1//! KeyDispatch is where GPUI deals with binding actions to key events.
2//!
3//! The key pieces to making a key binding work are to define an action,
4//! implement a method that takes that action as a type parameter,
5//! and then to register the action during render on a focused node
6//! with a keymap context:
7//!
8//! ```ignore
9//! actions!(editor,[Undo, Redo]);
10//!
11//! impl Editor {
12//! fn undo(&mut self, _: &Undo, _window: &mut Window, _cx: &mut Context<Self>) { ... }
13//! fn redo(&mut self, _: &Redo, _window: &mut Window, _cx: &mut Context<Self>) { ... }
14//! }
15//!
16//! impl Render for Editor {
17//! fn render(&mut self, window: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
18//! div()
19//! .track_focus(&self.focus_handle(cx))
20//! .key_context("Editor")
21//! .on_action(cx.listener(Editor::undo))
22//! .on_action(cx.listener(Editor::redo))
23//! ...
24//! }
25//! }
26//!```
27//!
28//! The keybindings themselves are managed independently by calling cx.bind_keys().
29//! (Though mostly when developing Zed itself, you just need to add a new line to
30//! assets/keymaps/default-{platform}.json).
31//!
32//! ```ignore
33//! cx.bind_keys([
34//! KeyBinding::new("cmd-z", Editor::undo, Some("Editor")),
35//! KeyBinding::new("cmd-shift-z", Editor::redo, Some("Editor")),
36//! ])
37//! ```
38//!
39//! With all of this in place, GPUI will ensure that if you have an Editor that contains
40//! the focus, hitting cmd-z will Undo.
41//!
42//! In real apps, it is a little more complicated than this, because typically you have
43//! several nested views that each register keyboard handlers. In this case action matching
44//! bubbles up from the bottom. For example in Zed, the Workspace is the top-level view, which contains Pane's, which contain Editors. If there are conflicting keybindings defined
45//! then the Editor's bindings take precedence over the Pane's bindings, which take precedence over the Workspace.
46//!
47//! In GPUI, keybindings are not limited to just single keystrokes, you can define
48//! sequences by separating the keys with a space:
49//!
50//! KeyBinding::new("cmd-k left", pane::SplitLeft, Some("Pane"))
51
52use crate::{
53 Action, ActionRegistry, App, DispatchPhase, EntityId, FocusId, KeyBinding, KeyContext, Keymap,
54 Keystroke, ModifiersChangedEvent, Window,
55};
56use collections::FxHashMap;
57use smallvec::SmallVec;
58use std::{
59 any::{Any, TypeId},
60 cell::RefCell,
61 mem,
62 ops::Range,
63 rc::Rc,
64};
65
66/// ID of a node within `DispatchTree`. Note that these are **not** stable between frames, and so a
67/// `DispatchNodeId` should only be used with the `DispatchTree` that provided it.
68#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash)]
69pub(crate) struct DispatchNodeId(usize);
70
71pub(crate) struct DispatchTree {
72 node_stack: Vec<DispatchNodeId>,
73 pub(crate) context_stack: Vec<KeyContext>,
74 view_stack: Vec<EntityId>,
75 nodes: Vec<DispatchNode>,
76 focusable_node_ids: FxHashMap<FocusId, DispatchNodeId>,
77 view_node_ids: FxHashMap<EntityId, DispatchNodeId>,
78 keymap: Rc<RefCell<Keymap>>,
79 action_registry: Rc<ActionRegistry>,
80}
81
82#[derive(Default)]
83pub(crate) struct DispatchNode {
84 pub key_listeners: Vec<KeyListener>,
85 pub action_listeners: Vec<DispatchActionListener>,
86 pub modifiers_changed_listeners: Vec<ModifiersChangedListener>,
87 pub context: Option<KeyContext>,
88 pub focus_id: Option<FocusId>,
89 view_id: Option<EntityId>,
90 parent: Option<DispatchNodeId>,
91}
92
93pub(crate) struct ReusedSubtree {
94 old_range: Range<usize>,
95 new_range: Range<usize>,
96 contains_focus: bool,
97}
98
99impl ReusedSubtree {
100 pub fn refresh_node_id(&self, node_id: DispatchNodeId) -> DispatchNodeId {
101 debug_assert!(
102 self.old_range.contains(&node_id.0),
103 "node {} was not part of the reused subtree {:?}",
104 node_id.0,
105 self.old_range
106 );
107 DispatchNodeId((node_id.0 - self.old_range.start) + self.new_range.start)
108 }
109
110 pub fn contains_focus(&self) -> bool {
111 self.contains_focus
112 }
113}
114
115#[derive(Default, Debug)]
116pub(crate) struct Replay {
117 pub(crate) keystroke: Keystroke,
118 pub(crate) bindings: SmallVec<[KeyBinding; 1]>,
119}
120
121#[derive(Default, Debug)]
122pub(crate) struct DispatchResult {
123 pub(crate) pending: SmallVec<[Keystroke; 1]>,
124 pub(crate) pending_has_binding: bool,
125 pub(crate) bindings: SmallVec<[KeyBinding; 1]>,
126 pub(crate) to_replay: SmallVec<[Replay; 1]>,
127 pub(crate) context_stack: Vec<KeyContext>,
128}
129
130type KeyListener = Rc<dyn Fn(&dyn Any, DispatchPhase, &mut Window, &mut App)>;
131type ModifiersChangedListener = Rc<dyn Fn(&ModifiersChangedEvent, &mut Window, &mut App)>;
132
133#[derive(Clone)]
134pub(crate) struct DispatchActionListener {
135 pub(crate) action_type: TypeId,
136 pub(crate) listener: Rc<dyn Fn(&dyn Any, DispatchPhase, &mut Window, &mut App)>,
137}
138
139impl DispatchTree {
140 pub fn new(keymap: Rc<RefCell<Keymap>>, action_registry: Rc<ActionRegistry>) -> Self {
141 Self {
142 node_stack: Vec::new(),
143 context_stack: Vec::new(),
144 view_stack: Vec::new(),
145 nodes: Vec::new(),
146 focusable_node_ids: FxHashMap::default(),
147 view_node_ids: FxHashMap::default(),
148 keymap,
149 action_registry,
150 }
151 }
152
153 pub fn clear(&mut self) {
154 self.node_stack.clear();
155 self.context_stack.clear();
156 self.view_stack.clear();
157 self.nodes.clear();
158 self.focusable_node_ids.clear();
159 self.view_node_ids.clear();
160 }
161
162 pub fn len(&self) -> usize {
163 self.nodes.len()
164 }
165
166 pub fn push_node(&mut self) -> DispatchNodeId {
167 let parent = self.node_stack.last().copied();
168 let node_id = DispatchNodeId(self.nodes.len());
169
170 self.nodes.push(DispatchNode {
171 parent,
172 ..Default::default()
173 });
174 self.node_stack.push(node_id);
175 node_id
176 }
177
178 pub fn set_active_node(&mut self, node_id: DispatchNodeId) {
179 let next_node_parent = self.nodes[node_id.0].parent;
180 while self.node_stack.last().copied() != next_node_parent && !self.node_stack.is_empty() {
181 self.pop_node();
182 }
183
184 if self.node_stack.last().copied() == next_node_parent {
185 self.node_stack.push(node_id);
186 let active_node = &self.nodes[node_id.0];
187 if let Some(view_id) = active_node.view_id {
188 self.view_stack.push(view_id)
189 }
190 if let Some(context) = active_node.context.clone() {
191 self.context_stack.push(context);
192 }
193 } else {
194 debug_assert_eq!(self.node_stack.len(), 0);
195
196 let mut current_node_id = Some(node_id);
197 while let Some(node_id) = current_node_id {
198 let node = &self.nodes[node_id.0];
199 if let Some(context) = node.context.clone() {
200 self.context_stack.push(context);
201 }
202 if node.view_id.is_some() {
203 self.view_stack.push(node.view_id.unwrap());
204 }
205 self.node_stack.push(node_id);
206 current_node_id = node.parent;
207 }
208
209 self.context_stack.reverse();
210 self.view_stack.reverse();
211 self.node_stack.reverse();
212 }
213 }
214
215 pub fn set_key_context(&mut self, context: KeyContext) {
216 self.active_node().context = Some(context.clone());
217 self.context_stack.push(context);
218 }
219
220 pub fn set_focus_id(&mut self, focus_id: FocusId) {
221 let node_id = *self.node_stack.last().unwrap();
222 self.nodes[node_id.0].focus_id = Some(focus_id);
223 self.focusable_node_ids.insert(focus_id, node_id);
224 }
225
226 pub fn set_view_id(&mut self, view_id: EntityId) {
227 if self.view_stack.last().copied() != Some(view_id) {
228 let node_id = *self.node_stack.last().unwrap();
229 self.nodes[node_id.0].view_id = Some(view_id);
230 self.view_node_ids.insert(view_id, node_id);
231 self.view_stack.push(view_id);
232 }
233 }
234
235 pub fn pop_node(&mut self) {
236 let node = &self.nodes[self.active_node_id().unwrap().0];
237 if node.context.is_some() {
238 self.context_stack.pop();
239 }
240 if node.view_id.is_some() {
241 self.view_stack.pop();
242 }
243 self.node_stack.pop();
244 }
245
246 fn move_node(&mut self, source: &mut DispatchNode) {
247 self.push_node();
248 if let Some(context) = source.context.clone() {
249 self.set_key_context(context);
250 }
251 if let Some(focus_id) = source.focus_id {
252 self.set_focus_id(focus_id);
253 }
254 if let Some(view_id) = source.view_id {
255 self.set_view_id(view_id);
256 }
257
258 let target = self.active_node();
259 target.key_listeners = mem::take(&mut source.key_listeners);
260 target.action_listeners = mem::take(&mut source.action_listeners);
261 target.modifiers_changed_listeners = mem::take(&mut source.modifiers_changed_listeners);
262 }
263
264 pub fn reuse_subtree(
265 &mut self,
266 old_range: Range<usize>,
267 source: &mut Self,
268 focus: Option<FocusId>,
269 ) -> ReusedSubtree {
270 let new_range = self.nodes.len()..self.nodes.len() + old_range.len();
271
272 let mut contains_focus = false;
273 let mut source_stack = vec![];
274 for (source_node_id, source_node) in source
275 .nodes
276 .iter_mut()
277 .enumerate()
278 .skip(old_range.start)
279 .take(old_range.len())
280 {
281 let source_node_id = DispatchNodeId(source_node_id);
282 while let Some(source_ancestor) = source_stack.last() {
283 if source_node.parent == Some(*source_ancestor) {
284 break;
285 } else {
286 source_stack.pop();
287 self.pop_node();
288 }
289 }
290
291 source_stack.push(source_node_id);
292 if source_node.focus_id.is_some() && source_node.focus_id == focus {
293 contains_focus = true;
294 }
295 self.move_node(source_node);
296 }
297
298 while !source_stack.is_empty() {
299 source_stack.pop();
300 self.pop_node();
301 }
302
303 ReusedSubtree {
304 old_range,
305 new_range,
306 contains_focus,
307 }
308 }
309
310 pub fn truncate(&mut self, index: usize) {
311 for node in &self.nodes[index..] {
312 if let Some(focus_id) = node.focus_id {
313 self.focusable_node_ids.remove(&focus_id);
314 }
315
316 if let Some(view_id) = node.view_id {
317 self.view_node_ids.remove(&view_id);
318 }
319 }
320 self.nodes.truncate(index);
321 }
322
323 pub fn on_key_event(&mut self, listener: KeyListener) {
324 self.active_node().key_listeners.push(listener);
325 }
326
327 pub fn on_modifiers_changed(&mut self, listener: ModifiersChangedListener) {
328 self.active_node()
329 .modifiers_changed_listeners
330 .push(listener);
331 }
332
333 pub fn on_action(
334 &mut self,
335 action_type: TypeId,
336 listener: Rc<dyn Fn(&dyn Any, DispatchPhase, &mut Window, &mut App)>,
337 ) {
338 self.active_node()
339 .action_listeners
340 .push(DispatchActionListener {
341 action_type,
342 listener,
343 });
344 }
345
346 pub fn focus_contains(&self, parent: FocusId, child: FocusId) -> bool {
347 if parent == child {
348 return true;
349 }
350
351 if let Some(parent_node_id) = self.focusable_node_ids.get(&parent) {
352 let mut current_node_id = self.focusable_node_ids.get(&child).copied();
353 while let Some(node_id) = current_node_id {
354 if node_id == *parent_node_id {
355 return true;
356 }
357 current_node_id = self.nodes[node_id.0].parent;
358 }
359 }
360 false
361 }
362
363 pub fn available_actions(&self, target: DispatchNodeId) -> Vec<Box<dyn Action>> {
364 let mut actions = Vec::<Box<dyn Action>>::new();
365 for node_id in self.dispatch_path(target) {
366 let node = &self.nodes[node_id.0];
367 for DispatchActionListener { action_type, .. } in &node.action_listeners {
368 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id())
369 {
370 // Intentionally silence these errors without logging.
371 // If an action cannot be built by default, it's not available.
372 let action = self.action_registry.build_action_type(action_type).ok();
373 if let Some(action) = action {
374 actions.insert(ix, action);
375 }
376 }
377 }
378 }
379 actions
380 }
381
382 pub fn is_action_available(&self, action: &dyn Action, target: DispatchNodeId) -> bool {
383 for node_id in self.dispatch_path(target) {
384 let node = &self.nodes[node_id.0];
385 if node
386 .action_listeners
387 .iter()
388 .any(|listener| listener.action_type == action.as_any().type_id())
389 {
390 return true;
391 }
392 }
393 false
394 }
395
396 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
397 /// returned in the order they were added. For display, the last binding should take precedence.
398 ///
399 /// Bindings are only included if they are the highest precedence match for their keystrokes, so
400 /// shadowed bindings are not included.
401 pub fn bindings_for_action(
402 &self,
403 action: &dyn Action,
404 context_stack: &[KeyContext],
405 ) -> Vec<KeyBinding> {
406 // Ideally this would return a `DoubleEndedIterator` to avoid `highest_precedence_*`
407 // methods, but this can't be done very cleanly since keymap must be borrowed.
408 let keymap = self.keymap.borrow();
409 keymap
410 .bindings_for_action(action)
411 .filter(|binding| {
412 Self::binding_matches_predicate_and_not_shadowed(&keymap, binding, context_stack)
413 })
414 .cloned()
415 .collect()
416 }
417
418 /// Returns the highest precedence binding for the given action and context stack. This is the
419 /// same as the last result of `bindings_for_action`, but more efficient than getting all bindings.
420 pub fn highest_precedence_binding_for_action(
421 &self,
422 action: &dyn Action,
423 context_stack: &[KeyContext],
424 ) -> Option<KeyBinding> {
425 let keymap = self.keymap.borrow();
426 keymap
427 .bindings_for_action(action)
428 .rev()
429 .find(|binding| {
430 Self::binding_matches_predicate_and_not_shadowed(&keymap, binding, context_stack)
431 })
432 .cloned()
433 }
434
435 fn binding_matches_predicate_and_not_shadowed(
436 keymap: &Keymap,
437 binding: &KeyBinding,
438 context_stack: &[KeyContext],
439 ) -> bool {
440 let (bindings, _) = keymap.bindings_for_input(&binding.keystrokes, context_stack);
441 if let Some(found) = bindings.iter().next() {
442 found.action.partial_eq(binding.action.as_ref())
443 } else {
444 false
445 }
446 }
447
448 fn bindings_for_input(
449 &self,
450 input: &[Keystroke],
451 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
452 ) -> (SmallVec<[KeyBinding; 1]>, bool, Vec<KeyContext>) {
453 let context_stack: Vec<KeyContext> = dispatch_path
454 .iter()
455 .filter_map(|node_id| self.node(*node_id).context.clone())
456 .collect();
457
458 let (bindings, partial) = self
459 .keymap
460 .borrow()
461 .bindings_for_input(input, &context_stack);
462 (bindings, partial, context_stack)
463 }
464
465 /// dispatch_key processes the keystroke
466 /// input should be set to the value of `pending` from the previous call to dispatch_key.
467 /// This returns three instructions to the input handler:
468 /// - bindings: any bindings to execute before processing this keystroke
469 /// - pending: the new set of pending keystrokes to store
470 /// - to_replay: any keystroke that had been pushed to pending, but are no-longer matched,
471 /// these should be replayed first.
472 pub fn dispatch_key(
473 &mut self,
474 mut input: SmallVec<[Keystroke; 1]>,
475 keystroke: Keystroke,
476 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
477 ) -> DispatchResult {
478 input.push(keystroke.clone());
479 let (bindings, pending, context_stack) = self.bindings_for_input(&input, dispatch_path);
480
481 if pending {
482 return DispatchResult {
483 pending: input,
484 pending_has_binding: !bindings.is_empty(),
485 context_stack,
486 ..Default::default()
487 };
488 } else if !bindings.is_empty() {
489 return DispatchResult {
490 bindings,
491 context_stack,
492 ..Default::default()
493 };
494 } else if input.len() == 1 {
495 return DispatchResult {
496 context_stack,
497 ..Default::default()
498 };
499 }
500 input.pop();
501
502 let (suffix, mut to_replay) = self.replay_prefix(input, dispatch_path);
503
504 let mut result = self.dispatch_key(suffix, keystroke, dispatch_path);
505 to_replay.extend(result.to_replay);
506 result.to_replay = to_replay;
507 result
508 }
509
510 /// If the user types a matching prefix of a binding and then waits for a timeout
511 /// flush_dispatch() converts any previously pending input to replay events.
512 pub fn flush_dispatch(
513 &mut self,
514 input: SmallVec<[Keystroke; 1]>,
515 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
516 ) -> SmallVec<[Replay; 1]> {
517 let (suffix, mut to_replay) = self.replay_prefix(input, dispatch_path);
518
519 if !suffix.is_empty() {
520 to_replay.extend(self.flush_dispatch(suffix, dispatch_path))
521 }
522
523 to_replay
524 }
525
526 /// Converts the longest prefix of input to a replay event and returns the rest.
527 fn replay_prefix(
528 &self,
529 mut input: SmallVec<[Keystroke; 1]>,
530 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
531 ) -> (SmallVec<[Keystroke; 1]>, SmallVec<[Replay; 1]>) {
532 let mut to_replay: SmallVec<[Replay; 1]> = Default::default();
533 for last in (0..input.len()).rev() {
534 let (bindings, _, _) = self.bindings_for_input(&input[0..=last], dispatch_path);
535 if !bindings.is_empty() {
536 to_replay.push(Replay {
537 keystroke: input.drain(0..=last).next_back().unwrap(),
538 bindings,
539 });
540 break;
541 }
542 }
543 if to_replay.is_empty() {
544 to_replay.push(Replay {
545 keystroke: input.remove(0),
546 ..Default::default()
547 });
548 }
549 (input, to_replay)
550 }
551
552 pub fn dispatch_path(&self, target: DispatchNodeId) -> SmallVec<[DispatchNodeId; 32]> {
553 let mut dispatch_path: SmallVec<[DispatchNodeId; 32]> = SmallVec::new();
554 let mut current_node_id = Some(target);
555 while let Some(node_id) = current_node_id {
556 dispatch_path.push(node_id);
557 current_node_id = self.nodes.get(node_id.0).and_then(|node| node.parent);
558 }
559 dispatch_path.reverse(); // Reverse the path so it goes from the root to the focused node.
560 dispatch_path
561 }
562
563 pub fn focus_path(&self, focus_id: FocusId) -> SmallVec<[FocusId; 8]> {
564 let mut focus_path: SmallVec<[FocusId; 8]> = SmallVec::new();
565 let mut current_node_id = self.focusable_node_ids.get(&focus_id).copied();
566 while let Some(node_id) = current_node_id {
567 let node = self.node(node_id);
568 if let Some(focus_id) = node.focus_id {
569 focus_path.push(focus_id);
570 }
571 current_node_id = node.parent;
572 }
573 focus_path.reverse(); // Reverse the path so it goes from the root to the focused node.
574 focus_path
575 }
576
577 pub fn view_path_reversed(&self, view_id: EntityId) -> impl Iterator<Item = EntityId> {
578 let mut current_node_id = self.view_node_ids.get(&view_id).copied();
579
580 std::iter::successors(
581 current_node_id.map(|node_id| self.node(node_id)),
582 |node_id| Some(self.node(node_id.parent?)),
583 )
584 .filter_map(|node| node.view_id)
585 }
586
587 pub fn node(&self, node_id: DispatchNodeId) -> &DispatchNode {
588 &self.nodes[node_id.0]
589 }
590
591 fn active_node(&mut self) -> &mut DispatchNode {
592 let active_node_id = self.active_node_id().unwrap();
593 &mut self.nodes[active_node_id.0]
594 }
595
596 pub fn focusable_node_id(&self, target: FocusId) -> Option<DispatchNodeId> {
597 self.focusable_node_ids.get(&target).copied()
598 }
599
600 pub fn root_node_id(&self) -> DispatchNodeId {
601 debug_assert!(!self.nodes.is_empty());
602 DispatchNodeId(0)
603 }
604
605 pub fn active_node_id(&self) -> Option<DispatchNodeId> {
606 self.node_stack.last().copied()
607 }
608}
609
610#[cfg(test)]
611mod tests {
612 use crate::{
613 self as gpui, DispatchResult, Element, ElementId, GlobalElementId, InspectorElementId,
614 Keystroke, LayoutId, Style,
615 };
616 use core::panic;
617 use smallvec::SmallVec;
618 use std::{cell::RefCell, ops::Range, rc::Rc};
619
620 use crate::{
621 Action, ActionRegistry, App, Bounds, Context, DispatchTree, FocusHandle, InputHandler,
622 IntoElement, KeyBinding, KeyContext, Keymap, Pixels, Point, Render, TestAppContext,
623 UTF16Selection, Window,
624 };
625
626 #[derive(PartialEq, Eq)]
627 struct TestAction;
628
629 impl Action for TestAction {
630 fn name(&self) -> &'static str {
631 "test::TestAction"
632 }
633
634 fn name_for_type() -> &'static str
635 where
636 Self: ::std::marker::Sized,
637 {
638 "test::TestAction"
639 }
640
641 fn partial_eq(&self, action: &dyn Action) -> bool {
642 action.as_any().downcast_ref::<Self>() == Some(self)
643 }
644
645 fn boxed_clone(&self) -> std::boxed::Box<dyn Action> {
646 Box::new(TestAction)
647 }
648
649 fn build(_value: serde_json::Value) -> anyhow::Result<Box<dyn Action>>
650 where
651 Self: Sized,
652 {
653 Ok(Box::new(TestAction))
654 }
655 }
656
657 #[test]
658 fn test_keybinding_for_action_bounds() {
659 let keymap = Keymap::new(vec![KeyBinding::new(
660 "cmd-n",
661 TestAction,
662 Some("ProjectPanel"),
663 )]);
664
665 let mut registry = ActionRegistry::default();
666
667 registry.load_action::<TestAction>();
668
669 let keymap = Rc::new(RefCell::new(keymap));
670
671 let tree = DispatchTree::new(keymap, Rc::new(registry));
672
673 let contexts = vec![
674 KeyContext::parse("Workspace").unwrap(),
675 KeyContext::parse("ProjectPanel").unwrap(),
676 ];
677
678 let keybinding = tree.bindings_for_action(&TestAction, &contexts);
679
680 assert!(keybinding[0].action.partial_eq(&TestAction))
681 }
682
683 #[test]
684 fn test_pending_has_binding_state() {
685 let bindings = vec![
686 KeyBinding::new("ctrl-b h", TestAction, None),
687 KeyBinding::new("space", TestAction, Some("ContextA")),
688 KeyBinding::new("space f g", TestAction, Some("ContextB")),
689 ];
690 let keymap = Rc::new(RefCell::new(Keymap::new(bindings)));
691 let mut registry = ActionRegistry::default();
692 registry.load_action::<TestAction>();
693 let mut tree = DispatchTree::new(keymap, Rc::new(registry));
694
695 type DispatchPath = SmallVec<[super::DispatchNodeId; 32]>;
696 fn dispatch(
697 tree: &mut DispatchTree,
698 pending: SmallVec<[Keystroke; 1]>,
699 key: &str,
700 path: &DispatchPath,
701 ) -> DispatchResult {
702 tree.dispatch_key(pending, Keystroke::parse(key).unwrap(), path)
703 }
704
705 let dispatch_path: DispatchPath = SmallVec::new();
706 let result = dispatch(&mut tree, SmallVec::new(), "ctrl-b", &dispatch_path);
707 assert_eq!(result.pending.len(), 1);
708 assert!(!result.pending_has_binding);
709
710 let result = dispatch(&mut tree, result.pending, "h", &dispatch_path);
711 assert_eq!(result.pending.len(), 0);
712 assert_eq!(result.bindings.len(), 1);
713 assert!(!result.pending_has_binding);
714
715 let node_id = tree.push_node();
716 tree.set_key_context(KeyContext::parse("ContextB").unwrap());
717 tree.pop_node();
718
719 let dispatch_path = tree.dispatch_path(node_id);
720 let result = dispatch(&mut tree, SmallVec::new(), "space", &dispatch_path);
721
722 assert_eq!(result.pending.len(), 1);
723 assert!(!result.pending_has_binding);
724 }
725
726 #[crate::test]
727 fn test_input_handler_pending(cx: &mut TestAppContext) {
728 #[derive(Clone)]
729 struct CustomElement {
730 focus_handle: FocusHandle,
731 text: Rc<RefCell<String>>,
732 }
733 impl CustomElement {
734 fn new(cx: &mut Context<Self>) -> Self {
735 Self {
736 focus_handle: cx.focus_handle(),
737 text: Rc::default(),
738 }
739 }
740 }
741 impl Element for CustomElement {
742 type RequestLayoutState = ();
743
744 type PrepaintState = ();
745
746 fn id(&self) -> Option<ElementId> {
747 Some("custom".into())
748 }
749 fn source_location(&self) -> Option<&'static panic::Location<'static>> {
750 None
751 }
752 fn request_layout(
753 &mut self,
754 _: Option<&GlobalElementId>,
755 _: Option<&InspectorElementId>,
756 window: &mut Window,
757 cx: &mut App,
758 ) -> (LayoutId, Self::RequestLayoutState) {
759 (window.request_layout(Style::default(), [], cx), ())
760 }
761 fn prepaint(
762 &mut self,
763 _: Option<&GlobalElementId>,
764 _: Option<&InspectorElementId>,
765 _: Bounds<Pixels>,
766 _: &mut Self::RequestLayoutState,
767 window: &mut Window,
768 cx: &mut App,
769 ) -> Self::PrepaintState {
770 window.set_focus_handle(&self.focus_handle, cx);
771 }
772 fn paint(
773 &mut self,
774 _: Option<&GlobalElementId>,
775 _: Option<&InspectorElementId>,
776 _: Bounds<Pixels>,
777 _: &mut Self::RequestLayoutState,
778 _: &mut Self::PrepaintState,
779 window: &mut Window,
780 cx: &mut App,
781 ) {
782 let mut key_context = KeyContext::default();
783 key_context.add("Terminal");
784 window.set_key_context(key_context);
785 window.handle_input(&self.focus_handle, self.clone(), cx);
786 window.on_action(std::any::TypeId::of::<TestAction>(), |_, _, _, _| {});
787 }
788 }
789 impl IntoElement for CustomElement {
790 type Element = Self;
791
792 fn into_element(self) -> Self::Element {
793 self
794 }
795 }
796
797 impl InputHandler for CustomElement {
798 fn selected_text_range(
799 &mut self,
800 _: bool,
801 _: &mut Window,
802 _: &mut App,
803 ) -> Option<UTF16Selection> {
804 None
805 }
806
807 fn marked_text_range(&mut self, _: &mut Window, _: &mut App) -> Option<Range<usize>> {
808 None
809 }
810
811 fn text_for_range(
812 &mut self,
813 _: Range<usize>,
814 _: &mut Option<Range<usize>>,
815 _: &mut Window,
816 _: &mut App,
817 ) -> Option<String> {
818 None
819 }
820
821 fn replace_text_in_range(
822 &mut self,
823 replacement_range: Option<Range<usize>>,
824 text: &str,
825 _: &mut Window,
826 _: &mut App,
827 ) {
828 if replacement_range.is_some() {
829 unimplemented!()
830 }
831 self.text.borrow_mut().push_str(text)
832 }
833
834 fn replace_and_mark_text_in_range(
835 &mut self,
836 replacement_range: Option<Range<usize>>,
837 new_text: &str,
838 _: Option<Range<usize>>,
839 _: &mut Window,
840 _: &mut App,
841 ) {
842 if replacement_range.is_some() {
843 unimplemented!()
844 }
845 self.text.borrow_mut().push_str(new_text)
846 }
847
848 fn unmark_text(&mut self, _: &mut Window, _: &mut App) {}
849
850 fn bounds_for_range(
851 &mut self,
852 _: Range<usize>,
853 _: &mut Window,
854 _: &mut App,
855 ) -> Option<Bounds<Pixels>> {
856 None
857 }
858
859 fn character_index_for_point(
860 &mut self,
861 _: Point<Pixels>,
862 _: &mut Window,
863 _: &mut App,
864 ) -> Option<usize> {
865 None
866 }
867 }
868 impl Render for CustomElement {
869 fn render(&mut self, _: &mut Window, _: &mut Context<Self>) -> impl IntoElement {
870 self.clone()
871 }
872 }
873
874 cx.update(|cx| {
875 cx.bind_keys([KeyBinding::new("ctrl-b", TestAction, Some("Terminal"))]);
876 cx.bind_keys([KeyBinding::new("ctrl-b h", TestAction, Some("Terminal"))]);
877 });
878 let (test, cx) = cx.add_window_view(|_, cx| CustomElement::new(cx));
879 cx.update(|window, cx| {
880 window.focus(&test.read(cx).focus_handle);
881 window.activate_window();
882 });
883 cx.simulate_keystrokes("ctrl-b [");
884 test.update(cx, |test, _| assert_eq!(test.text.borrow().as_str(), "["))
885 }
886}