids)
557 .await?
558 .into_iter()
559 .map(|user| proto::User {
560 id: user.id.to_proto(),
561 avatar_url: format!("https://github.com/{}.png?size=128", user.github_login),
562 github_login: user.github_login,
563 })
564 .collect();
565 self.peer
566 .respond(receipt, proto::GetUsersResponse { users })
567 .await?;
568 Ok(())
569 }
570
571 async fn join_channel(
572 self: Arc<Self>,
573 request: TypedEnvelope<proto::JoinChannel>,
574 ) -> tide::Result<()> {
575 let user_id = self
576 .state
577 .read()
578 .await
579 .user_id_for_connection(request.sender_id)?;
580 let channel_id = ChannelId::from_proto(request.payload.channel_id);
581 if !self
582 .app_state
583 .db
584 .can_user_access_channel(user_id, channel_id)
585 .await?
586 {
587 Err(anyhow!("access denied"))?;
588 }
589
590 self.state
591 .write()
592 .await
593 .join_channel(request.sender_id, channel_id);
594 let messages = self
595 .app_state
596 .db
597 .get_channel_messages(channel_id, MESSAGE_COUNT_PER_PAGE, None)
598 .await?
599 .into_iter()
600 .map(|msg| proto::ChannelMessage {
601 id: msg.id.to_proto(),
602 body: msg.body,
603 timestamp: msg.sent_at.unix_timestamp() as u64,
604 sender_id: msg.sender_id.to_proto(),
605 })
606 .collect::<Vec<_>>();
607 self.peer
608 .respond(
609 request.receipt(),
610 proto::JoinChannelResponse {
611 done: messages.len() < MESSAGE_COUNT_PER_PAGE,
612 messages,
613 },
614 )
615 .await?;
616 Ok(())
617 }
618
619 async fn leave_channel(
620 self: Arc<Self>,
621 request: TypedEnvelope<proto::LeaveChannel>,
622 ) -> tide::Result<()> {
623 let user_id = self
624 .state
625 .read()
626 .await
627 .user_id_for_connection(request.sender_id)?;
628 let channel_id = ChannelId::from_proto(request.payload.channel_id);
629 if !self
630 .app_state
631 .db
632 .can_user_access_channel(user_id, channel_id)
633 .await?
634 {
635 Err(anyhow!("access denied"))?;
636 }
637
638 self.state
639 .write()
640 .await
641 .leave_channel(request.sender_id, channel_id);
642
643 Ok(())
644 }
645
646 async fn send_channel_message(
647 self: Arc<Self>,
648 request: TypedEnvelope<proto::SendChannelMessage>,
649 ) -> tide::Result<()> {
650 let receipt = request.receipt();
651 let channel_id = ChannelId::from_proto(request.payload.channel_id);
652 let user_id;
653 let connection_ids;
654 {
655 let state = self.state.read().await;
656 user_id = state.user_id_for_connection(request.sender_id)?;
657 if let Some(channel) = state.channels.get(&channel_id) {
658 connection_ids = channel.connection_ids();
659 } else {
660 return Ok(());
661 }
662 }
663
664 // Validate the message body.
665 let body = request.payload.body.trim().to_string();
666 if body.len() > MAX_MESSAGE_LEN {
667 self.peer
668 .respond_with_error(
669 receipt,
670 proto::Error {
671 message: "message is too long".to_string(),
672 },
673 )
674 .await?;
675 return Ok(());
676 }
677 if body.is_empty() {
678 self.peer
679 .respond_with_error(
680 receipt,
681 proto::Error {
682 message: "message can't be blank".to_string(),
683 },
684 )
685 .await?;
686 return Ok(());
687 }
688
689 let timestamp = OffsetDateTime::now_utc();
690 let message_id = self
691 .app_state
692 .db
693 .create_channel_message(channel_id, user_id, &body, timestamp)
694 .await?
695 .to_proto();
696 let message = proto::ChannelMessage {
697 sender_id: user_id.to_proto(),
698 id: message_id,
699 body,
700 timestamp: timestamp.unix_timestamp() as u64,
701 };
702 broadcast(request.sender_id, connection_ids, |conn_id| {
703 self.peer.send(
704 conn_id,
705 proto::ChannelMessageSent {
706 channel_id: channel_id.to_proto(),
707 message: Some(message.clone()),
708 },
709 )
710 })
711 .await?;
712 self.peer
713 .respond(
714 receipt,
715 proto::SendChannelMessageResponse {
716 message: Some(message),
717 },
718 )
719 .await?;
720 Ok(())
721 }
722
723 async fn get_channel_messages(
724 self: Arc<Self>,
725 request: TypedEnvelope<proto::GetChannelMessages>,
726 ) -> tide::Result<()> {
727 let user_id = self
728 .state
729 .read()
730 .await
731 .user_id_for_connection(request.sender_id)?;
732 let channel_id = ChannelId::from_proto(request.payload.channel_id);
733 if !self
734 .app_state
735 .db
736 .can_user_access_channel(user_id, channel_id)
737 .await?
738 {
739 Err(anyhow!("access denied"))?;
740 }
741
742 let messages = self
743 .app_state
744 .db
745 .get_channel_messages(
746 channel_id,
747 MESSAGE_COUNT_PER_PAGE,
748 Some(MessageId::from_proto(request.payload.before_message_id)),
749 )
750 .await?
751 .into_iter()
752 .map(|msg| proto::ChannelMessage {
753 id: msg.id.to_proto(),
754 body: msg.body,
755 timestamp: msg.sent_at.unix_timestamp() as u64,
756 sender_id: msg.sender_id.to_proto(),
757 })
758 .collect::<Vec<_>>();
759 self.peer
760 .respond(
761 request.receipt(),
762 proto::GetChannelMessagesResponse {
763 done: messages.len() < MESSAGE_COUNT_PER_PAGE,
764 messages,
765 },
766 )
767 .await?;
768 Ok(())
769 }
770
771 async fn broadcast_in_worktree<T: proto::EnvelopedMessage>(
772 &self,
773 worktree_id: u64,
774 message: &TypedEnvelope<T>,
775 ) -> tide::Result<()> {
776 let connection_ids = self
777 .state
778 .read()
779 .await
780 .read_worktree(worktree_id, message.sender_id)?
781 .connection_ids();
782
783 broadcast(message.sender_id, connection_ids, |conn_id| {
784 self.peer
785 .forward_send(message.sender_id, conn_id, message.payload.clone())
786 })
787 .await?;
788
789 Ok(())
790 }
791}
792
793pub async fn broadcast<F, T>(
794 sender_id: ConnectionId,
795 receiver_ids: Vec<ConnectionId>,
796 mut f: F,
797) -> anyhow::Result<()>
798where
799 F: FnMut(ConnectionId) -> T,
800 T: Future<Output = anyhow::Result<()>>,
801{
802 let futures = receiver_ids
803 .into_iter()
804 .filter(|id| *id != sender_id)
805 .map(|id| f(id));
806 futures::future::try_join_all(futures).await?;
807 Ok(())
808}
809
810impl ServerState {
811 fn join_channel(&mut self, connection_id: ConnectionId, channel_id: ChannelId) {
812 if let Some(connection) = self.connections.get_mut(&connection_id) {
813 connection.channels.insert(channel_id);
814 self.channels
815 .entry(channel_id)
816 .or_default()
817 .connection_ids
818 .insert(connection_id);
819 }
820 }
821
822 fn leave_channel(&mut self, connection_id: ConnectionId, channel_id: ChannelId) {
823 if let Some(connection) = self.connections.get_mut(&connection_id) {
824 connection.channels.remove(&channel_id);
825 if let hash_map::Entry::Occupied(mut entry) = self.channels.entry(channel_id) {
826 entry.get_mut().connection_ids.remove(&connection_id);
827 if entry.get_mut().connection_ids.is_empty() {
828 entry.remove();
829 }
830 }
831 }
832 }
833
834 fn user_id_for_connection(&self, connection_id: ConnectionId) -> tide::Result<UserId> {
835 Ok(self
836 .connections
837 .get(&connection_id)
838 .ok_or_else(|| anyhow!("unknown connection"))?
839 .user_id)
840 }
841
842 // Add the given connection as a guest of the given worktree
843 fn join_worktree(
844 &mut self,
845 connection_id: ConnectionId,
846 worktree_id: u64,
847 access_token: &str,
848 ) -> Option<(ReplicaId, &Worktree)> {
849 if let Some(worktree) = self.worktrees.get_mut(&worktree_id) {
850 if access_token == worktree.access_token {
851 if let Some(connection) = self.connections.get_mut(&connection_id) {
852 connection.worktrees.insert(worktree_id);
853 }
854
855 let mut replica_id = 1;
856 while worktree.active_replica_ids.contains(&replica_id) {
857 replica_id += 1;
858 }
859 worktree.active_replica_ids.insert(replica_id);
860 worktree
861 .guest_connection_ids
862 .insert(connection_id, replica_id);
863 Some((replica_id, worktree))
864 } else {
865 None
866 }
867 } else {
868 None
869 }
870 }
871
872 fn read_worktree(
873 &self,
874 worktree_id: u64,
875 connection_id: ConnectionId,
876 ) -> tide::Result<&Worktree> {
877 let worktree = self
878 .worktrees
879 .get(&worktree_id)
880 .ok_or_else(|| anyhow!("worktree not found"))?;
881
882 if worktree.host_connection_id == Some(connection_id)
883 || worktree.guest_connection_ids.contains_key(&connection_id)
884 {
885 Ok(worktree)
886 } else {
887 Err(anyhow!(
888 "{} is not a member of worktree {}",
889 connection_id,
890 worktree_id
891 ))?
892 }
893 }
894
895 fn write_worktree(
896 &mut self,
897 worktree_id: u64,
898 connection_id: ConnectionId,
899 ) -> tide::Result<&mut Worktree> {
900 let worktree = self
901 .worktrees
902 .get_mut(&worktree_id)
903 .ok_or_else(|| anyhow!("worktree not found"))?;
904
905 if worktree.host_connection_id == Some(connection_id)
906 || worktree.guest_connection_ids.contains_key(&connection_id)
907 {
908 Ok(worktree)
909 } else {
910 Err(anyhow!(
911 "{} is not a member of worktree {}",
912 connection_id,
913 worktree_id
914 ))?
915 }
916 }
917}
918
919impl Worktree {
920 pub fn connection_ids(&self) -> Vec<ConnectionId> {
921 self.guest_connection_ids
922 .keys()
923 .copied()
924 .chain(self.host_connection_id)
925 .collect()
926 }
927
928 fn host_connection_id(&self) -> tide::Result<ConnectionId> {
929 Ok(self
930 .host_connection_id
931 .ok_or_else(|| anyhow!("host disconnected from worktree"))?)
932 }
933}
934
935impl Channel {
936 fn connection_ids(&self) -> Vec<ConnectionId> {
937 self.connection_ids.iter().copied().collect()
938 }
939}
940
941pub fn add_routes(app: &mut tide::Server<Arc<AppState>>, rpc: &Arc<Peer>) {
942 let server = Server::new(app.state().clone(), rpc.clone(), None);
943 app.at("/rpc").with(auth::VerifyToken).get(move |request: Request<Arc<AppState>>| {
944 let user_id = request.ext::<UserId>().copied();
945 let server = server.clone();
946 async move {
947 const WEBSOCKET_GUID: &str = "258EAFA5-E914-47DA-95CA-C5AB0DC85B11";
948
949 let connection_upgrade = header_contains_ignore_case(&request, CONNECTION, "upgrade");
950 let upgrade_to_websocket = header_contains_ignore_case(&request, UPGRADE, "websocket");
951 let upgrade_requested = connection_upgrade && upgrade_to_websocket;
952
953 if !upgrade_requested {
954 return Ok(Response::new(StatusCode::UpgradeRequired));
955 }
956
957 let header = match request.header("Sec-Websocket-Key") {
958 Some(h) => h.as_str(),
959 None => return Err(anyhow!("expected sec-websocket-key"))?,
960 };
961
962 let mut response = Response::new(StatusCode::SwitchingProtocols);
963 response.insert_header(UPGRADE, "websocket");
964 response.insert_header(CONNECTION, "Upgrade");
965 let hash = Sha1::new().chain(header).chain(WEBSOCKET_GUID).finalize();
966 response.insert_header("Sec-Websocket-Accept", base64::encode(&hash[..]));
967 response.insert_header("Sec-Websocket-Version", "13");
968
969 let http_res: &mut tide::http::Response = response.as_mut();
970 let upgrade_receiver = http_res.recv_upgrade().await;
971 let addr = request.remote().unwrap_or("unknown").to_string();
972 let user_id = user_id.ok_or_else(|| anyhow!("user_id is not present on request. ensure auth::VerifyToken middleware is present"))?;
973 task::spawn(async move {
974 if let Some(stream) = upgrade_receiver.await {
975 server.handle_connection(Connection::new(WebSocketStream::from_raw_socket(stream, Role::Server, None).await), addr, user_id).await;
976 }
977 });
978
979 Ok(response)
980 }
981 });
982}
983
984fn header_contains_ignore_case<T>(
985 request: &tide::Request<T>,
986 header_name: HeaderName,
987 value: &str,
988) -> bool {
989 request
990 .header(header_name)
991 .map(|h| {
992 h.as_str()
993 .split(',')
994 .any(|s| s.trim().eq_ignore_ascii_case(value.trim()))
995 })
996 .unwrap_or(false)
997}
998
999#[cfg(test)]
1000mod tests {
1001 use super::*;
1002 use crate::{
1003 auth,
1004 db::{tests::TestDb, UserId},
1005 github, AppState, Config,
1006 };
1007 use async_std::{sync::RwLockReadGuard, task};
1008 use gpui::TestAppContext;
1009 use parking_lot::Mutex;
1010 use postage::{mpsc, watch};
1011 use serde_json::json;
1012 use sqlx::types::time::OffsetDateTime;
1013 use std::{
1014 path::Path,
1015 sync::{
1016 atomic::{AtomicBool, Ordering::SeqCst},
1017 Arc,
1018 },
1019 time::Duration,
1020 };
1021 use zed::{
1022 channel::{Channel, ChannelDetails, ChannelList},
1023 editor::{Editor, Insert},
1024 fs::{FakeFs, Fs as _},
1025 language::LanguageRegistry,
1026 rpc::{self, Client, Credentials, EstablishConnectionError},
1027 settings,
1028 test::FakeHttpClient,
1029 user::UserStore,
1030 worktree::Worktree,
1031 };
1032 use zrpc::Peer;
1033
1034 #[gpui::test]
1035 async fn test_share_worktree(mut cx_a: TestAppContext, mut cx_b: TestAppContext) {
1036 let (window_b, _) = cx_b.add_window(|_| EmptyView);
1037 let settings = cx_b.read(settings::test).1;
1038 let lang_registry = Arc::new(LanguageRegistry::new());
1039
1040 // Connect to a server as 2 clients.
1041 let mut server = TestServer::start().await;
1042 let (_, client_a) = server.create_client(&mut cx_a, "user_a").await;
1043 let (_, client_b) = server.create_client(&mut cx_b, "user_b").await;
1044
1045 cx_a.foreground().forbid_parking();
1046
1047 // Share a local worktree as client A
1048 let fs = Arc::new(FakeFs::new());
1049 fs.insert_tree(
1050 "/a",
1051 json!({
1052 "a.txt": "a-contents",
1053 "b.txt": "b-contents",
1054 }),
1055 )
1056 .await;
1057 let worktree_a = Worktree::open_local(
1058 "/a".as_ref(),
1059 lang_registry.clone(),
1060 fs,
1061 &mut cx_a.to_async(),
1062 )
1063 .await
1064 .unwrap();
1065 worktree_a
1066 .read_with(&cx_a, |tree, _| tree.as_local().unwrap().scan_complete())
1067 .await;
1068 let (worktree_id, worktree_token) = worktree_a
1069 .update(&mut cx_a, |tree, cx| {
1070 tree.as_local_mut().unwrap().share(client_a.clone(), cx)
1071 })
1072 .await
1073 .unwrap();
1074
1075 // Join that worktree as client B, and see that a guest has joined as client A.
1076 let worktree_b = Worktree::open_remote(
1077 client_b.clone(),
1078 worktree_id,
1079 worktree_token,
1080 lang_registry.clone(),
1081 &mut cx_b.to_async(),
1082 )
1083 .await
1084 .unwrap();
1085 let replica_id_b = worktree_b.read_with(&cx_b, |tree, _| tree.replica_id());
1086 worktree_a
1087 .condition(&cx_a, |tree, _| {
1088 tree.peers()
1089 .values()
1090 .any(|replica_id| *replica_id == replica_id_b)
1091 })
1092 .await;
1093
1094 // Open the same file as client B and client A.
1095 let buffer_b = worktree_b
1096 .update(&mut cx_b, |worktree, cx| worktree.open_buffer("b.txt", cx))
1097 .await
1098 .unwrap();
1099 buffer_b.read_with(&cx_b, |buf, _| assert_eq!(buf.text(), "b-contents"));
1100 worktree_a.read_with(&cx_a, |tree, cx| assert!(tree.has_open_buffer("b.txt", cx)));
1101 let buffer_a = worktree_a
1102 .update(&mut cx_a, |tree, cx| tree.open_buffer("b.txt", cx))
1103 .await
1104 .unwrap();
1105
1106 // Create a selection set as client B and see that selection set as client A.
1107 let editor_b = cx_b.add_view(window_b, |cx| Editor::for_buffer(buffer_b, settings, cx));
1108 buffer_a
1109 .condition(&cx_a, |buffer, _| buffer.selection_sets().count() == 1)
1110 .await;
1111
1112 // Edit the buffer as client B and see that edit as client A.
1113 editor_b.update(&mut cx_b, |editor, cx| {
1114 editor.insert(&Insert("ok, ".into()), cx)
1115 });
1116 buffer_a
1117 .condition(&cx_a, |buffer, _| buffer.text() == "ok, b-contents")
1118 .await;
1119
1120 // Remove the selection set as client B, see those selections disappear as client A.
1121 cx_b.update(move |_| drop(editor_b));
1122 buffer_a
1123 .condition(&cx_a, |buffer, _| buffer.selection_sets().count() == 0)
1124 .await;
1125
1126 // Close the buffer as client A, see that the buffer is closed.
1127 drop(buffer_a);
1128 worktree_a
1129 .condition(&cx_a, |tree, cx| !tree.has_open_buffer("b.txt", cx))
1130 .await;
1131
1132 // Dropping the worktree removes client B from client A's peers.
1133 cx_b.update(move |_| drop(worktree_b));
1134 worktree_a
1135 .condition(&cx_a, |tree, _| tree.peers().is_empty())
1136 .await;
1137 }
1138
1139 #[gpui::test]
1140 async fn test_propagate_saves_and_fs_changes_in_shared_worktree(
1141 mut cx_a: TestAppContext,
1142 mut cx_b: TestAppContext,
1143 mut cx_c: TestAppContext,
1144 ) {
1145 cx_a.foreground().forbid_parking();
1146 let lang_registry = Arc::new(LanguageRegistry::new());
1147
1148 // Connect to a server as 3 clients.
1149 let mut server = TestServer::start().await;
1150 let (_, client_a) = server.create_client(&mut cx_a, "user_a").await;
1151 let (_, client_b) = server.create_client(&mut cx_b, "user_b").await;
1152 let (_, client_c) = server.create_client(&mut cx_c, "user_c").await;
1153
1154 let fs = Arc::new(FakeFs::new());
1155
1156 // Share a worktree as client A.
1157 fs.insert_tree(
1158 "/a",
1159 json!({
1160 "file1": "",
1161 "file2": ""
1162 }),
1163 )
1164 .await;
1165
1166 let worktree_a = Worktree::open_local(
1167 "/a".as_ref(),
1168 lang_registry.clone(),
1169 fs.clone(),
1170 &mut cx_a.to_async(),
1171 )
1172 .await
1173 .unwrap();
1174 worktree_a
1175 .read_with(&cx_a, |tree, _| tree.as_local().unwrap().scan_complete())
1176 .await;
1177 let (worktree_id, worktree_token) = worktree_a
1178 .update(&mut cx_a, |tree, cx| {
1179 tree.as_local_mut().unwrap().share(client_a.clone(), cx)
1180 })
1181 .await
1182 .unwrap();
1183
1184 // Join that worktree as clients B and C.
1185 let worktree_b = Worktree::open_remote(
1186 client_b.clone(),
1187 worktree_id,
1188 worktree_token.clone(),
1189 lang_registry.clone(),
1190 &mut cx_b.to_async(),
1191 )
1192 .await
1193 .unwrap();
1194 let worktree_c = Worktree::open_remote(
1195 client_c.clone(),
1196 worktree_id,
1197 worktree_token,
1198 lang_registry.clone(),
1199 &mut cx_c.to_async(),
1200 )
1201 .await
1202 .unwrap();
1203
1204 // Open and edit a buffer as both guests B and C.
1205 let buffer_b = worktree_b
1206 .update(&mut cx_b, |tree, cx| tree.open_buffer("file1", cx))
1207 .await
1208 .unwrap();
1209 let buffer_c = worktree_c
1210 .update(&mut cx_c, |tree, cx| tree.open_buffer("file1", cx))
1211 .await
1212 .unwrap();
1213 buffer_b.update(&mut cx_b, |buf, cx| buf.edit([0..0], "i-am-b, ", cx));
1214 buffer_c.update(&mut cx_c, |buf, cx| buf.edit([0..0], "i-am-c, ", cx));
1215
1216 // Open and edit that buffer as the host.
1217 let buffer_a = worktree_a
1218 .update(&mut cx_a, |tree, cx| tree.open_buffer("file1", cx))
1219 .await
1220 .unwrap();
1221
1222 buffer_a
1223 .condition(&mut cx_a, |buf, _| buf.text() == "i-am-c, i-am-b, ")
1224 .await;
1225 buffer_a.update(&mut cx_a, |buf, cx| {
1226 buf.edit([buf.len()..buf.len()], "i-am-a", cx)
1227 });
1228
1229 // Wait for edits to propagate
1230 buffer_a
1231 .condition(&mut cx_a, |buf, _| buf.text() == "i-am-c, i-am-b, i-am-a")
1232 .await;
1233 buffer_b
1234 .condition(&mut cx_b, |buf, _| buf.text() == "i-am-c, i-am-b, i-am-a")
1235 .await;
1236 buffer_c
1237 .condition(&mut cx_c, |buf, _| buf.text() == "i-am-c, i-am-b, i-am-a")
1238 .await;
1239
1240 // Edit the buffer as the host and concurrently save as guest B.
1241 let save_b = buffer_b.update(&mut cx_b, |buf, cx| buf.save(cx).unwrap());
1242 buffer_a.update(&mut cx_a, |buf, cx| buf.edit([0..0], "hi-a, ", cx));
1243 save_b.await.unwrap();
1244 assert_eq!(
1245 fs.load("/a/file1".as_ref()).await.unwrap(),
1246 "hi-a, i-am-c, i-am-b, i-am-a"
1247 );
1248 buffer_a.read_with(&cx_a, |buf, _| assert!(!buf.is_dirty()));
1249 buffer_b.read_with(&cx_b, |buf, _| assert!(!buf.is_dirty()));
1250 buffer_c.condition(&cx_c, |buf, _| !buf.is_dirty()).await;
1251
1252 // Make changes on host's file system, see those changes on the guests.
1253 fs.rename("/a/file2".as_ref(), "/a/file3".as_ref())
1254 .await
1255 .unwrap();
1256 fs.insert_file(Path::new("/a/file4"), "4".into())
1257 .await
1258 .unwrap();
1259
1260 worktree_b
1261 .condition(&cx_b, |tree, _| tree.file_count() == 3)
1262 .await;
1263 worktree_c
1264 .condition(&cx_c, |tree, _| tree.file_count() == 3)
1265 .await;
1266 worktree_b.read_with(&cx_b, |tree, _| {
1267 assert_eq!(
1268 tree.paths()
1269 .map(|p| p.to_string_lossy())
1270 .collect::<Vec<_>>(),
1271 &["file1", "file3", "file4"]
1272 )
1273 });
1274 worktree_c.read_with(&cx_c, |tree, _| {
1275 assert_eq!(
1276 tree.paths()
1277 .map(|p| p.to_string_lossy())
1278 .collect::<Vec<_>>(),
1279 &["file1", "file3", "file4"]
1280 )
1281 });
1282 }
1283
1284 #[gpui::test]
1285 async fn test_buffer_conflict_after_save(mut cx_a: TestAppContext, mut cx_b: TestAppContext) {
1286 cx_a.foreground().forbid_parking();
1287 let lang_registry = Arc::new(LanguageRegistry::new());
1288
1289 // Connect to a server as 2 clients.
1290 let mut server = TestServer::start().await;
1291 let (_, client_a) = server.create_client(&mut cx_a, "user_a").await;
1292 let (_, client_b) = server.create_client(&mut cx_b, "user_b").await;
1293
1294 // Share a local worktree as client A
1295 let fs = Arc::new(FakeFs::new());
1296 fs.save(Path::new("/a.txt"), &"a-contents".into())
1297 .await
1298 .unwrap();
1299 let worktree_a = Worktree::open_local(
1300 "/".as_ref(),
1301 lang_registry.clone(),
1302 fs,
1303 &mut cx_a.to_async(),
1304 )
1305 .await
1306 .unwrap();
1307 worktree_a
1308 .read_with(&cx_a, |tree, _| tree.as_local().unwrap().scan_complete())
1309 .await;
1310 let (worktree_id, worktree_token) = worktree_a
1311 .update(&mut cx_a, |tree, cx| {
1312 tree.as_local_mut().unwrap().share(client_a.clone(), cx)
1313 })
1314 .await
1315 .unwrap();
1316
1317 // Join that worktree as client B, and see that a guest has joined as client A.
1318 let worktree_b = Worktree::open_remote(
1319 client_b.clone(),
1320 worktree_id,
1321 worktree_token,
1322 lang_registry.clone(),
1323 &mut cx_b.to_async(),
1324 )
1325 .await
1326 .unwrap();
1327
1328 let buffer_b = worktree_b
1329 .update(&mut cx_b, |worktree, cx| worktree.open_buffer("a.txt", cx))
1330 .await
1331 .unwrap();
1332 let mtime = buffer_b.read_with(&cx_b, |buf, _| buf.file().unwrap().mtime);
1333
1334 buffer_b.update(&mut cx_b, |buf, cx| buf.edit([0..0], "world ", cx));
1335 buffer_b.read_with(&cx_b, |buf, _| {
1336 assert!(buf.is_dirty());
1337 assert!(!buf.has_conflict());
1338 });
1339
1340 buffer_b
1341 .update(&mut cx_b, |buf, cx| buf.save(cx))
1342 .unwrap()
1343 .await
1344 .unwrap();
1345 worktree_b
1346 .condition(&cx_b, |_, cx| {
1347 buffer_b.read(cx).file().unwrap().mtime != mtime
1348 })
1349 .await;
1350 buffer_b.read_with(&cx_b, |buf, _| {
1351 assert!(!buf.is_dirty());
1352 assert!(!buf.has_conflict());
1353 });
1354
1355 buffer_b.update(&mut cx_b, |buf, cx| buf.edit([0..0], "hello ", cx));
1356 buffer_b.read_with(&cx_b, |buf, _| {
1357 assert!(buf.is_dirty());
1358 assert!(!buf.has_conflict());
1359 });
1360 }
1361
1362 #[gpui::test]
1363 async fn test_editing_while_guest_opens_buffer(
1364 mut cx_a: TestAppContext,
1365 mut cx_b: TestAppContext,
1366 ) {
1367 cx_a.foreground().forbid_parking();
1368 let lang_registry = Arc::new(LanguageRegistry::new());
1369
1370 // Connect to a server as 2 clients.
1371 let mut server = TestServer::start().await;
1372 let (_, client_a) = server.create_client(&mut cx_a, "user_a").await;
1373 let (_, client_b) = server.create_client(&mut cx_b, "user_b").await;
1374
1375 // Share a local worktree as client A
1376 let fs = Arc::new(FakeFs::new());
1377 fs.save(Path::new("/a.txt"), &"a-contents".into())
1378 .await
1379 .unwrap();
1380 let worktree_a = Worktree::open_local(
1381 "/".as_ref(),
1382 lang_registry.clone(),
1383 fs,
1384 &mut cx_a.to_async(),
1385 )
1386 .await
1387 .unwrap();
1388 worktree_a
1389 .read_with(&cx_a, |tree, _| tree.as_local().unwrap().scan_complete())
1390 .await;
1391 let (worktree_id, worktree_token) = worktree_a
1392 .update(&mut cx_a, |tree, cx| {
1393 tree.as_local_mut().unwrap().share(client_a.clone(), cx)
1394 })
1395 .await
1396 .unwrap();
1397
1398 // Join that worktree as client B, and see that a guest has joined as client A.
1399 let worktree_b = Worktree::open_remote(
1400 client_b.clone(),
1401 worktree_id,
1402 worktree_token,
1403 lang_registry.clone(),
1404 &mut cx_b.to_async(),
1405 )
1406 .await
1407 .unwrap();
1408
1409 let buffer_a = worktree_a
1410 .update(&mut cx_a, |tree, cx| tree.open_buffer("a.txt", cx))
1411 .await
1412 .unwrap();
1413 let buffer_b = cx_b
1414 .background()
1415 .spawn(worktree_b.update(&mut cx_b, |worktree, cx| worktree.open_buffer("a.txt", cx)));
1416
1417 task::yield_now().await;
1418 buffer_a.update(&mut cx_a, |buf, cx| buf.edit([0..0], "z", cx));
1419
1420 let text = buffer_a.read_with(&cx_a, |buf, _| buf.text());
1421 let buffer_b = buffer_b.await.unwrap();
1422 buffer_b.condition(&cx_b, |buf, _| buf.text() == text).await;
1423 }
1424
1425 #[gpui::test]
1426 async fn test_peer_disconnection(mut cx_a: TestAppContext, cx_b: TestAppContext) {
1427 cx_a.foreground().forbid_parking();
1428 let lang_registry = Arc::new(LanguageRegistry::new());
1429
1430 // Connect to a server as 2 clients.
1431 let mut server = TestServer::start().await;
1432 let (_, client_a) = server.create_client(&mut cx_a, "user_a").await;
1433 let (_, client_b) = server.create_client(&mut cx_a, "user_b").await;
1434
1435 // Share a local worktree as client A
1436 let fs = Arc::new(FakeFs::new());
1437 fs.insert_tree(
1438 "/a",
1439 json!({
1440 "a.txt": "a-contents",
1441 "b.txt": "b-contents",
1442 }),
1443 )
1444 .await;
1445 let worktree_a = Worktree::open_local(
1446 "/a".as_ref(),
1447 lang_registry.clone(),
1448 fs,
1449 &mut cx_a.to_async(),
1450 )
1451 .await
1452 .unwrap();
1453 worktree_a
1454 .read_with(&cx_a, |tree, _| tree.as_local().unwrap().scan_complete())
1455 .await;
1456 let (worktree_id, worktree_token) = worktree_a
1457 .update(&mut cx_a, |tree, cx| {
1458 tree.as_local_mut().unwrap().share(client_a.clone(), cx)
1459 })
1460 .await
1461 .unwrap();
1462
1463 // Join that worktree as client B, and see that a guest has joined as client A.
1464 let _worktree_b = Worktree::open_remote(
1465 client_b.clone(),
1466 worktree_id,
1467 worktree_token,
1468 lang_registry.clone(),
1469 &mut cx_b.to_async(),
1470 )
1471 .await
1472 .unwrap();
1473 worktree_a
1474 .condition(&cx_a, |tree, _| tree.peers().len() == 1)
1475 .await;
1476
1477 // Drop client B's connection and ensure client A observes client B leaving the worktree.
1478 client_b.disconnect(&cx_b.to_async()).await.unwrap();
1479 worktree_a
1480 .condition(&cx_a, |tree, _| tree.peers().len() == 0)
1481 .await;
1482 }
1483
1484 #[gpui::test]
1485 async fn test_basic_chat(mut cx_a: TestAppContext, mut cx_b: TestAppContext) {
1486 cx_a.foreground().forbid_parking();
1487 let http = FakeHttpClient::new(|_| async move { Ok(surf::http::Response::new(404)) });
1488
1489 // Connect to a server as 2 clients.
1490 let mut server = TestServer::start().await;
1491 let (user_id_a, client_a) = server.create_client(&mut cx_a, "user_a").await;
1492 let (user_id_b, client_b) = server.create_client(&mut cx_b, "user_b").await;
1493
1494 // Create an org that includes these 2 users.
1495 let db = &server.app_state.db;
1496 let org_id = db.create_org("Test Org", "test-org").await.unwrap();
1497 db.add_org_member(org_id, user_id_a, false).await.unwrap();
1498 db.add_org_member(org_id, user_id_b, false).await.unwrap();
1499
1500 // Create a channel that includes all the users.
1501 let channel_id = db.create_org_channel(org_id, "test-channel").await.unwrap();
1502 db.add_channel_member(channel_id, user_id_a, false)
1503 .await
1504 .unwrap();
1505 db.add_channel_member(channel_id, user_id_b, false)
1506 .await
1507 .unwrap();
1508 db.create_channel_message(
1509 channel_id,
1510 user_id_b,
1511 "hello A, it's B.",
1512 OffsetDateTime::now_utc(),
1513 )
1514 .await
1515 .unwrap();
1516
1517 let user_store_a =
1518 UserStore::new(client_a.clone(), http.clone(), cx_a.background().as_ref());
1519 let channels_a = cx_a.add_model(|cx| ChannelList::new(user_store_a, client_a, cx));
1520 channels_a
1521 .condition(&mut cx_a, |list, _| list.available_channels().is_some())
1522 .await;
1523 channels_a.read_with(&cx_a, |list, _| {
1524 assert_eq!(
1525 list.available_channels().unwrap(),
1526 &[ChannelDetails {
1527 id: channel_id.to_proto(),
1528 name: "test-channel".to_string()
1529 }]
1530 )
1531 });
1532 let channel_a = channels_a.update(&mut cx_a, |this, cx| {
1533 this.get_channel(channel_id.to_proto(), cx).unwrap()
1534 });
1535 channel_a.read_with(&cx_a, |channel, _| assert!(channel.messages().is_empty()));
1536 channel_a
1537 .condition(&cx_a, |channel, _| {
1538 channel_messages(channel)
1539 == [("user_b".to_string(), "hello A, it's B.".to_string())]
1540 })
1541 .await;
1542
1543 let user_store_b =
1544 UserStore::new(client_b.clone(), http.clone(), cx_b.background().as_ref());
1545 let channels_b = cx_b.add_model(|cx| ChannelList::new(user_store_b, client_b, cx));
1546 channels_b
1547 .condition(&mut cx_b, |list, _| list.available_channels().is_some())
1548 .await;
1549 channels_b.read_with(&cx_b, |list, _| {
1550 assert_eq!(
1551 list.available_channels().unwrap(),
1552 &[ChannelDetails {
1553 id: channel_id.to_proto(),
1554 name: "test-channel".to_string()
1555 }]
1556 )
1557 });
1558
1559 let channel_b = channels_b.update(&mut cx_b, |this, cx| {
1560 this.get_channel(channel_id.to_proto(), cx).unwrap()
1561 });
1562 channel_b.read_with(&cx_b, |channel, _| assert!(channel.messages().is_empty()));
1563 channel_b
1564 .condition(&cx_b, |channel, _| {
1565 channel_messages(channel)
1566 == [("user_b".to_string(), "hello A, it's B.".to_string())]
1567 })
1568 .await;
1569
1570 channel_a
1571 .update(&mut cx_a, |channel, cx| {
1572 channel
1573 .send_message("oh, hi B.".to_string(), cx)
1574 .unwrap()
1575 .detach();
1576 let task = channel.send_message("sup".to_string(), cx).unwrap();
1577 assert_eq!(
1578 channel
1579 .pending_messages()
1580 .iter()
1581 .map(|m| &m.body)
1582 .collect::<Vec<_>>(),
1583 &["oh, hi B.", "sup"]
1584 );
1585 task
1586 })
1587 .await
1588 .unwrap();
1589
1590 channel_a
1591 .condition(&cx_a, |channel, _| channel.pending_messages().is_empty())
1592 .await;
1593 channel_b
1594 .condition(&cx_b, |channel, _| {
1595 channel_messages(channel)
1596 == [
1597 ("user_b".to_string(), "hello A, it's B.".to_string()),
1598 ("user_a".to_string(), "oh, hi B.".to_string()),
1599 ("user_a".to_string(), "sup".to_string()),
1600 ]
1601 })
1602 .await;
1603
1604 assert_eq!(
1605 server.state().await.channels[&channel_id]
1606 .connection_ids
1607 .len(),
1608 2
1609 );
1610 cx_b.update(|_| drop(channel_b));
1611 server
1612 .condition(|state| state.channels[&channel_id].connection_ids.len() == 1)
1613 .await;
1614
1615 cx_a.update(|_| drop(channel_a));
1616 server
1617 .condition(|state| !state.channels.contains_key(&channel_id))
1618 .await;
1619
1620 fn channel_messages(channel: &Channel) -> Vec<(String, String)> {
1621 channel
1622 .messages()
1623 .cursor::<(), ()>()
1624 .map(|m| (m.sender.github_login.clone(), m.body.clone()))
1625 .collect()
1626 }
1627 }
1628
1629 #[gpui::test]
1630 async fn test_chat_message_validation(mut cx_a: TestAppContext) {
1631 cx_a.foreground().forbid_parking();
1632 let http = FakeHttpClient::new(|_| async move { Ok(surf::http::Response::new(404)) });
1633
1634 let mut server = TestServer::start().await;
1635 let (user_id_a, client_a) = server.create_client(&mut cx_a, "user_a").await;
1636
1637 let db = &server.app_state.db;
1638 let org_id = db.create_org("Test Org", "test-org").await.unwrap();
1639 let channel_id = db.create_org_channel(org_id, "test-channel").await.unwrap();
1640 db.add_org_member(org_id, user_id_a, false).await.unwrap();
1641 db.add_channel_member(channel_id, user_id_a, false)
1642 .await
1643 .unwrap();
1644
1645 let user_store_a = UserStore::new(client_a.clone(), http, cx_a.background().as_ref());
1646 let channels_a = cx_a.add_model(|cx| ChannelList::new(user_store_a, client_a, cx));
1647 channels_a
1648 .condition(&mut cx_a, |list, _| list.available_channels().is_some())
1649 .await;
1650 let channel_a = channels_a.update(&mut cx_a, |this, cx| {
1651 this.get_channel(channel_id.to_proto(), cx).unwrap()
1652 });
1653
1654 // Messages aren't allowed to be too long.
1655 channel_a
1656 .update(&mut cx_a, |channel, cx| {
1657 let long_body = "this is long.\n".repeat(1024);
1658 channel.send_message(long_body, cx).unwrap()
1659 })
1660 .await
1661 .unwrap_err();
1662
1663 // Messages aren't allowed to be blank.
1664 channel_a.update(&mut cx_a, |channel, cx| {
1665 channel.send_message(String::new(), cx).unwrap_err()
1666 });
1667
1668 // Leading and trailing whitespace are trimmed.
1669 channel_a
1670 .update(&mut cx_a, |channel, cx| {
1671 channel
1672 .send_message("\n surrounded by whitespace \n".to_string(), cx)
1673 .unwrap()
1674 })
1675 .await
1676 .unwrap();
1677 assert_eq!(
1678 db.get_channel_messages(channel_id, 10, None)
1679 .await
1680 .unwrap()
1681 .iter()
1682 .map(|m| &m.body)
1683 .collect::<Vec<_>>(),
1684 &["surrounded by whitespace"]
1685 );
1686 }
1687
1688 #[gpui::test]
1689 async fn test_chat_reconnection(mut cx_a: TestAppContext, mut cx_b: TestAppContext) {
1690 cx_a.foreground().forbid_parking();
1691 let http = FakeHttpClient::new(|_| async move { Ok(surf::http::Response::new(404)) });
1692
1693 // Connect to a server as 2 clients.
1694 let mut server = TestServer::start().await;
1695 let (user_id_a, client_a) = server.create_client(&mut cx_a, "user_a").await;
1696 let (user_id_b, client_b) = server.create_client(&mut cx_b, "user_b").await;
1697 let mut status_b = client_b.status();
1698
1699 // Create an org that includes these 2 users.
1700 let db = &server.app_state.db;
1701 let org_id = db.create_org("Test Org", "test-org").await.unwrap();
1702 db.add_org_member(org_id, user_id_a, false).await.unwrap();
1703 db.add_org_member(org_id, user_id_b, false).await.unwrap();
1704
1705 // Create a channel that includes all the users.
1706 let channel_id = db.create_org_channel(org_id, "test-channel").await.unwrap();
1707 db.add_channel_member(channel_id, user_id_a, false)
1708 .await
1709 .unwrap();
1710 db.add_channel_member(channel_id, user_id_b, false)
1711 .await
1712 .unwrap();
1713 db.create_channel_message(
1714 channel_id,
1715 user_id_b,
1716 "hello A, it's B.",
1717 OffsetDateTime::now_utc(),
1718 )
1719 .await
1720 .unwrap();
1721
1722 let user_store_a =
1723 UserStore::new(client_a.clone(), http.clone(), cx_a.background().as_ref());
1724 let channels_a = cx_a.add_model(|cx| ChannelList::new(user_store_a, client_a, cx));
1725 channels_a
1726 .condition(&mut cx_a, |list, _| list.available_channels().is_some())
1727 .await;
1728
1729 channels_a.read_with(&cx_a, |list, _| {
1730 assert_eq!(
1731 list.available_channels().unwrap(),
1732 &[ChannelDetails {
1733 id: channel_id.to_proto(),
1734 name: "test-channel".to_string()
1735 }]
1736 )
1737 });
1738 let channel_a = channels_a.update(&mut cx_a, |this, cx| {
1739 this.get_channel(channel_id.to_proto(), cx).unwrap()
1740 });
1741 channel_a.read_with(&cx_a, |channel, _| assert!(channel.messages().is_empty()));
1742 channel_a
1743 .condition(&cx_a, |channel, _| {
1744 channel_messages(channel)
1745 == [("user_b".to_string(), "hello A, it's B.".to_string())]
1746 })
1747 .await;
1748
1749 let user_store_b =
1750 UserStore::new(client_b.clone(), http.clone(), cx_b.background().as_ref());
1751 let channels_b = cx_b.add_model(|cx| ChannelList::new(user_store_b, client_b, cx));
1752 channels_b
1753 .condition(&mut cx_b, |list, _| list.available_channels().is_some())
1754 .await;
1755 channels_b.read_with(&cx_b, |list, _| {
1756 assert_eq!(
1757 list.available_channels().unwrap(),
1758 &[ChannelDetails {
1759 id: channel_id.to_proto(),
1760 name: "test-channel".to_string()
1761 }]
1762 )
1763 });
1764
1765 let channel_b = channels_b.update(&mut cx_b, |this, cx| {
1766 this.get_channel(channel_id.to_proto(), cx).unwrap()
1767 });
1768 channel_b.read_with(&cx_b, |channel, _| assert!(channel.messages().is_empty()));
1769 channel_b
1770 .condition(&cx_b, |channel, _| {
1771 channel_messages(channel)
1772 == [("user_b".to_string(), "hello A, it's B.".to_string())]
1773 })
1774 .await;
1775
1776 // Disconnect client B, ensuring we can still access its cached channel data.
1777 server.forbid_connections();
1778 server.disconnect_client(user_id_b);
1779 while !matches!(
1780 status_b.recv().await,
1781 Some(rpc::Status::ReconnectionError { .. })
1782 ) {}
1783
1784 channels_b.read_with(&cx_b, |channels, _| {
1785 assert_eq!(
1786 channels.available_channels().unwrap(),
1787 [ChannelDetails {
1788 id: channel_id.to_proto(),
1789 name: "test-channel".to_string()
1790 }]
1791 )
1792 });
1793 channel_b.read_with(&cx_b, |channel, _| {
1794 assert_eq!(
1795 channel_messages(channel),
1796 [("user_b".to_string(), "hello A, it's B.".to_string())]
1797 )
1798 });
1799
1800 // Send a message from client A while B is disconnected.
1801 channel_a
1802 .update(&mut cx_a, |channel, cx| {
1803 channel
1804 .send_message("oh, hi B.".to_string(), cx)
1805 .unwrap()
1806 .detach();
1807 let task = channel.send_message("sup".to_string(), cx).unwrap();
1808 assert_eq!(
1809 channel
1810 .pending_messages()
1811 .iter()
1812 .map(|m| &m.body)
1813 .collect::<Vec<_>>(),
1814 &["oh, hi B.", "sup"]
1815 );
1816 task
1817 })
1818 .await
1819 .unwrap();
1820
1821 // Give client B a chance to reconnect.
1822 server.allow_connections();
1823 cx_b.foreground().advance_clock(Duration::from_secs(10));
1824
1825 // Verify that B sees the new messages upon reconnection.
1826 channel_b
1827 .condition(&cx_b, |channel, _| {
1828 channel_messages(channel)
1829 == [
1830 ("user_b".to_string(), "hello A, it's B.".to_string()),
1831 ("user_a".to_string(), "oh, hi B.".to_string()),
1832 ("user_a".to_string(), "sup".to_string()),
1833 ]
1834 })
1835 .await;
1836
1837 // Ensure client A and B can communicate normally after reconnection.
1838 channel_a
1839 .update(&mut cx_a, |channel, cx| {
1840 channel.send_message("you online?".to_string(), cx).unwrap()
1841 })
1842 .await
1843 .unwrap();
1844 channel_b
1845 .condition(&cx_b, |channel, _| {
1846 channel_messages(channel)
1847 == [
1848 ("user_b".to_string(), "hello A, it's B.".to_string()),
1849 ("user_a".to_string(), "oh, hi B.".to_string()),
1850 ("user_a".to_string(), "sup".to_string()),
1851 ("user_a".to_string(), "you online?".to_string()),
1852 ]
1853 })
1854 .await;
1855
1856 channel_b
1857 .update(&mut cx_b, |channel, cx| {
1858 channel.send_message("yep".to_string(), cx).unwrap()
1859 })
1860 .await
1861 .unwrap();
1862 channel_a
1863 .condition(&cx_a, |channel, _| {
1864 channel_messages(channel)
1865 == [
1866 ("user_b".to_string(), "hello A, it's B.".to_string()),
1867 ("user_a".to_string(), "oh, hi B.".to_string()),
1868 ("user_a".to_string(), "sup".to_string()),
1869 ("user_a".to_string(), "you online?".to_string()),
1870 ("user_b".to_string(), "yep".to_string()),
1871 ]
1872 })
1873 .await;
1874
1875 fn channel_messages(channel: &Channel) -> Vec<(String, String)> {
1876 channel
1877 .messages()
1878 .cursor::<(), ()>()
1879 .map(|m| (m.sender.github_login.clone(), m.body.clone()))
1880 .collect()
1881 }
1882 }
1883
1884 struct TestServer {
1885 peer: Arc<Peer>,
1886 app_state: Arc<AppState>,
1887 server: Arc<Server>,
1888 notifications: mpsc::Receiver<()>,
1889 connection_killers: Arc<Mutex<HashMap<UserId, watch::Sender<Option<()>>>>>,
1890 forbid_connections: Arc<AtomicBool>,
1891 _test_db: TestDb,
1892 }
1893
1894 impl TestServer {
1895 async fn start() -> Self {
1896 let test_db = TestDb::new();
1897 let app_state = Self::build_app_state(&test_db).await;
1898 let peer = Peer::new();
1899 let notifications = mpsc::channel(128);
1900 let server = Server::new(app_state.clone(), peer.clone(), Some(notifications.0));
1901 Self {
1902 peer,
1903 app_state,
1904 server,
1905 notifications: notifications.1,
1906 connection_killers: Default::default(),
1907 forbid_connections: Default::default(),
1908 _test_db: test_db,
1909 }
1910 }
1911
1912 async fn create_client(
1913 &mut self,
1914 cx: &mut TestAppContext,
1915 name: &str,
1916 ) -> (UserId, Arc<Client>) {
1917 let client_user_id = self.app_state.db.create_user(name, false).await.unwrap();
1918 let client_name = name.to_string();
1919 let mut client = Client::new();
1920 let server = self.server.clone();
1921 let connection_killers = self.connection_killers.clone();
1922 let forbid_connections = self.forbid_connections.clone();
1923 Arc::get_mut(&mut client)
1924 .unwrap()
1925 .override_authenticate(move |cx| {
1926 cx.spawn(|_| async move {
1927 let access_token = "the-token".to_string();
1928 Ok(Credentials {
1929 user_id: client_user_id.0 as u64,
1930 access_token,
1931 })
1932 })
1933 })
1934 .override_establish_connection(move |credentials, cx| {
1935 assert_eq!(credentials.user_id, client_user_id.0 as u64);
1936 assert_eq!(credentials.access_token, "the-token");
1937
1938 let server = server.clone();
1939 let connection_killers = connection_killers.clone();
1940 let forbid_connections = forbid_connections.clone();
1941 let client_name = client_name.clone();
1942 cx.spawn(move |cx| async move {
1943 if forbid_connections.load(SeqCst) {
1944 Err(EstablishConnectionError::other(anyhow!(
1945 "server is forbidding connections"
1946 )))
1947 } else {
1948 let (client_conn, server_conn, kill_conn) = Connection::in_memory();
1949 connection_killers.lock().insert(client_user_id, kill_conn);
1950 cx.background()
1951 .spawn(server.handle_connection(
1952 server_conn,
1953 client_name,
1954 client_user_id,
1955 ))
1956 .detach();
1957 Ok(client_conn)
1958 }
1959 })
1960 });
1961
1962 client
1963 .authenticate_and_connect(&cx.to_async())
1964 .await
1965 .unwrap();
1966 (client_user_id, client)
1967 }
1968
1969 fn disconnect_client(&self, user_id: UserId) {
1970 if let Some(mut kill_conn) = self.connection_killers.lock().remove(&user_id) {
1971 let _ = kill_conn.try_send(Some(()));
1972 }
1973 }
1974
1975 fn forbid_connections(&self) {
1976 self.forbid_connections.store(true, SeqCst);
1977 }
1978
1979 fn allow_connections(&self) {
1980 self.forbid_connections.store(false, SeqCst);
1981 }
1982
1983 async fn build_app_state(test_db: &TestDb) -> Arc<AppState> {
1984 let mut config = Config::default();
1985 config.session_secret = "a".repeat(32);
1986 config.database_url = test_db.url.clone();
1987 let github_client = github::AppClient::test();
1988 Arc::new(AppState {
1989 db: test_db.db().clone(),
1990 handlebars: Default::default(),
1991 auth_client: auth::build_client("", ""),
1992 repo_client: github::RepoClient::test(&github_client),
1993 github_client,
1994 config,
1995 })
1996 }
1997
1998 async fn state<'a>(&'a self) -> RwLockReadGuard<'a, ServerState> {
1999 self.server.state.read().await
2000 }
2001
2002 async fn condition<F>(&mut self, mut predicate: F)
2003 where
2004 F: FnMut(&ServerState) -> bool,
2005 {
2006 async_std::future::timeout(Duration::from_millis(500), async {
2007 while !(predicate)(&*self.server.state.read().await) {
2008 self.notifications.recv().await;
2009 }
2010 })
2011 .await
2012 .expect("condition timed out");
2013 }
2014 }
2015
2016 impl Drop for TestServer {
2017 fn drop(&mut self) {
2018 task::block_on(self.peer.reset());
2019 }
2020 }
2021
2022 struct EmptyView;
2023
2024 impl gpui::Entity for EmptyView {
2025 type Event = ();
2026 }
2027
2028 impl gpui::View for EmptyView {
2029 fn ui_name() -> &'static str {
2030 "empty view"
2031 }
2032
2033 fn render(&mut self, _: &mut gpui::RenderContext<Self>) -> gpui::ElementBox {
2034 gpui::Element::boxed(gpui::elements::Empty)
2035 }
2036 }
2037}